- 1 Specialization of bat-fly interactions at different elevations in a montane
- 2 forest of Northern Peru

- 4 David Minaya¹, Juan J. Pellón², Carla Yauris^{1,3}, Kristhie Pillaca^{3,4}, Balder Choza^{3,5}, Jaime
- 5 Pacheco⁶, Gustavo Graciolli⁷, José Iannacone^{1,8}

6

- 7 ¹Laboratorio de Ecología y Biodiversidad Animal, Facultad de Ciencias Naturales y
- 8 Matemática, Universidad Nacional Federico Villarreal, El Agustino, Lima, Perú; ²Laboratorio
- 9 de Ecología y Conservación de Vertebrados Terrestres, Instituto de Ecología, Universidad
- 10 Nacional Autónoma de México, Ciudad de México, México; ³Programa de Conservación de
- 11 Murciélagos del Perú, ⁴ Centro de Ornitología y Biodiversidad (CORBIDI), División de
- 12 Mastozoología, Lima, Perú; ⁵Universidad Nacional San Luis Gonzaga, Ica, Perú; ⁶Bioacoustic
- 13 Analysis Team S.A.C., Callao, Perú; ⁷Setor de Zoologia, Instituto de Biociências (INBIO),
- 14 Universidade Federal de Mato Grosso doSul (UFMS), Campo Grande, MS, Brazil; 8
- 15 Universidad Científica del Sur, Lima, Perú.

16

17 **Corresponding author:** José Iannacone, Email: joseiannacone@gmail.com

Abstract

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Hippoboscoidea flies exhibit highly specific ectoparasitic relationships with bats, shaped by both intrinsic factors (e.g., bat behavior) and extrinsic factors (e.g., land use). Understanding the dynamics of these parasite-host interactions is essential for uncovering co-evolutionary patterns and informing conservation strategies. To this end, we studied bat-fly interactions across different elevations in a montane forest of Amazonas, northern Peru. The most abundant bats were Carollia brevicauda, C. perspicillata, and Sturnira oporaphilum, while Paraeuctenodes similis and Trichobius joblingi were the most common flies. Most flies exhibited monoxenous host specificity. Bat–fly interaction networks revealed high modularity and specialization at both local and regional scales. Modules typically grouped bat species of the same genus or subfamily, suggesting that phylogenetic constraints and roosting behaviour may shape those interaction patterns. Nestedness within modules (compound structure) emerged in the aggregated regional network, aligning with the integrative hypothesis of specialization. Although network structures were broadly similar across sites, species turnover contributed to subtle differences in module composition and specialization. These differences were congruent with the changes in species roles of certain bats and flies. This study represents the first of its kind in Peru and addresses significant knowledge gaps in the ecology of bat-fly interactions in the Neotropics.

- Keywords: altitudinal gradient; Amazonian Andes; Chiroptera; ectoparasites; Host-parasite
- 38 interactions; network analysis; Nycteribiidae; parasitism; specificity; Streblidae

Key Findings

40

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

- 19 bat-fly species recorded, including new local and national records.
- Interactions showed high specialization at local and regional scales.
- Sites shared similar overall network structure.
- Species turnover drove interaction differences among sites.
- Species roles of bats and flies varied despite similar network structures.

46 Introduction

- Bat flies (Diptera: Hippoboscoidea) are obligate, blood-feeding ectoparasites that exclusively parasitize bats and are among the most abundant and frequent hematophagous parasites in this mammalian group (Hrycyna et al., 2019). These flies typically exhibit a high degree of host specificity, often associated with long-term evolutionary relationships between parasite and host lineages (Dick et al., 2010). However, host specificity can also be influenced by intrinsic factors such as host behavior, health, and body size, as well as extrinsic environmental factors (Palheta et al., 2020). Studying these tightly linked parasite—host interactions offers valuable insight into co-evolutionary processes and the mechanisms shaping host specialization (Dick and Patterson 2006; Hiller et al., 2021). Globally, bat flies are divided into two main families with distinct biogeographic distributions: Nycteribiidae, more diverse in the Eastern Hemisphere, and Streblidae, predominantly found in the Western Hemisphere, especially in the Neotropics (Soares et al. 2013; Graciolli and Dick, 2018; Barbier et al., 2019; Graciolli et al., 2019). In South America, representatives of both families coexist, parasitizing a wide range of bat species (Biz et al., 2023; Zapata-Mesa et al., 2024). Despite their ecological relevance, detailed studies on bat-fly associations remain scarce in many parts of the Neotropics, including Peru.
- Peru harbors remarkable bat diversity, with 189 species currently recorded (Pacheco *et al.*, 2021), of which at least 75 are known to host ectoparasites, including 66 species of bat flies

(Minaya et al., 2021). However, most records of bat-fly diversity in Peru are concentrated in the lowland Amazonian rainforests of Loreto and Madre de Dios (Theodor, 1967; Guerrero, 1996a; Graciolli et al., 2007; Autino et al., 2011; Gettinger, 2018; Gettinger et al., 2020; Morales-Malacara and Guerrero, 2020). In contrast, montane forests—despite being among the most bat-diverse ecosystems in the Neotropics (Bogoni et al., 2021; Chaverri et al., 2016;)—remain poorly studied in terms of bat ectoparasite associations. Available information from these ecosystems is sparse and typically limited to isolated records of ectoparasite presence, rather than comprehensive analyses of interactions (Biz et al., 2023, Zapata-Mesa et al., 2024). For example, in the montane forests of Amazonas, northern Peru, a key region within the Andean forest belt, only a single study on bat flies has been published (Ibáñez and Jara, 2008), highlighting a substantial gap in our understanding of host—parasite relationships in these highelevation systems.

The use of ecological network analysis has become increasingly important in advancing our understanding of host–parasite systems, particularly in bat–ectoparasite relationships (Runghen *et al.*, 2021; Biz *et al.*, 2023; Zapata-Mesa *et al.*, 2024). Unlike traditional species inventories, network approaches allow researchers to explore structural properties such as modularity, nestedness, and interaction specialization within ecological communities (Bezerra and Bocchiglieri, 2022). Bats and their ectoparasitic flies represent an ideal model for such studies due to their high species richness and long coevolutionary history. Network-based analyses have consistently revealed high levels of specialization and modularity in bat–fly associations, suggesting that both ecological and evolutionary factors shape these interaction patterns (Falcão *et al.*, 2022). Moreover, understanding the structure of host–parasite networks is increasingly relevant for public health, as ectoparasites may act as vectors of zoonotic pathogens, potentially facilitating transmission between wildlife and humans (Szentiványi *et al.*, 2019). Integrating network analysis into parasite–host studies therefore offers valuable

insights for both ecological theory and applied conservation and health strategies.

Given this context and the need to generate local-scale data that contribute to a broader understanding of bat—ectoparasite interactions, the aim of our study was to assess the dipteran ectoparasites associated with bats in the montane forests of Amazonas, northern Peru. Specifically, we sought to examine patterns of species distribution to explore the structure of parasite—host association using interaction networks.

Materials and methods

Study area

The study was conducted in the hamlet of Nueva Esperanza, on the Numparket Waterfall Tourist Route located in Aramango, Bagua (Amazonas, Peru). The area is characterized by low montane forest vegetation and falls within the ecoregions of Very Humid Montane Forest (Bosque Montano Muy Húmedo, BMHM) and Very Humid Premontane Forest (Bosque Premontano Muy Húmedo, BMHP) (Britto, 2017). The landscape includes both well-preserved primary forest and zones subjected to selective logging.

Fieldwork was conducted between July 2023, February 2024 and August 2024 across three sites: Numparket (1,800 m a.s.l.), Chontas (1,560 m a.s.l.), and Higuerón (1,480 m a.s.l.). Numparket is located around the Numparket Waterfall within the conservation concession Cerro El Adobe. This area also forms part of the buffer zone of both the national sanctuary Cordillera de Colán and the communal reserve Chayu Nain (Figure 1). Due to its proximity to the waterfall and its tributary rivers, Numparket maintains high humidity throughout most of the year. The site is predominantly covered by well-preserved primary forest, with the exception of some disturbed zones near the road. In contrast, Chontas and Higuerón are located within the area of influence of Cordillera de Colán. These sites are characterized by a mosaic of preserved forest, patches of secondary growth, and areas affected by selective logging. The

vegetation includes species such as *Ficus paraensis*, *Cecropia* spp., various species of Araceae
 and Rubiaceae, and abundant pteridophytes (Authors' observation).

Bats and flies sampling

At every sampling station, 10 understory mist nets (12×2.5 m) spaced ~20 m apart were used for 12 nights, distributed as three blocks of four consecutive nights (July 2023, February 2024, and August 2024). (MINAM, 2015). The nets were opened from 18:00 to 00:00 h to target species with peak foraging activity during that period (Jones *et al.*, 1996). Individuals that could not be identified in the field were collected, preserved in alcohol, and deposited at the Museo Vera Alleman de la Universidad Ricardo Palma (MURP) in Lima, Peru.

