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Abstract 13 

Measurements of reactive oxygen species (ROS) are often performed to assess a species’ general 14 

sublethal stress response to a pollutant. However, ROS bioassays often produce seemingly 15 

ambiguous results, and the drivers that lead to these differences are largely unknown. To 16 

approach this gap, we conducted a meta-analysis on ROS generation, ROS-associated damage 17 

products, enzyme activities, and gene expression levels in response to exposures to two groups 18 

of pollutants, nano- and microplastic particles (NMP) and neonicotinoid insecticides (neonics). 19 

Based on 2294 ROS-related measurements extracted from 45 studies, we show that measured 20 

effects vary substantially with a strong overlap of measured effects with zero. As likely drivers of 21 

this variance, we identified multiple parameters of experimental design and pollutant properties. 22 

Finally, we performed data simulations and power analyses to investigate how well single 23 

experiments are able to detect ROS-related effects. We show that 21 out of 27 ROS markers 24 

achieve sufficient power (80%) to demonstrate effects with sample sizes N < 20. Given the 25 

pollutant-dependent variability in ROS related responses and the low power of some markers, 26 

conclusions derived from single studies with low sample sizes (N < 5) are however at risk of being 27 

less informative than previously assumed. 28 

 29 
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1. Introduction 38 

Reactive oxygen species (ROS) are a class of molecules derived from oxygen (O2) that is more 39 

reactive than O2 itself [1]. ROS are naturally produced within cells by metabolic processes, 40 

including the mitochondrial respiratory chain [2,3] and NADPH oxidases [4] and are important as 41 

a redox signalling agent [5,6]. ROS such as hydrogen peroxide have the potential to cause growth 42 

arrest and cell death in high concentrations [5], so their levels inside organisms are controlled 43 

tightly. This is achieved by regulating the rate of endogenous ROS generation [7] and/or by 44 

increasing ROS scavenging via upregulation of antioxidant production (e.g., glutathione [8] and 45 

ROS scavenging enzyme expression and activity [9]). However, intracellular ROS levels can 46 

additionally be increased by external stressors, overwhelming the ROS scavenging capabilities, 47 

and leading to oxidative stress and subsequent damage [10,11]. Consequently, to assess the 48 

impact of various external stressors such as pollutants on organisms, it is common practice to 49 

monitor various ROS markers such as ROS levels, ROS-associated responses (e.g., ROS 50 

scavenging enzyme activities), and cellular damage products. Increased levels in these markers 51 

are interpreted as increased oxidative stress and consequently higher toxicity of the tested 52 

external stressor. 53 

When reading ecotoxicological literature, we observed that the same ROS markers are often 54 

reported to be affected in different directions in different studies (e.g., one study showing an 55 

increased enzyme activity while another study showing a decreased activity of the same enzyme; 56 

see examples in Tab. 1). This observed variability raises the question of its underlying causal 57 

factors. For instance, specific ROS markers might be up- or downregulated depending on factors 58 

like pollutant type, pollutant properties, and experimental conditions (e.g., exposure time). Given 59 

the high variance in observed effects, it is additionally unclear whether currently used 60 

experimental designs have sufficient statistical power (i.e., the rate at which true effects can 61 

indeed be detected [12]) to reliably detect true effects. 62 
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To answer these questions, we used a meta-analytic approach to investigate effects of two 63 

different pollutant groups, nano- and microplastic particles (NMP) and neonicotinoid 64 

insecticides (neonics), on ROS markers in annelid worms as an example organism. Annelid 65 

worms were chosen since they are established model organisms in ecotoxicology and very 66 

sensitive to changes in their environment [13]. We chose NMP and neonics as representative 67 

examples for pollutants since they exhibit completely different modes of actions. NMP are 68 

omnipresent particulate pollutants that have received increasing attention in the last 20 years 69 

while their number in the environment is steadily increasing [14]. They elicit mostly sublethal 70 

effects, but the mechanisms of how NMP lead to oxidative stress are not sufficiently well 71 

understood and likely include both, particle-induced effects (e.g., physical damage and 72 

subsequent activation of the immune system [15]) and chemical-induced effects (e.g., through 73 

plastic-associated chemicals [16]). Neonics have been one of the most used classes of 74 

agricultural insecticides worldwide [17] with well-documented negative effects on various non-75 

target organisms [18]. They seem to induce increased ROS levels by multiple pathways [19] such 76 

as disruption of Ca2+-homeostasis [20,21] and potentially by altering key ROS regulatory genes 77 

[21]. The extent to which different neonics activate these pathways remains unclear, however.  78 

In total, we extracted 2294 ROS-related measurements from 45 studies (see section 2.1). We 79 

examined (1) the directions and strengths of average effects of NMP and neonics on different ROS 80 

markers and (2) the explanatory power of pollutant properties and experimental design choices 81 

to the observed variance. Based on the estimated average effect sizes and variances, we (3) 82 

performed extensive data simulations and power analyses to estimate the statistical power of 83 

typical test designs, and the sample sizes required to detect true effects at sufficiently high rates 84 

