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Abstract

1.

Underdispersion and overdispersion are common issues when analysing
ecological data with generalised linear (mixed) models (GLMs/GLMMs).
Overdispersion, the phenomenon where observations spread wider than expected
by the fitted model, leads to anti-conservative p-values and, thus, to inflated type
I error. In contrast, underdispersion, a narrower spread of the data than expected,
causes overly conservative p-values and, therefore, a reduction in power. A
range of tests has been suggested to detect such dispersion problems, but there
are few comparative studies of their performance across a range of models and
analysis situations.

The goal of this study is to identify a general dispersion test for GLMs/GLMMs
that is applicable across all standard distributions and random-eftfects structures.
After an initial assessment of available tests, we selected two classes of
dispersion tests as candidates: (1) parametric and nonparametric tests based on
Pearson residuals and (2) simulation-based tests that compare the expected to the
observed variance in the response.

Comparing their performance by type I error, power, and dispersion estimate,
across a range of GLMs and GLMMs, we find that a nonparametric Pearson
residuals test performed best across all metrics, especially for data with low
incidence or count rates and/or sample sizes; however, at the cost of high
computational expenses. The parametric Pearson residuals test, which is
recommended in many books and guidelines, is faster and performs excellently
for GLMs, but can be seriously biased towards underdispersion for GLMMs. We
show that the reason for this bias, which increases with the number of random

effect clusters/groups, lies in the naive computations of the degrees of freedom
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for the random effects. The simulation-based response variance test is slightly
less powerful than the nonparametric Pearson test, but it showed overall good
calibration and is much faster to compute. It offers a compromise between the
strengths and weaknesses of the two Pearson-based tests.

4. We conclude that for GLMs, the parametric Pearson residuals test offers the best
combination of speed and accuracy. For GLMMs, we recommend either the
computationally demanding non-parametric Pearson residuals test or the faster,

although somewhat less powerful, simulation-based response variance test.

Keywords: overdispersion/underdispersion, multilevel/hierarchical models, hypothesis

test, Pearson residuals, type I error, power, dispersion parameter
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Introduction

Generalised linear models (GLMs) and generalised linear mixed models (GLMMs) are
the most commonly used tools for the statistical analysis of ecological data (Bolker et
al., 2009; Lai et al., 2019; Touchon & McCoy, 2016). By incorporating mixed and
random effect structures with a wide array of distributional assumptions (e.g., binomial,
Poisson), GLMMs allow researchers to model nonnormal response variables (e.g.,
counts, proportions, or presence-absence) while properly accounting for variation
clustered in sampling units, sites, or study years (Bolker et al. 2009; McMahon & Diez
2007). However, as for all parametric statistics, these models rely on the fact that
residuals scatter around the regression mean with the specified distribution, and their
inferential results can be seriously biased if these distributional assumptions are

violated.

A particularly common and dreaded violation of distributional assumptions in
generalised linear (mixed) models is overdispersion. Overdispersion refers to a higher
variation in the observed data (and particularly the model residuals) than the fitted
model assumes (Campbell, 2021; McCullagh & Nelder, 1989). Strong overdispersion
usually appears in GLM distributions that assume a fixed mean-variance relationship,
such as the Poisson model for count data (Harrison, 2014; J. M. Hilbe, 2014) or the
binomial model for discrete proportions (Dunn & Smyth, 2018; Harrison, 2015). For
example, a Poisson process assumes that we count randomly distributed points in space,
but when observations are subject to spatial/temporal clustering and/or imperfect
detection (Rhodes, 2015), we typically find higher dispersion than expected from a
Poisson distribution. Alternatively, overdispersion may also arise from misfit, for
example, by failing to include important predictors and interactions or by specifying the

incorrect link function (J. M. Hilbe, 2011).
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Overdispersion is a major concern in practical data analyses because it can have
substantial anti-conservative effects on p-values, confidence intervals, and all other
goodness-of-fit and precision metrics (Fig. 1, see also Rhodes, 2015). Anti-conservative
means that p-values and confidence intervals are too small, leading to associated
inflated false positive results (type I errors). In practice, we have encountered analyses
where an overdispersed model had very small and significant p-values (<0.001) that
became nonsignificant after changing to a GLM with more appropriate dispersion (see

also example in Fig. 1).

The counterpart to overdispersion is underdispersion, where the variation in the
observed data (and, thus, model residuals) is lower than assumed by the fitted model.
Reasons for underdispersion can again be that the data-generating process differs from
what is assumed by the model (Lynch et al., 2014). However, in practice, it is often the
result of model overfitting, i.e., having a too complex model that overfits the data.
Underdispersion is somewhat less discussed in the literature, both because it is less
frequent, but also because it leads to over-conservative model metrics (Fig. 1). This may
seem less problematic as it does not lead to reporting “wrong” effects, but
underdispersion reduce overall power and thus increase type II error. Therefore,
accurate statistical inference demands that we identify and adequately deal with both

underdispersion and overdispersion to minimise the risk of wrong inference.

Due to the central importance of dispersion for all statistical indicators,
statisticians have pondered how to detect and address dispersion problems since the
early days of modern statistics (see Quine & Seneta (1987) and Xekalaki (2014) for a
historical perspective). The first attempts to describe the phenomenon date back at least
to the end of the 19" century, likely with Lexis’s ratio (Lexis 1879, apud Xekalaki,

2014) for binomial clustered data, where Q is the ratio of the between-clusters variance



107  to the total variance (Xekalaki, 2014). Bortkiewicz later (1898) coined the term

108  “divergence coefficient” (Q?), which is the variance divided by the mean of the sample,
109 as a test statistic for the Poisson model (Quine & Seneta, 1987). William Gosset, the
110  inventor of the t-test, also considered the problem of dispersion in the Poisson model
111 (Student, 1919). Since then, a large variety of approaches have been proposed and

112 discussed to deal with the “dispersion problem”, ranging from (1) comparing models
113 with or without free dispersion parameters through likelihood ratio test, such as Poisson
114  and negative binomial (e.g. Yang et al., 2007), (2) designing specific hypothesis tests for
115  the “extra” variation (e.g. Fisher, 1950), such as score tests (Dean, 1992; Dean &

116  Lawless, 1989; Lawless, 1987), (3) using goodness-of-fit tests, such as tests on Pearson
117 or Deviance residuals (Dunn & Smyth, 2018; McCullagh, 1985) (although the

118  distinction between categories (2) and (3) can be blurry, see (Collings & Margolin,

119  1985; Dean, 1992; Dean & Lawless, 1989) or (4) using simulation-based non-

120  parametric tests to compare observed and predicted variance of the response data

121 (Hartig, 2024).

