## Response to "Radiolarian evolution: Analytical challenges in estimating the diversity and origin of Nature's stars"

Miguel M. Sandin<sup>1,2,\*</sup>, Johan Renaudie<sup>3</sup>, Noritoshi Suzuki<sup>4</sup>, Fabrice Not<sup>1</sup>

- 1- Sorbonne Université, CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France
- 2- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain
- 3- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, 10115 Berlin, Germany
- 4- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- \*Correspondence: <u>miguelmendezsandin@gmail.com</u>

November, 2025

We appreciate Daniel Lahr's concern (<u>Lahr</u>, 2025) on the interpretation and conclusions of our study "**Extant diversity**, biogeography, and evolutionary history of Radiolaria" (<u>Sandin et al.</u>, 2025). Given that some of these comments were already addressed in our original study following reviewers comments and that such issues are well known in the molecular diversity and evolution fields we considered them partly resolved. However, we decided to extend such a reply and discuss it in length here for the curious reader and outsiders or newcomers to the field so that they can tackle these fields with integrity and scientific sounding.

Environmental sequencing artefacts (such as PCR amplification or sequencing errors, chimeras and contaminations) are well known in the environmental DNA community. To cope with these issues, researchers have come up with many different ways to detect, interpret and discard such artefacts. DNA sequencing indeed generates many different artefacts when reading the raw reads, however these raw sequences are normally processed and curated for the sole purpose of considering only biologically meaningful sequences (e.g., Schloss et al., 2009; Mahé et al., 2015; Callahan et al., 2016; Frøslev et al., 2017; Chwalińska et al., 2025). In our original study (Sandin et al., 2025), we tried our best to exclude any potential artefact beyond chimeric sequences, such as sequences containing high abundance of sequencing errors or badly annotated contaminations taking a conservative approach and discarding any doubtful sequence. Briefly, we first performed a phylogenetic curation of all environmental sequences associated with Radiolaria, starting from well defined, morphologically identified and high quality sequences, then assembled the data using stringent environmental thresholds and after all these steps of phylogenetic curation, we performed a last phylogenetic curation of the final dataset. See for example the following extracts from our original study:

"Taxonomic curation of environmental sequences associated to Radiolaria": "[...] Briefly, a backbone phylogenetic tree of Radiolaria was built including only high quality sequences from morphologically identified specimens, then environmental sequences reported in (<u>Decelle et al., 2012</u>; <u>Biard et al., 2015</u>; <u>Sandin et al., 2019</u>, <u>2021</u>) were added, followed by additional sequences retrieved from public databases. [...]".

During phylogenetic curation, see "Step 4. Check for chimeras": "[...] Due to the difficulties in chimera detection, I have used two different algorithms implemented in [mothur and vsearch] [...] A third in-house method was also used in order to detect as many chimeric or problematic sequences as possible. Here I blasted against NCBI independently the first and the last 300 bp [basepairs] of each sequence and compared the results. If there were less than 20 exact matches among the first 100 matches, the sequence was considered as maybe chimeric. If there are no exact matches among the first 100 matches, or it matches only with itself, the sequence was detected as chimeric. [...] (from

github.com/MiguelMSandin/radiolaria/blob/master/curation\_pipeline.md).

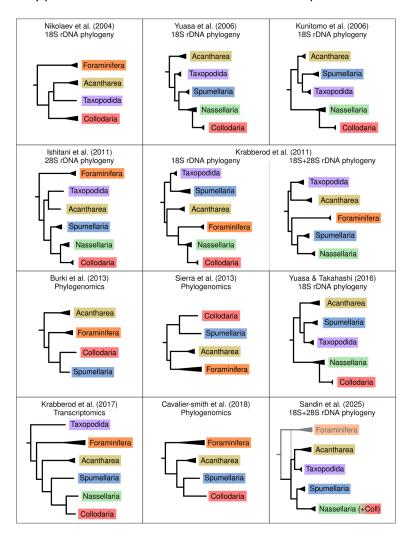
"Data assembly": "[...] The conservative threshold for including only OTUs with at least 100 reads was chosen to ensure the inclusion of biologically meaningful sequences and therefore minimize the chances of dealing with PCR/sequencing errors, chimeric sequences or other artefacts. [...]".