(i.e., with a statistical power of 0.8). To this end, we first assumed a general ROS-related stress 85 

response and, second, inspired by the empirical results, allowed for differences in the true stress 86 

response due to differences in experimental design parameters (e.g., concentration, exposure 87 

duration, sample size) and pollutant properties (e.g., polymer type for NMP or type of neonic). 88 
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Tab. 1 Reactive oxygen species (ROS) concentrations, damage products, and ROS responses are highly variable 89 
within and among studies. 11 example studies from our data set that measured ROS concentration, malondialdehyde 90 
(MDA) concentration, catalase (CAT) activity, glutathione-S-transferase (GST) activity, superoxide dismutase (SOD) 91 
activity, and/or peroxidase (POD) activity in annelids after nano- and microplastic (NMP) exposure. As examples, we 92 
chose studies from our dataset that measured at least three of the six ROS markers. Upwards pointing arrows with blue 93 
background symbolize reported significant increases in enzyme activity or molecule concentration compared to the 94 
control, downwards pointing arrows with yellow background symbolize a significant decrease. Hyphens with grey 95 
background represent no significant difference between NMP treatment and control. Enzyme activities or 96 
concentrations that were not determined are shown as NA. Most enzyme activities or molecule concentrations show 97 
mixed results within the same ROS marker and study when multiple exposure times, concentrations, shapes, sizes, or 98 
plastic ages were tested. 99 

Authors Date DOI ROS MDA CAT GST SOD POD 

Baihetiyaer et al. 2023 10.1016/j.envpol.2023.121285    NA   
Cheng et al. 2020 10.1016/j.scitotenv.2020.14128

0 

     NA 

He et al 2023 10.1016/j.scitotenv.2023.16285

4 

     NA 

Holzinger et al. 2022 10.1016/j.scitotenv.2022.15638

7 

NA    NA NA 

Li et al. 2021 10.1016/j.scitotenv.2021.14700

7 

NA     NA 

Li et al. 2021 10.1016/j.scitotenv.2020.14403

7 

NA   NA   
Li et al. 2023 10.1016/j.chemosphere.2022.13

6833 

   NA NA  NA 

Liu et al. 2022 10.1016/j.envint.2022.107158       
Shang et al. 2023 10.1016/j.scitotenv.2023.16695

3 

   NA   
Wang et al. 2019 10.1016/j.envpol.2019.03.102 NA      
Zhao et al. 2023 10.1016/j.scitotenv.2022.16009

2 

NA      
 100 

We extracted ROS-related measurements (e.g., enzyme activity measurements), experimental 101 

design parameters (e.g., number of replicates) and reported statistical outcomes from 21 and 24 102 

studies examining the effects of NMP and neonics on annelids, respectively. The log-transformed 103 

ratio of means (logROM) for differences between treatments (numerator) and controls 104 

(denominator) were calculated as effect sizes. Overall average effects of different pollutants on 105 

measured ROS markers (i.e., one effect size estimate per ROS marker for NMP and neonics 106 

separately) were derived from mixed meta regression models [23] (see section 2.2). The following 107 

ROS markers were evaluated: ROS formation (overall ROS and hydroxyl radical (•OH) 108 

concentration), ROS responses (enzyme activities of catalase (CAT), superoxide dismutase 109 

(SOD), glutathione-S-transferase (GST), peroxidase (POD), glutathione reductase (GR), 110 

carboxylesterase (CarE), mRNA expression levels of CAT, SOD, and GST, total antioxidant capacity 111 

(TAC), glutathione (GSH) concentration), and ROS-associated damage products 112 

(malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), and protein carbonyl group 113 

(PC) concentrations).  114 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261525/
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2. Methods 115 

2.1 Data collection 116 

We conducted a systematic search for all peer-reviewed publications that were published before 117 

December 2023 and that examined the effects of NMP or neonics on ROS generation, ROS 118 

scavenging enzyme activities, and ROS-associated damage products in terrestrial annelids. We 119 

started the search for suitable articles by choosing 10 already published, representative articles 120 

for each NMP and neonics. Afterwards, we optimised our search string such that these 10 121 

previously selected articles appeared in the 50 most relevant (i.e., the first 50) papers on Web of 122 

Science (https://www.webofscience.com). For search term optimization, different combinations of 123 

keywords were tested including terms related to oxidative stress responses (e.g., ros, oxidative 124 

stress, reactive oxygen species, detoxification and names of specific ROS markers), terms 125 

associated with the focal taxon of annelid worms (e.g., annelid, Eisenia, earthworm) and terms 126 

describing NMP (e.g., microplastic*, nanoplastic*) and neonicotinoids as focal pollutant types 127 

(e.g., neonic* and different specific neonicotinoid names). Finally, on the 14th and 15th of 128 

December 2023, we searched on Web of Science with the following search string for NMP (49 129 

hits): “(annelid* OR eisenia) AND (reactive oxygen species OR oxidative stress) AND 130 

(microplastic* OR nanoplastic*)” and neonics-associated studies (51 hits), respectively: 131 

“(annelid* OR eisenia OR earthworm*) AND (oxidative stress OR detoxification OR inhibition) AND 132 