122 Somewhat confusing for the practical data analyst, however, many of these

123 approaches have been designed and tested only in very specific scenarios (e.g. only for
124  a Poisson GLM), and there is a surprising lack of systematic evaluation of these tests
125  and strategies across a range of more complex GLMMs. Moreover, a quick review of
126  current methods available in the R environment (R Core Team, 2024) revealed that
127  existing dispersion tests are scattered across different packages (Table 1), and most of
128  these only work for a restricted set of models. All this makes it challenging to decide

129  which test should be used in an applied data analysis.

130 The goals of this study are: (1) to review and order the diversity of dispersion

131  tests for GLMs and GLMMs, and (2) to identify tests that can reliably work across a
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range of models with diverse distributions and complex hierarchical structures. Based
on our literature review (next section), we identified two groups of tests that appeared to
be generally applicable: parametric and non-parametric tests on Pearson residuals, as
well as a new simulation-based non-parametric test that directly compares observed and
predicted variance of the response data. We then used simulated data to compare the
performance of these tests in terms of type I error, power, and the interpretability of the
dispersion statistics. Based on this, we provide recommendations on the most suitable
tests for detecting over- or underdispersion, depending on model complexity and

software availability (i.e., currently available packages and functions in R).
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142 Figure 1. Definition, statistical consequences, and a practical analysis example of

143 under-/overdispersion in generalised linear (mixed) models. The top row shows

144 examples of a data analysis using a Poisson GLM with simulated under- and

145  overdispersed count data. The data points in black are contrasted to the Poisson model’s
146 95% prediction interval (in red). Black dashed lines illustrate the data dispersion

147  (central 95% quantiles of the data). In the example data analysis, we present slope

148  estimates and p-values for the GLM Poisson model fitted to the under- and

149  overdispersed data above, as well as the results using more appropriate models with
150  correct dispersion, here a Conway-Maxwell-Poisson GLM for underdispersed data and
151  anegative binomial GLM for overdispersed data.



152 Table 1. Different types of dispersion evaluation and tests for GLMs and GLMMs with examples of available R packages and functions.
Test Principle Details/Limitations R package:: function Supported models References
Likelih . LM Poi > ti i ial with
RlatfolT(()e(s)td Compare two models with pscl::odTest () I\(/l}A S : ogsl(;rll nbnf)ga ive binomial wi Jackman (2024)
(LRT) and without free dispersion . . . DCluster:: GLM Poisson -> negative binomial with Lopez-Quilez
parameters, for example: Requires fitting two models, requires test.nb.pois () MASS: :glm.nb () (2005)
) {))iori(s)il)irlllal 2;1 n:r%:rt;‘l/ieze d defining an alternative model. Many GLM/GLMMs (Different packages have
Poisson & Not a dispersion test anova (.., test="LRT") the S3 method for anova functions to perform
- binomial and beta- KD Zeileis &
binomial Imtest::1lrtest () Any GLM g{oetlhzlrsn 2002)
Score test DCluster: :DeanB () GLM Poisson. Lopez-Quilez
Evaluate score of restricted Requires score calculation for specific DCluster: :DeanB2 () Score tests based on Dean (1992) (2005)
Absperon PR models. R functions only for Poisson S :
GLM. Rfast2:: g g g apadakis et al.
N T —— GLM Poisson (own model implementation) (2025)
R overdisp::overdisp () GLM Poisson (own model implementation) %qme£9n2§23
£res . Distribution specific (Poisson-based rivedi ( )
overdispersion from w5 - —
Cameron & Trivedi (1990) AER::dispersiontest ()  GLM Poisson from stats: :glm() élg(l)léc;r Sl
Standard. . Hilbe &
::Pd
residuals meme: :P__disp() GLMs Robinson (2025)
dispersion Parametric Pearson residuals test: DHARMa : ¢
Assume Pearson residuals are Chi- testDispersion (.., GLMs/GLMMs (naive residual df) Hartig (2024)
squared distributed. type="Pearson”)
For complex models, difficult to define ~ performance:: , GLMs/GLMMs (naive residual df) )
A goodness-of-fit test to parametric null distribution (unclear check_overdispersion ( ’ Liidecke (2021)
evaluate residual residual degrees of freedom). ) _ . .
dispersion, e.g. via sum of RVAideMemoire: : GLMMs (from 1me4 package, naive residual df, Herve (2025)
Pearson residuals. overdisp.glmer () calculates only dispersion statistic, no test)
Nonparametric Pearson residuals
test: DHARM
Parametric bootstrapping of the model ai:i
to generate a nonparametric estimate of EZ;EEEPSISNH Cor GLMs/GLMMs Hartig (2024)
the pqll distribution of the Pearson type="Pearson”)
statistic.
Computational costly.
Response Expected variance of response variable
variance calculated through simulations of fitted
Compares the expected to model DHARMa: :
the observed variance in ) testDispersion (.., GLMs/GLMMs Hartig (2024)

the response variable.

Fast nonparametrics but possibly less
exact than working on the residual
dispersion.

type="DHARMa")
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A short review of existing approaches to dispersion tests

After reviewing the available literature, we divided the different strategies
proposed for checking dispersion problems into four classes (Table 1). Here, we discuss
these broad strategies in more detail and explain why we focused on two of these
classes as the most suitable competitors for a general dispersion test for GLMs and
GLMMs. We note that, in addition to the four approaches mentioned here, dispersion
problems may also show up in general goodness-of-fit tests (e.g., Feng et al., 2020).
However, as they are not specifically designed to react to dispersion, we did not

consider them further.

Likelihood ratio tests

A first general strategy for detecting dispersion problems is to compare a model
with fixed dispersion to its nearest “relative” with variable dispersion using a likelihood
ratio test (LRT) or another model selection technique, such as AIC (Yang et al., 2007).
For count data, a practical example would be to compare a Poisson GLM as a null
hypothesis to a negative binomial or generalised Poisson GLM (J. M. Hilbe, 2014), or
to compare a binomial GLM to a beta-binomial GLM (Dunn & Smyth, 2018). While
relatively easy to implement, the downside of this approach, apart from the higher
computational costs resulting from fitting two models, is that it doesn’t provide any
direct diagnostics of over- or underdispersion, but only compares a base model against
an alternative. The alternative model, however, might also fit better or worse for reasons
other than a dispersion problem. Moreover, using LRTs for detecting dispersion
problems has also been discouraged as it may provide unreliable results (Dean, 1992)

because it tends to underestimate the evidence against the base model (Lawless, 1987).
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Therefore, we do not find this approach suitable as a general dispersion test and do not

consider it further.

