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Abstract 22 

1. Underdispersion and overdispersion are common issues when analysing 23 

ecological data with generalised linear (mixed) models (GLMs/GLMMs). 24 

Overdispersion, the phenomenon where observations spread wider than expected 25 

by the fitted model, leads to anti-conservative p-values and, thus, to inflated type 26 

I error. In contrast, underdispersion, a narrower spread of the data than expected, 27 

causes overly conservative p-values and, therefore, a reduction in power. A 28 

range of tests has been suggested to detect such dispersion problems, but there 29 

are few comparative studies of their performance across a range of models and 30 

analysis situations. 31 

2. The goal of this study is to identify a general dispersion test for GLMs/GLMMs 32 

that is applicable across all standard distributions and random-effects structures. 33 

After an initial assessment of available tests, we selected two classes of 34 

dispersion tests as candidates: (1) parametric and nonparametric tests based on 35 

Pearson residuals and (2) simulation-based tests that compare the expected to the 36 

observed variance in the response. 37 

3. Comparing their performance by type I error, power, and dispersion estimate, 38 

across a range of GLMs and GLMMs, we find that a nonparametric Pearson 39 

residuals test performed best across all metrics, especially for data with low 40 

incidence or count rates and/or sample sizes; however, at the cost of high 41 

computational expenses. The parametric Pearson residuals test, which is 42 

recommended in many books and guidelines, is faster and performs excellently 43 

for GLMs, but can be seriously biased towards underdispersion for GLMMs. We 44 

show that the reason for this bias, which increases with the number of random 45 

effect clusters/groups, lies in the naïve computations of the degrees of freedom 46 
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for the random effects. The simulation-based response variance test is slightly 47 

less powerful than the nonparametric Pearson test, but it showed overall good 48 

calibration and is much faster to compute. It offers a compromise between the 49 

strengths and weaknesses of the two Pearson-based tests.  50 

4. We conclude that for GLMs, the parametric Pearson residuals test offers the best 51 

combination of speed and accuracy. For GLMMs, we recommend either the 52 

computationally demanding non-parametric Pearson residuals test or the faster, 53 

although somewhat less powerful, simulation-based response variance test.  54 

Keywords: overdispersion/underdispersion, multilevel/hierarchical models, hypothesis 55 

test, Pearson residuals, type I error, power, dispersion parameter  56 
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Introduction 57 

Generalised linear models (GLMs) and generalised linear mixed models (GLMMs) are 58 

the most commonly used tools for the statistical analysis of ecological data (Bolker et 59 

al., 2009; Lai et al., 2019; Touchon & McCoy, 2016). By incorporating mixed and 60 

random effect structures with a wide array of distributional assumptions (e.g., binomial, 61 

Poisson), GLMMs allow researchers to model nonnormal response variables (e.g., 62 

counts, proportions, or presence-absence) while properly accounting for variation 63 

clustered in sampling units, sites, or study years (Bolker et al. 2009; McMahon & Diez 64 

2007). However, as for all parametric statistics, these models rely on the fact that 65 

residuals scatter around the regression mean with the specified distribution, and their 66 

inferential results can be seriously biased if these distributional assumptions are 67 

violated. 68 

A particularly common and dreaded violation of distributional assumptions in 69 

generalised linear (mixed) models is overdispersion. Overdispersion refers to a higher 70 

variation in the observed data (and particularly the model residuals) than the fitted 71 

model assumes (Campbell, 2021; McCullagh & Nelder, 1989). Strong overdispersion 72 

usually appears in GLM distributions that assume a fixed mean-variance relationship, 73 

such as the Poisson model for count data (Harrison, 2014; J. M. Hilbe, 2014) or the 74 

binomial model for discrete proportions (Dunn & Smyth, 2018; Harrison, 2015). For 75 

example, a Poisson process assumes that we count randomly distributed points in space, 76 

but when observations are subject to spatial/temporal clustering and/or imperfect 77 

detection (Rhodes, 2015), we typically find higher dispersion than expected from a 78 

Poisson distribution. Alternatively, overdispersion may also arise from misfit, for 79 

example, by failing to include important predictors and interactions or by specifying the 80 

incorrect link function (J. M. Hilbe, 2011). 81 
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Overdispersion is a major concern in practical data analyses because it can have 82 

substantial anti-conservative effects on p-values, confidence intervals, and all other 83 

goodness-of-fit and precision metrics (Fig. 1, see also Rhodes, 2015). Anti-conservative 84 

means that p-values and confidence intervals are too small, leading to associated 85 

inflated false positive results (type I errors). In practice, we have encountered analyses 86 

where an overdispersed model had very small and significant p-values (<0.001) that 87 

became nonsignificant after changing to a GLM with more appropriate dispersion (see 88 

also example in Fig. 1). 89 

The counterpart to overdispersion is underdispersion, where the variation in the 90 

observed data (and, thus, model residuals) is lower than assumed by the fitted model. 91 

Reasons for underdispersion can again be that the data-generating process differs from 92 

what is assumed by the model (Lynch et al., 2014). However, in practice, it is often the 93 

result of model overfitting, i.e., having a too complex model that overfits the data. 94 

Underdispersion is somewhat less discussed in the literature, both because it is less 95 

frequent, but also because it leads to over-conservative model metrics (Fig. 1). This may 96 

seem less problematic as it does not lead to reporting “wrong” effects, but 97 

underdispersion reduce overall power and thus increase type II error. Therefore, 98 

accurate statistical inference demands that we identify and adequately deal with both 99 

underdispersion and overdispersion to minimise the risk of wrong inference. 100 

Due to the central importance of dispersion for all statistical indicators, 101 

statisticians have pondered how to detect and address dispersion problems since the 102 

early days of modern statistics (see Quine & Seneta (1987) and Xekalaki (2014) for a 103 

historical perspective). The first attempts to describe the phenomenon date back at least 104 

to the end of the 19th century, likely with Lexis’s ratio (Lexis 1879, apud Xekalaki, 105 

2014) for binomial clustered data, where Q is the ratio of the between-clusters variance 106 
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to the total variance (Xekalaki, 2014). Bortkiewicz later (1898) coined the term 107 

“divergence coefficient” (Q2), which is the variance divided by the mean of the sample, 108 

as a test statistic for the Poisson model (Quine & Seneta, 1987). William Gosset, the 109 

inventor of the t-test, also considered the problem of dispersion in the Poisson model 110 

(Student, 1919). Since then, a large variety of approaches have been proposed and 111 

discussed to deal with the “dispersion problem”, ranging from (1) comparing models 112 

with or without free dispersion parameters through likelihood ratio test, such as Poisson 113 

and negative binomial (e.g. Yang et al., 2007), (2) designing specific hypothesis tests for 114 

the “extra” variation (e.g. Fisher, 1950), such as score tests (Dean, 1992; Dean & 115 

Lawless, 1989; Lawless, 1987), (3) using goodness-of-fit tests, such as tests on Pearson 116 

or Deviance residuals (Dunn & Smyth, 2018; McCullagh, 1985) (although the 117 

distinction between categories (2) and (3) can be blurry, see (Collings & Margolin, 118 

1985; Dean, 1992; Dean & Lawless, 1989) or (4) using simulation-based non-119 

parametric tests to compare observed and predicted variance of the response data 120 

(Hartig, 2024).  121 

Somewhat confusing for the practical data analyst, however, many of these 122 

approaches have been designed and tested only in very specific scenarios (e.g. only for 123 

a Poisson GLM), and there is a surprising lack of systematic evaluation of these tests 124 

and strategies across a range of more complex GLMMs. Moreover, a quick review of 125 

current methods available in the R environment (R Core Team, 2024) revealed that 126 

existing dispersion tests are scattered across different packages (Table 1), and most of 127 

these only work for a restricted set of models. All this makes it challenging to decide 128 

which test should be used in an applied data analysis. 129 

The goals of this study are: (1) to review and order the diversity of dispersion 130 

tests for GLMs and GLMMs, and (2) to identify tests that can reliably work across a 131 
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range of models with diverse distributions and complex hierarchical structures. Based 132 

on our literature review (next section), we identified two groups of tests that appeared to 133 

be generally applicable: parametric and non-parametric tests on Pearson residuals, as 134 

well as a new simulation-based non-parametric test that directly compares observed and 135 

predicted variance of the response data. We then used simulated data to compare the 136 

performance of these tests in terms of type I error, power, and the interpretability of the 137 

dispersion statistics. Based on this, we provide recommendations on the most suitable 138 

tests for detecting over- or underdispersion, depending on model complexity and 139 

software availability (i.e., currently available packages and functions in R).  140 
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 141 