(neonic* OR imidaclo* OR thiaclo*)”.  133 

The titles and abstracts of all publications analysing the effects of NMP or neonics were screened 134 

to fulfil the following criteria: The studies investigated the oxidative stress of terrestrial annelids 135 

following an in vivo pollutant exposure (i.e., no single cell analyses) and included a negative 136 

control without the respective pollutant. We excluded review articles and meta-analyses. Studies 137 

using tire wear particles (TWPs) or in which the worms were co-exposed to other pollutants in 138 

addition to NMP or neonics were excluded to avoid confounding by additional substances (e.g., 139 

softener and vulcanization agents in TWPs [24]). We also excluded studies which did not report 140 

https://www.webofscience.com/
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essential data for statistical analysis (e.g., missing number of biological replicates) and where the 141 

authors have not responded to a request for raw data. Lastly, for an improved comparability within 142 

our NMP data, we excluded data generated after a recovery period (i.e., period after the pollutant 143 

exposure without pollutant; 84 data points) and data obtained through a neonic contact test (i.e., 144 

annelids are exposed to the neonic on a filter paper in petri dishes) from our main analysis (174 145 

data points). For the latter, we included a separate analysis in the supplement (Supplementary 146 

Table S1, Supplementary Fig. S1Fehler! Verweisquelle konnte nicht gefunden werden.). This 147 

left us with 21 NMP studies (898 data points) and 24 neonic studies (1396 data points). For a visual 148 

representation (PRISMA (Preferred Reporting Items for Systematic reviews and Meta-analyses) 149 

Flow diagram) of the article selection process see Supplementary Fig. S2.  150 

From each of the remaining articles, we extracted data regarding the species and life stage of 151 

annelids at the start of exposure, the exposure route (whether the pollutants were mixed in the 152 

soil or food or if a contact test was performed), type of soil (artificial or collected from the 153 

environment), soil parameters (pH and mean temperature), exposure and recovery duration, 154 

nominal and measured pollutant concentration, added chemicals, screening for chemical and 155 

NMP contamination of the soil, uptake validation (whether pollutant uptake was verified) and 156 

validation method, food type and dose, measured ROS marker and respective unit, measurement 157 

method, the number of biological and technical replicates, and the pollutant manufacturer. The 158 

extracted ROS markers were: measured ROS levels, oxidative stress associated enzyme activities 159 

(CAT, SOD, GST, POD, GR, CarE) and some of their mRNA expression levels, GSH concentrations, 160 

the TAC, and concentrations of ROS-induced cell damage products (MDA, Protein carbonyl, 8-161 

OHdG). For NMP, we additionally extracted whether NMP were cleaned prior to exposure and the 162 

solvent used for cleaning, the polymer type, shape, nominal and measured mean particle size, 163 

and if applied, method of aging (including artificial UV-weathering and exposure to environment 164 

prior to their use in exposure bioassays). For neonics, we determined the specific neonicotinoid 165 

identity (i.e., the name of the chemical) that was used. ROS marker measurements were 166 
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preferentially extracted from the text or calculated from the raw data. If this was not possible, 167 

measurements were extracted from figures using the metaDigitise package (version 1.0.1) [25] in 168 

R (version 4.3.1) [26]. All extracted data were double-checked and validated by a second person 169 

and discrepancies were discussed until a consensus was reached.  170 

2.2 Data analysis 171 

Units of all measured concentrations, enzyme activities, and expression levels were converted 172 

into nine defined units (fluorescence intensity, fluorescence intensity/mg protein, nmol/mg 173 

protein, nmol/ml homogenate, U/mg protein, ng/g fresh weight, ng/l, ng/mg DNA, and fold 174 

change). In case results were reported as a fold change, we set the mean of the control per 175 

definition to 1 when data were obtained via the metaDigitise package. We did not do this for 48 176 

data points of one study, where the measurements were reported as fold change, but the mean 177 

value of the control was clearly different from 1. Two articles [27,28] quantified the thiobarbituric 178 

acid reactive substances concentration as a proxy for lipid peroxidation. These ROS markers were 179 

treated as malondialdehyde concentrations [29]. All pollutant concentrations were log 180 

transformed and converted to weight percentages (% w/w). If the nominal as well as the measured 181 

concentration or size were reported, we used the measured concentration in our analysis. The 182 

NMP concentration in one article (2 data points) could not be converted as it was only reported in 183 

particles per kg soil. These two data points were neglected in all models considering NMP 184 

concentration. Most articles that measured enzyme activity and expression levels did not report 185 

the exact enzyme or gene they investigated. Therefore, we summarized the genes by their function 186 

(CAT, SOD, GST, POD, CarE, GR) rather than their specific names (e.g., glutathione peroxidase 1).  187 

All statistical analyses were done in R (version 4.3.1) [26]. The data were filtered using the package 188 

dplyr (version 1.1.3) [30]. For each treatment-control pair, we calculated the log transformed ratio 189 

of means (logROM) as an effect size and corresponding sampling variance (vi) using the metafor 190 

package (version 4.4-0) [23]. We excluded data points where both control and treated worms had 191 

measured values of zero (9 cases in total) which made it impossible to calculate the logROM. We 192 
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also excluded data points with a sampling variance of zero (21 cases in total) since the model 193 

cannot calculate the proper weight of these data points and a true variance of zero seems highly 194 

unlikely. To assess whether the exclusion of these data points infcluenced our results, we 195 

repeated all analyses on the complete dataset and replacing the zero variances with 10-7. This did 196 

not change our general results (i.e., no changes in significances; see Supplementary Fig. S3 and 197 