Score tests

A second traditional option for assessing overdispersion is the use of a score test
(Dean, 1992; Dean & Lawless, 1989; Lawless, 1987). Score tests, also known as
Lagrange Multiplier (LM) tests, evaluate the gradient of the log-likelihood (called the
score or LM statistic) of a restricted parameter estimator (e.g., an overdispersion
estimator restricted to zero). Under the null hypothesis that the overdispersion is indeed
zero, the score will have an asymptotic chi-square distribution (Rao, 1948). In
performance comparisons, score tests have been found to have good power (Ohara
Hines, 1997), but their disadvantage is that they are usually model specific (in the sense
that different tests are needed for Poisson or binomial GLMs); their implementation can
be computationally demanding; and, as they require access to the score, they must
usually be implemented with the model and cannot be calculated on top of a fitted
model object. Perhaps because of these issues, we were unable to find any R function
that computes score tests beyond the Poisson GLM (Table 1), although score tests have

been developed for other models, such as the binomial GLM (Dean, 1992).

An equivalent test related to the score test under certain conditions is the
regression-based overdispersion test proposed by Cameron & Trivedi (1990). Under a
Poisson model, the squared deviation of the observations from their fitted mean, after
subtracting the observation itself and scaling by the fitted mean, has expectation zero. In
contrast, under the negative binomial, it increases systematically with the mean. This
motivates an auxiliary regression of the transformed variable against the fitted mean,

with a significant slope indicating extra-Poisson variation. The main advantage of this

11
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test against other score tests is its ease of implementation: it can be carried out after
fitting a standard Poisson GLM. However, similar to an LRT, the linear regression
imposes a particular form of overdispersion as an alternative hypothesis, and therefore,

seems less general than the test based on Pearson residuals described below.

We discarded score tests in general, and the Cameron & Trivedi (1990) test in
particular, from our further analysis, as it seems impractical to implement them across a

wide range of existing GLMM software.

Tests based on residual dispersion

A third class of testing approaches, arguably the most intuitive, directly
calculates a test statistic or goodness-of-fit metric on standardised model residuals. The
most widely used test of this kind is based on the sum of the model’s Pearson residuals.
As Pearson residuals divide the raw residuals by the expected residual standard
deviation, a correctly specified model is expected to have a Pearson residual of around 1
for each observation. A dispersion statistic is then defined as the sum of squared
Pearson residuals divided by the residual degrees of freedom. Models with a so-defined
dispersion statistic > 1 are considered overdispersed, while dispersion statistics < 1 are
underdispersed. Sometimes, a modification of this metric is often recommended by
replacing the sum of squared Pearson residuals with the model deviance, which is
typically more readily available. However, as Venables & Ripley (2002) discuss, this
metric should be avoided, as it often deviates from 1, even for correctly specified

GLMs.

Defining dispersion via the Pearson statistic has the added advantage that for a
GLM, the expected distribution under the null hypothesis of a correctly specified model

asymptotically follows a Chi-square distribution (McCullagh, 1985). This allows a

12
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straightforward construction of a hypothesis test, where we compare the Pearson
statistic to the chi-squared distribution with the respective residual degrees of freedom
(df). This test is referred to with different terminologies, such as Pearson chi-squared
dispersion test, Pearson residuals-based test for overdispersion, or simply Pearson
dispersion test. Hereafter, we refer to this test as the parametric Pearson residuals
test, to differentiate it from the nonparametric test based on Pearson residuals, discussed

below.

An alternative approach to constructing a dispersion test based on the Pearson
dispersion statistic involves generating a null distribution through parametric
bootstrapping. A parametric bootstrap means that new data is simulated from the fitted
model, and then the statistic of interest (in this case: the Pearson statistic of a fitted
model) is calculated based on this data. The parametric bootstrap has been previously
used for hypothesis tests in mixed-effects models where parametric null distributions
were difficult to obtain (e.g., Barr et al., 2013; Luke, 2017), and thus it seems a logical
alternative for more complicated models where the Chi-square distribution of the
Pearson dispersion statistic cannot be taken for granted (see methods for GLMMs
below). Nevertheless, implementing parametric bootstrapping in complex models can
be less efficient for at least two reasons: it is time-consuming and prone to errors in
model refits (Luke, 2017; Moral et al., 2017). A dispersion test based on this principle
was implemented in R by Hartig (2024). Hereafter, we will refer to this test as the

nonparametric Pearson residuals test.

Tests based on response variable variance

Simulation approaches can also be useful to generate null distributions for

alternative metrics of dispersion. A last class of dispersion test approaches, which, to
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our knowledge, was introduced in the DHARMa R package (Hartig, 2024) but has not
been discussed in the literature so far, involves defining a test statistic based on the
dispersion of the response variable, rather than the residuals. More specifically, the test
compares the observed data variance with the simulated data variances (which can be
created conditional or unconditional on the fitted random eftects for GLMMs). The
dispersion statistic is then defined as the ratio between the observed variance and the
mean simulated variance. Similar to the Pearson statistic, a ratio > 1 indicates
overdispersion, a ratio < 1 indicates underdispersion, and a significance test is

constructed based on the distribution of simulated variances.

From a theoretical viewpoint, this approach seems less elegant compared to the
idea of using Pearson residuals, because the latter, by “standardising” the residual
dispersion with the expected dispersion, allows each data point to contribute similarly to
the dispersion statistic. In contrast, the test on the unstandardized response variable will
be more influenced by large data points. However, the primary advantage of this
approach is computational, as it enables the creation of a nonparametric estimate of the
test statistic without requiring a re-fit of the model (in contrast to the nonparametric
Pearson residuals test). Hereafter, we will refer to this test as the simulation-based

response variance test to differentiate it from the tests based on Pearson residuals.

Methods

Selected models and setup of the performance comparisons

After reviewing the available approaches, we identified three tests as potential
candidates for a generally applicable dispersion test that could be implemented across a

wide range of GLMs and GLMMs:

14



272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

(1) The parametric Pearson residuals test
(2) The nonparametric Pearson residuals test

(3) The simulation-based response variance test

To compare the performance of these three tests, we simulated datasets based on
the two main distributions that often present over- or underdispersion problems: the
Poisson and the binomial (N/K) proportions. We varied the sample size (from 10 to
10,000, depending on the simulation) and intercept (from -3 to 3, at the link function
scale) of the simulated data for both distributions. We simulated a gradient of
overdispersed data by adding noise to the linear predictor with values from a Gaussian
distribution with a mean of zero and ten standard deviation values varying from 0 to 1.
We evaluated the performance of the tests by comparing type I error, power, and

dispersion statistics for all combinations of parameters in the simulated datasets.

All models were fitted using the functions g/m from the stats package or glmer
from the Ime4 package (Bates et al., 2015) in R (v4.4; R Core Team, 2024). All
dispersion tests were performed with the DHARMa package (Hartig, 2024). For the
simulation-based response variance test and the nonparametric Pearson residuals tests,
we set the number of simulations fixed at 250 (the default parameter in DHARMa). All
simulations and analysis codes are available at this repository
(https://anonymous.4open.science/r/dispersion_test GLMM/README.md). The
supplementary material provides a script file with instructions and examples for

applying dispersion tests using the DHARMa package.