"Phylogenetic analyses": "[...] Resulting phylogenetic trees led to the manual removal of up to 16 sequences (6 OTUs from PR2 and 10 OTUs from the PacBio dataset) due to their long branches and dubious positions (Table S1). [...]".

With these filters, we might have removed rare yet legit biological diversity, but we believed to have removed as many artefacts as possible and considered only legit biological diversity. As for any other scientific study, such arbitrary thresholds were chosen based on empirical preliminary analysis. It is also important to note that the data used and generated in our study is publicly available not only for replicability but also to be used and analyzed by the scientific community in future efforts relying on the scientific method rather than opinions.

An additional point to take into consideration for any given study is the bigger context of that study, and the literature that builds upon. Radiolaria has shown an outstanding environmental diversity ever since the first molecular environmental libraries for eukaryotic plankton (e.g., Moon-van der Staay et al., 2001). Despite tedious work of characterizing morphologically described species of Radiolaria with their corresponding sequences (a process known as barcoding; Amaral Zettler et al., 1997, 1999; Decelle et al., 2012; Biard et al., 2015; Sandin et al., 2019; Nakamura et al., 2020; Sandin et al., 2021; Llopis Monferrer et al., 2024), different clades still remain unexpectedly elusive. These clades are the so-called RADs (Rad-A, Rad-B, Rad-C, Rad-X and Rad-Y, as phylogenetically described in Sandin et al., 2025), and do not fall within any previously morphologically described species, with the only exception of Sticholonche (within Rad-B). The RADs clades have been sequenced repeatedly and independently, from various research groups, using different sequencing techniques such as sanger (e.g., (Massana et al., 2006; Not et al., 2007; Edgcomb et al., 2011; Lie et al., 2014), short-read (e.g., de Vargas et al., 2015; Pernice et al., 2016) and long-read (e.g., Jamy et al., 2022) sequencing; while they could still be artificial, the chances diminish drastically with every independent study and novel approach reporting them. In addition, repeated studies have shown a marked biogeography (Brown et al., 2009; Giner et al., 2020) and even hypothesised potential interactions with other lineages (Anderson et al., 2024), which, as discussed in our study, support a natural and biological behaviour rather than an artifact produced in the lab.

A second central point in many molecular evolution studies is the interpretation of the fossil record, the calibration of the molecular clock and integration of the results. This is an approach that gathers two different disciplines and it is best performed within an interdisciplinary collaboration combining molecular biologists (Miguel M. Sandin and Fabrice Not) and paleobiologists (Johan Renaudie and Noritoshi Suzuki) for an accurate interpretation of both the state-of-the-art of the different disciplines and the results. Sporadic fossil occurrences are sometimes challenged both taxonomically and stratigraphically (e.g., Rafatazmia: Bengtson et al., 2017, argued in Gibson et al., 2018; Carlisle et al., 2021) among others) and may dramatically affect the molecular clock calibration. However Radiolaria fossil record uniquely shines for its robustness. Cambrian formations with unambiguous, well-preserved and diverse Radiolaria assemblages are numerous and widespread (Won and Below, 1999; Maletz, 2011; Danelian and Monnet, 2021 from Canada or Sheng, Kachovich and Aitchison, 2020 from Australia) and even within Cambrian Series 2 (Pouille et al., 2011, from Russia), besides references already cited in our study. See for example (Aitchison et al., 2017) and references therein for a detailed review of Paleozoic (Cambrian to Permian) Radiolaria assemblages. However, and given the scope of our study, we were not able to properly credit all available references on Radiolaria fossil appearance, and thus we selected only some of the latest studies. Given that nodes can only be calibrated with a single and specific distribution (Parham et al., 2012), it is of paramount importance to thoroughly select the right calibration for the right node (and adjusting the distribution shape to the fossil certainty), as those chosen and discussed in our original study. When it comes to the dating of Radiolaria, independent analysis also suggests a Neoproterozoic origin of Radiolaria and points to an even earlier possible Spumellaria fossil (ca. 540-530 Ma; Zhang et al., 2021) as we have originally discussed.