Supplementary Table S2). 198 

We multiplied the logROM with minus one, so that positive logROM indicate higher measurements 199 

of the treatment group compared to the control. Mixed meta regression models without intercept 200 

were fit to the data to evaluate the effects of NMP and neonics. We included the ROS markers as 201 

a fixed effect and a nested random intercept (~1|DOI/individual level), where the article’s Digital 202 

Object Identifier (DOI) accounted for the heterogeneity between studies and the individual level 203 

random effect accounted for the heterogeneity between samples within studies. We additionally 204 

included a quadratic term and intercept in models that examined the effects of neonics and NMP 205 

over time, with different sizes, or at different concentrations. These models were plotted with 206 

metafor and rated as significant, if at least one of the terms had a P value below 0.05. Data and 207 

models were illustrated using the packages orchaRd (version 2.0) [31] and ggplot2 (version 3.4.4) 208 

[32]. Since the GST mRNA expression was only measured at two time points after NMP exposure 209 

(14 and 28 days), we only assumed a linear relationship in these cases and excluded the quadratic 210 

terms. Additionally, the effects of different NMP sizes on two ROS markers (TAC and GST mRNA 211 

expression) could not be evaluated because only one NMP size was used.  212 

Since some pollutant properties determined the effects they have on certain ROS markers, we 213 

wanted to figure out if including the properties as fixed factors in a model would significantly 214 

improve its fit compared to models without them. Using likelihood ratio tests (LRT), we compared 215 

a full model containing all properties (exposure time, concentration, shape, polymer, and size for 216 

the NMP dataset, and exposure time, concentration, and neonic identity for the neonic dataset) 217 

with models, where one property at a time was excluded (i.e., reduced models). Additionally, we 218 
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wanted to figure out if the effects of experimental design and pollutant properties are different 219 

among ROS markers. We therefore created a full model with all the above-mentioned properties 220 

plus their interactions with ROS marker and compared it with reduced models via LRT, where 221 

each of the interaction terms was excluded one by one. Finally, we calculated the proportion of 222 

the variance in the data that was explained by the pollutant properties and experimental design 223 

parameters. To this end, we fitted a model containing only ROS marker as a fixed effect and 224 

calculated the sum of both σ2 variance components (σ2
endpoint). We repeated the procedure with a 225 

full model containing all the above-mentioned properties plus their interactions with ROS marker 226 

(σ2
predictors). Finally, we calculated the residual heterogeneity (i.e., variance in the true effects) by 227 

subtracting σ2
predictors from σ2

endpoint, divided by σ2
endpoint. Since the proportion of the sampling 228 

variance to the total unaccounted variance was extremely low (< 0.6 %), we used the residual 229 

variance as an approximation for the total unaccounted variance.  230 

2.3 Power analysis  231 

We conducted multiple power analyses to determine, at which rates commonly performed 232 

experiments can detect true effects. To this end, we calculated the means and standard 233 

deviations (sd) of each control and treatment group for each ROS marker (NMP: 12 ROS markers 234 

times two groups = 24 separate values; neonics: 15 ROS markers times two groups = 30 separate 235 

values). Means and sd were then used to draw random samples from normal distributions, both 236 

for the control and the treatment group, thus simulating experiments in the lab. This procedure 237 

was repeated 100 times for each ROS marker-pollutant-combination. Each simulated control-238 

treatment pair was then analysed via a t-test. The statistical power was finally calculated as the 239 

proportion of t-tests with P values equal or below 0.05. The simulation process was repeated with 240 

increasing sample sizes (i.e., the number of random samples drawn) ranging from three to 100 241 

(incremented by one). Finally, we determined the lowest sample size at which the statistical 242 

power was equal or higher than 0.8 (which would translate into significant results in 80 % of 243 
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experiments) and the statistical power at sample sizes of three and eight, which were the most 244 

frequently used and highest sample sizes in our dataset, respectively. 245 

Considering differential stress responses dependent on experimental design parameters and 246 

pollutant properties, we performed a second set of power analyses that took these differences 247 

into account. To this end, we calculated the means and sd separately for each combination of 248 

pollutant properties and experimental design parameters (NMP: 813 combinations, neonic: 249 

1241combinations). For each combination, we performed a power analysis as described above 250 

with a maximum sample size of 50 instead of 100 (47 sample sizes x 100 t-tests = 4700 t-tests per 251 

combination). The statistical power for different property-experimental design combinations was 252 

averaged for each sample size and ROS marker. Finally, the lowest sample size at which the 253 

statistical power was equal to or greater than 0.8 was extracted, along with the statistical power 254 

at sample sizes of three and eight. 255 

3. Results and Discussion 256 

3.1 Effects of pollutants of ROS markers 257 

In summary, we observed that on average both pollutant groups increased ROS concentrations 258 

and all damage products and significantly altered 8 of the 19 ROS responses. We found that on 259 

average, exposure to NMP induced a significant increase in the ROS concentration (mean logROM 260 