Theoretical expectations

The classical (1) parametric Pearson residuals test assumes that the sample size

(n-asymptotic) and the expected values are sufficiently large (phi-asymptotic) (Venables

15
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& Ripley, 2002). This implies that, when the expected counts (or intercept) and/or the
number of observations are small, Pearson residuals may not provide reliable
information about model fit (see S1). Some corrections for Pearson residuals with small
sample sizes were suggested (e.g., Cordeiro, 2004; Cordeiro & Simas, 2009), but they
are not currently implemented in the most common packages in R. Therefore, we expect
the parametric Pearson residuals test to perform well for GLMs, except for very small

sample sizes and expected counts (hereafter “small-data” situations).

Moreover, it is unclear whether the parametric Pearson residuals test approach
can be extended to GLMMs or other hierarchical models, where counting the residual
degrees of freedom (df) is not straightforward (Bolker et al., 2009; Luke, 2017). In
mixed-effects models, the df used by a random effect are data-specific (adaptive
shrinkage) and expected to be somewhere between one and the number of grouping
factors (Baayen et al., 2008; Bolker et al., 2009; Luke, 2017). There exist approaches to
approximate df for random effects in LMMs (e.g. Schaalje et al., 2002), but their
generalisation to GLMM s is still an area of active research. Current R packages that
implement the parametric Pearson residuals test approximate the df by the so-called
naive df (e.g., n = 1 per random effect) for testing LMMs/GLMMs (Table 1). We expect
that the error imposed by this approximation increases with the number of random
effect groups. To test this, we varied the number of groups in the random intercept (10,

50, and 100 groups) of our simulated data.

In contrast to the parametric Pearson residual test, we expect the (2)
nonparametric Pearson residuals test to be robust to small-data problems as well as the
presence of random effects, as it doesn’t rely on a particular parametric distribution.

However, since the test uses parametric bootstrapping, we expected it to run much
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slower than the other tests, especially for more complex GLMMs. For this purpose, we

compared the runtime of the tests with a small set of simulated data (see S6).

For GLMMs tested with the (3) simulation-based response variance test, we
compared the performance of the test under the two simulation approaches, conditional
and unconditional to random effects. We expect to see lower power for the
unconditional simulation results, as overdispersion is a phenomenon at the level of the
model distribution (i.e., at a higher level). We evaluated the circumstances under which
this test is reliable as a fast alternative to both dispersion tests based on Pearson

residuals.

Results

Performance on Poisson and binomial GLMs

For Poisson GLMs, we found the expected distribution problems (Fig. 2): type I
error rates for the parametric Pearson residuals test were substantially high for the
smallest intercepts (-3), and they did not reach the nominal value of 0.05 even for very
large sample sizes (n = 10,000). The type I error rates for the nonparametric Pearson
residuals test were well calibrated, except for the smallest intercept (-3), with slightly
conservative type I error rates (< 0.05). For the simulation-based response variance test,
type I errors were independent of sample size, but exhibited an intercept-dependent
conservative bias, ranging from almost 0 for the smallest intercept to 0.06 for the largest

intercepts.

For binomial GLMs, the type I error rates for the parametric Pearson residuals
test were generally conservatively calibrated around 0.04 (Fig. 2). Type I error rates for

the nonparametric Pearson residuals test averaged around 0.05 and 0.06, except for the
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very low and very high intercepts (-3 and 3). For the simulation-based response

variance test, type I error rates were conservatively very low for all simulated

parameters, bouncing below 0.01.

1) param. Pearson residuals

2) nonparam. Pearson residuals

3) Sim-based response variance

intercept
-3

— -15

=50

— 15

Q O O O O O & O Q
N o QOO S N
N 90\ Q \QQ

P

O S P S O O
Q0L LSS
N 90 O \QQ

Sample size

uossiod

[elwoulg

Figure 2. Simulation-based response variance tests have more conservative type I error
rates than both Pearson residuals tests. The three dispersion tests were applied to

Poisson (upper panels) and binomial proportion (lower panels) GLMs: 1a) parametric

Pearson residuals test, 1b) nonparametric Pearson residuals test, and 2) simulation-
based response variance test (see Table 1 for explanations). Simulations under different
sample sizes (x-axis) and intercepts (colours, values at the link function scale). In B),
the model is a binomial proportion with ten trials. All points include a 95% confidence
interval calculated based on exact binomial tests for the 10,000 simulations. Note the
square-root scale of the y-axis in plot A. The Dotted horizontal black line shows the

0.05 nominal value for type I error.

The statistical power of the simulation-based response variance test was lower

than the parametric and nonparametric Pearson residuals tests for both binomial and

Poisson GLMs, but tended to be similar with larger sample sizes (Fig. 3). We found that

the reason for this is the very conservative type I error rates (Fig. 2). When power is
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calibrated by using the p-value at the 5% quantile of its empirical distribution for each

simulation (details in S5), the differences disapear (Fig. 3).

The dispersion statistics of the simulation-based response variance test were
highly dependent on the intercept, slope, and number of trials for the binomial model
(see S4, Fig. S4.2), and they tended to be smaller than those based on the Pearson
residuals. In contrast, for Poisson models, the values tended to be larger than those of
Pearson statistics (Fig. S3.5). This may also explain the lower uncorrected power for the

simulation-based response variance test, especially for binomial models.
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Figure 3. The simulation-based response variance test (in yellow) has lower power than
both Pearson residuals tests (green and blue) for GLMs unless power is calibrated by
type I error rates (dashed lines). Lower power is more evident for binomial models
(upper panel) and smaller sample sizes (first two columns). Results based on 10,000
simulations per combination of parameters for an intercept = 0 and slope = 1. For all
simulation results, see Fig. S5.1 and S5.2.

GLMM performance

For the GLMMs, we first compared the performance of the parametric Pearson

residuals test (two-sided) for an increasing number of groups () in the random

19



379

380

381

382

383

384

385

386
387
388
389
390
391
392

393

394

395

396

intercepts. As expected, the performance of the test failed for a large number of groups
in the random effects (Fig. 4A). The dispersion statistic was underestimated, and the
type I error rates were too high because the test detected significant underdispersion.
Testing only for overdispersion (“‘greater” test) when using the parametric Pearson
residuals test appears to be the only reasonable approach for GLMMs (Fig. 4A). Still, it

doesn’t prevent the dispersion statistics from being biased to lower values.