All individuals were checked while alive. Bat flies were removed using entomological forceps, then fixed and preserved in polypropylene cryovials containing 70% ethanol. Specimens were cleared in 10% KOH and examined under a Nikon SMZ745 stereomicroscope for taxonomic identification using the keys of Wenzel *et al.* (1966); Wenzel, (1976) and Guerrero (1993, 1994*a,b*, 1995*a,b*, 1996*bc*). Macrophotographs of external anatomy and taxonomically important structures were taken using a TOUPCAM camera mounted on a Nikon Eclipse Si microscope with a Nikon Nii LED illumination system. Image stacking was performed with ToupView software. All ectoparasite specimens were deposited in the entomological collection of the Natural History Museum, Faculty of Natural Sciences and Mathematics, Universidad Nacional Federico Villarreal (MUFV).

Specialization of bat-fly interactions

Host specificity of bat flies was classified as follows: monoxenous (ectoparasitic flies utilizing only a single host species), oligoxenous (utilizing two or more congeneric species), pleioxenous (utilizing two or more host genera within the same family), and polyxenous

(utilizing multiple hosts from different families) (Marshall, 1982; Seneviratne *et al.*, 2009). The parasite population component was analyzed using standard ecological parasitological indices: prevalence (P%) and mean intensity of infection (MI), following Bush *et al.* (1997) and Bautista-Hernández *et al.* (2015).

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

Using the bat-fly interaction encounters, we constructed weighted bipartite networks for each of the three sites as well as an aggregated regional network. To assess the specificity of bat-fly interactions in these networks, we applied modularity and specialization metrics. We first tested for modularity (Qw) using the weighted DIRTLPAwb+ algorithm (Beckett, 2016) and then evaluated low-level nestedness (within modules) using the WNODAsm metric (Pinheiro et al., 2019). Following Pinheiro et al. (2022), we did not test for nestedness in the overall network, as all networks were significantly modular (see Results). Modularity measures the extent to which species and their interactions can be divided into subgroups (modules) that are more interconnected within themselves than with others (Newman, 2006). Nestedness reflects the pattern in which interactions of species with fewer connections (specialists) form subsets of the interactions of species with more connections (generalists) (Mariani et al., 2019). Additionally, specialization was quantified using the H2' metric (complementary specialization), which captures how selective the network is beyond what would be expected based on species relative abundances, approximated by the matrix's marginal totals (Blüthgen et al., 2006). To test the significance of these metrics, we used the equiprobable (preserving species richness and total number of interactions) and proportional (same as equiprobable but also preserving marginal sums) null models described in Pinheiro et al. (2022). Specifically, the restricted version of the equiprobable null model, which also maintains the modular structure during randomizations, was used to test WNODAsm, while the proportional null model was employed for Qw and H2'.

Species-level metrics were used to explore variation in the specialization of bat and fly

species across sites, focusing only on species present at all sites. Species-level specialization (d') was employed to describe how selectively a bat or fly interacts with available species from the opposite group within the network, based on the frequency of their interactions (Blüthgen et al., 2006). For flies, higher d' values indicate higher host specificity. For bats, which do not choose their parasites, higher d' values indicate that their assemblage of flies is composed of more host-specific parasites, whereas lower values indicate association with more generalist parasites. Additionally, species strength was calculated as the total sum of interaction proportions across all partners for a given species, reflecting how dependent bats or flies are on that species (Bascompte et al., 2006). These species-level metrics, along with the network-level metrics mentioned above, were calculated using the package 'bipartite' (Dormann et al., 2008) in the software R 4.4.1.

Sampling coverage of networks was also analyzed following the suggestion of Chiu *et al*. (2023). This metric indicates the proportion of the total number of interaction events represented by the detected interactions. For this assessment, the 'iNext.link' package (Hsieh *et al.*, 2016) was used in the software R 4.4.1.

Finally, to quantify differences between interaction networks among sites, we followed the approach of Fründ (2021), which decomposes total link dissimilarity into additive components. For each pair of sites, we calculated: β_{WN} , the overall dissimilarity between the two interaction networks; β_{OS} , the dissimilarity attributable to changes in interactions among species shared between sites (rewiring); β_{ST} , the dissimilarity attributable to species turnover, i.e., interactions that differ because one or both interacting species are present at only one site. Following Novotny (2009), β_{ST} was further partitioned into turnover caused exclusively by flies ($\beta_{ST.f}$), exclusively by bats ($\beta_{ST.b}$), or jointly by both ($\beta_{ST.fb}$). This analysis was performed using the *betalinkr_multi* function of the package 'bipartite' (Dormann *et al.*, 2008) in the software R 4.4.1., specifically with the "commondenom" partition method (Fründ, 2021).

190 Results

Bats and flies

A total of 161 bats were captured, including 152 individuals from the family Phyllostomidae and 9 from Vespertilionidae. The bats belonged to 23 species, of which 71 individuals from 14 species were parasitized by bat flies (Table 1). The most abundant bat species were *Carollia brevicauda* (Schinz, 1821) (n = 48), *C. perspicillata* (n = 36), and *Sturnira oporaphilum* (Tschudi, 1844) (n = 19). The species with the highest number of parasitized individuals were *C. brevicauda* (n = 30) and *C. perspicillata* (n = 18). Among the three sampling areas, Numparket had the highest number of captured bats (n = 73) and parasitized individuals (n = 33) (Table 1). *C. brevicauda* presented the highest abundance of ectoparasites across all three sites. In Numparket and Higuerón, *C. perspicillata* ranked second in parasite abundance, while in Chontas, the second most parasitized species was *Myotis nigricans* (Schinz, 1821).

A total of 155 ectoparasitic flies were collected, representing 19 species from the families Streblidae (17 species) and Nycteribiidae (2 species) (Figures 2–3). The most abundant fly species were *Paraeuctenodes similis* Wenzel, 1976 (n = 44), *Trichobius joblingi* Wenzel, 1966 (n = 43), and *Megistopoda proxima* (Séguy, 1926) (n = 13). Numparket and Higuerón exhibited the highest bat fly species richness (s = 11) and abundance (n = 56), followed by Chontas (s = 8, n = 43). Only *P. similis* and *T. joblingi* were recorded in all three areas. In terms of host specificity, most bat fly species were classified as monoxenous (n = 10), followed by oligoxenous (n = 8), and pleioxenous (n = 1) (Table 2).

Specialization of bat-fly interactions

Sampling coverage of bat-fly networks was always above 0.85 (Table 3), indicating that they are a good representation of bat-fly interactions at each site as well as at the regional scale. All networks exhibited a modular topology, but nestedness within modules was observed only in

the regional network (Table 3). Specificity of interactions was intermediate to high across all networks, as indicated by Qw (≥ 0.48) and H2' (≥ 0.75). The highest values for these metrics were observed in Chontas (middle elevation), while Higuerón and Numparket showed similar values, still reflecting high specificity. The modular structure showed a clear partition based on the phylogenetic relationships of bats, with modules never including unrelated taxa of bats (Figure 4). *Anoura, Carollia, Myotis*, and *Sturnira* species were always grouped within the same module, except for *Carollia* at higher altitudes (Numparket). In this latter case, *C. brevicauda* and *C. perspicillata* formed their own module, although they still shared the same flies.

Species showed different patterns across sites in terms of species-level specialization and species strength (Figure 5, Supplementary table S1-S2). *Carollia* species exhibited higher specialization at middle elevations (Chontas), with *C. brevicauda* consistently showing higher values than *C. perspicillata*. *Myotis riparius* displayed the highest specialization values at lower (Higuerón) and higher (Numparket) elevations. However, species strength for *C. brevicauda* decreased continuously from lower to higher elevations, while values for *C. perspicillata* increased at higher elevations, eventually surpassing *C. brevicauda*. *Myotis riparius* showed the same pattern observed in specialization, with lower species strength values at middle elevations. Among flies, *T. joblingi* was more specialized than *P. similis* at lower and middle elevations, but roles reversed at higher elevations. However, *T. joblingi* had higher species strength values than *P. similis* at the lower-elevation site, while the opposite occurred at middle- and higher-elevation sites.

Network dissimilarity between elevations was moderate to high, with β_{WN} values ranging from 0.60 (Higuerón–Chontas) to 0.70 (Chontas–Numparket) (Table 4). Across all pairwise comparisons, the contribution of rewiring among shared species (β_{OS}) was consistently low (0.03–0.04), representing only 5–7% of total link dissimilarity. In contrast, species turnover

 $(β_{ST})$ accounted for the vast majority of network differences (93–95%). Within the turnover component, co-turnover of both bats and flies $(β_{ST.fb})$ was consistently the dominant factor, contributing approximately 50–60% of $β_{ST}$ in all comparisons. Turnover restricted to flies $(β_{ST.f})$ also made a substantial contribution (33–40%), whereas turnover restricted to bats $(β_{ST.b})$ was smaller (0-21%) and, in one comparison, absent.