Other analyses that can be done to properly assess the calibration of the molecular clock is to compare the prior and the posterior probabilities (<u>Brown and Smith, 2018</u>). In our study, such prior-posterior analysis found that the signal comes from the data rather than the calibration itself (prior-posterior analysis, see **Figure S4** of the original study). However, we did find a greater difference when the distribution of the prior changes, and thus Radiolaria could have appeared either at 758 Ma (Highest Posterior Density -HPD-: 943-601 Ma), as conservatively reported

in our study (using a normal prior) and in agreement with Zhang *et al.*, (2021), or 855 Ma (HPD: 1081-635 Ma) with a more literal interpretation of the fossil record (using a log-normal prior). Other additional analysis can also complement molecular clock dating results. For example, in our original study we have inferred clade origin based only on fossil data, confirming our calibrations and pointing to a possible earlier appearance of Spumellaria than that reported in the fossil record (see BBB analysis, **Figure 3** in <u>Sandin *et al.*</u>, 2025), and suggested in Zhang *et al.*, (2021). Our conclusions were therefore rather conservative.

When it comes to the tree topology, as we have discussed in our original study, the relationships between Foraminifera and Radiolaria are still debatable (the so-called "Retaria hypothesis"). See for example:

**Discussion**: "[...] The support of both Polycystinea and Spasmaria still needs further validation, as do their phylogenetic relationships with Foraminifera (i.e., either sister groups (<u>Krabberød et al., 2017</u>) or Radiolaria paraphyletic (<u>Irwin et al., 2019</u>; <u>Sierra et al., 2022</u>) are hitherto low supported hypothesis). Testing such hypotheses with rDNA markers has been inconclusive (<u>Moreira et al., 2007</u>; <u>Pawlowski and Burki, 2009</u>; <u>Krabberød et al., 2011</u>) and it would require more effort in collecting additional molecular data (e.g., protein-coding genes) and the use of different modeling strategies [...]"

At present, Radiolaria genomes are not available, and transcriptomic data is still poor and patchy. However, it is still possible to obtain consistent patterns such as that between Acantharia and Spumellaria, both consistent groups that always appear monophyletic (Figure 1). Therefore, considering the direct evidence that Spumellaria fossils are at least ~515 Ma, and the phylogenetic distance between Spumellaria and Acantharia, their last common ancestor is certainly precambrian and well established in the Neoproterozoic.



**Figure 1**. Schematic representation of phylogenetic trees of Radiolaria/Retaria inferred among different studies. Below the citation it is mentioned the main marker/approach used to obtain the phylogenetic tree. Modified from (<u>Sandin, 2019</u>).

In summary, the findings of our study (Sandin et al., 2025) are not coming as unfounded and provocative but rather as conclusive and conservative. We have acknowledged and taken into consideration the most common analytical challenges known for decades in the field, addressed them and interpreted them accordingly. We agree morphological characterization is of paramount importance to understand the nature of environmental lineages, as well as fossil evidence for literal interpretation of evolutionary history. However, in the original study, not only did we check thoroughly for potential spurious results due to method artefacts but we also tested and confirmed our results using several independent lines of evidence. While the criticisms brought on by Lahr (2025) all come from a place of reasonable doubt of outstanding scientific results and novel methodology, all of them were addressed in the original study and, in our opinion, none of them stand up to scrutiny.