Pearson Chi-squared dispersion tests for GLMMs
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Figure 4. The parametric Pearson residuals test failed for GLMMs with many groups in
the random intercepts (plot panels). A) Power and type I error rates (blue shaded area)
for the “two-sided” (solid lines) and “greater” (dotted lines) Chi-squared tests for the
Pearson statistic. B) Pearson dispersion statistics with the red shaded area indicating
dispersion statistics estimated below 1 (underdispersion). Notice that the y-axis of plot
B is on a logarithmic scale of 10. Results with 10,000 simulations for an intercept of 0
and a sample size (n) of 1,000 data points.

When comparing the alternative dispersion tests for GLMMs, the nonparametric
Pearson residuals test presented very good results, with a type I error rate around 0.05
(Fig. S6.1 and S6.2) and higher power than the simulation-based response variance tests

(Fig. 5). As expected, the unconditional simulation-based response variance test had the
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worst performance: very low type I errors (Fig. S6.1 and S6.2), very low power, and
dispersion statistics below 1 (Fig. 5B), especially for Poisson models. The conditional
simulation-based response variance test also had very small type I errors (Fig. S6.1 and
S6.2), but power increased with the simulated overdispersion. The performance of both
simulation-based response variance tests (unconditional and conditional) didn’t change
much with the number of groups for the Poisson GLMMs, but it improved for the

binomial GLMMs with the increasing number of groups in the random intercept.
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Figure 5. The nonparametric Pearson residuals test showed correct Type 1 error, higher
power, and larger dispersion statistics than the simulated-based response variance tests
(conditional and unconditional to all random effects) for Poisson and binomial GLMMs.

Power (A), type I error (shaded blue area in A), and dispersion statistics (B) for the

alternative dispersion tests for Poisson and binomial GLMMs with different numbers of

groups in random intercepts. The dashed horizontal line in (A) indicates the nominal

value of 0.05 for type I error. The dotted horizontal line in (A) indicates the 50% power,

and the dotted horizontal line in (B) indicates the dispersion statistics of 1. The results
are based on 1,000 simulations per combination of parameters, with an intercept of 0
and a sample size (n) of 1,000.

Discussion
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The goal of this study was to find a dispersion test that is widely applicable
across different GLM and GLMM distributions and random-effects structures. Our
conclusion is that the nonparametric Pearson residuals test is the most reliable general
test currently available. For GLMs, this test exhibited similar power as the parametric
Pearson residuals test but with more reliable type I error rates in small-data situations.
The downside of this test is that it can be computationally expensive, with runtimes in

the order of minutes for larger GLMMs.

The two alternative tests that we considered have advantages in particular
situations. The simulation-based response variance test for GLMs is fast to compute, but
has a dispersion statistic that is more difficult to interpret and often too conservative
type I errors. This resulted in low power if not additionally calibrated by a simulated p-
value distribution. The parametric Pearson residuals test is computationally efficient,
but it is unreliable in small-data situations and in the presence of random effects. Below,
we discuss these points in more detail and provide recommendations for general users

who rely on already implemented R packages for model fit and diagnostics.

Why and when does the parametric Pearson residuals test fail?

We showed that the parametric Pearson residuals test, although popular, quick,
and relatively easy to compute, has two main disadvantages: it does not perform well in
(1) small-data situations (Fig. 2) and (2) in the presence of random effects (Fig. 4). The
reason for the first problem can be attributed to the mismatch between the Pearson
statistic distribution and the Chi-squared distribution under small-data conditions (Fig.
S1.1 and S1.2). This phenomenon has already been studied (e.g., Fletcher, 2012; Kuss,
2002), with suggested corrections (Farrington, 1996; McCullagh, 1985). However, none

of these corrections are implemented in the current R packages (Table 1), and we
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believe that it will be difficult to devise corrections that work across a wide range of

distributions.

The reason for the second problem is that counting 1 degree of freedom (df) for
a random effect, as done in most implementations of this test, is typically an
underestimation of the true model df, which increases in magnitude with the increasing
number of levels of the random effect. The result is a bias in the dispersion statistic
towards underdispersion that increases with the number of random effect levels (Fig. 4).
Two-sided tests would therefore often wrongly detect significant underdispersion
problems in perfectly valid GLMMSs, which is likely the reason why most R
implementations of this test only test for overdispersion. When applying this test for
GLMMs, we recommend following the same approach and ignoring dispersion statistics
smaller than 1. Nevertheless, it is an unsatisfactory solution since the biased dispersion

statistic will also cause a loss of power.

A possible solution for GLMM:s could be using a better approximation of the
residual degrees of freedom (df). For LMMs, approximations for denominator df have
been successfully used for hypothesis testing (Luke, 2017), for example, the
Satterthwaite (1946) and the Kenward-Roger (2009). Although there is some evidence
that these approximations are also accurate for GLMMSs (Stroup, 2015), the main R
packages implementing some of these approximation methods are currently limited to
LMMs (e.g., pbkrtest Halekoh & Hejsgaard, 2014; ImerTest Kuznetsova et al., 2017).
However, the recently released package glmmrBase (Watson, 2024) allows these
methods to be applied to GLMMs. We performed some parametric Pearson residuals
tests for Poisson GLMMs using a modified residual df approximation (see S8).
Although the parametric Pearson residuals tests with the approximated residual df

performed much better than those with the naive residual df, they still underperformed

24



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

compared to the nonparametric Pearson test when having a large number of groups in

the random eftects (Fig. S8.4), especially for small-data situations.

When are simulation-based response variance tests an alternative?

The simulation-based response variance test developed in the R package
DHARMa (Hartig, 2024) is the main alternative to the family of Pearson residuals tests.
Its principle is simple: when the model is correctly specified, the variance of the
observed data should match the variance of the data simulated from the model. The
main advantage of this approach is that it is a non-parametric test that can be applied to
any model structure and it does not require refitting the model, which makes it both
considerably faster and easier to implement in statistical software. We also note that for
GLMMs, simulations should be performed conditionally to avoid a loss of power,
presumably due to the increased variability created by re-simulating the random effects

(unconditional simulations).

The disadvantages of this approach are that it is often overly conservative,
resulting in lower power compared to the Pearson residuals tests. Additionally, the
calculated dispersion statistic differs from the Pearson dispersion statistic, making it
difficult to compare the two approaches. We conjectured that both problems could be
related to the fact that the test statistic is based on the raw variance (and not a scaled
variance, as for the Pearson statistics), and therefore observations with large values may
be overrepresented in the statistics. We considered scaling each observation with
expected variance, but this is not readily available for a wide class of models, and using

simulations to approximate it fails for discrete-valued distributions (see S7).