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

240

241

242

243

244

Discussion

Bats and flies

This study expands the current knowledge of bat-ectoparasite interactions in the montane forests of northern Peru by documenting 19 species of parasitic flies associated with 14 bat species. All bat fly species reported represent new records for Amazonas (Minaya et al., 2021), and A. caudiferae, E. deceptivum, E. oculatum, P. similis, and the P. salvini complex are documented for the first time in Peru. An important observation concerns the record of T. joblingi. Although this species was previously reported from Condorcanqui, Amazonas, by Ibáñez and Jara (2008), we noted inconsistencies between their figure and the diagnostic characters of *T. joblingi*. Based on our specimens, we provide the first confirmed record of *T.* joblingi for the department of Amazonas. Two bat fly species, *P. similis* and *T. joblingi*, represented the dominant and most abundant core ectoparasites in the bats sampled in Amazonas. Both species parasitized more than 50% of the C. brevicauda and C. perspicillata individuals examined. A similar pattern was observed in the Magdalena River basin (López-Rivera et al., 2024) and in Caldas (Raigosa et al., 2020), both in Colombia, where approximately 50% of individuals were primarily parasitized by T. joblingi and P. similis, consistent with our observations in Amazonas. These findings suggest that both dipteran species exhibit strong host specificity toward Carollia bats, maintaining a stable host–parasite association across distinct Neotropical ecosystems. This stability may be further reinforced by the high sociality and frequent sharing of roosts and foraging resources among *Carollia* bats, which facilitate parasite transmission (Altizer *et al.*, 2003; McLellan and Koopman, 2008; Rifkin *et al.*, 2012; Webber *et al.*, 2015; Medina and Torres, 2018).

Among other streblid flies recorded, *M. proxima* and *N. bisetosus* stand out for exhibiting the broadest host associations, though for distinct biological reasons. *M. proxima* was the only species parasitizing more than one congeneric host within *Sturnira*, whereas *N. bisetosus* exploited two hosts from different genera—*A. glaucus* and *V. caraccioli*. Under classical host-specificity categories (Seneviratne *et al.*, 2009), *M. proxima* qualifies as oligoxenous and *N. bisetosus* as pleioxenous, the latter being an uncommon pattern in Streblidae, a group known for strong phylogenetic fidelity (Dick and Patterson, 2006; Autino *et al.*, 2011).

These broader host associations likely reflect ecological opportunities for cross-host transmission. Although direct evidence for multispecies roost sharing among *Sturnira* in Andean forests is limited, phyllostomid bats commonly use diverse natural shelters, where mixed-species roosts can occur (Kunz and Lumsden, 2003; Patterson *et al.*, 2007). Such conditions plausibly increase contact opportunities among sympatric hosts and may facilitate the movement of *M. proxima* among closely related *Sturnira* species. Similarly, rare pleioxenous patterns like that of *N. bisetosus* have been reported in other Neotropical systems (e.g., *Neotrichobius delicatus* in Loreto, Peru; Autino *et al.*, 2011), typically involving flies associated with ecologically overlapping phyllostomid bats (Fagundes *et al.*, 2017).

Host–parasite associations between bat flies and their chiropteran hosts are generally characterized by strong specificity, as seen in *Basilia* and *Anatrichobius*, which primarily parasitize *Myotis* species (Guerrero, 1995b; Ospina-Pérez *et al.*, 2023), or *Exastinion*, apparently restricted to *Anoura* (Guerrero, 1995b). Similar patterns have been documented in Peru (Minaya *et al.*, 2023), and our findings corroborate these associations while extending their known geographic distributions into the montane forests of northern Peru.

Specialization of bat-fly interactions

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

al., 2022).

This study indicates a great specialization at the community level among parasitic bat-flies and their hosts in the montane forests near Nueva Esperanza, Amazonas. These specific associations are well documented in different parts of the world (Lim et al., 2020; Poon et al., 2023); the Neotropical region (Guerrero, 2019; Ramírez-Martínez and Tlapaya-Romero, 2023; Ospina-Pérez et al., 2023; França et al., 2024) and specifically Peru are no exception (Autino et al., 2011). Bat-fly interaction networks showed high specificity (high Qw and H2'), a pattern frequently observed in bat-fly interactions at other locations (Fagundes et al., 2017; Urbieta et al., 2020; Hiller et al., 2021; Ramalho et al., 2021; Ospina-Pérez et al., 2023; Ramírez-Martínez and Tlapaya-Romero, 2023). This high specificity is mainly driven by the parasitic nature of these interactions, where parasites typically depend strongly on specific hosts to maximize their fitness (Runghen et al., 2021). Such a high degree of dependency often results in parasite-host networks forming modules composed of phylogenetically related species (Felix et al., 2022), as was also observed in all our bat-fly networks. The regional network showed internally nested modules due to the aggregation of interactions that were uniquely observed at specific sites. For example, this pattern is evident in the module of *Myotis* species: at Higuerón, only M. riparius is present, interacting with A. scorzai and Basilia sp.; at Chontas, M. nigricans appears along with B. anceps; and at Numparket, Anatrichobius sp. is present. When aggregating all these interactions, nestedness increases within the *Myotis* module, and a similar pattern occurs in other modules, resulting in a compound structure (internally nested modules). This is consistent with the integrative hypothesis of specialization proposed for parasitic networks, which suggests that at larger scales, internally nested modules are more

likely to emerge due to the aggregation of different allopatric species and interactions (Felix et

In addition to the evolutionary component behind interactions between bats and flies, these associations have also been particularly discussed in the context of roost-sharing among bat species (Reckardt et al., 2006; Patterson et al., 2007; Fagundes et al., 2017; Urbieta et al., 2022). Logically, species that share roosts are more susceptible to sharing flies, as mentioned in the previous section. This could also be a factor driving the interactions observed in this study, although specific information on roost-sharing is not available for most species. Various bat species share roost with congeneric species, especially in caves (Tanalgo et al. 2022), which could have contributed to the independent module aggregation observed in our study for Anoura, Carollia, Myotis and Sturnira, which have been reported to roost in caves frequently (Tanalgo et al., 2022). The Stenodermatini species recorded in our study apparently prefer different kinds of roosts (Garbino and Tavares, 2018), and as far as we know, there are no records of them roosting together. However, A. glaucus and V. caraccioli were both hosts of P. salvini complex. Artibeus glaucus is a strictly tent-making bat (Ortega et al., 2015), and V. caraccioli is also suggested to be a tent-making bat (Page and Dechmann, 2022). This may suggest they could potentially share roosts; however, tents are usually inhabited by only one species (Rodríguez-Herrera et al., 2007). Nevertheless, considering that bats can colonize a tent previously used (Rodríguez-Herrera et al., 2007) or may possibly try to exclude bats from an existent tent (Kunz and McCracken, 1996), there is a possibility that flies can be transmitted through tents. This could represent a strategy by flies to spread among populations and species, taking advantage of the complex roosting dynamics of tent-making bats (Chaverri and Kunz, 2006; Chaverri et al., 2010; Fernandez et al., 2021). In summary, roosting behavior of bats may be closely related to their interactions with flies and should be explored in detail to better understand these relationships.

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

Specialization and species strength of species varied across sites but followed different patterns, which may indicate that bat-fly relationships change according to specific properties

of each site, even though the overall network structure can remain similar (Nielsen and Totland, 2014). The observed changes in specialization and species strength for both *Carollia* species, *T. joblingi*, and *P. similis* are consistent with the module separation observed for *Carollia* at Numparket. At this site, fly species associated with the genus *Carollia* were much more dependent on *C. perspicillata* (as indicated by a disproportionately high species strength), while the specialization of *P. similis* at this site surpassed that of *T. joblingi*. Although these metrics do not causally drive modularity, they highlight complementary information about how these species structure the network. This suggests that not only species turnover or richness differences can modify networks, but also that changes in how bat and fly species interact can be a driver of subtle network structural variations (Jordán *et al.*, 2008, Fründ *et al.*, 2021).

Despite of the evident species-level variations, rewiring contributed only a small fraction of total dissimilarity in all pairwise comparisons, indicating that species occurring at multiple sites tended to retain similar partners. In contrast, species turnover accounted for more than 90% of link dissimilarity, with the largest contribution coming from the joint turnover of bats and flies, followed by turnover restricted to flies. This pattern reflects both the inherent specificity of flies (Runghen *et al.*, 2021) and the considerable variation in bat and fly assemblages across elevations. These results show that differences in community composition were the main driver of the to the observed variation in interactions, although network structure remained broadly similar among sites as has been observed in other studies (e.g., Kemp *et al.*, 2017; White *et al.*, 2022).