## References

- Paleozoic radiolarian biostratigraphy, Geodiversitas, 39(3), pp. 503-531. Available at: doi: 10.5252/g2017n3a5.
- Amaral Zettler L, Sogin ML, Caron DA (1997) Phylogenetic relationships between the Acantharea and the Polycystinea: A Edgcomb V, Orsi W, Bunge J, Jeon S, Christen R, Leslin C, Holder M, molecular perspective on Haeckel's Radiolaria, Proc. Natl. Acad. 94(October), 11411-11416. Sci., doi: pp. 10.1073/pnas.94.21.11411
- Amaral Zettler LA, Anderson OR, Caron DA (1999) Towards a Micropaleontology, 36(2-3), pp. 67-79. Available at: doi: 10.1016/S0377-8398(98)00028-0.
- Anderson SR, Blanco-Bercial L, Carlson CA, Harvey EL (2024) Role of Syndiniales parasites in depth-specific networks and carbon flux in Available at: doi: 10.1093/ismeco/vcae014.
- Bengtson S, Sallstedt T, Belivanova V, Whitehouse M (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae, PLOS Biology. Edited by D. Penny, 15(3), p. e2000735. Available at: Giner CR, Pernice MC, Balagué V, Duarte CM, Gasol JM, Logares R, doi: 10.1371/journal.pbio.2000735.
- Biard T, Pillet L, Decelle J, Poirier C, Suzuki N, Not F (2015) Towards an Integrative Morpho-molecular Classification of The Collodaria (Polycystinea, Radiolaria), Protist, 166(3), pp. 374-388. Available Irwin NAT, Tikhonenkov DV, Hehenberger E, Mylnikov AP, Burki F, at: doi: 10.1016/j.protis.2015.05.002.
- Brown JW, Smith SA (2018) The Past Sure is Tense: On Interpreting Phylogenetic Divergence Time Estimates, Systematic Biology, 67(2), pp. 340-353. Available at: doi: 10.1093/sysbio/syx074.
- Brown MV, Philip GK, Bunge JA, Smith MC, Bissett A, Lauro FM, Fuhrman JA, Donachie SP (2009) Microbial community structure in the North Pacific ocean, The ISME Journal, 3(12), pp. 1374–1386. Available at: doi: 10.1038/ismej.2009.86.
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data, Nature Methods, 13(7), pp. 581-583. Available at: doi: 10.1038/nmeth.3869.
- (2021) Experimental taphonomy of organelles and the fossil record of early eukaryote evolution, Science Advances, 7(5), p. eabe9487. Available at: doi: 10.1126/sciadv.abe9487.
- Chwalińska M, Karlicki M, Romac S, Not F, Karnkowska A (2025) From short to long reads: enhanced protist diversity profiling via Lahr, D.J.G. (2025) Radiolarian evolution: Analytical challenges in Nanopore metabarcoding. Metabarcoding and Metagenomics 9: e163750. doi: 10.3897/mbmg.9.163750.
- Danelian T, Monnet C (2021) Early Paleozoic radiolarian plankton diversity and the Great Ordovician Biodiversification Event, Lie AAY, Liu Z, Hu SK, Jones AC, Kim DY, Countway PD, Amaral-Zettler Earth-Science Reviews, 218, p. 103672. Available at: doi: 10.1016/j.earscirev.2021.103672.

