- 1 Beta-Diversity Beyond Bias: A Scalable Framework for Reliable Diversity Analysis from Citizen
- 2 Science Data
- 3 Authors

5 Rahil J. Amin^{a*}, Jessie C. Buettel^c, Leon A. Barmuta^a, and Barry W. Brook^{a,b}

6

- 7 Authors affiliations
- 8 a School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania
- 9 7001, Australia
- 10 bARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), Australia
- ^cFenner School of Environment and Society, The Australian National University, Acton,
- 12 Australian Capital Territory 2601, Australia

13

14 Author contributions:

15

- 16 Corresponding author
- 17 Name: Rahil Jasminkumar Amin
- 18 Email: rahiljasminkumar.amin@utas.edu.au

19

Abstract

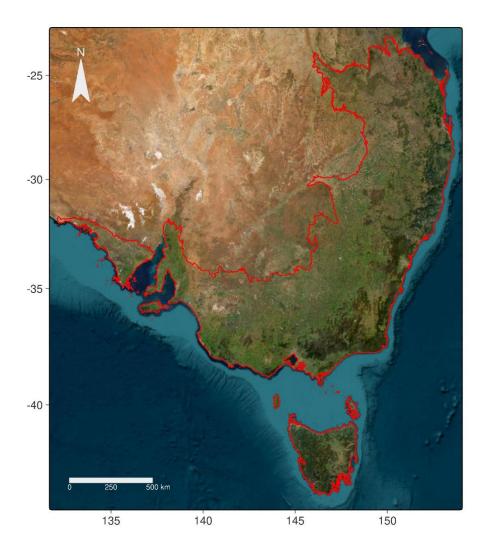
21

Citizen science data offer unprecedented spatial and temporal coverage for biodiversity 22 research, yet sampling biases compromise their reliability for β-diversity analyses. We 23 introduce a comprehensive framework to address these challenges, integrating space—time 24 scaling, quality thresholds, and multiple partitioning approaches to enhance detection of 25 ecological signals. Applying our framework to 38 million bird observations across 26 southeastern Australia at six spatial resolutions, we demonstrate that uneven sampling distorts 27 β-diversity patterns. Quality filtering altered β-diversity systematically across scales, with 28 reductions ranging from 13% at coarse resolutions to 40% at fine grains. Components related 29 to nestedness decreased more (22–45%) than turnover components (4–30%), indicating that 30 sampling biases primarily inflate richness-difference patterns rather than species replacement 31 32 processes. Sørensen indices were more sensitive to filtering than Jaccard indices at all scales, confirming theoretical predictions about their differential response to sampling completeness. 33 34 Local contributions to β-diversity (LCBD) analyses revealed that incomplete sampling artificially inflated community uniqueness measures. This bias could misdirect conservation 35 efforts toward areas that only appear to be biodiversity hotspots due to poor sampling. After 36 filtering, LCBD patterns aligned with known biogeographic boundaries, demonstrating our 37 framework's capacity to recover genuine ecological signals. Our findings reveal a 38 fundamental trade-off: finer spatial grains provide higher resolution but sacrifice coverage, 39 whereas coarser grains maintain coverage but may mask local variation. This scale-dependent 40 framework enables researchers to leverage citizen science data more effectively for β-41 diversity analysis, ensuring conservation decisions reflect true ecological patterns rather than 42 sampling artefacts. 43 44

Introduction

- Biodiversity varies across both space and time (Cardinale et al. 2012). Maps and predictions 45
- of how diversity changes along both these axes guide effective conservation strategies 46
- 47 (Magurran 2021). However, cataloguing biodiversity is challenging because of its
- fundamentally multidimensional nature, which complicates reduction to a single, meaningful 48
- 49 number (Purvis and Hector 2000). Understanding these spatio-temporal patterns requires
- metrics that capture not only species richness but also shifts in community composition 50
- across ecological gradients. 51

- Beta diversity ("β-diversity") represents changes in species composition between sites, and
- has become a key metric for measuring change across space and time (Koleff et al. 2003).
- Decomposing β -diversity into turnover and nestedness links observed patterns to specific
- ecological processes (Baselga 2010). According to Baselga (2010), turnover reflects species
- replacement across environmental gradients due to environmental sorting, habitat
- 57 heterogeneity and spatial or topographical barriers (Baselga 2012). Nestedness on the other
- hand arises when species-poor communities form subsets of species-rich ones, resulting from
- 59 ordered extinction or colonisation along disturbance gradients or dispersal limitations
- 60 (Baselga 2010). β-diversity components therefore offer insights into how communities
- respond to environmental sorting, dispersal constraints, and habitat availability patterns.
- While a useful metric, robust β -diversity analyses depend on high-quality community data.
- However, such data are typically available through extensive and resource-intensive
- ecological monitoring (Cardoso et al. 2009). Given the practical challenges of collecting such
- data, citizen science (CS) offers a valuable alternative (Viola et al. 2022). Indeed, the strength
- of CS repositories lies in the large amount of data collected over broad spatial and temporal
- scales (Dickinson et al. 2010). Recent guidelines have improved CS data use by determining
- the minimum sampling effort needed to quantify species diversity (Callaghan et al. 2022).
- 69 However, other biases remain unresolved, leaving researchers sceptical about using CS data
- 70 for β -diversity analysis.
- 71 Most biases in CS data stem from its unstructured, opportunistic data collection which can
- 72 alter interpretations of β -diversity patterns. Uneven sampling, for instance, clusters data in
- accessible or more populated areas, causing under-surveyed sites to appear less diverse and
- skewing the nestedness component of β -diversity (Beck et al. 2013). Positional inaccuracies
- 75 from georeferencing errors misplace species records, distorting turnover by misrepresenting
- species replacement patterns (Smith et al. 2023). Detection biases such as false absences and
- variable detection probabilities among species can exaggerate differences between
- 78 communities, affecting both turnover and nestedness calculations (Cao et al. 2002). Without
- 79 accounting for these biases, conclusions drawn about β -diversity patterns and the ecological
- 80 processes driving them may be misleading.
- 81 The choice of spatial grain (plot size) and temporal scale (survey duration) further
- 82 complicates β-diversity estimation from CS data (Barton et al. 2013). Small spatial grains or
- 83 short-term surveys may exaggerate turnover because fewer shared species are detected,


making communities appear more distinct. Conversely, larger spatial grains may overlook 84 local variation and miss rare species, reducing perceived turnover and potentially 85 underestimating biodiversity change (Barton et al. 2013). Temporal scaling is equally critical; 86 short-term surveys might miss seasonal or interannual fluctuations in species presence, while 87 long-term surveys provide general trends but may smooth over important temporal dynamics 88 89 (Barton et al. 2013). While it is generally recommended to estimate β -diversity across multiple spatial grains 90 91 (Barton et al. 2013), determining a minimum grain size can be important in the context of CS data. At higher resolutions, sampling errors such as uneven species detection or stochastic 92 variability between closely situated sampling units become more pronounced, potentially 93 affecting the relative importance of turnover and nestedness (Rahbek 2005). Interestingly, 94 95 recent studies have shown that the components of β -diversity can remain consistent across scales when using certain metrics (Antão et al. 2019). For example, the Sørensen index was 96 97 found to exhibit consistent patterns across spatial scales. Further, metric choice can either magnify or dampen the impact of sampling biases on 98 turnover and nestedness. Different metric families vary in their sensitivity to sampling biases 99 100 common in CS data (Schroeder and Jenkins 2018). Metrics that emphasise shared species more, like the Sørensen index, can be more prone to error due to uneven sampling than others 101 like the Jaccard index (Schroeder and Jenkins 2018). Similarly, different partitioning 102 frameworks (Baselga 2010, Podani et al. 2013), Schmera et al. 2020) parse out different 103 conceptual aspects of β-diversity that may be unequally affected by sampling biases. As plot 104 105 size increases and the number of shared species rises, the impact of metric choice on βdiversity estimates becomes significant, particularly when using biased data sources like CS 106 107 datasets. 108 We propose a new framework that guides the effective use of big, open CS data for βdiversity analysis. Building on recent guidelines for minimum sampling effort (Callaghan et 109 110 al. 2022), our approach consolidates presence—absence selection, space-time scaling, and threshold-based filtering into a unified pipeline to address uneven sampling effort. We 111 112 compare two β-diversity indices (Jaccard, Sørensen) and partitioning frameworks (Baselga, Podani, SET) to evaluate how they respond to biases in shared and unique species detection. 113 We hypothesise that indices emphasising shared species (e.g., Sørensen) will be more 114 sensitive to under-sampling. By rigorously quantifying these effects, our framework can help 115