Figure 1. Definition, statistical consequences, and a practical analysis example of 142 

under-/overdispersion in generalised linear (mixed) models. The top row shows 143 

examples of a data analysis using a Poisson GLM with simulated under- and 144 

overdispersed count data. The data points in black are contrasted to the Poisson model’s 145 

95% prediction interval (in red). Black dashed lines illustrate the data dispersion 146 

(central 95% quantiles of the data). In the example data analysis, we present slope 147 

estimates and p-values for the GLM Poisson model fitted to the under- and 148 

overdispersed data above, as well as the results using more appropriate models with 149 

correct dispersion, here a Conway-Maxwell-Poisson GLM for underdispersed data and 150 

a negative binomial GLM for overdispersed data. 151 
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Table 1. Different types of dispersion evaluation and tests for GLMs and GLMMs with examples of available R packages and functions.  152 

Test Principle Details/Limitations R package:: function Supported models References 

Likelihood 

Ratio Test 

(LRT) 

Compare two models with 

and without free dispersion 

parameters, for example: 

- Poisson and negative 

binomial or generalized 

Poisson 

- binomial and beta-

binomial 

Requires fitting two models, requires 

defining an alternative model.  

 

Not a dispersion test. 

pscl::odTest() 
GLM Poisson -> negative binomial with 
MASS::glm.nb() 

Jackman (2024) 

DCluster:: 

test.nb.pois() 

GLM Poisson -> negative binomial with 
MASS::glm.nb() 

Lopez-Quílez 

(2005) 

anova(…,test=”LRT”) 

Many GLM/GLMMs (Different packages have 

the S3 method for anova functions to perform 

LRT) 

 

lmtest::lrtest() Any GLM  
(Zeileis & 

Hothorn, 2002) 

Score test  

Evaluate score of restricted 

dispersion parameter 

Requires score calculation for specific 

models. R functions only for Poisson 

GLM. 

DCluster::DeanB() 

DCluster::DeanB2() 

GLM Poisson. 

Score tests based on Dean (1992) 

Lopez-Quílez 

(2005) 

Rfast2:: 

overdispreg.test() 
GLM Poisson (own model implementation) 

Papadakis et al. 

(2025) 

 

Regression-based test for 

overdispersion from 

Cameron & Trivedi (1990)  

Distribution specific (Poisson-based 

only). 

overdisp::overdisp() GLM Poisson (own model implementation) 
Cameron & 

Trivedi (2023) 

 
AER::dispersiontest() GLM Poisson from stats::glm() 

Kleiber & Zeileis 

(2008) 

Standard. 

residuals 

dispersion 

A goodness-of-fit test to 

evaluate residual 

dispersion, e.g. via sum of 

Pearson residuals. 

 

Parametric Pearson residuals test: 

Assume Pearson residuals are Chi-

squared distributed.  

For complex models, difficult to define 

parametric null distribution (unclear 

residual degrees of freedom). 

msme::P__disp() GLMs 
Hilbe & 

Robinson (2025) 
DHARMa:: 

testDispersion(…, 

type=”Pearson”) 
GLMs/GLMMs (naïve residual df)  Hartig (2024) 

performance:: 

check_overdispersion(

) 

GLMs/GLMMs (naïve residual df) 

 
Lüdecke (2021) 

RVAideMemoire:: 

overdisp.glmer() 

GLMMs (from lme4 package, naïve residual df, 

calculates only dispersion statistic, no test) 
Herve (2025) 

Nonparametric Pearson residuals 

test:  

Parametric bootstrapping of the model 

to generate a nonparametric estimate of 

the null distribution of the Pearson 

statistic. 

Computational costly. 

DHARMa:: 

testDispersion(…, 

refit=T, 

type=”Pearson”) 

GLMs/GLMMs  

 
Hartig (2024) 

Response 

variance 
Compares the expected to 

the observed variance in 

the response variable. 

Expected variance of response variable 

calculated through simulations of fitted 

model.  

Fast nonparametrics but possibly less 

exact than working on the residual 

dispersion. 

DHARMa:: 

testDispersion(…, 

type=”DHARMa”) 
GLMs/GLMMs  Hartig (2024) 

153 
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A short review of existing approaches to dispersion tests 154 

After reviewing the available literature, we divided the different strategies 155 

proposed for checking dispersion problems into four classes (Table 1). Here, we discuss 156 

these broad strategies in more detail and explain why we focused on two of these 157 

classes as the most suitable competitors for a general dispersion test for GLMs and 158 

GLMMs. We note that, in addition to the four approaches mentioned here, dispersion 159 

problems may also show up in general goodness-of-fit tests (e.g., Feng et al., 2020). 160 

However, as they are not specifically designed to react to dispersion, we did not 161 

consider them further. 162 

Likelihood ratio tests 163 

A first general strategy for detecting dispersion problems is to compare a model 164 

with fixed dispersion to its nearest “relative” with variable dispersion using a likelihood 165 

ratio test (LRT) or another model selection technique, such as AIC (Yang et al., 2007). 166 

For count data, a practical example would be to compare a Poisson GLM as a null 167 

hypothesis to a negative binomial or generalised Poisson GLM (J. M. Hilbe, 2014), or 168 

to compare a binomial GLM to a beta-binomial GLM (Dunn & Smyth, 2018). While 169 

relatively easy to implement, the downside of this approach, apart from the higher 170 

computational costs resulting from fitting two models, is that it doesn’t provide any 171 

direct diagnostics of over- or underdispersion, but only compares a base model against 172 

an alternative. The alternative model, however, might also fit better or worse for reasons 173 

other than a dispersion problem. Moreover, using LRTs for detecting dispersion 174 

problems has also been discouraged as it may provide unreliable results (Dean, 1992) 175 

because it tends to underestimate the evidence against the base model (Lawless, 1987). 176 
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Therefore, we do not find this approach suitable as a general dispersion test and do not 177 

consider it further. 178 

Score tests 179 

A second traditional option for assessing overdispersion is the use of a score test 180 

(Dean, 1992; Dean & Lawless, 1989; Lawless, 1987). Score tests, also known as 181 

Lagrange Multiplier (LM) tests, evaluate the gradient of the log-likelihood (called the 182 

score or LM statistic) of a restricted parameter estimator (e.g., an overdispersion 183 

estimator restricted to zero). Under the null hypothesis that the overdispersion is indeed 184 

zero, the score will have an asymptotic chi-square distribution (Rao, 1948). In 185 

performance comparisons, score tests have been found to have good power (Ohara 186 

Hines, 1997), but their disadvantage is that they are usually model specific (in the sense 187 

that different tests are needed for Poisson or binomial GLMs); their implementation can 188 

be computationally demanding; and, as they require access to the score, they must 189 

usually be implemented with the model and cannot be calculated on top of a fitted 190 

model object. Perhaps because of these issues, we were unable to find any R function 191 

that computes score tests beyond the Poisson GLM (Table 1), although score tests have 192 

been developed for other models, such as the binomial GLM (Dean, 1992).  193 

An equivalent test related to the score test under certain conditions is the 194 

regression-based overdispersion test proposed by Cameron & Trivedi (1990). Under a 195 

Poisson model, the squared deviation of the observations from their fitted mean, after 196 

subtracting the observation itself and scaling by the fitted mean, has expectation zero. In 197 

contrast, under the negative binomial, it increases systematically with the mean. This 198 

motivates an auxiliary regression of the transformed variable against the fitted mean, 199 

with a significant slope indicating extra-Poisson variation. The main advantage of this 200 
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test against other score tests is its ease of implementation: it can be carried out after 201 

fitting a standard Poisson GLM. However, similar to an LRT, the linear regression 202 

imposes a particular form of overdispersion as an alternative hypothesis, and therefore, 203 

seems less general than the test based on Pearson residuals described below.  204 