In conclusion, we provide novel insights into the diversity and structure of bat-fly interactions in the montane forests of northern Peru and represents the first in the country to apply a network-based approach to these associations. Our records reveal new distributional records at both local and national levels. Bat-fly relationships were highly specialized at both local and regional scales, with slight structural variation across sites. Network structure appears

turnover was the major factor behind interaction differences along the elevational gradient. However, species-level roles of bats and flies varied across sites, suggesting that specific interaction dynamics, rather than species turnover alone, contributed to the observed differences in interactions. This also points to a possible interplay between environmental factors and bat-fly relationships. Overall, our findings in this important but previously unexplored region of the Peruvian Andes contribute substantially to the broader ecological understanding of bat–fly interactions in Neotropical ecosystems.

Supplementary material. Supplementary table S1. Values of d' specialization for all bat and fly species. Supplementary table S2. Values of species strength for all bats and fly species.

Acknowledgements. The authors would like to thank Christian Olivera Tarifeño, Jhonny Ramos Sandoval and Marlon Hoyos Cerna from the Cordillera Colán National Sanctuary for their support in logistics and advice. We would also like to thank the authorities from the Nueva Esperanza Population Centre for their trust and for allowing us to carry out the work within their jurisdiction. Ricardo Ruiz Chumpitazi, Yanira Zárate Pantoja and Karla Ramos Inga for their support in the field. To our friends at the Nueva Esperanza Population Center, who were very kind and hospitable to us. Especially to the Medina-Leyva family, with special mention to Dalila who at her young age always showed curiosity and interest in the work and supported us in the camps. GG to CNPq (#308119/2022-3). Finally, to IDEA WILD for donating equipment and materials that were of great help.

Author's contribution. DM, JJP, CY, KP, JP, GG, and JI conceived and designed the study.

389 DM, JJP, CY, KP and JP conducted data gathering. DM and JJP performed statistical analyses.

390	DM, JJP, CY, KP, JP, GG, and JI wrote the article.
391	
392	Financial support. This research received no specific grant from any funding agency,
393	commercial or not-for-profit sectors.
394	
395	Competing interests. The authors declare there are no conflicts of interest.
396	
397	Ethical standards. The animals were captured with permission granted by National Forest and
398	Wildlife Service – SERFOR (N°AUT-IFS-2023-048)

X

399	References

400	Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Dobson
401	AP, Ezenwa V, Pedersen AB, Poss M and Pulliam JRC (2003) Social organization and
402	parasite risk in mammals: integrating theory and empirical studies. Annual Review of
403	Ecology, Evolution and Systematics 34, 517–547.
404	https://doi.org/10.1146/annurev.ecolsys.34.030102.151725
405	Autino AG, Claps GL, Barquez RM and Díaz MM (2011) Ectoparasitic insects (Diptera:
406	Streblidae and Siphonaptera: Ischnopsyllidae) of bats from Iquitos and surrounding areas
407	(Loreto, Peru). Memórias do Instituto Oswaldo Cruz 106, 917–925.
408	https://doi.org/10.1590/S0074-02762011000800004
409	Barbier E, Nunes H, Rocha PAD, Rocha FL and Cordeiro-Estrela P (2019) Updated
410	species list of the bat ectoparasitic flies (Diptera: Nycteribiidae and Streblidae) in the state
411	of Paraíba, Northeastern Brazil. Revista mexicana de biodiversidad 90, e902485.
412	https://doi.org/10.22201/ib.20078706e.2019.90.2485
413	Bascompte J, Jordano P and Olesen JM (2006) Asymmetric coevolutionary networks
414	facilitate biodiversity maintenance. Science 312, 431–433.
415	Bautista-Hernández CE, Monks S, Pulido-Flores G and Rodríguez-Ibarra AE (2015)
416	Revisión bibliográfica de algunos términos ecológicos usados en parasitología y su
417	aplicación en estudios de caso. Estudios en Biodiversidad 1, 11-19.
418	Beckett SJ (2016) Improved community detection in weighted bipartite networks. Royal
419	Society open science 3, 140536.
420	Bezerra RHS and Bocchiglieri A (2022) Bat-parasite interaction networks in urban green
421	areas in northeastern Brazil. <i>Parasitology</i> 150 , 262–268.
422	https://doi.org/10.1017/S0031182022001718and#8203
423	Biz LS. Bastazini VA. Carvalho F and Ramos-Pereira M.I (2023) Network and

424	parasitological analyses reveal latitudinal gradient in bats-ectoparasitic fly interactions
425	across the Neotropic. Ecology and Evolution 13, e10527.
426	Blüthgen N, Menzel F and Blüthgen N (2006) Measuring specialization in species interaction
427	networks. BMC Ecology, 6, 9.
428	Bogoni JA, Peres CA and Ferraz KMPMB (2021) Interacting elevational and latitudinal
429	gradients determine bat diversity and distribution across the Neotropics. Journal of Animal
430	Ecology 90, 2396–2410. https://doi.org/10.1111/1365-2656.13594
431	Britto B (2017) Actualización de las ecorregiones terrestres de Perú propuestas en el Libro
432	Rojo de Plantas Endémicas del Perú. Gayana. <i>Botánica</i> 74 , 15–29.
433	http://dx.doi.org/10.4067/S0717-66432017005000318
434	Bush AO, Lafferty KD, Lotz JL and Shostak AW (1997) Parasitology meets ecology on its
435	own terms: Margolis et al. revisited. The Journal of Parasitology 83, 575-583.
436	https://doi.org/10.2307/3284227
437	Chaverri G and Kunz TH (2006) Roosting ecology of the tent-roosting bat Artibeus watsoni
438	(Chiroptera: Phyllostomidae) in Southwestern Costa Rica 1. Biotropica: The Journal of
439	Biology and Conservation 38, 77–84. https://doi.org/10.1111/j.1744-7429.2006.00107.x
440	Chaverri G and Kunz TH (2010) Ecological determinants of social systems: perspectives on
441	the functional role of roosting ecology in the social behavior of tent-roosting bats.
442	Advances in the Study of Behavior 42, 275–318. https://doi.org/10.1016/S0065-
443	3454(10)42009-4
444	Chaverri G, Garin I, Alberdi A, Jimenez L, Castillo-Salazar C and Aihartza J (2016)
445	Unveiling the hidden bat diversity of a Neotropical montane forest. PLoS ONE 11,
446	e0162712. https://doi.org/10.1371/journal.pone.0162712
447	Chiu CH, Chao A, Vogel S, Kriegel P and Thorn S (2023) Quantifying and estimating
448	ecological network diversity based on incomplete sampling data. Philosophical

449	Transactions of the Royal Society B: Biological Sciences 378, 20220183.
450	https://doi.org/10.1098/rstb.2022.0183
451	Dick CW, Miller JA, Brown BV, Borkent A, Cumming JM, Wood DM and Woodley NE
452	(2010) Streblidae. Man Central American Diptera 2, 1249–1260.
453	Dick CW and Patterson BD (2006) Bat flies: Obligate ectoparasites of bats. In Morand S,
454	Krasnov BR and Poulin R (eds.). Micromammals and Macroparasites. Tokyo: Springer,
455	pp 179–194. https://doi.org/10.1007/978-4-431-36025-4_11
456	Dormann CF, Gruber B and Fruend J (2008) Introducing the bipartite Package: Analysing
457	Ecological Networks. <i>R News</i> 8 , 8–11.
458	Fagundes R, Antonini Y and Aguiar LM (2017) Overlap in cave usage and period of activity
459	as factors structuring the interactions between bats and ectoparasites. Zoological Studies
460	56 , e22. https://doi.org/10.6620/ZS.2017.56-22
461	Falcão LAD, Araújo WS, Leite LO, Fagundes M, Espírito-Santo MM, Zazá-Borges MA,
462	Vasconcelos P, Fernandes GW and Paglia A (2022) Network structure of bat-
463	ectoparasitic interactions in tropical dry forests at two different regions in Brazil. Acta
464	Chiropterologica 24, 239–248.
465	https://doi.org/10.3161/15081109ACC2022.24.1.019and#8203
466	Felix GM, Pinheiro RBP, Poulin R, Krasnov BR and Mello MAR (2022) The compound
467	topology of host-parasite networks is explained by the integrative hypothesis of
468	specialization. Oikos e08462. https://doi.org/10.1111/oik.08462
469	Fernandez AA, Schmidt C, Schmidt S, Rodríguez-Herrera B and Knörnschild M (2021)
470	Social behaviour and vocalizations of the tent-roosting Honduran white bat. PLoS ONE
471	16, e0248452. https://doi.org/10.1371/journal.pone.0248452
472	França JDO, Alexandre RJR, Correia LL, Souza LM, Graciolli G, Moura de Souza
473	Aguiar L and Vieira TB (2024) Bat flies (Diptera: Streblidae) of Phyllostominae and