researchers make more reliable inferences from CS data, addressing a critical need in an era 116 of accelerating biodiversity loss. 117 Methods 118 Given the established biases affecting β-diversity estimation from citizen science data, we 119 developed a structured filtering framework to retain only well-sampled and ecologically 120 121 credible grids. This approach directly addresses the sampling completeness and false absence problems that skew turnover and nestedness components. We then tested whether data quality 122 affects observed patterns of compositional dissimilarity across multiple spatial scales, 123 124 comparing different distance metrics (Jaccard and Sørensen) and partitioning methods 125 (Baselga, Podani, and SET) to evaluate their sensitivity to variable sampling quality. Study area and species occurrence data 126 We focused on southeastern Australia, a region encompassing diverse habitats supporting 272 127 land bird species (full species list in Table S1; Figure 1). We chose land birds as they exhibit 128 higher detection probabilities than other taxa (Morelli et al. 2022), thereby reducing (though 129 not eliminating) the false absence bias that inflates β -diversity estimates. Occurrence records 130 spanning 1990–2024 were downloaded from the Atlas of Living Australia via the R package 131 132 galah (Westgate et al. 2025). Species names were matched to an accepted reference taxonomy, and records with invalid dates were discarded. Post taxonomic standardisation and 133 temporal validation, we restricted the dataset to in situ observations (human or camera-trap 134 based) to exclude museum specimens. Potentially misidentified records and spatial anomalies 135 were removed through manual validation, yielding approximately 38 million occurrence

136

137

records.

Figure 1. Map showing the study region across southeastern Australia. The red boundary delineates the boundary covering temperate eucalypt woodlands from Queensland to Tasmania.

Spatial framework and data aggregation

To examine how spatial grain affects β -diversity estimation from incomplete data, we generated independent hexagonal grids across six spatial resolutions: 2.5 km, 5 km, 10 km, 15 km, 25 km, and 50 km using the sf package in R (Pebesma 2018). This range captures variation from local habitat patches (2.5 km) to broader landscape gradients (50 km), balancing fine-grained detection of localised assemblage shifts with the broader resolution required for wide-ranging species (Betts et al. 2014). We treated each resolution independently rather than using nested grids to ensure optimal coverage while avoiding

- artificial hierarchical constraints that might obscure scale-dependent patterns in community
- turnover. Hexagons were chosen over squares to mitigate edge effects and provide
- equidistant spacing of centroids, reducing spatial bias (Birch et al. 2007).
- To minimise georeferencing noise, occurrence records were first snapped to a standard 1 km
- grid, reflecting typical geolocation error limits. Each occurrence was then assigned to the
- nearest hexagon centroid based on Euclidean distance, calculated as:

157
$$d(A,B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

- where A is the occurrence coordinate, B is the centroid of the relevant hexagon, x is
- longitude, and *y* is latitude.
- 160 For temporal scaling, we aggregated occurrences into monthly or annual bins to account for
- both short-term fluctuations and longer-term variation, with duplicate records within
- spatiotemporal units merged to prevent inflation of occurrence frequencies.
- 163 Estimating sampling completeness
- Building on established guidelines for minimum sampling effort (Callaghan et al. 2022), we
- applied the Chao2 estimator to approximate total species richness in each hexagon based on
- singleton and doubleton frequencies (Chao et al. 2009). This approach addresses the under-
- sampling bias that causes sites to appear artificially distinct by providing asymptotic richness
- estimates that account for undetected species. Although packages like iNext offer bootstrap
- 169 confidence intervals (Hsieh et al. 2016), computational constraints with thousands of
- hexagons necessitated direct Chao2 calculation without resampling.
- Within each hexagon h, monthly or annual time bins served as independent sampling units.
- For each species s, observation frequency was calculated as the number of time bins
- 173 containing that species. We then calculated:

174
$$Q_1 = \sum_{s} 1(\text{freq}_{h,s} = 1), \qquad Q_2 = \sum_{s} 1(\text{freq}_{h,s} = 2),$$

- where Q_1 is the total number of species observed in exactly one time unit, and Q_2 is the total
- number of species observed in exactly two time units. Observed species richness in hexagon
- 177 h was denoted as S_h . The expected richness, \hat{S}_h , was then computed by:

178
$$\hat{S}_h = \begin{cases} S_h + \frac{Q_1 \cdot (Q_1 - 1)}{2 \cdot (Q_2 + 1)}, & \text{if } Q_2 = 0 \\ S_h + \frac{Q_1^2}{2 \cdot Q_2}, & \text{if } Q_2 > 0 \end{cases}$$

Finally, sampling completeness for each hexagon was defined as the ratio of observed to estimated species richness:

$$C_h = \frac{S_h}{\hat{S}_h}$$

182

183

184

185

186

187

188

189

190

191

193

202

In hexagons with insufficient observations, incidental singletons can inflate the predicted richness, so we interpret completeness C_h as a heuristic measure of survey thoroughness rather than an exact estimate of true richness. Hexagons with very few sampling units or an abundance of singletons may thus overestimate \hat{S}_h , reinforcing the need for minimum thresholds.

Determining minimum sampling thresholds

We developed a logistic-based approach to determine the minimum sampling effort required for reliable community data, leveraging the asymptotic nature of species accumulation curves. Specifically, we modelled the relationship between the number of sampling units (S) and sampling completeness $\hat{C}(S)$ with the function:

where ϕ is the asymptotic maximum completeness (approaching 1 with infinite number of

$$\hat{C}(S) = \frac{\phi S}{\kappa + S}$$

affects nestedness calculations in under-surveyed sites.

samples) and κ is the half-saturation constant (the number of samples needed to reach half of 194 that asymptote). This model was fit separately for each spatial scale and temporal unit using 195 non-linear least squares (the nls function in R). 196 We retained only hexagons achieving 90% completeness relative to Chao2 estimates, a 197 threshold indicating a strict, but near-complete, sampling (Callaghan et al. 2022). 198 Additionally, to avoid elevated dissimilarities from sparse checklists, hexagons had to contain 199 a minimum of 10 species (Hanberry et al. 2012). This dual-threshold approach specifically 200 addresses the false absence problem that inflates β-diversity components, which particularly 201

206

207

For each spatial grain, we constructed presence-absence matrices for both raw data (all

hexagons with ≥10 species) and filtered data (meeting full quality thresholds). We calculated

β-diversity using Jaccard and Sørensen indices to test our hypothesis that metrics

emphasising shared species (Sørensen) are more sensitive to under-sampling bias than those

208 weighting unique species more heavily (Jaccard).

- 209 To evaluate how different conceptual frameworks respond to sampling biases, we applied
- 210 three partitioning approaches that differ in their sensitivity to complex community patterns.
- 211 Baselga's framework separates turnover (species replacement) from nestedness-resultant
- 212 dissimilarities while maintaining mathematical independence from richness differences
- 213 (Baselga 2010). However, Baselga's turnover component can falsely indicate 100%
- 214 replacement when communities exhibit anti-nested patterns. Anti-nested patterns arise when
- 215 communities display both species replacement and richness differences simultaneously,
- rather than forming simple nested subsets (Schmera et al. 2020). Citizen science data
- 217 frequently exhibit such patterns because uneven sampling effort creates artificial richness
- 218 differences while genuine species turnover occurs across environmental gradients, producing
- 219 the dual signature that confounds Baselga's framework. Podani's method divides dissimilarity
- into replacement versus richness differences, with the replacement component remaining
- dependent on richness differences. The SET framework partitions β -diversity into
- intersection and relative complement components, efficiently identifying response types of
- 223 communities (Schmera et al. 2020). Comparing these frameworks reveals which β-diversity
- 224 patterns remain consistent across methods versus those sensitive to sampling artifacts,
- directly testing whether incomplete data creates systematic biases in ecological inference.
- 226 Local Contributions to β -Diversity
- We calculated local contributions to β-diversity (LCBD) using the Jaccard-based distance
- 228 matrices, following Legendre and De Cáceres (2013). We computed the Jaccard distance
- matrix $D = [d_{ij}]$ for all pairs of hexagons, squared each distance to obtain D^2 , and then applied
- 230 standard double-centred formula:

$$G = -\frac{1}{2}HD^2H,$$

- where $H = I \frac{1}{n} \mathbf{1} \mathbf{1}^T$ is the centring matrix. The diagonal elements of G, denoted G_{ii}
- represent the sum of squares associated with site i, and the LCBD for site i is given by:

 $LCBD_i = \frac{G_{ii}}{\sum_{k=1}^{n} G_{kk}}$ 234 These LCBD values range from 0 to 1, with values closer to 1 indicating more unique 235 community composition. LCBD analysis helps separate genuinely unique sites (e.g., those 236 with high endemism or unusual assemblages) from those appearing unique due to sampling 237 artefacts. 238 Testing sampling bias effects on ecological inference 239 To test whether incomplete sampling artificially inflates apparent community uniqueness, we 240 modelled LCBD response to sampling completeness before and after filtering. LCBD values 241 were transformed using the Smithson and Verkuilen (2006) method to constrain them to the 242 [0,1] interval, satisfying distributional assumptions for Beta regression. We fitted generalised 243 additive models (GAMs) using the mgcv package with sampling completeness as the 244 predictor (fit as smooth spline) and hexagon identity as a random effect to account for 245 repeated measures across scales. 246 We present LCBD spatial patterns before and after filtering at the 50 km grain to demonstrate 247 the filtering effects on apparent community uniqueness. We selected the 50 km resolution for 248 visualisation because finer grains (2.5 km, 5 km) are too small to discern clear spatial patterns 249 across our large study extent, while the 50 km grain effectively demonstrates how filtering 250 removes sampling artefacts that create spurious hotspots of apparent endemism. This analysis 251 reveals whether sampling biases systematically elevate LCBD values in under-surveyed 252 areas, creating false conservation priorities, and whether our filtering approach successfully 253 removes these artefacts while preserving genuine patterns of community uniqueness. 254 255 Results 256 Effects of Quality Filtering on Coverage 257 Applying our quality thresholds reduced the number of analysable hexagons, with data loss 258 following clear spatial and scale-dependent patterns. Hexagons failing to meet quality criteria 259 clustered in remote inland regions and protected areas, while data were retained primarily 260

around population centres and accessible coastal areas (Figure 2). This clustering effect

intensified at finer spatial resolutions. Retention rates declined systematically with spatial

261

grain: 48.4% of hexagons (404 of 834) met all quality criteria at 50 km resolution, while only
1.5% (1,788 of 117,633) qualified at 2.5 km resolution (Figure S1).

Figure 2. Kernel density estimation maps showing bird occurrence distribution across southeastern Australia. Panel (a) shows raw data distribution; panel (b) shows distribution after applying quality thresholds (\geq 90% completeness, \geq 10 species). Colour intensity represents observation density, with darker areas indicating higher occurrence densities. Maps are displayed across six spatial grains: 50, 25, 15, 10, 5 and 2.5 km.

Scale-Dependent Reductions in Total \beta-Diversity

Quality filtering reduced total β -diversity systematically across all spatial grains, with effects varying predictably by dissimilarity index. The magnitude of reduction increased consistently from coarse to fine spatial resolutions. Jaccard-based total β -diversity decreased by 0.071 (13.2%) at 50 km and by 0.234 (29.0%) at 5 km. Sørensen-based β -diversity showed larger reductions at all grain sizes, decreasing by 0.067 (17.3%) at 50 km and by 0.277 (43.8%) at 2.5 km (Figure 3).

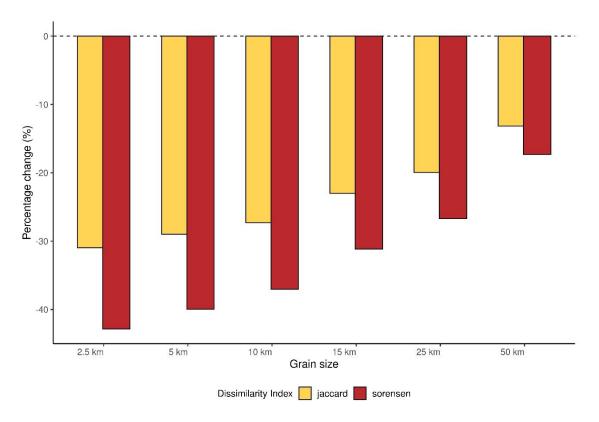


Figure 3. Percentage reduction in total β -diversity following quality filtering across spatial grains (2.5–50 km). Bars represent Jaccard (yellow) and Sørensen (red) indices, calculated as the percentage change between unfiltered and filtered datasets. Values show the magnitude of reduction after applying quality thresholds (\geq 90% completeness, \geq 10 species).

Changes in β *-diversity components*

Quality filtering affected β-diversity components differentially across all frameworks. Nestedness-related components showed larger reductions than turnover-related components across all spatial grains. Under Baselga's framework, turnover decreased modestly (8.97% at 50 km to 30.3% at 5 km) compared to nestedness (22.1% to 28.9%). However, the difference between components narrowed at finer grains, with turnover and nestedness reductions nearly converging at 2.5 km resolution (Figure 4). Under Podani's framework, replacement components showed minimal changes (3.85% to 13.6%) while richness difference components decreased dramatically (22.5% at 50 km to 44.9% at 5 km). The SET framework showed similar patterns, with relative complement components showing modest reductions compared to substantial decreases in intersection components (Figure 4).

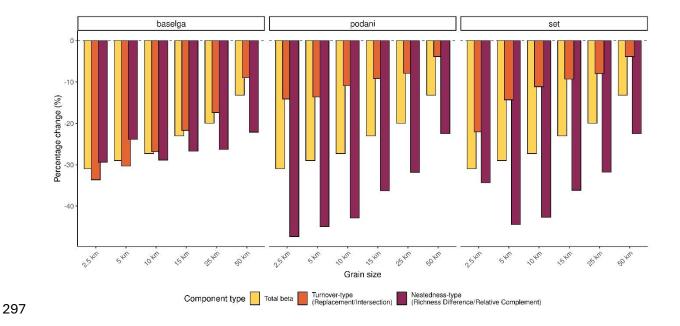


Figure 4. Percentage reduction in Jaccard-based β-diversity components following quality filtering across six spatial grains (2.5–50 km). Components are partitioned using Baselga, Podani, and SET frameworks. Bars represent total β-diversity (yellow), turnover/replacement components (orange), and nestedness/richness difference components (maroon). Values show the percentage change between unfiltered and filtered datasets (\geq 90% completeness, \geq 10 species).

306 Local Contributions to β-diversity LCBD analysis revealed a strong inverse relationship between sampling completeness and 307 community uniqueness measures before quality filtering (Figure 5a). Sites with low 308 completeness exhibited higher LCBD values across all spatial scales. After quality filtering, 309 the relationship between LCBD values and sampling completeness changed substantially 310 (Figure 5b). Above sampling completeness of 0.9, LCBD values showed a nearly flat 311 relationship with completeness, with a slight increase at completeness values approaching 1. 312 However, few hexagons achieved complete sampling (completeness = 1). 313 314 315

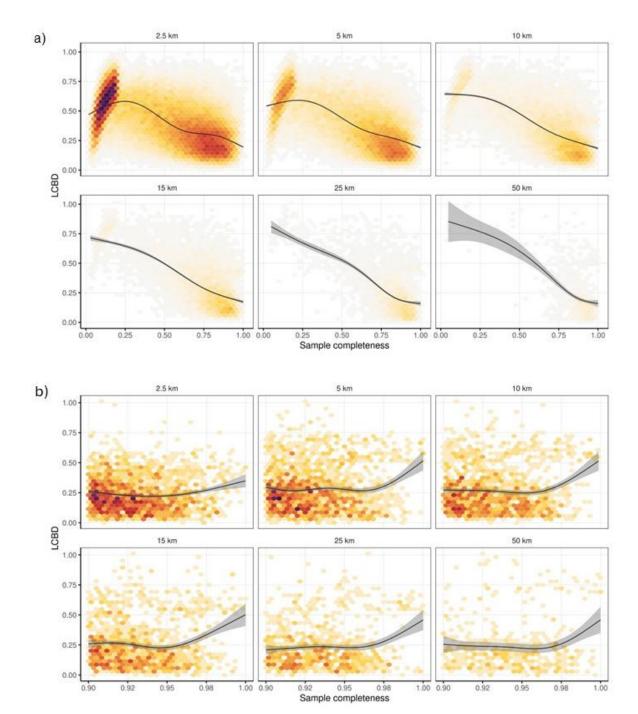
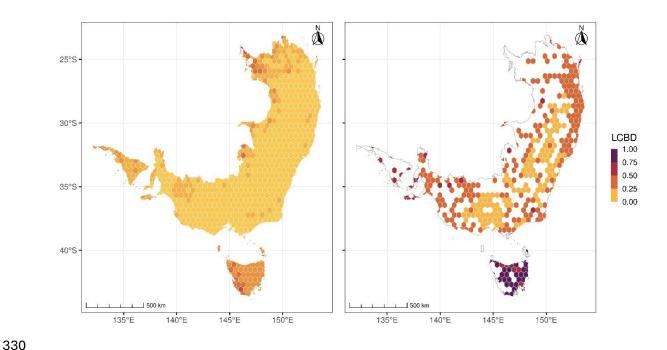