- Aitchison JC, Suzuki N, Caridroit M, Danelian T, Noble P (2017) Decelle J, Suzuki N, Mahé F, Vargas CD, Not F (2012) Molecular Phylogeny and Morphological Evolution of the Acantharia (Radiolaria), Protist, 163(3), pp. 435-450. Available at: doi: 10.1016/j.protis.2011.10.002.
  - Taylor GT, Suarez P, Varela R, et al. (2011) Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness, ISME Journal, 5(8), pp. 1344-1356. Available at: doi: 10.1038/ismej.2011.6.
  - molecular phylogeny of colonial spumellarian radiolaria, Marine Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni C, Hansen AJ (2017) Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates, Nature Communications, 8(1). Available at: doi: 10.1038/s41467-017-01312-x.
  - the oligotrophic ocean, ISME Communications, 4(1), p. ycae014. Gibson TM, Shih PM, Cumming VM, Fischer WW, Crockford PW, Hodgskiss MSW, Wörndle S, Creaser RA, Rainbird RH, Skulski TM, et al. (2018) Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis, Geology, 46(2), pp. 135-138. Available at: doi: 10.1130/G39829.1
    - Massana R (2020) Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 14(2):437-449. doi: <u>10.1038/s41396-019-0506-9</u>.
    - Keeling PJ (2019) Phylogenomics supports the monophyly of the Cercozoa, Molecular Phylogenetics and Evolution, 130(July 2018), pp. 416-423. Available at: doi: 10.1016/j.ympev.2018.09.004.
    - Jamy M, Biwer C, Vaulot D, Obiol A, Jing H, Peura S, Massana R, Burki F (2022) Global patterns and rates of habitat transitions across the eukaryotic tree of life, Nature Ecology & Evolution, 6(10), pp. 1458-1470. Available at: doi: 10.1038/s41559-022-01838-4.
    - Krabberød AK, Bråte J, Dolven JK, Ose RF, Klaveness D, Kristensen T, Bjørklund KR, Shalchian-Tabrizi K (2011) Radiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny, PLoS ONE. Edited by P. Lopez-Garcia, 6(8), p. e23526. Available at: doi: 10.1371/journal.pone.0023526.
- Carlisle EM, Jobbins M, Pankhania V, Cunningham JA, Donoghue PCJ Krabberød AK, Orr RJS, Bråte J, Kristensen T, Bjørklund KR, Shalchian-Tabrizi K (2017) Single Cell Transcriptomics, Mega-Phylogeny, and the Genetic Basis of Morphological Innovations in Rhizaria, Molecular Biology and Evolution, 34(7), pp. 1557-1573. Available at: doi: 10.1093/molbev/msx075.
  - estimating the diversity and origin of Nature's stars, Current R404-R406. Available 35(11), pp. 10.1016/j.cub.2025.03.057
  - LA, Cary SC, Sherr EB, Sherr BF, et al. (2014) Investigating microbial eukaryotic diversity from a global census: Insights from a comparison of pyrotag and full-length sequences of 18S rRNA

- 4363-4373. Available at: doi: 10.1128/AEM.00057-14.
- Llopis Monferrer N, Romac S, Laget M, Nakamura Y, Biard T, Sandin MM (2025) Is the Gelatinous Matrix of Nassellaria (Radiolaria) a 27(5):e70098. doi: 10.1111/1462-2920.70098
- Mahé F, Rognes T, Quince C, de Vargas C, Dunthorn M (2015) Swarmv2: Highly-scalable and high-resolution amplicon clustering, Sandin MM, Biard T, Romac S, O'Dogherty L, Suzuki N, Not F (2019) PeerJ, 2015(12), pp. 1-12. Available at: doi: 10.7717/peerj.1420.
- Maletz J (2011) Radiolarian skeletal structures and biostratigraphy in the early Palaeozoic (Cambrian-Ordovician), Palaeoworld, 20(2), pp. 116–133. Available at: doi: 10.1016/j.palwor.2010.12.007.
- Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C(2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans, Environmental Microbiology, 8(9), 1515-1522. Available at: 10.1111/j.1462-2920.2006.01042.x.
- Moon-van der Staay, S.Y., de Wachter, R. and Vaulot, D. (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity, Nature, 409(6820), pp. 607-610. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Available at: doi: 10.1038/35054541.
- Moreira D, von der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T (2007) Global eukaryote phylogeny: Combined small- and large-subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata, Molecular Phylogenetics and Evolution, 44(1), pp. 255-266. Available at: 10.1016/j.ympev.2006.11.001.
- Nakamura Y, Sandin MM, Suzuki N, Tuji A, Not F (2020) Phylogenetic Revision of the Order Entactinaria—Paleozoic Relict Radiolaria (Rhizaria, SAR), Protist, 171(1), p. 125712. Available at: doi: Sierra R, Mauffrey F, Cruz J, Holzmann M, Gooday AJ, Maurer-Alcalá 10.1016/j.protis.2019.125712.
- Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ (2007) Vertical distribution of picoeukaryotic diversity in the Sargasso Sea, Environmental Microbiology, 9(5), pp. 1233-1252. Available at: doi: 10.1111/j.1462-2920.2007.01247.x.
- Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ, Holroyd PA, de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Inoue JG, Irmis RB, Joyce WG, Ksepka DT, et al. (2012) Best Practices for Justifying Fossil Calibrations, Systematic Biology, 61(2), pp. 346-359. Available at: doi: 10.1093/sysbio/syr107.
- Amoeboid Protists, J. Eukaryot. Microbiol., 56(1), pp. 16-25. Available at: doi: 10.1111/j.1550-7408.2008.00379.x.
- Gasol JM, Massana R (2016) Large variability of bathypelagic microbial eukaryotic communities across the world's oceans, The ISME Journal, 10(4), pp. 945-958. Available at: doi: 10.1038/ismej.2015.170.