± sd: 0.173 ± 0.246, Z = 3.265, P = 0.001), CAT mRNA expression level (0.354 ± 0.350, Z = 4.444, P 261 

< 0.001), GSH concentration (0.184 ± 0.591, Z = 2.151, P = 0.031), MDA concentration (0.156 ± 262 

0.385, Z = 3.427, P < 0.001), and 8-OHdG concentration (0.199 ± 0.105, Z = 3.290, P = 0.001) (Fig. 263 

1, Supplementary Table S3). In contrast, the GST mRNA expression level (-0.178 ± 0.165, Z = -264 

1.996, P = 0.046) decreased on average. Neonic exposure increased ROS concentration (mean 265 

logROM ± sd: 0.183 ± 0.130, Z = 4.462, P < 0.001), •OH concentration (0.177 ± 0.157, Z = 2.244, P 266 

= 0.025), CAT activity (0.096 ± 0.348, Z = 2.548, P = 0.011), SOD activity (0.148± 0.353, Z = 3.837, 267 

P < 0.001), SOD mRNA expression (0.399 ± 0.594, Z = 5.790, P < 0.001), CAT mRNA expression 268 
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(0.182 ± 0.595, Z = 2.648, P = 0.008), MDA concentration (0.207 ± 0.250, Z = 5.241, P < 0.001), 8-269 

OHdG concentration (0.247 ± 0.190, Z = 3.432, P = 0.001), and PC concentration (0.166± 0.079, Z 270 

= 2.994, P = 0.003) (Supplementary Table S4). Only the CarE activity (-0.241± 0.466, Z = -3.173, 271 

P = 0.002) was significantly decreased under exposure to neonics. So on average, both pollutant 272 

groups (NMP and neonics) increased ROS levels and damage product concentrations and altered 273 

the gene expression levels of many of the analysed enzymes and enzyme activities, which is 274 

consistent with results from previous meta-analyses examining the effects of NMP [33] and 275 

neonics [18] on soil biota. 276 

3.2 Sample sizes assuming a general stress response 277 

We observed large variances and frequent overlap of observed data ranges with zero (Fig. 1) as 278 

well as small sample sizes in the compiled literature (maximum sample size: N = 8, median: N = 279 

3). Small effect size, high variance and low sample size both decrease the statistical power. 280 

Therefore, our findings raise the question of whether sample sizes of experiments commonly 281 

conducted in individual studies are large enough to provide sufficient statistical power. 282 

To investigate statistical power in more detail, we conducted simulation experiments and power 283 

analyses based on the means and standard deviations of measured effects for the control 284 

(without pollutant) and treatment group (with pollutant) (see section 2.3). To this end, we 285 

assumed the difference between control and treatment means as true effects for each ROS 286 

marker and pollutant group. For the sample sizes reported in the compiled literature (median of 287 

all 45 articles: N = 3), our simulations showed very low statistical power (Supplementary 288 

Table S5) with an average power of 0.085 ± 0.102 (mean ± sd) and 0.065 ± 0.069 over all ROS 289 

markers for NMP and neonics, respectively. This means that effects that are truly there would be 290 

detected in less than ten percent of the experiments. At a sample size of N = 8 (maximum sample 291 

size reported in the compiled literature), the average power for NMP and neonic ROS markers was 292 

0.220 ± 0.300 and 0.163 ± 0.229, respectively (Supplementary Fig. S4, Supplementary Fig. S5). 293 

Usually, a power of 0.8 is recommended for experimental design [34,35]. We thus used additional 294 
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simulations to investigate, whether sufficient power could be achieved by increasing sample sizes 295 

up to a maximum of 100. Most ROS markers (17 out of 27) did not reach a power of 80% with a 296 

sample size of 100 (Supplementary Table S5). This indicates that, assuming a generalized ROS-297 

related stress response (similar true effects across all NMP and neonics, respectively), the effects 298 

of exposure to NMP and neonics on ROS markers are hardly detectable by single experimental 299 

studies.  300 
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 301 

Fig. 1 Nano- and microplastic (NMP) and neonicotinoids (neonics) induce the formation of reactive oxygen 302 
species (ROS) and alter ROS responses on average, but with large variances. Overall effects of NMP (A) and neonics 303 
(B) on the generation of ROS, ROS-scavenging enzyme activities and expression, and ROS-associated damage 304 
products. K: number of data points (number of studies in brackets). The black circle displays the mean, thicker black 305 
lines show 95% confidence intervals, and narrow lines show prediction intervals. These estimates were calculated 306 
using mixed meta regression models without intercept for each pollutant separately. Point sizes correlate with inverse 307 
standard errors. ROS markers in bold significantly differ from zero (no effect); *P < 0.05, **P < 0.01, ***P < 0.001. Italic 308 
ROS markers represent mRNA expression levels of respective enzymes. ROS: reactive oxygen species concentration; 309 
•OH: hydroxyl concentration; CAT: catalase activity; SOD: superoxide dismutase activity; GST: glutathione-S-310 
transferase activity; POD: peroxidase activity; CarE: carboxylesterase activity; GR: glutathione reductase activity;  TAC: 311 
total antioxidant capacity; GSH: glutathione concentration; MDA: malondialdehyde concentration; 8-OHdG: 8-hydroxy-312 
2-deoxyguanosine concentration; PC: protein carbonyl group concentration.  313 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261525/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261525/
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3.3 Influence of experimental design and pollution properties 314 