We discarded score tests in general, and the Cameron & Trivedi (1990) test in 205 

particular, from our further analysis, as it seems impractical to implement them across a 206 

wide range of existing GLMM software. 207 

Tests based on residual dispersion 208 

A third class of testing approaches, arguably the most intuitive, directly 209 

calculates a test statistic or goodness-of-fit metric on standardised model residuals. The 210 

most widely used test of this kind is based on the sum of the model’s Pearson residuals. 211 

As Pearson residuals divide the raw residuals by the expected residual standard 212 

deviation, a correctly specified model is expected to have a Pearson residual of around 1 213 

for each observation. A dispersion statistic is then defined as the sum of squared 214 

Pearson residuals divided by the residual degrees of freedom. Models with a so-defined 215 

dispersion statistic > 1 are considered overdispersed, while dispersion statistics < 1 are 216 

underdispersed. Sometimes, a modification of this metric is often recommended by 217 

replacing the sum of squared Pearson residuals with the model deviance, which is 218 

typically more readily available. However, as Venables & Ripley (2002) discuss, this 219 

metric should be avoided, as it often deviates from 1, even for correctly specified 220 

GLMs. 221 

Defining dispersion via the Pearson statistic has the added advantage that for a 222 

GLM, the expected distribution under the null hypothesis of a correctly specified model 223 

asymptotically follows a Chi-square distribution (McCullagh, 1985). This allows a 224 
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straightforward construction of a hypothesis test, where we compare the Pearson 225 

statistic to the chi-squared distribution with the respective residual degrees of freedom 226 

(df). This test is referred to with different terminologies, such as Pearson chi-squared 227 

dispersion test, Pearson residuals-based test for overdispersion, or simply Pearson 228 

dispersion test. Hereafter, we refer to this test as the parametric Pearson residuals 229 

test, to differentiate it from the nonparametric test based on Pearson residuals, discussed 230 

below. 231 

An alternative approach to constructing a dispersion test based on the Pearson 232 

dispersion statistic involves generating a null distribution through parametric 233 

bootstrapping. A parametric bootstrap means that new data is simulated from the fitted 234 

model, and then the statistic of interest (in this case: the Pearson statistic of a fitted 235 

model) is calculated based on this data. The parametric bootstrap has been previously 236 

used for hypothesis tests in mixed-effects models where parametric null distributions 237 

were difficult to obtain (e.g., Barr et al., 2013; Luke, 2017), and thus it seems a logical 238 

alternative for more complicated models where the Chi-square distribution of the 239 

Pearson dispersion statistic cannot be taken for granted (see methods for GLMMs 240 

below). Nevertheless, implementing parametric bootstrapping in complex models can 241 

be less efficient for at least two reasons: it is time-consuming and prone to errors in 242 

model refits (Luke, 2017; Moral et al., 2017). A dispersion test based on this principle 243 

was implemented in R by Hartig (2024). Hereafter, we will refer to this test as the 244 

nonparametric Pearson residuals test. 245 

Tests based on response variable variance 246 

Simulation approaches can also be useful to generate null distributions for 247 

alternative metrics of dispersion. A last class of dispersion test approaches, which, to 248 
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our knowledge, was introduced in the DHARMa R package (Hartig, 2024) but has not 249 

been discussed in the literature so far, involves defining a test statistic based on the 250 

dispersion of the response variable, rather than the residuals. More specifically, the test 251 

compares the observed data variance with the simulated data variances (which can be 252 

created conditional or unconditional on the fitted random effects for GLMMs). The 253 

dispersion statistic is then defined as the ratio between the observed variance and the 254 

mean simulated variance. Similar to the Pearson statistic, a ratio > 1 indicates 255 

overdispersion, a ratio < 1 indicates underdispersion, and a significance test is 256 

constructed based on the distribution of simulated variances.  257 

From a theoretical viewpoint, this approach seems less elegant compared to the 258 

idea of using Pearson residuals, because the latter, by “standardising” the residual 259 

dispersion with the expected dispersion, allows each data point to contribute similarly to 260 

the dispersion statistic. In contrast, the test on the unstandardized response variable will 261 

be more influenced by large data points. However, the primary advantage of this 262 

approach is computational, as it enables the creation of a nonparametric estimate of the 263 

test statistic without requiring a re-fit of the model (in contrast to the nonparametric 264 

Pearson residuals test). Hereafter, we will refer to this test as the simulation-based 265 

response variance test to differentiate it from the tests based on Pearson residuals. 266 

Methods 267 

Selected models and setup of the performance comparisons 268 

After reviewing the available approaches, we identified three tests as potential 269 

candidates for a generally applicable dispersion test that could be implemented across a 270 

wide range of GLMs and GLMMs:  271 
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(1) The parametric Pearson residuals test 272 

(2) The nonparametric Pearson residuals test 273 

(3) The simulation-based response variance test 274 

To compare the performance of these three tests, we simulated datasets based on 275 

the two main distributions that often present over- or underdispersion problems: the 276 

Poisson and the binomial (N/K) proportions. We varied the sample size (from 10 to 277 

10,000, depending on the simulation) and intercept (from -3 to 3, at the link function 278 

scale) of the simulated data for both distributions. We simulated a gradient of 279 

overdispersed data by adding noise to the linear predictor with values from a Gaussian 280 

distribution with a mean of zero and ten standard deviation values varying from 0 to 1. 281 

We evaluated the performance of the tests by comparing type I error, power, and 282 

dispersion statistics for all combinations of parameters in the simulated datasets. 283 

All models were fitted using the functions glm from the stats package or glmer 284 

from the lme4 package (Bates et al., 2015) in R (v4.4; R Core Team, 2024). All 285 

dispersion tests were performed with the DHARMa package (Hartig, 2024). For the 286 

simulation-based response variance test and the nonparametric Pearson residuals tests, 287 

we set the number of simulations fixed at 250 (the default parameter in DHARMa). All 288 

simulations and analysis codes are available at this repository 289 

(https://anonymous.4open.science/r/dispersion_test_GLMM/README.md). The 290 

supplementary material provides a script file with instructions and examples for 291 

applying dispersion tests using the DHARMa package. 292 

Theoretical expectations 293 

The classical (1) parametric Pearson residuals test assumes that the sample size 294 

(n-asymptotic) and the expected values are sufficiently large (phi-asymptotic) (Venables 295 
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& Ripley, 2002). This implies that, when the expected counts (or intercept) and/or the 296 

number of observations are small, Pearson residuals may not provide reliable 297 

information about model fit (see S1). Some corrections for Pearson residuals with small 298 

sample sizes were suggested (e.g., Cordeiro, 2004; Cordeiro & Simas, 2009), but they 299 

are not currently implemented in the most common packages in R. Therefore, we expect 300 

the parametric Pearson residuals test to perform well for GLMs, except for very small 301 

sample sizes and expected counts (hereafter “small-data” situations). 302 

Moreover, it is unclear whether the parametric Pearson residuals test approach 303 

can be extended to GLMMs or other hierarchical models, where counting the residual 304 

degrees of freedom (df) is not straightforward (Bolker et al., 2009; Luke, 2017). In 305 

mixed-effects models, the df used by a random effect are data-specific (adaptive 306 

shrinkage) and expected to be somewhere between one and the number of grouping 307 

factors (Baayen et al., 2008; Bolker et al., 2009; Luke, 2017). There exist approaches to 308 

approximate df for random effects in LMMs (e.g. Schaalje et al., 2002), but their 309 

generalisation to GLMMs is still an area of active research. Current R packages that 310 

implement the parametric Pearson residuals test approximate the df by the so-called 311 

naïve df (e.g., n = 1 per random effect) for testing LMMs/GLMMs (Table 1). We expect 312 

that the error imposed by this approximation increases with the number of random 313 

effect groups. To test this, we varied the number of groups in the random intercept (10, 314 

50, and 100 groups) of our simulated data. 315 

In contrast to the parametric Pearson residual test, we expect the (2) 316 

nonparametric Pearson residuals test to be robust to small-data problems as well as the 317 

presence of random effects, as it doesn’t rely on a particular parametric distribution. 318 