Figure 5. Relationship between sampling completeness and local contributions to β-diversity (LCBD) values across six spatial grains (2.5–50 km). Panel (a) shows relationships before quality filtering; panel (b) shows relationships after quality filtering (≥90% completeness, ≥10 species). Hexagonal bins represent data density, with darker colours indicating higher numbers of observations at each completeness-LCBD combination. Black lines show generalised additive model (GAM) curves with 95% confidence intervals (grey shading). LCBD values represent community uniqueness, with higher values indicating more distinct assemblages.

Quality filtering altered the spatial distribution of LCBD values (Figure 6). Before filtering, LCBD values showed limited spatial structure across southeastern Australia. Post-filtering, Tasmania displayed markedly higher LCBD values in its central highlands and western regions. Coastal eastern Australia exhibited more heterogeneous LCBD values, while inland regions showed increased differentiation in community uniqueness values.

Figure 6. Spatial distribution of local contributions to β-diversity (LCBD) at 50 km resolution across southeastern Australia. Panel (a) shows LCBD values from all hexagons with \geq 10 species; panel (b) shows LCBD values from hexagons meeting quality criteria (\geq 90% completeness, \geq 10 species). Colour intensity represents community uniqueness, with darker areas indicating higher LCBD values.

Discussion

Our analysis shows that sampling biases in citizen science data obscure spatial β -diversity patterns across multiple scales. Incomplete sampling masks genuine community dissimilarity patterns and creates spurious signals of nestedness and community uniqueness. By implementing systematic quality filtering, however, we extracted reliable ecological information from these highly variable, biased datasets. These findings provide both diagnostic insights into citizen science data limitations and practical solutions for detecting genuine ecological signals.

Quality filtering consistently reduced β -diversity estimates across all spatial grains. Incomplete sampling typically generates overestimates rather than underestimates, as false absences create exaggerated dissimilarities between sites (Beck et al. 2013). This effect manifested most strongly in nestedness and richness difference components while turnover and replacement components remained stable. This differential response meets theoretical expectations (Beck et al. 2013), confirming that sampling incompleteness primarily generates false absences rather than false species replacements. Since turnover depends more on species presence than absence, it remains more robust to sampling variation. Studies using unfiltered citizen science data therefore risk overestimating the importance of nestednessgenerating processes (Matthews et al. 2016). Reduced sample sizes after filtering create two statistical artifacts that compound these interpretive challenges. Removing under-sampled sites eliminates artificially inflated dissimilarities, while fewer hexagons in the analysis naturally shift β -diversity estimates downward. This effect proves particularly pronounced at finer resolutions where data loss becomes severe. β-diversity estimates prove sensitive to both sampling effort and the number of sites retained, making cross-scale comparisons difficult without explicit controls for completeness. Beyond creating systematic bias, incomplete sampling reduces estimate precision, meaning that datasets may sometimes reflect true patterns closely while others show opposite patterns due to stochastic variation alone. The scale-dependent nature of data loss creates cascading methodological constraints. Finer grains generate exponentially more sites across the landscape, yet most fall below our completeness thresholds because citizen science effort concentrates around population centres. The remaining sites cluster near urban areas, creating pronounced spatial bias that intensifies with decreasing grain size. This geographic selectivity makes it increasingly difficult to distinguish dispersal limitation from habitat sorting processes, as underrepresented regions may harbour distinct assemblages shaped by different ecological mechanisms. Analyses at finer grains consequently require more stringent quality control to avoid sampling artifacts, potentially confining their application to intensively sampled regions. These scale effects interact with metric sensitivity to create complex analytical trade-offs. Sørensen-based measures showed greater sensitivity to filtering than Jaccard-based ones, confirming our hypothesis that indices emphasising shared species suffer more from under-

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

sampling. This occurs because metrics weighting abundant species achieve higher robustness 376 to incomplete detection, while those emphasising shared species become increasingly 377 affected by false absences, as Schroeder and Jenkins (2018) predicted theoretically. Metric 378 selection should therefore balance data quality considerations with research objectives. 379 Jaccard offers more robust results for unevenly sampled data, while Sørensen better captures 380 381 community patterns when sampling proves adequate. Three β-diversity partitioning frameworks produced consistent patterns that strengthen 382 383 confidence in our findings while revealing complementary insights. As predicted from their mathematical properties, Baselga's framework proved most susceptible to under-sampling 384 385 effects, particularly when anti-nested patterns occurred in the data. The Podani and SET frameworks provided more stable estimates across different sampling intensities. Filtering 386 387 had stronger impacts on richness-difference components than replacement components across all frameworks, suggesting that sampling biases primarily affect perceptions of alpha 388 389 diversity gradients rather than species turnover patterns. These methodological insights directly inform conservation planning challenges. The 390 differential framework performance reveals critical implications for how we interpret 391 biodiversity patterns from citizen science data. Quality filtering reduced apparent community 392 differences, suggesting that conservation priorities based on raw citizen science data might 393 overestimate spatial heterogeneity and lead to suboptimal reserve placement. Sampling biases 394 distort understanding of ecological processes driving community assembly, as inflated 395 nestedness signals may lead planners to overemphasise dispersal limitation while 396 397 underestimating environmental sorting and habitat heterogeneity (e.g., Soininen et al. 2018). 398 This creates a fundamental tension: studies focused on conserving rare species require metrics sensitive to uncommon taxa, yet these prove most vulnerable to sampling bias. 399 400 This conservation challenge becomes particularly evident when examining local contributions to β-diversity. Under-sampled sites show inflated LCBD values because rarity 401 402 becomes overestimated, creating false signals of community uniqueness that could mislead conservation prioritisation. Our analysis reveals this bias through a clear pattern: sites with 403 404 low sampling completeness consistently exhibited higher LCBD values across all spatial scales. In our dataset, quality filtering removes these artifacts, allowing remaining LCBD 405 peaks to align with known biogeographic transitions such as Tasmanian highlands and coastal 406 vegetation boundaries. This geographic correspondence strengthens ecological credibility and 407

demonstrates that quality-controlled citizen science data can effectively identify areas of genuine compositional uniqueness rather than sampling-induced false hotspots.

Limitations and Future Directions

408

409

410

439

411 While our framework effectively addresses key sampling biases, some limitations remain. Our logistic curve approach may not capture all taxonomic heterogeneity in sampling 412 requirements, as species rarity in citizen science data often becomes confounded by 413 414 detectability issues and observer skill variation. Quality filtering inevitably introduces spatial 415 bias, with remote areas disproportionately excluded due to insufficient sampling. This geographic selectivity may under-represent arid interior assemblages and consequently 416 417 underestimate β-diversity in those regions. Sample size reduction follows existing sampling effort patterns, potentially reinforcing biases toward well-studied coastal and urban areas 418 419 rather than correcting them. Our framework also does not account for temporal variation in community composition, as seasonal and yearly fluctuations could affect β-diversity 420 estimates in ways our cross-sectional approach does not capture. 421 Future research should prioritise three complementary directions. Firstly, integrating 422 occupancy modelling with β-diversity analysis offers an immediately actionable approach to 423 retain partially sampled sites while accounting for imperfect detection (Doser et al. 2022). 424 425 Secondly, extending our approach to temporal β-diversity analyses would illuminate how sampling biases affect perceived community changes over time (Legendre 2019), particularly 426 427 relevant for climate change research. Finally, developing covariate-informed completeness 428 models could better distinguish sampling artifacts from genuine ecological patterns by incorporating environmental and accessibility variables. These advances would enable 429 430 researchers to match big data abundance with scientific rigour more effectively. We recommend that practitioners implement multiple, complementary quality filters rather 431 than relying on presence thresholds. Our combination of completeness estimates, minimum 432 species thresholds, and required sampling effort effectively reduced artificial nestedness 433 inflation while preserving turnover signals. Researchers should carefully consider the trade-434 off between spatial resolution and data quality when selecting grain sizes, as finer grains 435 436 retained substantially fewer sites while coarser grains maintained coverage but sacrificed 437 spatial detail. Metric choice must align with research objectives and data quality constraints (see Schroeder 438

and Jenkins 2018). Studies focused on rare species conservation require metrics sensitive to

uncommon taxa despite their vulnerability to sampling bias, whereas functional ecosystem studies may appropriately emphasise common taxa through more robust metrics. Multiple β -diversity frameworks ensure robust interpretations, as our parallel analyses revealed that richness-difference components were consistently more sensitive to sampling biases than turnover components. Researchers must explicitly account for spatial variation in sampling effort when interpreting biodiversity patterns, particularly given how our LCBD analyses demonstrated that incomplete sampling creates false signals of community uniqueness at finer spatial resolutions.