A potential explanation for the high data spread in the measured ROS markers is a differential 315 

stress response with effects being moderated by differences in the pollutants the organisms are 316 

exposed to or by variations resulting from differences in the experimental designs. An indication 317 

for such a differential stress response is the high residual heterogeneity we found in the meta-318 

analytical models (Test of residual heterogeneity: NMP: QE = 969050.145, P < 0.001; neonics: QE 319 

= 153342.470, P < 0.001). As a next step, we thus examined whether differences in effects are 320 

associated with different exposure designs, particle characteristics, and different neonicotinoid 321 

identities. Effects on life-history traits of several soil-dwelling organisms have been shown to be 322 

dependent on NMP properties [36], while different neonics have different effects on the 323 

reproduction and survival of various soil animals at similar concentrations [37]. As moderators of 324 

NMP effects, we considered exposure time, concentration, particle shape, particle size, and 325 

polymer type in our analysis. As moderators of neonic effects, we included exposure time, 326 

concentration, and the neonic identity.  327 

We used two approaches to examine whether each property contributed to the observed 328 

variance. First, we investigated differences among different pollutant properties and 329 

experimental parameters across all pooled ROS markers. To this end, we fitted a full model 330 

containing all moderators as fixed effects and used likelihood ratio tests (LRT) to compare this 331 

model to different reduced models, where one moderator at a time was excluded. For this 332 

analysis, we assumed that effects on different ROS markers are similar. This assumption could be 333 

too simplistic however, since a pollutant could have different effects on different ROS markers. 334 

For example, higher NMP concentrations can increase damage product concentrations such as 335 

MDA but decrease the activity of multiple ROS scavenging enzymes e.g., CAT, SOD, and GST [38]. 336 

So, in a second approach, we additionally considered differences in effects among different ROS 337 

markers. To this end, we included interaction terms for each moderator with ROS markers to the 338 

model structure. Again, we compared the full model with all interactions to reduced models, 339 

where one moderator-ROS marker interaction at a time was excluded. In addition, we used the 340 
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variance components σ2 of the models to calculate the amount of the variance in the data that 341 

can be explained by the pollutants’ properties and experimental design parameters. 342 

For models without interactions, the experimental exposure time (LR = 16.276, P < 0.001) and the 343 

NMP properties polymer type (LR = 38.465, P < 0.001), shape (LR = 12.634, P = 0.027), and size (LR 344 

= 6.312, P = 0.010) explained a considerable amount of the variability, while concentration (LR = 345 

2.023, P = 0.154) did not. In contrast, for neonics only the neonic concentration (LR = 26.409, P < 346 

0.001) explained a significant amount of variability, while exposure time (LR = 0.090, P = 0.764) 347 

and the neonic identity (LR = 21.461, P = 0.161) did not.  348 

When including interaction terms, we found that different NMP concentrations (LR = 34.730, P < 349 

0.001), exposure times (LR = 32.457, P < 0.001), and polymers (LR = 30.043, P = 0.026) had 350 

different effects among the ROS markers, but different shapes (LR = 21.950, P = 0.234) and sizes 351 

(LR = 3.564, P = 0.468) did not. Similarly, different neonic concentrations (LR = 59.767, P < 0.001), 352 

exposure times (LR = 35.283, P = 0.001), and neonic identities (LR = 345.732, P < 0.001) differed 353 

in the patterns observed for different ROS markers. These results indicate that pollutant 354 

properties and experimental design parameters explain at least part of the observed variance in 355 

our data (Test of moderators of full model with interactions: NMP: QM91 = 427.725, P < 0.001; 356 

neonics: QM127 = 738.941, P < 0.001). In total, pollutant properties and experimental design 357 

parameters accounted for 46.7 % (NMP dataset) and 21.2 % (neonic dataset) of the variance in 358 

the data. An in-depth analysis of how experimental designs and pollutant properties affect 359 

individual ROS markers are reported in Supplementary Fig. S6 - S13, and Supplementary Tab. 360 

S6 - S13.  361 

Our results indicate that ROS responses are strongly dependent on the pollutant properties, their 362 

chemical identity, and experimental design parameters. This complicates generalizations and 363 

predictions of effects of pollutants on ROS markers. Interestingly, only neonic concentration, but 364 

not NMP concentration, explained a significant amount of variance in our data. This is surprising 365 

since other meta-analyses found concentration dependent effects of NMP on survival, growth 366 
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rate, and reproduction of soil biota [33,39]. However, our analyses revealed significant 367 

interactions of both pollutant properties (e.g., NMP concentration) and experimental design 368 

parameters with ROS markers indicating that effects of these parameters act stronger on certain 369 