Conclusions and recommendations
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In conclusion, while neither of the considered options excelled in all dimensions
(Fig. 6), our base recommendation is that for standard GLMs with sufficient data, the
parametric Pearson Chi-square test, available in many packages, can be safely used. In
complex situations, particularly for GLMMs, we recommend the nonparametric Pearson
residuals test. It has very few weaknesses, other than being computationally costly to
calculate. If the nonparametric Pearson residuals test cannot be calculated due to speed
or convergence problems with refitting complex models, we recommend using the
simulation-based response variance test with simulations performed conditionally on the
fitted random effects. All three approaches are available via the festDispersion function
in the DHARMa R package (Hartig, 2024). We provide a tutorial with instructions and
an example for applying dispersion tests using the DHARMa package on the repository

website (https://theoreticalecology.github.io/dispersionTest/).

GLM GLM GLMM GLMM Speed
("small-data") (few RE groups) (many RE groups)

Simulation-based
response variance

Nonparametric
Pearson residuals

Parametric
Pearson residuals

Figure 6. Performance comparisons of the dispersion tests evaluated for each
“dimension” for Poisson and binomial models: GLMs in general, GLMs with small
sample size or intercept (“small data”), GLMMs with one random effect with few
groups/levels, GLMMs with many groups/levels in a random effect, and computational
time for calculating the test (speed). The symbols mean: “-”” bad performance, “+” good
performance, “++” very good performance.
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Although our simulation examples concentrated on overdispersion, the tests
under consideration in our study can equally be used to detect underdispersion problems
by testing the dispersion “two-sided” or “less than” against null statistics. The clear
exception would be testing for underdispersion using the parametric Pearson residuals
test for GLMMs, which would be anti-conservative due to the discussed bias towards

underdispersion in the presence of random effects.

Recommendations for practical data analysis when using dispersion tests

For the interpretation and applied data analysis, we stress that getting a
significant over-/underdispersion result does not necessarily indicate that the
distribution must be changed. First, hypothesis tests famously evaluate statistical rather
than practical significance. In other words, a significant test for overdispersion indicates
that the overdispersion signal deviates from a null expectation, but the p-value does not
measure the strength of the deviation. The first step in a dispersion test should thus be to
examine how much the dispersion statistic deviates from the expected value of 1. For
very large sample sizes, small departures from 1 may be statistically significant, but
they may not necessarily warrant a change to the model. Second, after finding that a
dispersion problem is both significant and meaningful, we suggest first checking for
problems other than the distribution, such as heteroscedasticity, missing predictors,
incorrect link function, excess of zeros, or overfitting. In our experience, these types of
model misspecifications often cause over-/underdispersion, but can be distinguished
from a “real” distributional problem through careful residual checks. Blindly changing
the distribution only masks the problem, without offering a real remedy to the

underlying problems.
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Finally, after having convinced ourselves through these previous investigations
that we are facing an ‘intrinsic’ under-/overdispersion problem, we should consider
changing the GLM distribution. A traditional and flexible solution is using the ‘quasi’
distributions (Wedderburn, 1974), which essentially correct p-values, but have the
disadvantage that they do not represent an explicit data-generating process with
associated likelihood, which does not allow, for example, to simulate from the fitted
model. A second alternative to add dispersion is using observation-level random effects
(Bolker et al., 2009; Elston et al., 2001; Harrison, 2014; Ozgul et al., 2009). While often
offering a reasonable solution, we feel that the excessive use of REs tends to create
problems in the calculation of other statistical indicators (such as p-values) that we
would rather avoid. For that reason, we feel the best solution to address ‘intrinsic’
under-/overdispersion is to switch to the corresponding variable-dispersion
distributions, such as the negative binomial (Harrison, 2014) for overdispersed and the
Conway-Maxwell-Poisson distribution (Lynch et al., 2014) for underdispersed Poisson
models, or the beta-binomial distribution for overdispersed binomial models (Harrison,
2015). Regardless of the approach, an “over-/underdispersion-free” GLM/GLMM is
essential for better interpreting model results and facilitating sound scientific

discoveries.
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S1. Pearson statistics and Chi-squared distribution

For GLMs, the parametric Pearson residuals test assumes that the sample size
(n-asymptotic) and the expected values are sufficiently large (phi-asymptotic).
Therefore, when the expected counts (or intercept) and/or the number of observations
are small, Pearson residuals may not provide reliable information about model fit. To
test boundaries where Pearson statistics fail, we simulated data with very different
sample sizes (from 10 to 10,000, depending on the simulation) and intercepts (from -3
to 3, at the link function scale) for Poisson and binomial proportion GLMs. For each
distribution and parameter combination, we used the Kolmogorov-Smirnov test (KS
test) of adherence to compare the empirical distribution of 1000 simulations of the
Pearson residuals with the Chi-squared distribution having the same residual degrees of
freedom. We repeated this procedure 100 times and recorded the proportion of

significant KS tests.

For the Poisson GLMs, the Pearson statistics distribution clearly departed from
the Chi-square distribution for very small intercepts (-3, -1.5) and sample sizes (10, 20

and 50) (Figure S1.1 A). Even for very large sample sizes (10,000), the distribution did
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not approximate the Chi-squared distribution for the smallest simulated intercept (-3).

Consequently, the KS tests showed all significant results for all simulations with the

intercept at -3, except for the largest sample size (10,000), where it decreased to 60%.

As expected, the proportion of significant results decreased with sample size for

intercepts at -1.5 and 0. For larger intercepts, it remained around 5% for all sample sizes

(Figure S1.2A).

For the binomial GLMs, the Pearson statistics distribution clearly departed

from the Chi-squared distribution for very small and large intercepts (-3, 3) and small

sample sizes (10, 20, 50) (Figure S1.1B). The proportion of significant KS tests

decreased with sample size, but did not reach the nominal value of 0.05, even for very

large sample sizes and intermediate intercept values (-1.5, 0, 1.5).
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Figure S1.1.Proportion of significant Kolmogorov-Smirnov adherence tests between
the empirical distribution of 1000 simulations of the Pearson statistics and a Chi-
squared distribution with the same residual degrees of freedom for A) Poisson and B)
binomial GLMs. Proportions were calculated from 100 simulations for each
combination of the data parameters (sample size and intercept). For binomial data, the
number of trials was fixed at 10. The 95% confidence intervals (vertical lines) were
drawn from binomial exact tests for each result with p = 0.05.
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S2. Type I error rates for the GLMs

Figures S2.1 and S2.2 show the distribution of the p-values for the dispersion
tests applied to the Poisson and binomial GLMs, respectively, with 10,000 simulations
for each combination of intercept and sample size. For the dispersion tests with correct
type I error rates around the nominal value of 0.05, the distributions of p-values should

present a uniform distribution with density 1.

For the Poisson GLMs (Figure S2.1), the simulation-based response variance
test (in red) presented the largest departure of the expected distribution for the smallest
intercepts (-3, -1.5) across all sample sizes. This explains why the type I error rates for
the simulation-based residual tests were so low and varied according to the intercept but
didn’t change with the sample size (main text Figure 2A). The parametric Pearson test
had the opposite pattern with very low p-values for the smallest intercept (-3), but it
tended to approximate the uniform distribution (decreasing the peak for the low p-
values) with sample size. The p-values for the nonparametric Pearson test also showed a
departure from the uniform distribution for the smallest intercept (-3), but tended to

approach the uniform distribution with larger sample sizes and intercepts.