Conclusions

The accelerating biodiversity crisis demands reliable frameworks that leverage citizen science data without succumbing to sampling biases. Our framework reconciles the tension between data abundance and quality by demonstrating how sampling incompleteness systematically distorts β -diversity metrics in predictable, component-specific ways. The stronger bias in nestedness than turnover, scale-dependent sensitivity of diversity components, and artificial inflation of site uniqueness suggest that past analyses using unfiltered citizen science data require critical reassessment. These patterns reveal fundamental properties of compositional indices that extend beyond our case study and highlight the need for improved data processing protocols. As open biodiversity data continues expanding, frameworks that address data quality while maintaining scale flexibility will prove essential for balancing big data abundance with scientific rigour and maximising the valuable contributions of citizen scientists worldwide.

461 References

- 462 Antão, L. H., B. McGill, A. E. Magurran, A. M. Soares, and M. Dornelas. 2019. β-diversity
- scaling patterns are consistent across metrics and taxa. Ecography **42**:1012-1023.
- Barton, P. S., S. A. Cunningham, A. D. Manning, H. Gibb, D. B. Lindenmayer, and R. K.
- Didham. 2013. The spatial scaling of beta diversity. Global Ecology and
- 466 Biogeography **22**:639-647.
- Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity.
- Global Ecology and Biogeography **19**:134-143.
- Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from
- nestedness, and nestedness. Global ecology and biogeography **21**:1223-1232.
- Beck, J., J. D. Holloway, and W. Schwanghart. 2013. Undersampling and the measurement of
- beta diversity. Methods in Ecology and Evolution 4:370-382.
- Betts, M. G., L. Fahrig, A. S. Hadley, K. E. Halstead, J. Bowman, W. D. Robinson, J. A.
- Wiens, and D. B. Lindenmayer. 2014. A species-centered approach for uncovering
- generalities in organism responses to habitat loss and fragmentation. Ecography
- **37**:517-527.
- Birch, C. P., S. P. Oom, and J. A. Beecham. 2007. Rectangular and hexagonal grids used for
- observation, experiment and simulation in ecology. Ecological modelling 206:347-
- 479 359.
- 480 Callaghan, C. T., D. E. Bowler, S. A. Blowes, J. M. Chase, M. B. Lyons, and H. M. Pereira.
- 481 2022. Quantifying effort needed to estimate species diversity from citizen science
- data. Ecosphere **13**:e3966.
- Cao, Y., D. D. Williams, and D. P. Larsen. 2002. Comparison of ecological communities: the
- problem of sample representativeness. Ecological monographs 72:41-56.
- 485 Cardinale, B. J., J. E. Duffy, A. Gonzalez, D. U. Hooper, C. Perrings, P. Venail, A. Narwani,
- G. M. Mace, D. Tilman, and D. A. Wardle. 2012. Biodiversity loss and its impact on
- 487 humanity. Nature **486**:59-67.
- Cardoso, P., P. A. Borges, and J. A. Veech. 2009. Testing the performance of beta diversity
- measures based on incidence data: the robustness to undersampling. Diversity and
- 490 Distributions **15**:1081-1090.
- Chao, A., R. K. Colwell, C.-W. Lin, and N. J. Gotelli. 2009. Sufficient sampling for
- asymptotic minimum species richness estimators. Ecology **90**:1125-1133.

- Dickinson, J. L., B. Zuckerberg, and D. N. Bonter. 2010. Citizen science as an ecological
- research tool: challenges and benefits. Annual review of ecology, evolution, and
- 495 systematics **41**:149-172.
- 496 Doser, J. W., W. Leuenberger, T. S. Sillett, M. T. Hallworth, and E. F. Zipkin. 2022.
- Integrated community occupancy models: A framework to assess occurrence and
- biodiversity dynamics using multiple data sources. Methods in Ecology and Evolution
- **13**:919-932.
- Hanberry, B. B., H. S. He, and B. J. Palik. 2012. Pseudoabsence generation strategies for
- species distribution models.
- Hsieh, T., K. Ma, and A. Chao. 2016. iNEXT: an R package for rarefaction and extrapolation
- of species diversity (H ill numbers). Methods in ecology and evolution 7:1451-1456.
- Koleff, P., K. J. Gaston, and J. J. Lennon. 2003. Measuring beta diversity for presence-
- absence data. Journal of Animal Ecology **72**:367-382.
- Legendre, P. 2019. A temporal beta-diversity index to identify sites that have changed in
- exceptional ways in space–time surveys. Ecology and evolution 9:3500-3514.
- Legendre, P., and M. De Cáceres. 2013. Beta diversity as the variance of community data:
- dissimilarity coefficients and partitioning. Ecology letters **16**:951-963.
- Magurran, A. E. 2021. Measuring biological diversity. Current Biology **31**:R1174-R1177.
- Matthews, W., E. Marsh-Matthews, W. J. Matthews, and E. Marsh-Matthews. 2016.
- Dynamics of an upland stream fish community over 40 years: trajectories and support
- for the loose equilibrium concept. Ecology **97**:706-719.
- Morelli, F., V. Brlík, Y. Benedetti, R. Bussière, L. Moudrá, J. Reif, and M. Svitok. 2022.
- Detection rate of bird species and what it depends on: Tips for field surveys. Frontiers
- 516 in Ecology and Evolution 9:671492.
- Pebesma, E. 2018. Simple features for R: standardized support for spatial vector data.
- Podani, J., C. Ricotta, and D. Schmera. 2013. A general framework for analyzing beta
- diversity, nestedness and related community-level phenomena based on abundance
- data. Ecological complexity **15**:52-61.
- Purvis, A., and A. Hector. 2000. Getting the measure of biodiversity. Nature **405**:212-219.
- Rahbek, C. 2005. The role of spatial scale and the perception of large-scale species-richness
- patterns. Ecology letters **8**:224-239.
- 524 Schmera, D., J. Podani, and P. Legendre. 2020. What do beta diversity components reveal
- from presence-absence community data? Let us connect every indicator to an
- 526 indicandum! Ecological Indicators 117:106540.

527	Schroeder, P. J., and D. G. Jenkins. 2018. How robust are popular beta diversity indices to
528	sampling error? Ecosphere 9:e02100.
529	Smith, A. B., S. J. Murphy, D. Henderson, and K. D. Erickson. 2023. Including imprecisely
530	georeferenced specimens improves accuracy of species distribution models and
531	estimates of niche breadth. Global ecology and biogeography 32:342-355.
532	Smithson, M., and J. Verkuilen. 2006. A better lemon squeezer? Maximum-likelihood
533	regression with beta-distributed dependent variables. Psychological methods 11:54.
534	Soininen, J., J. Heino, and J. Wang. 2018. A meta-analysis of nestedness and turnover
535	components of beta diversity across organisms and ecosystems. Global Ecology and
536	Biogeography 27:96-109.
537	Viola, B. M., K. J. Sorrell, R. H. Clarke, S. P. Corney, and P. M. Vaughan. 2022. Amateurs
538	can be experts: A new perspective on collaborations with citizen scientists. Biological
539	Conservation 274 :109739.
540	Westgate M, Kellie D, Stevenson M, Newman P (2025). galah: Biodiversity Data from the
541	GBIF Node Network. R package version 2.1.2.
542	

Appendix A: Pairwise β -diversity formulas and their partitioning

This appendix details the equations used to calculate pairwise compositional dissimilarity (β-diversity) between hexagons and to partition that dissimilarity into component terms under two alternative frameworks. All formulas are expressed for both the Sørensen and Jaccard coefficient families.