However, since the test uses parametric bootstrapping, we expected it to run much 319 
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slower than the other tests, especially for more complex GLMMs. For this purpose, we 320 

compared the runtime of the tests with a small set of simulated data (see S6). 321 

For GLMMs tested with the (3) simulation-based response variance test, we 322 

compared the performance of the test under the two simulation approaches, conditional 323 

and unconditional to random effects. We expect to see lower power for the 324 

unconditional simulation results, as overdispersion is a phenomenon at the level of the 325 

model distribution (i.e., at a higher level). We evaluated the circumstances under which 326 

this test is reliable as a fast alternative to both dispersion tests based on Pearson 327 

residuals. 328 

Results 329 

Performance on Poisson and binomial GLMs 330 

For Poisson GLMs, we found the expected distribution problems (Fig. 2): type I 331 

error rates for the parametric Pearson residuals test were substantially high for the 332 

smallest intercepts (-3), and they did not reach the nominal value of 0.05 even for very 333 

large sample sizes (n = 10,000). The type I error rates for the nonparametric Pearson 334 

residuals test were well calibrated, except for the smallest intercept (-3), with slightly 335 

conservative type I error rates (< 0.05). For the simulation-based response variance test, 336 

type I errors were independent of sample size, but exhibited an intercept-dependent 337 

conservative bias, ranging from almost 0 for the smallest intercept to 0.06 for the largest 338 

intercepts. 339 

 For binomial GLMs, the type I error rates for the parametric Pearson residuals 340 

test were generally conservatively calibrated around 0.04 (Fig. 2). Type I error rates for 341 

the nonparametric Pearson residuals test averaged around 0.05 and 0.06, except for the 342 
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very low and very high intercepts (-3 and 3). For the simulation-based response 343 

variance test, type I error rates were conservatively very low for all simulated 344 

parameters, bouncing below 0.01. 345 

 346 

Figure 2. Simulation-based response variance tests have more conservative type I error 347 

rates than both Pearson residuals tests. The three dispersion tests were applied to 348 

Poisson (upper panels) and binomial proportion (lower panels) GLMs: 1a) parametric 349 

Pearson residuals test, 1b) nonparametric Pearson residuals test, and 2) simulation-350 

based response variance test (see Table 1 for explanations). Simulations under different 351 

sample sizes (x-axis) and intercepts (colours, values at the link function scale). In B), 352 

the model is a binomial proportion with ten trials. All points include a 95% confidence 353 

interval calculated based on exact binomial tests for the 10,000 simulations. Note the 354 

square-root scale of the y-axis in plot A. The Dotted horizontal black line shows the 355 

0.05 nominal value for type I error. 356 

 The statistical power of the simulation-based response variance test was lower 357 

than the parametric and nonparametric Pearson residuals tests for both binomial and 358 

Poisson GLMs, but tended to be similar with larger sample sizes (Fig. 3). We found that 359 

the reason for this is the very conservative type I error rates (Fig. 2). When power is 360 
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calibrated by using the p-value at the 5% quantile of its empirical distribution for each 361 

simulation (details in S5), the differences disapear (Fig. 3). 362 

The dispersion statistics of the simulation-based response variance test were 363 

highly dependent on the intercept, slope, and number of trials for the binomial model 364 

(see S4, Fig. S4.2), and they tended to be smaller than those based on the Pearson 365 

residuals. In contrast, for Poisson models, the values tended to be larger than those of 366 

Pearson statistics (Fig. S3.5). This may also explain the lower uncorrected power for the 367 

simulation-based response variance test, especially for binomial models. 368 

 369 

Figure 3. The simulation-based response variance test (in yellow) has lower power than 370 

both Pearson residuals tests (green and blue) for GLMs unless power is calibrated by 371 

type I error rates (dashed lines). Lower power is more evident for binomial models 372 

(upper panel) and smaller sample sizes (first two columns). Results based on 10,000 373 

simulations per combination of parameters for an intercept = 0 and slope = 1. For all 374 

simulation results, see Fig. S5.1 and S5.2. 375 

GLMM performance 376 

For the GLMMs, we first compared the performance of the parametric Pearson 377 

residuals test (two-sided) for an increasing number of groups (m) in the random 378 
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intercepts. As expected, the performance of the test failed for a large number of groups 379 

in the random effects (Fig. 4A). The dispersion statistic was underestimated, and the 380 

type I error rates were too high because the test detected significant underdispersion. 381 

Testing only for overdispersion (“greater” test) when using the parametric Pearson 382 

residuals test appears to be the only reasonable approach for GLMMs (Fig. 4A). Still, it 383 

doesn’t prevent the dispersion statistics from being biased to lower values. 384 

 385 

Figure 4. The parametric Pearson residuals test failed for GLMMs with many groups in 386 

the random intercepts (plot panels). A) Power and type I error rates (blue shaded area) 387 

for the “two-sided” (solid lines) and “greater” (dotted lines) Chi-squared tests for the 388 

Pearson statistic. B) Pearson dispersion statistics with the red shaded area indicating 389 

dispersion statistics estimated below 1 (underdispersion). Notice that the y-axis of plot 390 

B is on a logarithmic scale of 10. Results with 10,000 simulations for an intercept of 0 391 

and a sample size (n) of 1,000 data points. 392 

 When comparing the alternative dispersion tests for GLMMs, the nonparametric 393 

Pearson residuals test presented very good results, with a type I error rate around 0.05 394 

(Fig. S6.1 and S6.2) and higher power than the simulation-based response variance tests 395 

(Fig. 5). As expected, the unconditional simulation-based response variance test had the 396 
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worst performance: very low type I errors (Fig. S6.1 and S6.2), very low power, and 397 

dispersion statistics below 1 (Fig. 5B), especially for Poisson models. The conditional 398 

simulation-based response variance test also had very small type I errors (Fig. S6.1 and 399 

S6.2), but power increased with the simulated overdispersion. The performance of both 400 

simulation-based response variance tests (unconditional and conditional) didn’t change 401 

much with the number of groups for the Poisson GLMMs, but it improved for the 402 

binomial GLMMs with the increasing number of groups in the random intercept. 403 
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 404 

Figure 5. The nonparametric Pearson residuals test showed correct Type 1 error, higher 405 

power, and larger dispersion statistics than the simulated-based response variance tests 406 

(conditional and unconditional to all random effects) for Poisson and binomial GLMMs. 407 

Power (A), type I error (shaded blue area in A), and dispersion statistics (B) for the 408 

alternative dispersion tests for Poisson and binomial GLMMs with different numbers of 409 

groups in random intercepts. The dashed horizontal line in (A) indicates the nominal 410 

value of 0.05 for type I error. The dotted horizontal line in (A) indicates the 50% power, 411 

and the dotted horizontal line in (B) indicates the dispersion statistics of 1. The results 412 

are based on 1,000 simulations per combination of parameters, with an intercept of 0 413 

and a sample size (n) of 1,000. 414 

Discussion 415 
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The goal of this study was to find a dispersion test that is widely applicable 416 

across different GLM and GLMM distributions and random-effects structures. Our 417 

conclusion is that the nonparametric Pearson residuals test is the most reliable general 418 

test currently available. For GLMs, this test exhibited similar power as the parametric 419 

Pearson residuals test but with more reliable type I error rates in small-data situations. 420 

The downside of this test is that it can be computationally expensive, with runtimes in 421 

the order of minutes for larger GLMMs.  422 

The two alternative tests that we considered have advantages in particular 423 

situations. The simulation-based response variance test for GLMs is fast to compute, but 424 

has a dispersion statistic that is more difficult to interpret and often too conservative 425 

type I errors. This resulted in low power if not additionally calibrated by a simulated p-426 

value distribution. The parametric Pearson residuals test is computationally efficient, 427 

but it is unreliable in small-data situations and in the presence of random effects. Below, 428 

we discuss these points in more detail and provide recommendations for general users 429 

who rely on already implemented R packages for model fit and diagnostics. 430 

Why and when does the parametric Pearson residuals test fail? 431 

We showed that the parametric Pearson residuals test, although popular, quick, 432 

and relatively easy to compute, has two main disadvantages: it does not perform well in 433 