ROS markers than on others (see Supplementary Fig. S6 - S13). In addition, pollutant parameters 370 

may not only interact with ROS markers but also with each other, potentially leading to additional 371 

confounding effects. A more in-depth mechanistic understanding is thus needed to explain these 372 

differences and allow to extrapolate from tested pollutant-ROS marker combinations to untested 373 

ones.  374 

How different pollutant properties and experimental designs affect ROS formation, subsequent 375 

damage product formation, and ROS responses is still unclear. Neonics seem to induce ROS 376 

generation by disrupting intracellular Ca2+-homeostasis [21], but why different neonics differ in 377 

their effects on ROS markers remains understudied. For NMP, few hypotheses have been 378 

formulated on how these particles can induce ROS and our knowledge about mediating effects 379 

remains fragmentary to date. For instance, Qiao and colleagues suggested a general activation of 380 

the immune system, which in turn may lead to increased ROS responses  [15], while Hu and Palić 381 

hypothesized that ROS formed during the environmental degradation of NMP might be taken up 382 

by organisms together with the particles and thus lead to higher ROS levels in these organisms  383 

[40]. In addition, surface modifications of NMP including surface morphology and surface charge 384 

were shown to significantly affect particle-immune cell interactions [41,42], which might give first 385 

insights into moderating effects of these particle properties on ROS related responses. Further 386 

research investigating mechanistic pathways leading to and moderating ROS responses will be 387 

valuable to get a better understanding of the observed patterns. 388 

3.4 Sample sizes depending on properties 389 

Since the pollutant-induced effects on ROS generation, ROS responses, and damage product 390 

formation seem to depend on experimental design and partially on the pollutants’ properties, our 391 

first power analysis (which assumed a generalized ROS response) is likely too simplistic and may 392 
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have overestimated sample variance and consequently underestimated the statistical power of 393 

the test system. We thus performed more detailed data simulations and power analyses that 394 

consider differences in effects based on pollutant properties and experimental designs. To this 395 

end, we calculated the means and standard deviations of the measured ROS markers for each 396 

combination of moderators (NMP: exposure duration, concentration, polymer, size, shape (813 397 

unique combinations); neonic: exposure duration, concentration, neonic identity (1241 unique 398 

combinations)). These values were used as a basis for extensive data simulations and the 399 

calculation of statistical power dependent on sample size for each combination separately. As 400 

expected, for most ROS markers, statistical power at fixed sample sizes was notably higher when 401 

all moderators were considered. For 21 out of the 27 ROS markers, sample sizes smaller than 20 402 

were sufficient to reach a power of at least 0.8, and 8 ROS markers required sample sizes smaller 403 

than ten (Tab. 2). For example, based on our simulations, sample sizes of N = 3 and N = 5 are 404 

sufficient to achieve significant results in over 80 % of experiments when measuring CAT or SOD 405 

mRNA expression after NMP exposure (Supplementary Fig. S14). For neonics, only the CarE 406 

activity, GR activity, and GSH concentration showed rather low power, not reaching the 0.8 407 

threshold with a sample size of N ≤ 50 (Supplementary Fig. S15).  408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 
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Tab. 2 Most reactive oxygen species (ROS) measurements have high enough power at sample sizes lower than 20. 419 
Smallest sample size (N) needed to achieve statistical power of at least 0.8 and statistical power of ROS markers at N 420 
= 3 (most used sample size) and N = 8 (highest used sample size) after nano- and microplastic (NMP) or neonicotinoid 421 
(neonic) exposure in experiments investigating pollutant effects on ROS markers in annelid worms. Means and standard 422 
deviations for each property and experimental design combination were used as a basis for data and power 423 
simulations. NA: no data on this ROS marker available. ROS: reactive oxygen species concentration; •OH: hydroxyl 424 
concentration; CAT: catalase activity; SOD: superoxide dismutase activity; GST: glutathione-S-transferase activity; 425 
POD: peroxidase activity; CarE: carboxylesterase activity; GR: glutathione reductase activity; TAC: total antioxidant 426 
capacity; GSH: glutathione concentration; MDA: malondialdehyde concentration; 8-OHdG: 8-hydroxy-2-427 
deoxyguanosine concentration; PC: protein carbonyl group concentration. 428 

  NMP neonics 

ROS marker 
smallest N with 

power ≥ 0.8 

power at 

N = 3 

power at 

N = 8 

smallest N with 

power ≥ 0.8 

power at 

N = 3 

power at 

N = 8 

ROS concentration 12 0.57 0.76 11 0.63 0.78 
•OH concentration NA NA NA 10 0.44 0.61 
CAT activity 16 0.56 0.73 14 0.51 0.74 
SOD activity 8 0.63 0.8 12 0.51 0.75 
GST activity 9 0.59 0.79 24 0.53 0.7 
POD activity 12 0.55 0.76 23 0.42 0.66 
CarE activity NA NA NA > 50 0.48 0.62 
GR activity NA NA NA > 50 0.26 0.45 

SOD mRNA expression 5 0.69 0.89 10 0.59 0.79 
CAT mRNA expression 3 0.88 0.91 17 0.63 0.73 
GST mRNA expression 6 0.61 0.85 13 0.45 0.71 
TAC 15 0.54 0.77 NA NA NA 
GSH concentration 9 0.63 0.78 > 50 0.19 0.41 
MDA concentration 15 0.52 0.75 13 0.56 0.76 
8-OHdG concentration 5 0.69 0.87 8 0.62 0.82 
PC concentration NA NA NA 25 0.38 0.61 