For any pair of hexagons h_i and h_j , we define:

549
$$a = number of species present in both sites (shared),$$

$$b = number \ of \ species \ present \ only \ in \ h_i$$

$$c = number \ of \ species \ present \ only \ in \ h_i$$
.

These values form the basis for calculating pairwise β -diversity metrics.

Total β-Diversity

- Total β -diversity quantifies the overall compositional dissimilarity between two sites. For
- presence—absence data, two commonly used indices are the Sørensen and Jaccard indices.
- 556 These are defined as follows:

557

552

553

543

544

545

546

547

$$\beta_{sor} = \frac{b+c}{2a+b+c}$$

$$\beta_{jac} = \frac{b+c}{a+b+c}$$

- where β_{sor} and β_{jac} represent total dissimilarity under the Sørensen and Jaccard frameworks,
- respectively. Both range from 0 (identical species composition) to 1 (no species in common).

562 Partitioning β-Diversity: Baselga (2010) Framework

- Baselga's approach decomposes total β -diversity into two additive components: turnover,
- representing species replacement, and nestedness-resultant dissimilarity, reflecting
- differences in richness patterns.
- The turnover component is defined as:

$$\beta_{sim} = \frac{\min(b, c)}{a + \min(b, c)}$$

$$\beta_{jtu} = \frac{2\min(b,c)}{a + 2\min(b,c)}$$

- 570 for the Jaccard family.
- The nestedness component is the residual difference between total β-diversity and turnover:

$$\beta_{sne} = \frac{\max(b,c) - \min(b,c)}{2a + b + c} \times \frac{a}{a + \min(b,c)}$$

$$\beta_{jne} = \frac{\max(b,c) - \min(b,c)}{a+b+c} \times \frac{a}{a+2\min(b,c)}$$

Thus, total β-diversity is partitioned as:

$$\beta_{sor} = \beta_{sim} + \beta_{sne}, \qquad \beta_{jac} = \beta_{jtu} + \beta_{jne}.$$

Partitioning β-Diversity: Podani et al. (2013) Framework

- Podani and colleagues provide an alternative partitioning that separates total β -diversity into
- 579 replacement and richness difference components, defined as:

$$\beta_{jrepl} = \frac{2min(b,c)}{a+b+c}$$

581 582

576

577

$$\beta_{srepl} = \frac{2min(b,c)}{2a+b+c}$$

584 for replacement, and

$$\beta_{jrich} = \frac{|b-c|}{a+b+c}$$

586

$$\beta_{srich} = \frac{|b-c|}{2a+b+c}$$

588 for richness differences.

Partitioning β-Diversity: Schmera et al. (2020) Framework

Under the SET framework, the relative complement of nestedness in β -diversity (RC) for

pairwise sites is:

592

589

$$\beta_{srepl} = \frac{2min(b,c)}{2a+b+c} \text{ if } a > 0 \text{ otherwise } \frac{b+c}{2a+b+c}$$

$$\beta_{jrepl} = \frac{2min(b,c)}{a+b+c} \text{ if } a > 0 \text{ otherwise } \frac{b+c}{a+b+c}$$

And the intersection of nestedness and β -diversity (RC) for pairwise sites is:

596

$$\beta_{srich} = \frac{|b-c|}{2a+b+c} \text{ if } a > 0 \text{ otherwise } 0$$

$$\beta_{jrich} = \frac{|b-c|}{a+b+c} \text{ if } a > 0 \text{ otherwise } 0$$

599

Table S1. List of the included land bird species across southeast Australia

Family	Genus	Species Name	Vernacular Name
Meliphagidae	Acanthorhynchus	Acanthorhynchus tenuirostris	Eastern Spinebill
Meliphagidae	Anthochaera	Anthochaera phrygia	Regent Honeyeater
Meliphagidae	Anthochaera	Anthochaera carunculata	Red Wattlebird
Meliphagidae	Anthochaera	Anthochaera paradoxa	Yellow Wattlebird
Meliphagidae	Anthochaera	Anthochaera chrysoptera	Little Wattlebird
Meliphagidae	Caligavis	Caligavis chrysops	Yellow-faced Honeyeater
Meliphagidae	Entomyzon	Entomyzon cyanotis	Blue-faced Honeyeater
Meliphagidae	Epithianura	Epthianura albifrons	White-fronted Chat
Meliphagidae	Gavicalis	Gavicalis fasciogularis	Mangrove Honeyeater Tawny-crowned
Meliphagidae	Gliciphila	Gliciphila melanops	Honeyeater
Meliphagidae	Grantiella	Grantiella picta	Painted Honeyeater Yellow-tufted
Meliphagidae	Lichenostomus	Lichenostomus melanops	Honeyeater
Meliphagidae	Lichmera	Lichmera indistincta	Brown Honeyeater
Meliphagidae	Manorina	Manorina melanophrys	Bell Miner
Meliphagidae	Manorina	Manorina melanocephala	Noisy Miner
Meliphagidae	Meliphaga	Meliphaga lewinii	Lewin's Honeyeater Black-chinned
Meliphagidae	Melithreptus	Melithreptus gularis	Honeyeater
Meliphagidae	Melithreptus	Melithreptus validirostris	Strong-billed Honeyeater Brown-headed
Meliphagidae	Melithreptus	Melithreptus brevirostris	Honeyeater White-throated
Meliphagidae	Melithreptus	Melithreptus albogularis	Honeyeater
Meliphagidae	Melithreptus	Melithreptus lunatus	White-naped Honeyeater
Meliphagidae	Melithreptus	Melithreptus affinis	Black-headed Honeyeate
Meliphagidae	Myzomela	Myzomela sanguinolenta	Scarlet Honeyeater
Meliphagidae	Nesoptilotis	Nesoptilotis leucotis	White-eared Honeyeater Yellow-throated
Meliphagidae	Nesoptilotis	Nesoptilotis flavicollis	Honeyeater
Meliphagidae	Philemon	Philemon corniculatus	Noisy Friarbird
Meliphagidae	Philemon	Philemon citreogularis	Little Friarbird
Meliphagidae	Phylidonyris	Phylidonyris pyrrhopterus	Crescent Honeyeater
Meliphagidae	Phylidonyris	Phylidonyris novaehollandiae	New-Holland Honeyeate White-cheeked
Meliphagidae	Phylidonyris	Phylidonyris niger	Honeyeater
Meliphagidae	Plectorhyncha	Plectorhyncha lanceolata	Striped Honeyeater
Meliphagidae	Ptilotula	Ptilotula fusca	Fuscous Honeyeater White-plumed
Meliphagidae	Ptilotula	Ptilotula penicillata	Honeyeater
Pardalotidae	Pardalotus	Pardalotus punctatus	Spotted Pardalote
Pardalotidae	Pardalotus	Pardalotus quadragintus	Forty-spotted Pardalote
Pardalotidae	Pardalotus	Pardalotus striatus	Striated Pardalote