474	Stenodermatinae (Chiroptera: Phyllostomidae) bats from cocoa and natural areas of
475	Amazonia. Studies on Neotropical Fauna and Environment 59, 823 – 832.
476	https://doi.org/10.1080/01650521.2023.2266190
477	Fründ J (2021) Dissimilarity of species interaction networks: how to partition rewiring and
478	species turnover components. Ecosphere 12, e03653. https://doi.org/10.1002/ecs2.3653
479	Garbino GS and Tavares VDC (2018) Roosting ecology of Stenodermatinae bats
480	(Phyllostomidae): evolution of foliage roosting and correlated phenotypes. Mammal
481	Review 48, 75–89. https://doi.org/10.1111/mam.12114
482	Gettinger D (2018) Checklist of bloodfeeding mites (Acari: Spinturnicidae) from the wings of
483	Bats (Mammalia: Chiroptera) in the Manú Biosphere Reserve, Peru. MANTER: Journal
484	of Parasite Biodiversity, Occasional Papers 10, 1–9. https://doi.org/10.13014/K2DJ5CVZ
485	Gettinger D, Epperson M, Hermasillo C and Gardner S (2020) The Enigmatic
486	Spelaeorhynchidae Oudemans, 1902 (Acari: Mesostigmata) blood-feeding ectoparasites
487	infesting Neotropical bats, with catalog and notes on a collection from the Manú Biosphere
488	Reserve in Peru. MANTER: Journal of Parasite Biodiversity, Occasional Papers 12, 1-6.
489	https://doi.org/10.32873/unl.dc.manter12
490	Graciolli G, Autino AG and Claps GL (2007) Catalogue of American Nycteribiidae (Diptera,
491	Hippoboscoidea). Revista Brasileira de Entomologia 51 , 142–159.
492	https://doi.org/10.1590/S0085-56262007000200004
493	Graciolli G and Dick CW (2018) Checklist of the world Nycteribiidae (Diptera:
494	Hippoboscoidea). Report for the Natural Science Foundation (DBI-0545051, DEB-
495	1003459), 1–9.
496	Graciolli G, Guerrero R and Catzeflis F (2019) Streblid bat flies (Diptera) and other
497	ectoparasites on bats (Mammalia: Chiroptera) from French Guiana. Biota Neotropica 19,
498	e20180724. https://doi.org/10.1590/1676-0611-BN-2018-0724

499	Guerrero R (1993) Catálogo de los Streblidae (Diptera: Pupipara) parásitos de murciélagos
500	(Mammalia: Chiroptera) del nuevo mundo. I. Clave para los géneros y Nycterophiliinae.
501	Acta Biologica Venezuelica 14, 61–75.
502	Guerrero R (1994a) Catálogo do los Streblidae (Diptera: Pupipara) parásitos de murciélagos
503	(Mammalia: Chiroptera) del nuevo mundo. II. Los Grupos: pallidus, caecus, major
504	uniformis y longipes del género Trichobius Gervais, 1844. Acta Biologica Venezuelica 15,
505	1–18.
506	Guerrero R (1994b) Catálogo de los Streblidae (Diptera: Pupipara) parásitos de murciélagos
507	(Mammalia: Chiroptera) del Nuevo Mundo. IV. Trichobiinae con alas desarrolladas.
508	Boletín de Entomología Venezolana 9 , 161–192.
509	Guerrero R (1995a) Catálogo de los Streblidae (Diptera: Pupipara) parásitos de murciélagos
510	(Mammalia: Chiroptera) del nuevo mundo. III. Los Grupos: dugesi, dunni y Phyllostomae
511	del género <i>Trichobius</i> Gervais, 1844. <i>Acta Biologica Venezuelica</i> 15 , 1–27.
512	Guerrero R (1995b) Catálogo de los Streblidae (Diptera: Pupipara) parásitos de murciélagos
513	(Mammalia: Chiroptera) del Nuevo Mundo. V. Trichobiinae con las alas reducidas o
514	ausentes y misceláneos. Boletín de Entomología Venezolana 10, 135-160.
515	Guerrero R (1996a) Streblidae (Diptera: Pupipara) parásitos de los murciélagos de Pakitza,
516	Parque Nacional Manu (Perú). In Wilson DE and Sandoval A (eds.). Manu: The
517	biodiversity of southeastern Peru. Washington, DC: Smithsonian Institution, pp. 627–641.
518	Guerrero R (1996b) The Basilia junquiensis Species-Group (Diptera:Nycteribiidae) with
519	description of a New Species from Pakitza, Perú. In Wilson DE and Sandoval A (eds.).
520	Manu: The biodiversity of southeastern Peru. Washington, DC: Smithsonian Institution,
521	pp. 665–674.
522	Guerrero R (1996c) Catálogo de los Streblidae (Diptera: Pupipara) parásitos de murciélagos
523	(Mammalia: Chiroptera) del nuevo mundo. VI. Streblinae. Acta Biologica Venezuelica 16,

524	1–25.
525	Guerrero R (2019) Streblidae (Diptera: Pupipara) de Venezuela: Sistemática, Ecología y
526	Evolución. Editorial Académica Española, Muritius.
527	Hiller T, Vollstädt MG, Brändel SD, Page RA and Tschapka M (2021) Bat-bat fly
528	interactions in Central Panama: host traits relate to modularity in a highly specialised
529	network. Insect Conservation and Diversity 14, 686–699.
530	https://doi.org/10.1111/icad.12508
531	Hrycyna G, Martins ACM and Graciolli G (2019) Infracommunities of bat flies (Diptera:
532	Streblidae and Nycteribiidae) of bats (mammalia: Chiroptera) in three conservation units
533	in the State of Amapá, Brazil. <i>Biota Neotropica</i> 19 , e20180715.
534	https://doi.org/10.1590/1676-0611-BN-2018-0715
535	Hsieh TC, Ma KH and Chao A (2016) iNEXT: an R package for rarefaction and extrapolation
536	of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456.
537	Ibáñez NH and Jara CA (2008) Registro de Trichobius (Diptera: Streblidae) en murciélagos
538	de Amazonas, Perú. <i>Rebiol</i> 28 , 87–90.
539	Jones C, McShea WJ, Conroy MJ and Kunz TH (1996) Capturing Mammals. In Wilson
540	DE, Cole FR, Nichols JD, Rudran R and Foster MS (eds.). Measuring and monitoring
541	biological diversity: Standard Methods for Mammals. Washington, DC: Smithsonian
542	Institution Press, pp. 115–155.
543	Jordán F, Okey TA, Bauer B and Libralato S (2008) Identifying important species: linking
544	structure and function in ecological networks. <i>Ecological Modelling</i> , 216 , 75–80.
545	https://doi.org/10.1016/j.ecolmodel.2008.04.009
546	Kemp JE, Evans DM, Augustyn WJ and Ellis AG (2017) Invariant antagonistic network
547	structure despite high spatial and temporal turnover of interactions. <i>Ecography</i> , 40 , 1315–
548	1324. https://doi.org/10.1111/ecog.02150

549	Kunz TH and McCracken GF (1996) Tents and harems: apparent defence of foliage roosts
550	by tent-making bats. Journal of Tropical Ecology 12, 121-137.
551	Kunz TH and Lumsden LF (2003). Ecology of cavity and foliage roosting bats. In Kunz TH
552	and Fenton MB (eds.). Bat Ecology. University of Chicago Press. pp. 3–89.
553	Lim ZX, Hitch AT, Lee BPH, Low DH, Neves ES, Borthwick SA, Smith GJD and
554	Mendenhall IH (2020) Ecology of bat flies in Singapore: A study on the diversity,
555	infestation bias and host specificity (Diptera: Nycteribiidae). International Journal for
556	Parasitology: Parasites and Wildlife 12, 29–33.
557	https://doi.org/10.1016/j.ijppaw.2020.04.010
558	López-Rivera C, Robayo-Sánchez LN, Ramírez-Hernández A, Cuéllar-Saénz JA, Villar
559	JD, Cortés-Vecino JA, Rivera-Páez FA, Ossa-López PA, Ospina-Pérez EM, Henao-
560	Osorio JJ, Cardona-Giraldo A, Racero-Casarrubia J, Rodríguez-Posada ME,
561	Morales-Martinez DM, Hidalgo M and Ramírez-Chaves HE (2024) Diversity of
562	ectoparasitic bat flies (Diptera, Hippoboscoidea) in inter-Andean valleys: evaluating
563	interactions in the largest inter-Andean basin of Colombia. ZooKeys 1221, 377-400.
564	https://doi.org/10.3897/zookeys.1221.127890
565	Marshall AG (1982) Ecology of insects ectoparasitic on bats. In Kunz TH (ed.). Ecology of
566	bats. New York: Plenum Press, pp. 369-401.
567	Mariani MS, Ren ZM, Bascompte J and Tessone CJ (2019) Nestedness in complex
568	networks: observation, emergence, and implications. <i>Physics Reports</i> , 813 , 1–90.
569	https://doi.org/10.1016/j.physrep.2019.04.001
570	McLellan LJ and Koopman KF (2008) Subfamily Carolliinae Miller, 1924. In: Gardner AL,
571	(ed.). Mammals of South America, Volume 1 Marsupials, Xenarthrans, shrews, and Bats.
572	Chicago and London: The University of Chicago Press, pp. 208–218.
573	Medina DM and Torres JP (2018) Apuntes sobre la estructura social de Carollia perspicillata