For the binomial GLMs (Figures S2.2), the p-values distribution of the
simulation-based response variance test also presented the largest departure from the
uniform distribution, but for all intercepts and sample sizes. The p-values for both
parametric Pearson and nonparametric Pearson tests were similar and tended towards

the uniform distribution with larger sample sizes.
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S3. Dispersion statistics for GLMs

The dispersion statistics of the tests for GLMs tended to be smaller than 1
(expected value) when there was no overdispersion simulated for very small sample
sizes for both binomial and Poisson distributions (Figure S3.1). The exception was the
nonparametric Pearson test that presented values larger than 1 for the very small
intercepts (-3 in both distributions, 3 in binomial only). When comparing dispersion
statistics for the simulated overdispersed data (Figures S3.2 and S3.3), we found that
both Pearson-based dispersion statistics presented similar values. In contrast, the
dispersion statistic of the simulation-based response variance presented lower values for
small sample sizes. The differences in dispersion statistics between tests tended to
increase with the increase of simulated overdispersion, but in opposite directions for
binomial and Poisson GLMs (Figure S3.4 and S3.5). Moreover, we found out that the
dispersion statistics of the simulation-based response variance test depend heavily on

the slope parameter of the simulated data (Figure S3.6).
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S4: Expanding simulation parameters for GLMs

Here, we investigated the possible influence of other parameters used to generate

the datasets for binomial and Poisson GLMs. In Figure S4.1, we investigated the power

and dispersion statistic for datasets simulated with different slopes (the default slope in

all other simulations was 1). In Figure S4.2, we investigated the effect of varying the

number of trials on the binomial GLMs in terms of power, type I error, and dispersion

statistics.
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Figure S4.1. Power and dispersion statistics for simulations with different slopes (panel
columns) for binomial and Poisson GLMs. Number of simulations = 500; intercept = 0,
number of trials for the binomial = 10.
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SS. Power for the GLMs

Power calibration

To investigate if the lower power of the simulation-based response variance test
is a consequence of the very conservative type I error rates, we calibrated the power
using the p-value at the 5% quantile of the empirical distribution of p-values where the
null hypothesis was true for each set of simulations (Figures S2.1 and S2.2). This
method should provide an estimate of differences in power, controlling for type I error
rate (Luke et al. 2017). Figures S5.1 and S5.2 show the power (calibrated and
uncalibrated) of the dispersion tests for each simulation set (intercept, sample size and

overdispersion) for Poisson and binomial GLMs, respectively.
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Figure S5.1. Power for GLM Poisson.
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Figure S5.2. Power for GLM binomial.
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S6. Additional GLMM results

DBype I error rate of the alternative dispersion tests

In Figures S6.1 and S6.2, we present the type I error rates for the four alternative
dispersion tests for the Poisson and binomial GLMMs, respectively, using simulated

sets of parameters: number of observations, number of groups, and intercepts.
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Figure S6.1. Type I error rate for the three alternative dispersion tests for the Poisson
GLMMs. 1000 simulations for each parameter set. To improve visualising the different
intercept lines, the values in the x-axis were slightly displaced around the sample size
values.
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Figure S6.2. Type I error rate for the three alternative dispersion tests for binomial
GLMMs. 1000 simulations for each parameter set. To improve visualising the different
intercept lines, the values in the x-axis were slightly displaced around the sample size
values.

Power of the alternative dispersion tests

In Figures S6.3 and S6.4, we show the Power for the three alternative dispersion
tests for the Poisson and binomial GLMMs, respectively, for the simulated sets of

parameters: number of observations, number of groups, and intercepts.
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sample size = 50 are due to simulation errors for some tests. For each parameter set, we

ran 1000 simulations.
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Figure S6.4. Power of the three alternative dispersion tests for binomial GLMMs, with
different numbers of observations (rows), intercepts (columns), and number of groups
for the random intercept (line types). 1000 simulations for each parameter set.

Dispersion statistics of the alternative dispersion tests

In Figures S6.5 and S6.6, we show the dispersion statistics for the three
alternative dispersion tests for the Poisson and binomial GLMMs, respectively, for the

simulated sets of parameters: number of observations, number of groups, and intercepts.
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For each parameter set, we ran 1000 simulations.
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parameter set.

Computational runtime for tests with GLMM:s

We computed the run time for the three tests used for GLMMs: the parametric
Pearson test, the nonparametric Pearson test, and the simulation-based response
variance test with conditional simulations (Figure S6.7). We used 1,000 simulations of
the Poisson GLMM as an example, with an overdispersion parameter of 0.4, an

intercept of 0, a sample size of 1,000, and 100 groups. There was almost no difference
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201  in computational time between the parametric Pearson test (median at 0.066 seconds)
202  and the simulation-based response variance test (median at 0.072 seconds). As expected,
203  the nonparametric Pearson residuals presented the largest runtime, with a median of

204  27.9 seconds.

27.9 ‘l

10.01

Runtime (seconds)

0.14
0.066 0.072

param. i’earson sim-based variance nonparam. Pearson
205 Dispersion test

206  Figures S6.7. Runtime (in seconds) for each dispersion test for a Poisson GLMM

207  simulated 1000 times with the following parameters: overdispersion parameter of 0.4,
208  an intercept of 0, a sample size of 1,000, and a number of groups of 100. Note the y-axis
209  at the log 10 scale.

210
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S7: Alternative simulation-based residuals dispersion test

Another possibility for improving dispersion tests for GLMMs is to develop a
simulation-based approach that shows better type I, power, and a dispersion statistic that
could be interpreted similarly to the Pearson dispersion. To explore future possibilities,
we briefly considered an alternative simulation-based test that attempts to approximate
the Pearson residuals by dividing the observed raw residuals (observed — fitted values)
by the variance of the simulated values for each observation (Equations S7.1 and S7.2).
We evaluated and compared this test for Poisson and binomial GLMs and GLMMs

(conditional simulations only), as we did for the other tests.