Pardalotidae	Dasyornis	Dasyornis brachypterus	Eastern Bristlebird
Pardalotidae	Dasyornis	Dasyornis broadbenti	Rufous Bristlebird
Pardalotidae	Pycnoptilus	Pycnoptilus floccosus	Pilotbird
Pardalotidae	Origma	Origma solitaria	Rockwarbler Yellow-throated
Pardalotidae	Neosericornis	Neosericornis citreogularis	Scrubwren
Pardalotidae	Sericornis	Sericornis frontalis	White-browed Scrubwren
Pardalotidae	Sericornis	Sericornis humilis	Tasmanian Scrubwren
Pardalotidae	Sericornis	Sericornis magnirostra	Large-billed Scrubwren
Pardalotidae	Acanthornis	Acanthornis magna	Scrubtit Chestnut-rumped
Pardalotidae	Hylacola	Hylacola pyrrhopygia	Heathwren
Pardalotidae	Hylacola	Hylacola cauta	Shy Heathwren
Pardalotidae	Calamanthus	Calamanthus fuliginosus	Striated Fieldwren
Pardalotidae	Calamanthus	Calamanthus campestris	Rufous Fieldwren
Pardalotidae	Pyrrholaemus	Pyrrholaemus brunneus	Redthroat
Pardalotidae	Pyrrholaemus	Pyrrholaemus sagittatus	Speckled Warbler
Pardalotidae	Smicrornis	Smicrornis brevirostris	Weebill
Pardalotidae	Gerygone	Gerygone mouki	Brown Gerygone
Pardalotidae	Gerygone	Gerygone levigaster	Mangrove Gerygone
Pardalotidae	Gerygone	Gerygone fusca	Western Gerygone
Pardalotidae	Gerygone	Gerygone palpebrosa	Fairy Gerygone
Pardalotidae	Gerygone	Gerygone olivacea	White-throated Gerygone
Pardalotidae	Acanthiza	Acanthiza pusilla	Brown Thornbill
Pardalotidae	Acanthiza	Acanthiza apicalis	Inland Thornbill
Pardalotidae	Acanthiza	Acanthiza ewingii	Tasmanian Thornbill Chestnut-rumped
Pardalotidae	Acanthiza	Acanthiza uropygialis	Thornbill
Pardalotidae	Acanthiza	Acanthiza reguloides	Buff-rumped Thornbill
Pardalotidae	Acanthiza	Acanthiza iredalei	Slender-billed Thornbill
Pardalotidae	Acanthiza	Acanthiza chrysorrhoa	Yellow-rumped Thornbill
Pardalotidae	Acanthiza	Acanthiza nana	Yellow Thornbill
Pardalotidae	Acanthiza	Acanthiza lineata	Striated Thornbill
Pardalotidae	Aphelocephala	Aphelocephala leucopsis	Southern Whiteface
Petroicidae	Microeca	Microeca fascinans	Jacky Winter
Petroicidae	Petroica	Petroica boodang	Scarlet Robin
Petroicidae	Petroica	Petroica goodenovii	Red-capped Robin
Petroicidae	Petroica	Petroica phoenicea	Flame Robin
Petroicidae	Petroica	Petroica rosea	Rose Robin
Petroicidae	Petroica	Petroica rodinogaster	Pink Robin
Petroicidae	Melanodryas	Melanodryas cucullata	Hooded Robin
Petroicidae	Melanodryas	Melanodryas vittata	Dusky Robin
Petroicidae	Tregellasia	Tregellasia capito	Pale-yellow Robin
Petroicidae	Eopsaltria	Eopsaltria australis	Eastern Yellow Robin
Petroicidae	Eopsaltria	Eopsaltria griseogularis	Western Yellow Robin
Petroicidae	Drymodes	Drymodes brunneopygia	Southern Scrub-robin
Orthonchidae	Orthonyx	Orthonyx temminckii	Australian Logrunner
Pomatostomidae	Pomatostomus	Pomatostomus temporalis	Grey-crowned Babbler
Pomatostomidae	Pomatostomus	Pomatostomus superciliosus	White-browed Babbler

Cinclosomatidae	Psophodes	Psophodes olivaceus	Eastern Whipbird
Cinclosomatidae	Psophodes	Psophodes nigrogularis	Western Whipbird
Cinclosomatidae	Cinclosoma	Cinclosoma punctatum	Spotted Quail-thrush
Cinclosomatidae	Cinclosoma	Cinclosoma castanotum	Chestnut Quail-thrush
Neosittidae	Daphoenositta	Daphoenositta chrysoptera	Varied Sittella
Pachycephalidae	Falcunculus	Falcunculus frontatus	Crested Shrike-tit
Pachycephalidae	Oreoica	Oreoica gutturalis	Crested Bellbird
Pachycephalidae	Pachycephala	Pachycephala olivacea	Olive Whistler
Pachycephalidae	Pachycephala	Pachycephala rufogularis	Red-lored Whistler
Pachycephalidae	Pachycephala	Pachycephala inornata	Gilbert's Whistler
Pachycephalidae	Pachycephala	Pachycephala pectoralis	Golden Whistler
Pachycephalidae	Pachycephala	Pachycephala rufiventris	Rufous Whistler
Pachycephalidae	Colluricincla	Colluricincla megarhyncha	Little Shrike-thrush
Pachycephalidae	Colluricincla	Colluricincla harmonica	Grey Shrike-thrush
			Red-tailed Black-
Cacatuidae	Calyptorhynchus	Calyptorhynchus banksii	cockatoo
Cacatuidae	Calyptorhynchus	Calyptorhynchus lathami	Glossy Black-cockatoo
G 1	77 1	7 1 6	Yellow-tailed Black-
Cacatuidae	Zanda	Zanda funerea	cockatoo
Cacatuidae	Callocephalon	Callocephalon fimbriatum	Gang-gang Cockatoo
Cacatuidae	Eolophus	Eolophus roseicapilla	Galah
Cacatuidae	Cacatua	Cacatua tenuirostris	Long-billed Corella
Cacatuidae	Cacatua	Cacatua sanguinea	Little Corella
Cacatuidae	Cacatua	Cacatua galerita	Sulphur-crested Cockatoo
Cacatuidae	Nymphicus	Nymphicus hollandicus	Cockatiel
Psittacidae	Trichoglossus	Trichoglossus haematodus	Rainbow Lorikeet
Psittacidae	Trichoglossus	Trichoglossus chlorolepidotus	Scaly-brested Lorikeet
Psittacidae	Glossopsitta	Glossopsitta concinna	Musk Lorikeet
Psittacidae	Parvipsitta	Parvipsitta pusilla	Little Lorikeet
Psittacidae	Parvipsitta	Parvipsitta porphyrocephala	Purple-crowned Lorikeet
Psittacidae	Alisterus	Alisterus scapularis	Australian King-parrot
Psittacidae	Aprosmictus	Aprosmictus erythropterus	Red-winged Parrot
Psittacidae Psittacidae	Polytelis	Polytelis swainsonii	Superb Parrot
Psittacidae Psittacidae	Polytelis	Polytelis anthopeplus	Regent Parrot
Psittacidae Psittacidae	Platycercus	Platycercus caledonicus	Green Rosella
Psittacidae Psittacidae	Platycercus	Platycercus elegans	Crimson Rosella
Psittacidae	Platycercus	Platycercus eximius	Eastern Rosella
Psittacidae Psittacidae	Platycercus	Platycercus adscitus	Pale-headed Rosella
Psittacidae Psittacidae	Barnardius	Barnardius zonarius	Australian Ringneck
Psittacidae Psittacidae	Northiella		Bluebonnet
Psittacidae Psittacidae	Lathamus	Northiella haematogaster Lathamus discolor	Swift Parrot
Psittacidae Psittacidae			
Psittacidae Psittacidae	Psephotus Psephotus	Psephotus haematonotus	Red-rumped Parrot
Psittacidae Psittacidae	Psephotus Molopoittoous	Psephotellus varius	Mulga Parrot
	Melopsittacus	Melopsittacus undulatus	Budgerugar
Psittacidae Psittacidae	Neophema	Neophema chrysostoma	Blue-winged Parrot
Psittacidae Psittacidae	Neophema	Neophema elegans	Elegant Parrot
Psittacidae Psittacidae	Neophema	Neophema chrysogaster	Orange-bellied Parrot
rsmacidae	Neophema	Neophema pulchella	Turquoise Parrot