574	(Chiroptera, Phyllostomidae) en la cueva Macaregua, Santander, Colombia. Revista
575	Biodiversidad Neotropical 8, 14–21. https://doi.org/10.18636/bioneotropical.v8i1.687
576	Minaya DA, Silva JLM and Iannacone J (2021) Ectoparasitic fauna on the common vampire
577	bat Desmodus rotundus (Geoffroy, 1810) (Chiroptera: Phyllostomidae) from Huarochiri,
578	Lima, and a checklist of ectoparasites in bats of Peru. Graellsia: revista de zoología 77,
579	21–22. https://doi.org/10.3989/graellsia.2021.v77.293
580	Ministerio del Ambiente - MINAM (2015) Guía de inventario de la fauna silvestre.
581	Ministerio del Ambiente, Dirección General de Evaluación, Valoración y Financiamiento
582	del Patrimonio Natural. MINAM: Zona Comunicaciones S. A. C. Lima, Perú, 1–83.
583	Morales-Malacara JB and Guerrero R (2020) Two new species and new records of mites of
584	the Genus Parichoronyssus (Acari: Macronyssidae) From South American bats
585	(Chiroptera), with a key to the known species of the genus. Journal of Medical Entomology
586	57, 404–417. https://doi.org/10.1093/jme/tjz196
587	Newman ME (2006) Modularity and community structure in networks. Proceedings of the
588	national academy of sciences 103, 8577–8582. https://doi.org/10.1073/pnas.0601602103
589	Nielsen A and Totland Ø (2014) Structural properties of mutualistic networks withstand
590	habitat degradation while species functional roles might change. Oikos 123, 323-333.
591	https://doi.org/10.1111/j.1600-0706.2013.00644.x
592	Novotny V (2009) Beta diversity of plant-insect food webs in tropical forests: a conceptual
593	framework. Insect Conservation and Diversity 2, 5-9. https://doi.org/10.1111/j.1752-
594	4598.2008.00035.x
595	Ortega J, Arroyo-Cabrales J, Martínez-Mendez N, Del Real-Monroy M, Moreno-
596	Santillán D, and Velazco PM (2015) Artibeus glaucus (Chiroptera: Phyllostomidae).
597	Mammalian Species 47, 107–111. https://doi.org/10.1093/mspecisev011
598	Ospina-Pérez EM, Rivera-Páez FA and Ramírez-Chaves HE (2023) Exploring the

599	relationship between bats (Mammalia, Chiroptera) and ectoparasitic flies (Diptera,
600	Hippoboscoidea) of the Orinoquia Region in South America. ZooKeys 1179, 1-34.
601	https://doi.org/10.3897/zookeys.1179.103479
602	Pacheco V, Diaz S, Graham-Angeles L, Flores-Quispe M, Calizaya-Mamani G, Ruelas D
603	and Sánchez-Vendizú P (2021) Lista actualizada de la diversidad de los mamíferos del
604	Perú y una propuesta para su actualización. Revista peruana de biología 28, 9-38.
605	http://dx.doi.org/10.15381/rpb.v28i4.21019
606	Page RA and Dechmann DK (2022) Roost making in bats. Current Biology 32, R1252-
607	R1259. https://doi.org/10.1016/j.cub.2022.10.040
608	Palheta LR, Urbieta GL, Brasil LS, Dias-Silva K, Da Silva JB, Graciolli G, Aguiar LMS
609	and Vieira TB (2020) The effect of urbanization on bats and communities of bat flies
610	(Diptera: Nycteribiidae and Streblidae) in the Amazon, northern Brazil. Acta
611	Chiropterologica 22, 403–416. http://dx.doi.org/10.3161/15081109ACC2020.22.2.014
612	Patterson BD, Dick CW and Dittmar K (2007) Roosting habits of bats affect their parasitism
613	by bat flies (Diptera: Streblidae). Journal of Tropical Ecology 23, 177–189.
614	https://doi.org/10.1017/S0266467406003816
615	Pinheiro RB, Felix GM and Lewinsohn TM (2022) Hierarchical compound topology
616	uncovers complex structure of species interaction networks. Journal of Animal Ecology
617	91, 2248–2260. https://doi.org/10.1111/1365-2656.13806
618	Pinheiro RB, Felix GM, Dormann CF and Mello MA (2019) A new model explaining the
619	origin of different topologies in interaction networks. <i>Ecology</i> 100 , e02796.
620	https://doi.org/10.1002/ecy.2796
621	Poon ESK, Chen G, Tsang HY, Shek CT, Tsui WC, Zhao H, Guénard B and Sin SYW
622	(2023) Species richness of bat flies and their associations with host bats in a subtropical
623	East Asian region. <i>Parasites Vectors</i> 16 , 37. https://doi.org/10.1186/s13071-023-05663-x

624	Raigosa ÁJ, García OC, Autino AG and Gomes DL (2020) First records of ectoparasitic
625	insects (Diptera: Hippoboscoidea) of bats in the department of Caldas, Colombia. Papéis
626	avulsos de zoologia 60, e20206018. https://doi.org/10.11606/1807-0205/2020.60.18
627	Ramalho DF, Diniz UM and Aguiar LM (2021) Anthropization affects the assembly of bat-
628	bat fly interaction networks. Frontiers in Environmental Science 9, 752412.
629	https://doi.org/10.3389/fenvs.2021.752412
630	Ramírez-Martínez MM and Tlapaya-Romero L (2023) Association of bat flies (Diptera:
631	Streblidae) and bats: Richness and host specificity in Western Mexico. International
632	Journal for Parasitology: Parasites and Wildlife 21, 160–167.
633	https://doi.org/10.1016/j.ijppaw.2023.05.001
634	Reckardt, K and Kerth G (2006) The reproductive success of the parasitic bat fly Basilia
635	nana (Diptera: Nycteribiidae) is affected by the low roost fidelity of its host, the
636	Bechstein's bat (Myotis bechsteinii). Parasitology Research 98, 237–243.
637	https://doi.org/10.1007/s00436-005-0051-5
638	Rifkin JL, Nunn CL and Garamszegi LZ (2012) Do animals living in larger groups
639	experience greater parasitism? A meta-analysis. The American Naturalist 180, 70-82.
640	https://doi.org/10.1086/666081
641	Rodríguez-Herrera B, Medellín RA and Timm RM (2007) Murciélagos neotropicales que
642	acampan en hojas. 1st ed. Costa Rica: Editorial INBio.
643	Runghen R, Poulin R, Monlleó-Borrull C and Llopis-Belenguer C (2021) Network
644	Analysis: Ten Years Shining Light on Host–Parasite Interactions. Trends in Parasitology
645	37 , 445–455. https://doi.org/10.1016/j.pt.2021.01.005
646	Seneviratne SS, Fernando HC and Udagama-Randeniya, PV (2009) Host specificity in bat
647	ectoparasites: a natural experiment. International Journal for Parasitology 39, 995–1002.
648	https://doi.org/10.1016/j.ijpara.2008.12.009

649	Soares FAM, Graciolli G, Alcântara DMC, Ribeiro CEB, Valença GC and Ferrari SF
650	(2013) Bat flies (Diptera: Streblidae) ectoparasites of bats at an Atlantic Rainforest site in
651	northeastern Brazil. Biota Neotropica 13, 242–246. https://doi.org/10.1590/S1676-
652	06032013000200024
653	Szentiványi T, Christe P and Glaizot O (2019) Bat flies and their microparasites: Current
654	knowledge and distribution. Frontiers in Veterinary Science, 6, 115.
655	https://doi.org/10.3389/fvets.2019.00115
656	Tanalgo KC, Tabora JAG, de Oliveira HFM, et al. (2022) DarkCideS 1.0, a global database
657	for bats in karsts and caves. Scientific Data 9, 155. https://doi.org/10.1038/s41597-022-
658	01234-4
659	Theodor O (1967) An Illustrated catalogue of the Rothschild collection of Nycteribiidae
660	(Diptera) in the British Museum (Natural History). London: Trustees of the British
661	Museum (Natural History).
662	Urbieta GL, Graciolli G and da Cunha Tavares V (2022) Review of studies about bat-fly
663	interactions inside roosts, with observations on partnership patterns for publications.
664	Parasitology Research, 121, 3051–3061. https://doi.org/10.1007/s00436-022-07635-z
665	Webber QM, McGuire LP, Smith SB and Willis CK (2015) Host behaviour, age and sex
666	correlate with ectoparasite prevalence and intensity in a colonial mammal, the little brown
667	bat. Behaviour 152 , 83–105. https://doi.org/10.1163/1568539X-00003233
668	Wenzel RL, Tipton VJ and Kiewlicz A (1966) The Streblidae bat flies of Panama (Diptera:
669	Calyptrate: Streblidae). In Wenzel RL and Tipton VJ (eds). Ectoparasites of Panama.
670	Chicago: Field Museum of Natural History. pp. 405-675.
671	Wenzel RL (1976) The streblid bat flies of Venezuela (Diptera: Streblidae). The Brigham
672	Young University Science Bulletin, Biological Series 2, 1–177.
673	White CD, Collier MJ and Stout JC (2022) Anthropogenic induced beta diversity in plant-

674	pollinator networks: dissimilarity, turnover, and predictive power. Frontiers in Ecology
675	and Evolution 10, 806615. https://doi.org/10.3389/fevo.2022.806615
676	Zapata-Mesa N, Montoya-Bustamante S, Hoyos J, Peña D, Galindo-González J, Chacón-
677	Pacheco JJ, Ballesteros-Correa J, Graciolli G, Nogueira MR and Mello MAR (2024)
678	"BatFly: A Database of Neotropical Bat-Fly Interactions." Ecology 105, e4249.
679	https://doi.org/10.1002/ecy.42492
680	

Table 1. Bats captured along the Nueva Esperanza Trail to Numparket Falls, Amazonas, Peru, and specific characterization based on their ectoparasitic flies.