- genes, Applied and Environmental Microbiology, 80(14), pp. Pouille L, Obut O, Danelian T, Sennikov N (2011) Lower Cambrian (Botomian) polycystine Radiolaria from the Altai Mountains (southern Siberia, Russia), Comptes Rendus Palevol, 10(8), pp. 627-633. Available at: doi: 10.1016/j.crpv.2011.05.004.
- Strategy for Coping With Oligotrophy? Environ Microbiol. Sandin, M.M. (2019) Diversity and Evolution of Nassellaria and Spumellaria (Radiolaria). Sorbonne Université. Available at: HAL id: tel-03137926/.
  - Time Calibrated Morpho-molecular Classification of Nassellaria (Radiolaria), Protist, 170(2), pp. 187-208. Available at: doi: 10.1016/j.protis.2019.02.002.
  - Sandin MM, Pillet L, Biard T, Poirier C, Bigeard E, Romac S, Suzuki N, Not F (2021) A Morpho-molecular Perspective on the Diversity and Evolution of Spumellaria (Radiolaria), Protist, 172(3), p. 125806. Available at: doi: <u>10.1016/j.protis.2021.125806</u>.
  - doi: Sandin MM, Renaudie J, Suzuki N, Not F (2025) Extant diversity, biogeography, and evolutionary history of Radiolaria, Current Biology, p. S0960982225004956. Available 10.1016/j.cub.2025.04.032.
    - Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. (2009) Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities, Applied and Environmental Microbiology, 75(23), pp. 7537–7541. Available at: doi: 10.1128/AEM.01541-09.
  - doi: Sheng, J., Kachovich, S. and Aitchison, J.C. (2020) Skeletal architecture of middle Cambrian spicular radiolarians revealed using micro-CT, Journal of Micropalaeontology, 39(1), pp. 61-76. Available at: doi: 10.5194/jm-39-61-2020.
    - X, Thakur R, Greco M, Weiner AKM, Katz LA, et al. (2022) 'axon-rich transcriptomics supports higher-level phylogeny and major evolutionary trends in Foraminifera, Molecular Phylogenetics and Evolution, 174, p. 107546. Available at: doi: 10.1016/j.ympev.2022.107546.
    - Berney C, Le Bescot N, Probert I, et al. (2015) Eukaryotic plankton diversity in the sunlit ocean, Science, 348(6237), pp. 1261605–1261605. Available at: doi: 10.1126/science.1261605.
- Pawlowski, J.A.N. and Burki, F. (2009) Untangling the Phylogeny of Won, M.-Z. and Below, R. (1999) Cambrian Radiolaria from the Georgina Basin, Queensland, Australia, Micropaleontology, 45(4), pp. 325-363. Available at: doi: 10.2307/1486119.
- Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, Zhang Y, Feng Q, Nakamura Y, Suzuki N (2021) Microfossils from the Liuchapo Formation: Possible oldest radiolarians from deep-water chert and phylogenetic analysis, Precambrian Research, 362, p. 106312. Available at: doi: 10.1016/j.precamres.2021.106312.