(1) small-data situations (Fig. 2) and (2) in the presence of random effects (Fig. 4). The 434 

reason for the first problem can be attributed to the mismatch between the Pearson 435 

statistic distribution and the Chi-squared distribution under small-data conditions (Fig. 436 

S1.1 and S1.2). This phenomenon has already been studied (e.g., Fletcher, 2012; Kuss, 437 

2002), with suggested corrections (Farrington, 1996; McCullagh, 1985). However, none 438 

of these corrections are implemented in the current R packages (Table 1), and we 439 
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believe that it will be difficult to devise corrections that work across a wide range of 440 

distributions. 441 

The reason for the second problem is that counting 1 degree of freedom (df) for 442 

a random effect, as done in most implementations of this test, is typically an 443 

underestimation of the true model df, which increases in magnitude with the increasing 444 

number of levels of the random effect. The result is a bias in the dispersion statistic 445 

towards underdispersion that increases with the number of random effect levels (Fig. 4). 446 

Two-sided tests would therefore often wrongly detect significant underdispersion 447 

problems in perfectly valid GLMMs, which is likely the reason why most R 448 

implementations of this test only test for overdispersion. When applying this test for 449 

GLMMs, we recommend following the same approach and ignoring dispersion statistics 450 

smaller than 1. Nevertheless, it is an unsatisfactory solution since the biased dispersion 451 

statistic will also cause a loss of power. 452 

A possible solution for GLMMs could be using a better approximation of the 453 

residual degrees of freedom (df). For LMMs, approximations for denominator df have 454 

been successfully used for hypothesis testing (Luke, 2017), for example, the 455 

Satterthwaite (1946) and the Kenward-Roger (2009). Although there is some evidence 456 

that these approximations are also accurate for GLMMs (Stroup, 2015), the main R 457 

packages implementing some of these approximation methods are currently limited to 458 

LMMs (e.g., pbkrtest Halekoh & Højsgaard, 2014; lmerTest Kuznetsova et al., 2017). 459 

However, the recently released package glmmrBase (Watson, 2024) allows these 460 

methods to be applied to GLMMs. We performed some parametric Pearson residuals 461 

tests for Poisson GLMMs using a modified residual df approximation (see S8). 462 

Although the parametric Pearson residuals tests with the approximated residual df 463 

performed much better than those with the naïve residual df, they still underperformed 464 
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compared to the nonparametric Pearson test when having a large number of groups in 465 

the random effects (Fig. S8.4), especially for small-data situations.  466 

When are simulation-based response variance tests an alternative? 467 

 The simulation-based response variance test developed in the R package 468 

DHARMa (Hartig, 2024) is the main alternative to the family of Pearson residuals tests. 469 

Its principle is simple: when the model is correctly specified, the variance of the 470 

observed data should match the variance of the data simulated from the model. The 471 

main advantage of this approach is that it is a non-parametric test that can be applied to 472 

any model structure and it does not require refitting the model, which makes it both 473 

considerably faster and easier to implement in statistical software. We also note that for 474 

GLMMs, simulations should be performed conditionally to avoid a loss of power, 475 

presumably due to the increased variability created by re-simulating the random effects 476 

(unconditional simulations). 477 

The disadvantages of this approach are that it is often overly conservative, 478 

resulting in lower power compared to the Pearson residuals tests. Additionally, the 479 

calculated dispersion statistic differs from the Pearson dispersion statistic, making it 480 

difficult to compare the two approaches. We conjectured that both problems could be 481 

related to the fact that the test statistic is based on the raw variance (and not a scaled 482 

variance, as for the Pearson statistics), and therefore observations with large values may 483 

be overrepresented in the statistics. We considered scaling each observation with 484 

expected variance, but this is not readily available for a wide class of models, and using 485 

simulations to approximate it fails for discrete-valued distributions (see S7).   486 

Conclusions and recommendations 487 
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 In conclusion, while neither of the considered options excelled in all dimensions 488 

(Fig. 6), our base recommendation is that for standard GLMs with sufficient data, the 489 

parametric Pearson Chi-square test, available in many packages, can be safely used. In 490 

complex situations, particularly for GLMMs, we recommend the nonparametric Pearson 491 

residuals test. It has very few weaknesses, other than being computationally costly to 492 

calculate. If the nonparametric Pearson residuals test cannot be calculated due to speed 493 

or convergence problems with refitting complex models, we recommend using the 494 

simulation-based response variance test with simulations performed conditionally on the 495 

fitted random effects. All three approaches are available via the testDispersion function 496 

in the DHARMa R package (Hartig, 2024). We provide a tutorial with instructions and 497 

an example for applying dispersion tests using the DHARMa package on the repository 498 

website (https://theoreticalecology.github.io/dispersionTest/). 499 

 500 

Figure 6. Performance comparisons of the dispersion tests evaluated for each 501 

“dimension” for Poisson and binomial models: GLMs in general, GLMs with small 502 

sample size or intercept (“small data”), GLMMs with one random effect with few 503 

groups/levels, GLMMs with many groups/levels in a random effect, and computational 504 

time for calculating the test (speed).  The symbols mean: “-” bad performance, “+” good 505 

performance, “++” very good performance. 506 
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Although our simulation examples concentrated on overdispersion, the tests 507 

under consideration in our study can equally be used to detect underdispersion problems 508 

by testing the dispersion “two-sided” or “less than” against null statistics. The clear 509 

exception would be testing for underdispersion using the parametric Pearson residuals 510 

test for GLMMs, which would be anti-conservative due to the discussed bias towards 511 

underdispersion in the presence of random effects.  512 

Recommendations for practical data analysis when using dispersion tests 513 

 For the interpretation and applied data analysis, we stress that getting a 514 

significant over-/underdispersion result does not necessarily indicate that the 515 

distribution must be changed. First, hypothesis tests famously evaluate statistical rather 516 

than practical significance. In other words, a significant test for overdispersion indicates 517 

that the overdispersion signal deviates from a null expectation, but the p-value does not 518 

measure the strength of the deviation. The first step in a dispersion test should thus be to 519 

examine how much the dispersion statistic deviates from the expected value of 1. For 520 

very large sample sizes, small departures from 1 may be statistically significant, but 521 

they may not necessarily warrant a change to the model. Second, after finding that a 522 

dispersion problem is both significant and meaningful, we suggest first checking for 523 

problems other than the distribution, such as heteroscedasticity, missing predictors, 524 

incorrect link function, excess of zeros, or overfitting. In our experience, these types of 525 

model misspecifications often cause over-/underdispersion, but can be distinguished 526 

from a “real” distributional problem through careful residual checks. Blindly changing 527 

the distribution only masks the problem, without offering a real remedy to the 528 

underlying problems. 529 
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Finally, after having convinced ourselves through these previous investigations 530 

that we are facing an ‘intrinsic’ under-/overdispersion problem, we should consider 531 

changing the GLM distribution. A traditional and flexible solution is using the ‘quasi’ 532 

distributions (Wedderburn, 1974), which essentially correct p-values, but have the 533 

disadvantage that they do not represent an explicit data-generating process with 534 

associated likelihood, which does not allow, for example, to simulate from the fitted 535 

model. A second alternative to add dispersion is using observation-level random effects 536 

(Bolker et al., 2009; Elston et al., 2001; Harrison, 2014; Ozgul et al., 2009). While often 537 

offering a reasonable solution, we feel that the excessive use of REs tends to create 538 

problems in the calculation of other statistical indicators (such as p-values) that we 539 

would rather avoid. For that reason, we feel the best solution to address ‘intrinsic’ 540 

under-/overdispersion is to switch to the corresponding variable-dispersion 541 

distributions, such as the negative binomial (Harrison, 2014) for overdispersed and the 542 

Conway-Maxwell-Poisson distribution (Lynch et al., 2014) for underdispersed Poisson 543 

models, or the beta-binomial distribution for overdispersed binomial models (Harrison, 544 