	Н	liguer	ón			Chonta	as		N	umpai	rket	
Chiroptera species		1480 r			(1560 ı	n)			1800 1	m)	
	E (P)	Bf	P%	MI	E (P)	Bf	P%	MI	E (P)	Bf	P%	MI
Pyllostomidae												
Anoura aequatoris	2 (0)	0	0						4 (2)	2	50	1
Anoura caudifer	1 (0)	0	0									
Anoura peruana									1(1)	6	100	6
Artibeus glaucus					1 (1)	2	100	2	4 (0)	0	0	
Artibeus planirostris	1 (1)	6	100	6	1 (0)	0	0	-		-		
Carollia brevicauda	16 (11)	20	68.7	1.8	19 (10)	20	53	2	13 (9)	19	69.2	2.1
Carollia perspicillata	6 (4)	9	66.6	2.2	8 (2)	6	25	3	22 (12)	20	54.5	1.6
Choeroniscus minor		/	-		-				1 (1)	1	100	1
Desmodus rotundus	3 (0)	0	0		3 (0)	0	0		2 (0)	0	0	
Platyrrhinus fusciventris	-			-					1 (1)	1	100	1
Platyrrhinus umbratus					1 (0)	0	0		1 (0)	0	0	
Sturnira bidens	1 (0)	0	0	7	2 (0)	0	0		3 (1)	1	33.3	1
Sturnira erythromos	1 (0)	0	0		2 (0)	0	0		3 (0)	0	0	
Sturnira magna									2 (0)	0	0	
Sturnira oporaphilum	2 (0)	0	0		5 (2)	6	40	3	12 (4)	4	33.3	1
Sturnira tildae					4 (2)	6	50	3				
Vampyressa thyone	1 (0)	0	0									
Vampyrodes caraccionli	1 (1)	3	100	3					2 (1)	1	50	1
Vespertilionidae												
Eptesicus chiriquinus	1 (0)	0	0									
Myotis caucensis	1 (0)	0	0									

Myotis nigricans					2 (2)	9	100	4.5	1 (0)	0	0	
Myotis riparius	1 (1)	5	100	5	1 (1)	7	100	7	1(1)	1	100	1
Rhogeessa velilla	1 (0)	0	0									
Total	39 (18)	43	46.1	2.3	49 (20)	56	40.8	2.8	73 (33)	56	45.2	1.7

683 Bf=Bat fly abundance; E(P)= N° examined bats (parasitized); MI=Mean intensity;

P%=Prevalence; S= Bat fly species richness.

685

Table 2. Associations and characterization of ectoparasitic flies from bat captured along the Nueva Esperanza Trail to Numparket Falls, Amazonas, Peru.

Diptera species	Chiroptera species	Н	С	N	Spe
Nycterebiidae					
Basilia anceps *					Oli
	Myotis nigricans		4		
	Myotis riparius		5		
Basilia sp (group juquiensis)					Mon
	Myotis riparius	3			
Streblidae					
Anastrebla caudiferae **					Oli
	Carollia perspicillata			1	
	Carollia brevicauda	1			
Anastrebla sp					Mon
	Choeroniscus minor			1	
Anatrichobius scorzai *					Oli
	Myotis nigricans		5		
	Myotis riparius	2	2		
Anatrichobius sp	, 1				Mon
1	Myotis riparius			1	
Aspidoptera falcata *	J I				Mon
. F F	Sturnira tildae		4		
Aspidoptera phyllostomatis *					Mon
	Artibeus planirostris			5	
Exastinion deceptivum **	Three cas praint conto				Oli
	Anoura aequatoris			2	011
	Anoura peruana			1	
Exastinion oculatum **	Throw or per didner				Mon
	Anoura peruana			5	1,1011
Megistopoda proxima *	Thoma permana				Oli
megistopoua promina	Sturnira bidens			1	On
	Sturnira oporaphyllum		6	4	
	Sturnira tildae		2		
Metelasmus pseudopterus *	Similar made				Mon
Meterasmus pseudopierus	Artibeus planirostris	1			WOII
Neotrichobius bisetosus *	Tittoeus piuntiosiits				Ple
reciriencoms disclosus	Artibeus glaucus		2		110
	Vampyrodes caraccionli	2			
Paraeuctenodes similis **	vampyroues caraccionii	_			Oli
i araeucienoues similis	Carollia brevicauda	9	8	13	OII
		1	5	8	
Paratrichobius longicrus	Carollia perspicillata	1	5	J	
complex *					Mon

	Platyrrhinus fusciventris			1	
Speiseria ambigua *					Mon
	Carollia perspicillata	1	1		
Strebla guajiro *					Oli
	Carollia brevicauda	1			
	Carollia perspicillata	1		1	
Trichobius joblingi *					Oli
	Carollia brevicauda	9	12	6	
	Carollia perspicillata	6		10	
Paratrichobius salvini complex **					Mon
	Vampyrodes caraccionli	1		1	
Abundance		43	56	56	
Richness		11	8	11	

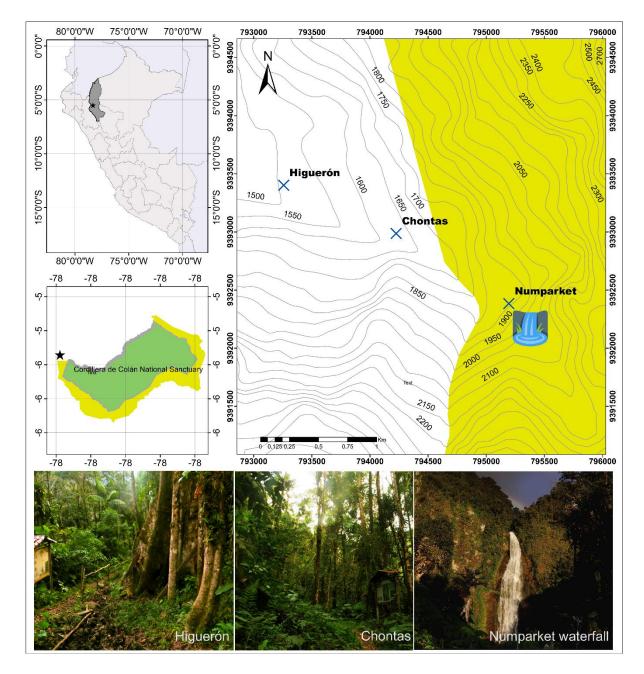
C= Chontas (1560 m); H= Higuerón (1480 m); N= Numparket (1800 m); P%=Prevalence; Spe=Specificity (Mon=Monoxenous, Oli= oligoxenous, Ple=Pleioxenous). ** New species record for Peru; *New record only for Amazonas.

Table 3. Sampling coverage and structural properties of bat-fly interaction networks along the Nueva Esperanza Trail to Numparket Falls, Amazonas, Peru. The regional network is the result of the aggregation of interactions of the three local networks.

Network	SC	Q_{w}	WNODA _{sm}	H ₂ '
Regional	0.96	0.59	60.74	0.75
Higuerón (1480 m)	0.86	0.51	70	0.75
Chontas (1560 m)	0.98	0.66	31.25	0.92
Numparket (1800 m)	0.88	0.48	75	0.65

SC: Sampling coverage; Qw: weighted modularity, WNODA_{sm}: within-module nestedness,

H2': complementary specialization. Statistically significant values (p < 0.05) are in bold.


Table 4. Pairwise network dissimilarity between sites. β_{OS} represents the dissimilarity attributable to rewiring among species shared between sites. β_{WN} is the overall dissimilarity between interaction networks. β_{ST} corresponds to the component of dissimilarity explained by species turnover. $\beta_{ST.f.}$, $\beta_{ST.b.}$, and $\beta_{ST.fb}$ indicate the portions of β_{ST} attributable to turnover restricted to fly species, restricted to bat species, and jointly to both trophic levels, respectively.