Approx. Pearson observed residuals: 1; = % (Equation S7.1)
LS

Approx. Pearson simulated residuals: 13 = % (Equation S7.2)
LS

One obstacle with calculating the denominator of the approximate Pearson
residuals for each observation is that the variance depends on the number of simulations
and the model parameters, such as the intercept or the number of trials in the binomial
GLM/GLMMs. If there are too few simulations or the intercept is very small, the
chance of resulting in zero variance (all simulated values are the same) is higher for data
points with small variance. To overcome this, we first evaluated the minimum number
of simulations for different intercepts and sample sizes, in which all observations have
estimated variances that are different from zero. For all combinations of parameters, we
found that 1,000 simulations were sufficient to ensure that all variances in the simulated
observations were positive (Figures S7.1 and S7.2). However, 250 simulations (the
default parameter of the DHARMa package) also presented reasonable results, with the

only exception being the Poisson GLMs with 30 out of 1,000 simulations (sample size
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242

of 100 and intercept of -1.5) with a very low percentage of zero variances in the

simulated observations (mean of 0.01, maximum of 0.06). We are aware that the

number of zero variances in the simulations depends heavily on the simulation set, e.g.,

the number of trials for the binomial GLM. To develop an effective dispersion test, one

should consider alternatives to address this issue. For the subsequent analyses, we
excluded the simulations with zero variance in any simulated observation to compare
the alternative dispersion test with the simulation-based residuals test and the Pearson

Chi-squared dispersion test.
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Figure S7.1. Poisson GLM: Proportion of observations with simulated zero variance in
the dataset for different combinations of intercept (columns), number of simulations

(rows) and sample sizes (colours).
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Figure S7.2. Binomial GLM: Proportion of observations with simulated zero variance
in the data set for different combinations of intercept (columns), number of simulations
(rows) and sample sizes (colours). The number of trials of the binomial was set to 10 in

all simulations.

First, we compared the approximate Pearson residuals for GLMs with the

Pearson residuals by regressing the difference between them as the response variable

and the Pearson residuals as the predictor for the Poisson GLMs (Figure S7.3). The

intercepts for all simulation sets were nearly zero. The slope of the regression was

positive and very small for the larger number of simulations and intercepts. It means
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256  that the approximate Pearson tends to be slightly larger than the Pearson for larger

257  residuals. We did not ca
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259  Figure S7.3. Mean slope (A) and intercept (B) of the regression of the difference
260  between the Approximate Pearson residuals and Pearson residuals as response variable
261  and the Pearson residuals as predictor for the Poisson GLMs.

262 Type I error rates for the alternative simulation-based test, based on the

263  approximate Pearson residuals for GLMs, were similar to those for the simulation-based
264  response variance test for the Poisson model. They tended to be conservative for small
265 intercepts (Figure S7.4). However, for the binomial model, type I error rates were more

266  similar to the parametric Pearson residuals test, with values closer to 0.05 (Figure S7.4).
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Figure S7.4. Type I error rates for GLMs comparing the parametric Pearson residuals
tests, the simulation-based response variance test and the simulation-based approximate

Pearson test.

The dispersion statistics for the alternative simulation-based response variance
test didn’t change depending on the number of simulations and were very similar to the
parametric Pearson dispersion statistics for both GLMs (Figure S7.5). Power was very
similar among the tests for the Poisson GLM (Figure S7.6). For binomial GLMs, the
power of the alternative simulation-based residual test was high and similar to the

parametric Pearson residuals test.
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283  number of simulations at 250 to compare with the cases where the Pearson Chi-squared
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of -1.5, 0, and 1.5. We excluded simulations with zero variance in the simulated

observations (specifically, for Poisson GLMMs, which accounted for less than 0.1% of

the simulations). For GLMMSs, we used only the conditional simulations, which have

been proven to yield better dispersion test results.
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Fig S7.7. Power for Poisson GLMMs for the alternative simulation-based test using an

approximation for Pearson residuals compared with the other tests assessed in the study.
1000 simulations for each parameter set: intercept (panel columns) and sample size
(panel rows). The fixed parameters are slope = 1, number of groups = 100, and random
effects variance = 1.
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S8. Parametric Pearson test with approximated residual degrees of

freedom for GLMMs

Degrees of freedom (df) are not always known for GLMMs with complex
hierarchical structures and limit the use of the parametric Pearson test because it
depends on it for evaluating overdispersion with the Chi-squared distribution.
Moreover, our results show that using the naive df'is problematic for testing dispersion
when you have a large number of groups in the random intercept. The two most
suggested methods to approximate df of mixed-effect models, the Satterthwaite (1946)
and the Kenward-Roger (Kenward & Roger 2009), were developed for LMM:s to
account for the effect of the covariance structure on df and standard errors. Stroup et al.
(2013) suggested that the adjustment is also accurate for GLMMs. However, none of the
most used R packages use any correction for the degrees of freedom for GLMMSs. The
few R packages that provide those approximations, e.g. ImerTest (Kuznetsova et al.,
2017; Kuznetsova et al., 2020) that relies on pbkrtest (Halekoh & Hojsgaard 2014), are

only implemented for LMMs.

Recently, we found that the R package glmmrBase (Watson 2024) provides those
approximation methods for GLMMs. Thus, we compared the parametric Pearson test
with the three corrections for degrees of freedom available in the package for the

Poisson GLMMs. The corrections are:

The Kenward-Roger (KR) bias-corrected variance-covariance matrix for the
fixed effect parameters and degrees of freedom from Kenward & Roger (1997).
- The improved correction of the Kenward-Roger (KR2) returns an improved
correction given in Kenward & Roger (2009).

- The Satterthwaite correction (Sat) from Satterthwaite (1946).
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Our test results show that all three correction methods presented very similar
residual df for all simulation settings (Figure S8.1), which resulted also in very similar
test results (e.g., Figure S8.2 for type I error). Given the high similarity among tests for
the different residual df corrections, we show and discuss the results for the KR2 test in
comparison with the parametric Pearson “naive” test and the alternative GLMM tests
(nonparametric Pearson and simulation-based response variance test with conditional
simulations). In Figure S8.3, we observe that the correction for the residual df corrected
the dispersion statistics towards 1 for simulations without overdispersion, except for the
very small intercept (-1.5). This results in the two-sided dispersion test being less prone
to being significant, given the very low dispersion parameter (detecting underdispersion

instead of overdispersion).

Although the parametric Pearson tests with the approximated residual degrees of
freedom performed much better than those with the “naive” residual df, they still
underperformed compared to the nonparametric version when having a large number of
groups in the random eftfects (Figure S8.4), especially for very small intercepts and

sample sizes.
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357  Figure S8.3. Dispersion parameters for the parametric Pearson test for Poisson GLMMs
358  performed with different corrections for the residual degrees of freedom (colours),

359  number of groups in the random intercept (linetype and shape), sample size (panel

360 rows), and intercept (panel columns). Please refer to the main text above to relate to

361  each applied correction. To improve clarity, we omitted the other corrections because
362  they are too similar to each other. 1000 simulations for each parameter setting, slope =
363 1, random intercept variance = 1.
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Figure S8.4. Power of dispersion tests for Poisson GLMMs (colours) performed with
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(panel rows), and intercept (panel columns). Please refer to the main text above to relate
to the applied correction for residual degrees of freedom. To improve clarity, we omitted
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