2015). Regardless of the approach, an “over-/underdispersion-free” GLM/GLMM is 545 

essential for better interpreting model results and facilitating sound scientific 546 

discoveries. 547 
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S1. Pearson statistics and Chi-squared distribution 9 

For GLMs, the parametric Pearson residuals test assumes that the sample size 10 

(n-asymptotic) and the expected values are sufficiently large (phi-asymptotic). 11 

Therefore, when the expected counts (or intercept) and/or the number of observations 12 

are small, Pearson residuals may not provide reliable information about model fit. To 13 

test boundaries where Pearson statistics fail, we simulated data with very different 14 

sample sizes (from 10 to 10,000, depending on the simulation) and intercepts (from -3 15 

to 3, at the link function scale) for Poisson and binomial proportion GLMs. For each 16 

distribution and parameter combination, we used the Kolmogorov-Smirnov test (KS 17 

test) of adherence to compare the empirical distribution of 1000 simulations of the 18 

Pearson residuals with the Chi-squared distribution having the same residual degrees of 19 

freedom. We repeated this procedure 100 times and recorded the proportion of 20 

significant KS tests.  21 

For the Poisson GLMs, the Pearson statistics distribution clearly departed from 22 

the Chi-square distribution for very small intercepts (-3, -1.5) and sample sizes (10, 20 23 

and 50) (Figure S1.1 A). Even for very large sample sizes (10,000), the distribution did 24 
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 2 

not approximate the Chi-squared distribution for the smallest simulated intercept (-3). 25 

Consequently, the KS tests showed all significant results for all simulations with the 26 

intercept at -3, except for the largest sample size (10,000), where it decreased to 60%. 27 

As expected, the proportion of significant results decreased with sample size for 28 

intercepts at -1.5 and 0. For larger intercepts, it remained around 5% for all sample sizes 29 

(Figure S1.2A). 30 

For the binomial GLMs, the Pearson statistics distribution clearly departed 31 

from the Chi-squared distribution for very small and large intercepts (-3, 3) and small 32 

sample sizes (10, 20, 50) (Figure S1.1B). The proportion of significant KS tests 33 

decreased with sample size, but did not reach the nominal value of 0.05, even for very 34 

large sample sizes and intermediate intercept values (-1.5, 0, 1.5).  35 

 36 

Figure S1.1.Proportion of significant Kolmogorov-Smirnov adherence tests between 37 

the empirical distribution of 1000 simulations of the Pearson statistics and a Chi-38 

squared distribution with the same residual degrees of freedom for A) Poisson and B) 39 

binomial GLMs. Proportions were calculated from 100 simulations for each 40 

combination of the data parameters (sample size and intercept). For binomial data, the 41 

number of trials was fixed at 10. The 95% confidence intervals (vertical lines) were 42 

drawn from binomial exact tests for each result with p = 0.05. 43 
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 44 

Figure S1.2. Mean Pearson statistics distribution (from 100 simulated curves) for the 45 

binomial (green) and Poisson (purple), and the Chi-square distribution in black.  46 
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S2. Type I error rates for the GLMs 47 

 Figures S2.1 and S2.2 show the distribution of the p-values for the dispersion 48 

tests applied to the Poisson and binomial GLMs, respectively, with 10,000 simulations 49 

for each combination of intercept and sample size. For the dispersion tests with correct 50 

type I error rates around the nominal value of 0.05, the distributions of p-values should 51 

present a uniform distribution with density 1.  52 

For the Poisson GLMs (Figure S2.1), the simulation-based response variance 53 

test (in red) presented the largest departure of the expected distribution for the smallest 54 

intercepts (-3, -1.5) across all sample sizes. This explains why the type I error rates for 55 

the simulation-based residual tests were so low and varied according to the intercept but 56 

didn’t change with the sample size (main text Figure 2A). The parametric Pearson test 57 

had the opposite pattern with very low p-values for the smallest intercept (-3), but it 58 

tended to approximate the uniform distribution (decreasing the peak for the low p-59 

values) with sample size. The p-values for the nonparametric Pearson test also showed a 60 

departure from the uniform distribution for the smallest intercept (-3), but tended to 61 

approach the uniform distribution with larger sample sizes and intercepts. 62 

For the binomial GLMs (Figures S2.2), the p-values distribution of the 63 

simulation-based response variance test also presented the largest departure from the 64 

uniform distribution, but for all intercepts and sample sizes. The p-values for both 65 

parametric Pearson and nonparametric Pearson tests were similar and tended towards 66 

the uniform distribution with larger sample sizes.  67 
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 68 

Figure S2.1. Distribution of p-values for the Poisson GLMs for each dispersion test. 69 

10,000 simulations per simulation set (intercept x sample size). 70 
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 71 

Figure S2.2. Distribution of p-values for the binomial GLMs for each dispersion test. 72 

10,000 simulations per simulation set (intercept x sample size). 73 
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S3. Dispersion statistics for GLMs 74 

The dispersion statistics of the tests for GLMs tended to be smaller than 1 75 

(expected value) when there was no overdispersion simulated for very small sample 76 

sizes for both binomial and Poisson distributions (Figure S3.1). The exception was the 77 

nonparametric Pearson test that presented values larger than 1 for the very small 78 

intercepts (-3 in both distributions, 3 in binomial only). When comparing dispersion 79 

statistics for the simulated overdispersed data (Figures S3.2 and S3.3), we found that 80 

both Pearson-based dispersion statistics presented similar values. In contrast, the 81 

dispersion statistic of the simulation-based response variance presented lower values for 82 

small sample sizes. The differences in dispersion statistics between tests tended to 83 

increase with the increase of simulated overdispersion, but in opposite directions for 84 

binomial and Poisson GLMs (Figure S3.4 and S3.5). Moreover, we found out that the 85 

dispersion statistics of the simulation-based response variance test depend heavily on 86 

the slope parameter of the simulated data (Figure S3.6). 87 
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 88 

Figure S3.1. Median of the dispersion statistics of the tests for A) Poisson and B) 89 

binomial GLMs, simulated without overdispersion for different intercepts (panels) and 90 

sample sizes (x-axis) for the three dispersion tests: parametric Pearson test, 91 

nonparametric Pearson test, and simulation-based response variance test. The dotted 92 

horizontal line indicates the ratio of 1. Values below the line are considered 93 

underdispersion, and above the line are overdispersion. For all simulations, the slope 94 

was fixed at 1. 95 
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 96 

Figure S3.2. Dispersion statistics (median) for GLM Poisson. Notice the different y-97 

axis scales across sample sizes. 98 
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 99 

Figure S3.3. Dispersion statistics (median) for GLM binomial.  100 
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 101 

Figure S3.4. The dispersion statistics of the simulation-based response variance test are 102 

smaller than the parametric Pearson test statistics for all binomial models and for small 103 

sample sizes in Poisson models. The differences between the two dispersion statistics 104 

decrease with increasing sample size (coloured lines) and increase with simulated 105 

overdispersion in the data (x-axis). The relative differences (y-axis) were calculated by 106 

subtracting the simulation-based dispersion statistics from the parametric Pearson 107 

statistic, then dividing by the simulation-based statistic, and can be interpreted as the 108 

difference in the percentage of the simulation-based statistics. The results presented are 109 

based on 1,000 simulations with zero intercepts. 110 

111 
Figure S3.5. The dispersion statistics of the simulation-based response variance test are 112 

smaller than nonparametric Pearson dispersion statistics for all binomial models and for 113 

small sample sizes in Poisson models. The differences between the two dispersion 114 

statistics decrease with increasing sample size (coloured lines) and increase with 115 

simulated overdispersion in the data (x-axis).  The relative differences (y-axis) were 116 

calculated by subtracting the Parametric Bootstrapping statistics from the simulation-117 

based dispersion statistics, then dividing by the simulation-based statistics, and can be 118 

interpreted as the difference in the percentage of the simulation-based statistics. The 119 

results presented are based on 1,000 simulations with zero intercepts.  120 
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S4: Expanding simulation parameters for GLMs 121 