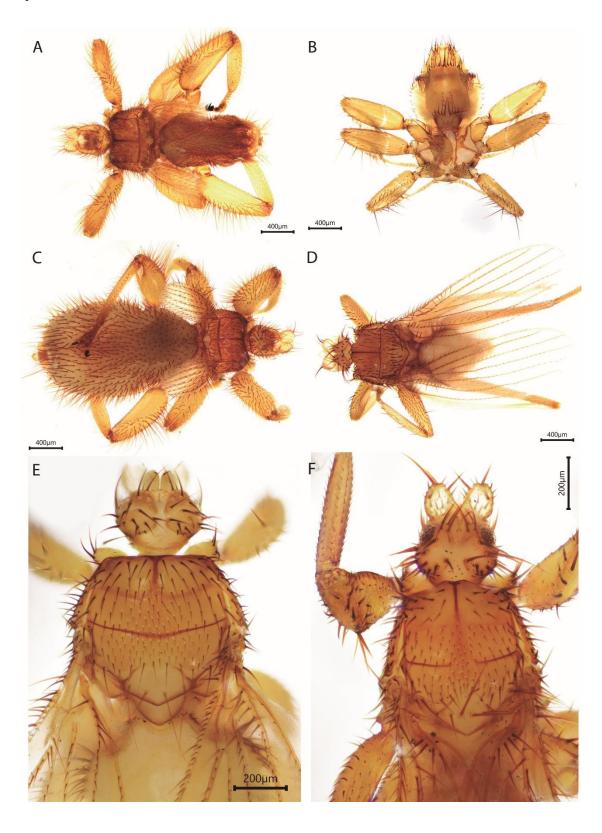
7	Λ	1
1	U	4

Networks	β_{OS}	β_{WN}	β_{ST}	$\beta_{ST.f}$	$\beta_{ST.b}$	$\beta_{ST.fb}$
Higueron - Chontas	0.04	0.6	0.56	0.16	0.12	0.28
Higueron - Numparket	0.04	0.57	0.54	0.21	0	0.32
Chontas - Numparket	0.04	0.7	0.67	0.22	0.07	0.37

707

Figure 2. Species of ectoparasitic diptera from bats captured along the Nueva Esperanza Trail to Numparket Falls, Amazonas, Peru (first part). A) *Anastrebla caudiferae* B) *Aspidoptera falcata* C) *Exastinion oculatum* D) *Megistopoda proxima* E) *Metelasmus pseudopterus* F) *Neotrichobius bisetosus* G) *Paraeuctenodes similis* H) *Paratrichobius longicrus complex* I) *Strebla guajiro*.

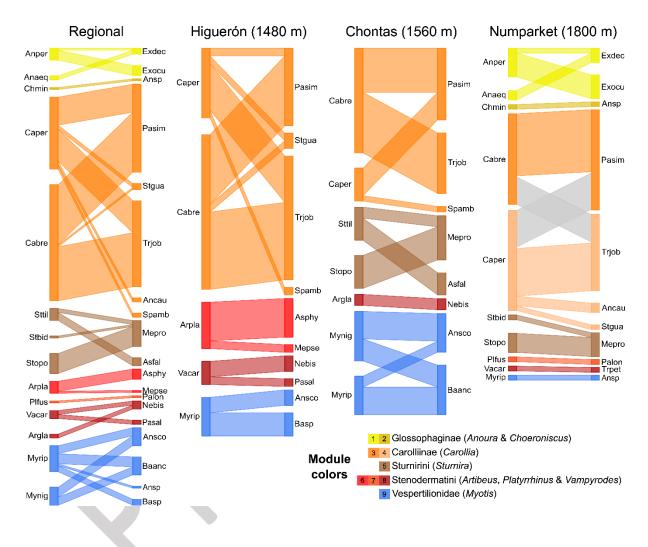
711


712

713

714

715 A E H


Figure 3. Species of ectoparasitic diptera from bats captured along the Nueva Esperanza Trail to Numparket Falls, Amazonas, Peru (second part). A) *Anatrichobius scorzai* B) *Basilia anceps* C) *Anatrichobius* sp D) *Speiseria ambigua* E) *Trichobius joblingi* F) *Paratrichobius salvini complex*.

722

723

Supplementary table S1. Values of d' specialization for all bat and fly species.

Organism	Species	Regional network	Numparket (1800 m)	Chontas (1560 m)	Higneron (1480 m)
Fly	Exastion deceptivum	0.83	0.77	NA	NA
Fly	Exastion oculatum	0.94	0.92	NA	NA 2
Fly	Neotrichobius bisetosus	0.89	NA	1	0.84
Fly	Aspidoptera phyllostomatis	0.94	NA	NA	0.79333
Fly	Metelasmus pseudopterus	0.56	NA	NA	0.4
Fly	Paraeuctenodes similis	0.39	0.33	0.57	0. 733 4
Fly	Strebla guajiro	0.05	0	NA	0
Fly	Trichobius joblingi	0.38	0.23	0.65	0 /13 5
Fly	Anastrebla caudiferae	0.24	0.21	NA	NA
Fly	Speiseria ambigua	0.24	NA	0.39	0.27
Fly	Anastrebla sp1	1	1	NA	N36
Fly	Anatrichobius scorzai	0.67	NA	0.61	0.65
Fly	Basilia anceps	0.66	NA	0.69	N/87
Fly	Basilia sp1	0.57	NA	NA	0.78
Fly	Joblingia schmidti	0.37	1	NA	N/38
Fly	Paratrichobius longicrus	1	1	NA	NĂ
Fly	Megistopoda proxima	0.93	1	0.85	NA
Fly	Aspidoptera delatorrei	0.87	NA	0.82	NA NA NA
Fly	Trichobius petersoni	0.82	1	NA	0.63
Bat	Anoura aequatoris	0.89	0.86	NA	$\sqrt{40}$
Bat	Anoura peruana	0.94	0.91	NA	NA
Bat	Artibeus glaucus	0.82	NA	1	NA
Bat	Artibeus planirostris	_1	NA	NA	1
Bat	Carollia brevicauda	0.54	0.36	0.8	0.56
Bat	Carollia perspicillata	0.36	0.35	0.62	0.28
Bat	Choeroniscus minor	1	1	NA	NA
Bat	Myotis nigricans	0.73	NA	0.68	NA
Bat	Myotis riparius	0.79	1	0.6	1
Bat	Platyrrhinus fusciventris	1	1	NA	NA
Bat	Sturnira bidens	0.32	0.47	NA	NA
Bat	Sturnira oporaphilum	0.89	0.9	0.86	NA
Bat	Sturnira tildae	0.78	NA	0.78	NA
Bat	Vampyrodes caraccioli	0.89	1	NA	1

Supplementary table S2. Values of species strength for all bats and fly species.

Organism	Species	Regional network	Numparket (1800 m)	Chontas (1560 m)	Higueron (1480 m)
Fly	Exastion deceptivum	1.17	1.17	NA	NA
Fly	Exastion oculatum	0.83	0.83	NA	NA
Fly	Neotrichobius bisetosus	1.5	NA	1	0.67
Fly	Aspidoptera phyllostomatis	0.83	NA	NA	0.83
Fly	Metelasmus pseudopterus	0.17	NA	NA	0.17
Fly	Paraeuctenodes similis	0.91	1.07	1.25	0.56
Fly	Strebla guajiro	0.07	0.05	NA	0.16
Fly	Trichobius joblingi	0.91	0.79	0.58	1.17
Fly	Anastrebla caudiferae	0.06	0.1	NA	NA
Fly	Speiseria ambigua	0.06	NA	0.17	0.11
Fly	Anastrebla sp1	1	1	NA	NA
Fly	Anatrichobius scorzai	0.86	NA	0.84	0.4
Fly	Basilia anceps	0.83	NA	1.16	NA
Fly	Basilia sp1	0.23	NA	NA	0.6
Fly	Joblingia schmidti	0.08	1	NA	NA
Fly	Paratrichobius longicrus	1	1	NA	NA
Fly	Megistopoda proxima	2.33	2	1.33	NA
Fly	Aspidoptera delatorrei	0.67	NA	0.67	NA
Fly	Trichobius petersoni	0.5	1	NA	0.33
Bat	Anoura aequatoris	0.67	0.67	NA	NA
Bat	Anoura peruana	1.33	1.33	NA	NA
Bat	Artibeus glaucus	0.5	NA	1	NA
Bat	Artibeus planirostris	2	NA	NA	2
Bat	Carollia brevicauda	1.64	0.99	1.62	2.03
Bat	Carollia perspicillata	3.36	3.01	1.38	1.98
Bat	Choeroniscus minor	1	1	NA	NA
Bat	Myotis nigricans	1	NA	1.16	NA
Bat	Myotis riparius	3	1	0.84	2
Bat	Platyrrhinus fusciventris	1	1	NA	NA
Bat	Sturnira bidens	0.08	0.2	NA	NA
Bat	Sturnira oporaphilum	0.77	0.8	0.75	NA
Bat	Sturnira tildae	1.15	NA	1.25	NA
Bat	Vampyrodes caraccioli	1.5	1	NA	2