 429 

Statistical power depends on sample size, true effect size, type I error rate (i.e., chosen alpha 430 

level) and the variance of the data [12]. While the true effect size is fixed by the studied system 431 

and the type I error rate is usually fixed by the research community, sample size and variance can 432 

be at least partially adjusted. Considering differential ROS responses dependent on differences 433 

in NMP properties and neonic identity, the effects of pollutants on ROS generation, ROS 434 

responses, and damage products can likely be measured reliably with reasonably large sample 435 

sizes (at least N = 5 and N = 10 for most ROS markers in NMP and neonics, respectively). To further 436 

increase power, the variance in the data could be decreased by reducing measurement error. For 437 

example, Murphy and colleagues argued that measurement techniques frequently used for 438 

measuring ROS markers are often not optimal [1]. Using enzyme-linked immunosorbent assay 439 

(ELISA) to measure 8-OHdG concentrations [43] or MDA to examine lipid peroxidation [44] lack 440 

specificity compared to more sophisticated methods like UPLC-MS/MS. Our data indicate that 441 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261525/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261525/
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expression measurements via qPCR require smaller sample sizes compared to other ROS 442 

makers, especially after NMP exposure. Improved methodology could thus help to strengthen 443 

statistical power where adequate sample sizes are difficult to achieve.  444 

We investigated how NMP and neonics affect ROS markers in terrestrial annelids. However, 445 

caution should be taken when applying our insights to other organisms in other ecosystems. Since 446 

the underlying mechanisms of how these pollutants induce ROS are not well understood, 447 

especially for NMP, it is difficult to estimate how well our results can be generalized to other 448 

organisms. For example, if ROS are primarily produced by immune cells in response to pollutant 449 

exposure, the effects of these pollutants could differ greatly between organisms with different 450 

immune systems, such as annelids and vertebrates. On the other hand, property dependent 451 

effects were observed in other organisms as well, e.g., polymer dependent effects on bacterial 452 

and fungal diversity [39]. Therefore, the influence of pollutant properties and experimental design 453 

on ROS markers probably applies to other taxa as well. While we have mainly analysed the effects 454 

of pristine NMP, we have not considered the presence of additives or the numerous changes to 455 

NMP due to environmental factors. Plastic materials contain on average about 20 additives 456 

including among others antioxidants, plasticizers, and flame retardants [45] which can have 457 

additional adverse effects [16]. Moreover, abiotic factors such as photooxidation via sunlight can 458 

lead to changes in the particles’ surface structure and increase the number of functional groups 459 

on the surface [46], which could explain the greater toxicity of aged compared to pristine NMP in 460 

some studies [47]. Finally, the scarce mechanistic understanding of how pollutants influence 461 

individual ROS markers limits the ability to test for antagonistic and synergistic effects among 462 

ROS markers. For example, it is uncertain whether the increase in CAT and SOD activity ultimately 463 

led to lower amounts of MDA, 8-OHdG, and PC after neonic exposure, since these enzymes 464 

potentially decomposed ROS before they reacted and produced new damage products.  465 

4. Conclusion and future prospects 466 
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Our results show that NMP and neonic exposure impact multiple ROS markers, such as increasing 467 

ROS and damage product concentrations, in terrestrial annelids. The effects are however heavily 468 

influenced by multiple parameters of experimental design and pollutant properties and often 469 

strongly overlap with zero. Singe experiments with low sample size will therefore potentially find 470 

it difficult to obtain sufficient statistical power to detect these effects.  471 

Based on these results, we identified three major improvements for future studies when analysing 472 

the impacts of pollutants on ROS markers. First, authors should report their methods (e.g., the 473 

specific ROS marker, experimental design choices, and pollutant properties) with as much detail 474 

as possible [48]. If possible, materials, methods, and results should additionally be reported in a 475 

machine-readable format and uploaded to an online data repository which follows the FAIR 476 

principles (e.g., Zenodo, Open Science Framework) and additionally published as online 477 

supplemental material.  478 

Second, to understand how ROS responses are moderated by pollutant properties, more detailed 479 

knowledge of molecular mechanisms leading to these differential responses and the further 480 

investigation of adverse outcome pathways are necessary. Dedicated experiments are needed to 481 

clarify the mechanisms by which pollutants trigger effects.  482 

Third, caution should be exercised when interpreting studies that use small sample sizes and 483 

suboptimal measurement techniques since they most likely possess insufficient statistical 484 

power. Instead, more emphasis should be placed on increasing the statistical power of 485 

individual experiments by increasing the sample size, using more precise measurement 486 

techniques such as qPCR or LCMS, or both. Based on the data we compiled, we believe that a 487 

minimum of five replicates for NMP and ten replicates for neonic studies seem to be necessary 488 

to achieve sufficient power. Ideally, a priori power analyses based on lab-specific experimental 489 

conditions and variance estimates derived from previous experiments should be conducted to 490 

ensure that sample sizes meet statistical power requirements (i.e., a statistical power of at least 491 
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80%). This way, true effects can be detected at higher rates, and true effect sizes and potential 492 

risks to environmental health can be estimated more accurately.  493 
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