 Here, we investigated the possible influence of other parameters used to generate 122 

the datasets for binomial and Poisson GLMs. In Figure S4.1, we investigated the power 123 

and dispersion statistic for datasets simulated with different slopes (the default slope in 124 

all other simulations was 1). In Figure S4.2, we investigated the effect of varying the 125 

number of trials on the binomial GLMs in terms of power, type I error, and dispersion 126 

statistics. 127 

 128 

Figure S4.1. Power and dispersion statistics for simulations with different slopes (panel 129 

columns) for binomial and Poisson GLMs. Number of simulations = 500; intercept = 0, 130 

number of trials for the binomial = 10. 131 
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 132 

Figure S4.2. Power, dispersion statistics, and type I error of dispersion tests for 133 

binomial data simulations with different numbers of trials (panel columns). The fixed 134 

parameters are: intercept = 0, sample size = 500, slope = 1. Results for 1000 135 

simulations.  136 
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S5. Power for the GLMs 137 

Power calibration 138 

To investigate if the lower power of the simulation-based response variance test 139 

is a consequence of the very conservative type I error rates, we calibrated the power 140 

using the p-value at the 5% quantile of the empirical distribution of p-values where the 141 

null hypothesis was true for each set of simulations (Figures S2.1 and S2.2). This 142 

method should provide an estimate of differences in power, controlling for type I error 143 

rate (Luke et al. 2017). Figures S5.1 and S5.2 show the power (calibrated and 144 

uncalibrated) of the dispersion tests for each simulation set (intercept, sample size and 145 

overdispersion) for Poisson and binomial GLMs, respectively.  146 
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 147 

Figure S5.1. Power for GLM Poisson.  148 
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 149 

Figure S5.2. Power for GLM binomial. 150 
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S6. Additional GLMM results 151 

Type I error rate of the alternative dispersion tests 152 

In Figures S6.1 and S6.2, we present the type I error rates for the four alternative 153 

dispersion tests for the Poisson and binomial GLMMs, respectively, using simulated 154 

sets of parameters: number of observations, number of groups, and intercepts. 155 

 156 

Figure S6.1. Type I error rate for the three alternative dispersion tests for the Poisson 157 

GLMMs. 1000 simulations for each parameter set. To improve visualising the different 158 

intercept lines, the values in the x-axis were slightly displaced around the sample size 159 

values. 160 



 18 

 161 

Figure S6.2. Type I error rate for the three alternative dispersion tests for binomial 162 

GLMMs. 1000 simulations for each parameter set. To improve visualising the different 163 

intercept lines, the values in the x-axis were slightly displaced around the sample size 164 

values. 165 

Power of the alternative dispersion tests 166 

In Figures S6.3 and S6.4, we show the Power for the three alternative dispersion 167 

tests for the Poisson and binomial GLMMs, respectively, for the simulated sets of 168 

parameters: number of observations, number of groups, and intercepts. 169 
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 170 

Figure S6.3. Power of the three alternative dispersion tests for the Poisson GLMMs, 171 

with different sample sizes (rows), intercepts (columns), and number of groups for the 172 

random intercept (line types). The missing lines for the first panel (intercept = -3 and 173 

sample size = 50 are due to simulation errors for some tests. For each parameter set, we 174 

ran 1000 simulations. 175 
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 176 

Figure S6.4. Power of the three alternative dispersion tests for binomial GLMMs, with 177 

different numbers of observations (rows), intercepts (columns), and number of groups 178 

for the random intercept (line types). 1000 simulations for each parameter set.  179 

Dispersion statistics of the alternative dispersion tests 180 

In Figures S6.5 and S6.6, we show the dispersion statistics for the three 181 

alternative dispersion tests for the Poisson and binomial GLMMs, respectively, for the 182 

simulated sets of parameters: number of observations, number of groups, and intercepts. 183 
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 184 

Figure S6.5. Dispersion statistics of the three alternative dispersion tests for the Poisson 185 

GLMMs, with different numbers of observations (rows), intercepts (columns) and 186 

number of groups for the random intercept (line types). The missing lines for the first 187 

panel (intercept = -3 and sample size = 50 are due to simulation errors for some tests. 188 

For each parameter set, we ran 1000 simulations.  189 
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 190 

Figure S6.6. Dispersion statistics of the three alternative dispersion tests for binomial 191 

GLMMs, with different numbers of observations (rows), intercepts (columns), and 192 

number of groups for the random intercept (line types). 1000 simulations for each 193 

parameter set. 194 

Computational runtime for tests with GLMMs 195 

 We computed the run time for the three tests used for GLMMs: the parametric 196 

Pearson test, the nonparametric Pearson test, and the simulation-based response 197 

variance test with conditional simulations (Figure S6.7). We used 1,000 simulations of 198 

the Poisson GLMM as an example, with an overdispersion parameter of 0.4, an 199 

intercept of 0, a sample size of 1,000, and 100 groups. There was almost no difference 200 
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in computational time between the parametric Pearson test (median at 0.066 seconds) 201 

and the simulation-based response variance test (median at 0.072 seconds). As expected, 202 

the nonparametric Pearson residuals presented the largest runtime, with a median of 203 

27.9 seconds. 204 

 205 

Figures S6.7. Runtime (in seconds) for each dispersion test for a Poisson GLMM 206 

simulated 1000 times with the following parameters: overdispersion parameter of 0.4, 207 

an intercept of 0, a sample size of 1,000, and a number of groups of 100. Note the y-axis 208 

at the log 10 scale. 209 

  210 
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S7: Alternative simulation-based residuals dispersion test  211 

Another possibility for improving dispersion tests for GLMMs is to develop a 212 

simulation-based approach that shows better type I, power, and a dispersion statistic that 213 

could be interpreted similarly to the Pearson dispersion. To explore future possibilities, 214 

we briefly considered an alternative simulation-based test that attempts to approximate 215 

the Pearson residuals by dividing the observed raw residuals (observed – fitted values) 216 

by the variance of the simulated values for each observation (Equations S7.1 and S7.2). 217 

We evaluated and compared this test for Poisson and binomial GLMs and GLMMs 218 

(conditional simulations only), as we did for the other tests. 219 

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠:   𝑟𝑖 =  
(𝑦𝑖−𝜇̂)

𝑣𝑎𝑟(𝑦𝑖𝑠)
       (Equation S7.1) 220 

𝐴𝑝𝑝𝑟𝑜𝑥. 𝑃𝑒𝑎𝑟𝑠𝑜𝑛 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠:   𝑟𝑖𝑠 =  
(𝑦𝑖𝑠−𝜇̂)

𝑣𝑎𝑟(𝑦𝑖𝑠)
       (Equation S7.2) 221 

One obstacle with calculating the denominator of the approximate Pearson 222 

residuals for each observation is that the variance depends on the number of simulations 223 

and the model parameters, such as the intercept or the number of trials in the binomial 224 

GLM/GLMMs. If there are too few simulations or the intercept is very small, the 225 

chance of resulting in zero variance (all simulated values are the same) is higher for data 226 

points with small variance. To overcome this, we first evaluated the minimum number 227 

of simulations for different intercepts and sample sizes, in which all observations have 228 

estimated variances that are different from zero. For all combinations of parameters, we 229 

found that 1,000 simulations were sufficient to ensure that all variances in the simulated 230 

observations were positive (Figures S7.1 and S7.2). However, 250 simulations (the 231 

default parameter of the DHARMa package) also presented reasonable results, with the 232 

only exception being the Poisson GLMs with 30 out of 1,000 simulations (sample size 233 
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of 100 and intercept of -1.5) with a very low percentage of zero variances in the 234 

simulated observations (mean of 0.01, maximum of 0.06). We are aware that the 235 

number of zero variances in the simulations depends heavily on the simulation set, e.g., 236 

the number of trials for the binomial GLM. To develop an effective dispersion test, one 237 

should consider alternatives to address this issue. For the subsequent analyses, we 238 

excluded the simulations with zero variance in any simulated observation to compare 239 

the alternative dispersion test with the simulation-based residuals test and the Pearson 240 

Chi-squared dispersion test. 241 

 242 
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Figure S7.1. Poisson GLM: Proportion of observations with simulated zero variance in 243 

the dataset for different combinations of intercept (columns), number of simulations 244 

(rows) and sample sizes (colours).  245 

 246 
Figure S7.2. Binomial GLM: Proportion of observations with simulated zero variance 247 

in the data set for different combinations of intercept (columns), number of simulations 248 

(rows) and sample sizes (colours). The number of trials of the binomial was set to 10 in 249 

all simulations. 250 

First, we compared the approximate Pearson residuals for GLMs with the 251 

Pearson residuals by regressing the difference between them as the response variable 252 

and the Pearson residuals as the predictor for the Poisson GLMs (Figure S7.3). The 253 

intercepts for all simulation sets were nearly zero. The slope of the regression was 254 

positive and very small for the larger number of simulations and intercepts. It means 255 
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that the approximate Pearson tends to be slightly larger than the Pearson for larger 256 

residuals. We did not ca 257 

 258 

Figure S7.3. Mean slope (A) and intercept (B) of the regression of the difference 259 

between the Approximate Pearson residuals and Pearson residuals as response variable 260 

and the Pearson residuals as predictor for the Poisson GLMs.  261 

Type I error rates for the alternative simulation-based test, based on the 262 

approximate Pearson residuals for GLMs, were similar to those for the simulation-based 263 

response variance test for the Poisson model. They tended to be conservative for small 264 

intercepts (Figure S7.4). However, for the binomial model, type I error rates were more 265 

similar to the parametric Pearson residuals test, with values closer to 0.05 (Figure S7.4).  266 
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 267 

 268 

Figure S7.4. Type I error rates for GLMs comparing the parametric Pearson residuals 269 

tests, the simulation-based response variance test and the simulation-based approximate 270 

Pearson test. 271 

The dispersion statistics for the alternative simulation-based response variance 272 

test didn’t change depending on the number of simulations and were very similar to the 273 

parametric Pearson dispersion statistics for both  GLMs (Figure S7.5). Power was very 274 

similar among the tests for the Poisson GLM (Figure S7.6). For binomial GLMs, the 275 

power of the alternative simulation-based residual test was high and similar to the 276 

parametric Pearson residuals test. 277 
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 278 

Figure S7.5.  Dispersion statistics GLMs. Simulation set with intercept = 0. 279 

 280 

Figure S7.6.  Power GLMs. Simulation set with intercept = 0. 281 

 For the GLMM simulations, we fixed the number of groups at 100 and the 282 

number of simulations at 250 to compare with the cases where the Pearson Chi-squared 283 

test fails. We compared sample sizes of 200, 500, and 1000 observations and intercepts 284 
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of -1.5, 0, and 1.5. We excluded simulations with zero variance in the simulated 285 

observations (specifically, for Poisson GLMMs, which accounted for less than 0.1% of 286 

the simulations). For GLMMs, we used only the conditional simulations, which have 287 

been proven to yield better dispersion test results. 288 

 289 

Fig S7.7. Power for Poisson GLMMs for the alternative simulation-based test using an 290 

approximation for Pearson residuals compared with the other tests assessed in the study. 291 

1000 simulations for each parameter set: intercept (panel columns) and sample size 292 

(panel rows). The fixed parameters are slope = 1, number of groups = 100, and random 293 

effects variance = 1. 294 
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 295 

Fig S7.8. Power for binomial GLMMs for the alternative simulation-based test using an 296 

approximation for Pearson residuals compared with the other tests assessed in the study. 297 

1000 simulations for each parameter set: intercept (panel columns) and sample size 298 

(panel rows). The fixed parameters are slope = 1, number of groups = 100, random 299 

effects variance = 1, number of trials = 10. 300 

 301 

  302 
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S8. Parametric Pearson test with approximated residual degrees of 303 

freedom for GLMMs 304 

Degrees of freedom (df) are not always known for GLMMs with complex 305 

hierarchical structures and limit the use of the parametric Pearson test because it 306 

depends on it for evaluating overdispersion with the Chi-squared distribution. 307 

Moreover, our results show that using the naïve df is problematic for testing dispersion 308 

when you have a large number of groups in the random intercept. The two most 309 

suggested methods to approximate df of mixed-effect models, the Satterthwaite (1946) 310 

and the Kenward-Roger (Kenward & Roger 2009), were developed for LMMs to 311 

account for the effect of the covariance structure on df and standard errors. Stroup et al. 312 

(2013) suggested that the adjustment is also accurate for GLMMs. However, none of the 313 

most used R packages use any correction for the degrees of freedom for GLMMs. The 314 

few R packages that provide those approximations, e.g. lmerTest (Kuznetsova et al., 315 

2017; Kuznetsova et al., 2020) that relies on pbkrtest (Halekoh & Højsgaard 2014), are 316 

only implemented for LMMs. 317 

Recently, we found that the R package glmmrBase (Watson 2024) provides those 318 

approximation methods for GLMMs. Thus, we compared the parametric Pearson test 319 

with the three corrections for degrees of freedom available in the package for the 320 

Poisson GLMMs. The corrections are: 321 

- The Kenward-Roger (KR) bias-corrected variance-covariance matrix for the 322 

fixed effect parameters and degrees of freedom from Kenward & Roger (1997). 323 

- The improved correction of the Kenward-Roger (KR2) returns an improved 324 

correction given in Kenward & Roger (2009). 325 

- The Satterthwaite correction (Sat) from Satterthwaite (1946). 326 
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Our test results show that all three correction methods presented very similar 327 

residual df for all simulation settings (Figure S8.1), which resulted also in very similar 328 

test results (e.g., Figure S8.2 for type I error). Given the high similarity among tests for 329 

the different residual df corrections, we show and discuss the results for the KR2 test in 330 

comparison with the parametric Pearson “naïve” test and the alternative GLMM tests 331 

(nonparametric Pearson and simulation-based response variance test with conditional 332 

simulations). In Figure S8.3, we observe that the correction for the residual df corrected 333 

the dispersion statistics towards 1 for simulations without overdispersion, except for the 334 

very small intercept (-1.5). This results in the two-sided dispersion test being less prone 335 

to being significant, given the very low dispersion parameter (detecting underdispersion 336 

instead of overdispersion). 337 

Although the parametric Pearson tests with the approximated residual degrees of 338 

freedom performed much better than those with the “naïve” residual df, they still 339 

underperformed compared to the nonparametric version when having a large number of 340 

groups in the random effects (Figure S8.4), especially for very small intercepts and 341 

sample sizes.  342 
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 343 

Figure S8.1. Residual degrees of freedom for the different correction methods for 344 

Poisson GLMMs with different numbers of groups in the random intercept (x-axis) and 345 

sample sizes (panel columns). Please refer to the main text above to relate to each 346 

applied correction. 1,000 simulations for each parameter setting, slope = 1, random 347 

intercept variance = 1. 348 

 349 

Figures S8.2. Type I error for the parametric Pearson test for Poisson GLMMs 350 

performed with different corrections for the residual degrees of freedom (panel 351 

columns), number of groups in the random intercept (panel rows) and sample size (x-352 

axis). Data were simulated from a Poisson GLMM with different intercepts (colours). 353 

Please refer to the main text above to relate to each applied correction. 1000 simulations 354 

for each parameter setting, slope = 1, random intercept variance = 1. 355 
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 356 

Figure S8.3. Dispersion parameters for the parametric Pearson test for Poisson GLMMs 357 

performed with different corrections for the residual degrees of freedom (colours), 358 

number of groups in the random intercept (linetype and shape), sample size (panel 359 

rows), and intercept (panel columns). Please refer to the main text above to relate to 360 

each applied correction. To improve clarity, we omitted the other corrections because 361 

they are too similar to each other. 1000 simulations for each parameter setting, slope = 362 

1, random intercept variance = 1. 363 
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 364 

Figure S8.4. Power of dispersion tests for Poisson GLMMs (colours) performed with 365 

different numbers of groups in the random intercept (linetype and shape), sample size 366 

(panel rows), and intercept (panel columns). Please refer to the main text above to relate 367 

to the applied correction for residual degrees of freedom. To improve clarity, we omitted 368 

other corrections for residual degrees of freedom because they are too similar to each 369 

other. 1000 simulations for each parameter setting, slope = 1, random intercept variance 370 

= 1. 371 
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