Psittacidae	Pezoporus	Pezoporus wallicus	Ground Parrot
Cuculidae	Cuculus	Cuculus optatus	Oriental Cuckoo
Cuculidae	Heteroscenes	Heteroscenes pallidus	Pallid Cuckoo
Cuculidae	Cacomantis	Cacomantis variolosus	Brush Cuckoo
Cuculidae	Cacomantis	Cacomantis flabelliformis	Fan-tailed Cuckoo
Cuculidae	Chalcites	Chalcites osculans	Black-eared Cuckoo Horsfield's Bronze-
Cuculidae	Chalcites	Chalcites basalis	cuckoo
Cuculidae	Chalcites	Chalcites lucidus	Shining Bronze-cuckoo
Cuculidae	Chalcites	Chalcites minutillus	Little Bronze-cuckoo
Cuculidae	Eudynamys	Eudynamys orientalis	Asian Koel
Cuculidae	Scythrops	Scythrops novaehollandiae	Channel-billed Cuckoo
Cuculidae	Centropus	Centropus phasianinus	Pheasant Coucal
Alcedinidae	Ceyx	Ceyx azureus	Azure Kingfisher
Halcyonidae	Dacelo	Dacelo novaeguineae	Laughing Kookaburra
Halcyonidae	Dacelo	Dacelo leachii	Blue-winged Kookaburra
Halcyonidae	Todiramphus	Todiramphus macleayii	Forest Kingfisher
Halcyonidae	Todiramphus	Todiramphus pyrrhopygius	Red-backed Kingfisher
Halcyonidae	Todiramphus	Todiramphus sanctus	Sacred Kingfisher
Meropidae	Merops	Merops ornatus	Rainbow Bee-eater
Coraciidae	Eurystomus	Eurystomus orientalis	Dollarbird
Coracinate	Earystomas	an ystemus of temans	Spiny-cheeked
Meliphagidae	Acanthagenys	Acanthagenys rufogularis	Honeyeater
Meliphagidae	Manorina	Manorina flavigula	Yellow-throated Miner
Meliphagidae	Manorina	Manorina melanotis	Black-eared Miner
Meliphagidae	Gavicalis	Gavicalis virescens	Singing Honeyeater
Meliphagidae	Lichenostomus	Lichenostomus cratitius	Purple-gaped Honeyeater Yellow-plumed
Meliphagidae	Ptilotula	Ptilotula ornata	Honeyeater
Meliphagidae	Ptilotula	Ptilotula plumula	Grey-fronted Honeyeater White-fronted
Meliphagidae	Purnella	Purnella albifrons	Honeyeater
Meliphagidae	Sugomel	Sugomel niger	Black Honeyeater
Meliphagidae	Certhionyx	Certhionyx variegatus	Pied Honeyeater
Meliphagidae	Myzomela	Myzomela obscura	Dusky Honeyeater
Meliphagidae	Epthianura	Epthianura tricolor	Crimson Chat
Meliphagidae	Epthianura	Epthianura aurifrons	Orange Chat
Pittidae	Pitta	Pitta versicolor	Noisy Pitta
Menuridae	Menura	Menura alberti	Albert's Lyrebird
Menuridae	Menura	Menura novaehollandiae	Superb Lyrebird
Atrichornithidae	Atrichornis	Atrichornis rufescens	Rufous Scrub-bird
Climacteridae	Cormobates	Cormobates leucophaea	White-throated Treeceeper White-browed
Climacteridae	Climacteris	Climacteris affinis	Treecreeper
Climacteridae	Climacteris	Climacteris erythrops	Red-browed Treecreeper
Climacteridae	Climacteris	Climacteris picumnus	Brown Treecreeper
Maluridae	Malurus	Malurus cyaneus	Superb Fairy-wren
Maluridae	Malurus	Malurus splendens	Splendid Fairy-wren

Maluridae	Malurus	Malurus lamberti	Variegated Fairy-wren
Maluridae	Malurus	Malurus pulcherrimus	Blue-breasted Fairy-wren
Maluridae	Malurus	Malurus melanocephalus	Red-backed Fairy-wren
Maluridae	Stipiturus	Stipiturus malachurus	Southern Emu-wren
Accipitridae	Aviceda	Aviceda subcristata	Pacific Baza
Accipitridae	Elanus	Elanus axillaris	Black-shouldered Kite
Accipitridae	Milvus	Milvus migrans	Black Kite
Accipitridae	Haliastur	Haliastur indus	Brahminy Kite
Accipitridae	Haliastur	Haliastur sphenurus	Whistling Kite
Accipitridae	Haliaeetus	Haliaeetus leucogaster	White-bellied Sea-eagle
Accipitridae	Circus	Circus assimilis	Spotted Harrier
Accipitridae	Circus	Circus approximans	Swamp Harrier
Accipitridae	Accipiter	Accipiter novaehollandiae	Grey Goshawk
Accipitridae	Accipiter	Accipiter fasciatus	Brown Goshawk
Accipitridae	Accipiter	Accipiter cirrocephalus	Collared Sparrowhawk
Accipitridae	Aquila	Aquila audax	Wedge-tailed Eagle
Accipitridae	Hieraaetus	Hieraaetus morphnoides	Little Eagle
Accipitridae	Lophoictinia	Lophoictinia isura	Square-tailed Kite
Accipitridae	Erythrotriorchis	Erythrotriorchis radiatus	Red Goshawk
Falconidae	Falco	Falco berigora	Brown Falcon
Falconidae	Falco	Falco cenchroides	Nankeen Kestrel
Falconidae	Falco	Falco longipennis	Australian Hobby
Falconidae	Falco	Falco subniger	Black Falcon
Falconidae	Falco	Falco peregrinus	Peregrine Falcon
Megapodiidae	Alectura	Alectura lathami	Australian Brush-turkey
Monarchidae	Monarcha	Monarcha melanopsis	Black-faced Monarch
Monarchidae	Symposiachrus	Symposiachrus trivirgatus	Spectacled Monarch
Monarchidae	Carterornis	Carterornis leucotis	White-eared Monarch
Monarchidae	Myiagra	Myiagra rubecula	Leaden Flycatcher
Monarchidae	Myiagra	Myiagra cyanoleuca	Satin Flycatcher
Monarchidae	Myiagra	Myiagra alecto	Shining Flycatcher
Monarchidae	Myiagra	Myiagra inquieta	Restless Flycatcher
Monarchidae	Grallina	Grallina cyanoleuca	Magpie-lark
Rhipiduridae	Rhipidura	Rhipidura rufifrons	Rufous Fantail
Rhipiduridae	Rhipidura	Rhipidura albiscapa	Grey Fantail
Rhipiduridae	Rhipidura	Rhipidura leucophrys	Willie Wagtail
Dicruridae	Dicrurus	Dicrurus bracteatus	Spangled Drongo Black-faced Cuckoo-
Campephagidae	Coracina	Coracina novaehollandiae	shrike
Campephagidae	Coracina	Coracina lineata	Barred Cuckoo-shrike
			White-bellied Cuckoo-
Campephagidae	Coracina	Coracina papuensis	shrike
Campephagidae	Edolisoma	Edolisoma tenuirostre	Cicadabird
Campephagidae	Coracina	Coracina maxima	Ground Cuckoo-shrike
Campephagidae	Lalage	Lalage leucomela	Varied Triller
Oriolidae	Oriolus	Oriolus sagittatus	Olive-backed Oriole
Oriolidae	Sphecotheres	Sphecotheres vieilloti	Australasian Figbird White-breasted
Artamidae	Artamus	Artamus leucorynchus	Woodswallow

Artamidae	Artamus	Artamus personatus	Masked Woodswallow White-browed
Artamidae	Artamus	Artamus superciliosus	Woodswallow
Artamidae	Artamus	Artamus cinereus	Black-faced Woodswallow
Artamidae	Artamus	Artamus cyanopterus	Dusky Woodswallow
Artamidae	Artamus	Artamus minor	Little Woodswallow
Artamidae	Cracticus	Cracticus torquatus	Grey Butcherbird
Artamidae	Cracticus	Cracticus nigrogularis	Pied Butcherbird
Artamidae	Strepera	Strepera graculina	Pied Currawong
Artamidae	Strepera	Strepera fuliginosa	Black Currawong
Artamidae	Strepera	Strepera yangmosa Strepera versicolor	Grey Currawong
Artamidae	Gymnorhina Gymnorhina	Gymnorhina tibicen	Australian Magpie
Paradisaeidae	Ptiloris	Ptiloris paradiseus	Paradise Riflebird
Corvidae	Corvus	Corvus coronoides	Australian Raven
Corvidae	Corvus		Forest Raven
		Corvus tasmanicus	
Corvidae	Corvus	Corvus mellori	Little Raven
Corvidae	Corvus	Corvus orru	Torresian Crow
Corvidae	Corvus	Corvus bennetti	Little Crow
Corcoracidae	Corcorax	Corcorax melanorhamphos	White-winged Chough
Corcoracidae	Struthidea	Struthidea cinerea	Apostlebird
Ptilonorhynchidae	Ailuroedus	Ailuroedus crassirostris	Green Catbird
Ptilonorhynchidae	Sericulus	Sericulus chrysocephalus	Regent Bowerbird
Ptilonorhynchidae	Ptilonorhynchus	Ptilonorhynchus violaceus	Satin Bowerbird
Ptilonorhynchidae	Chlamydera	Chlamydera maculata	Spotted Bowerbird
Alaudidae	Mirafra	Mirafra javanica	Horsfield's Bushlark
Alaudidae	Alauda	Alauda arvensis	Eurasian Skylark
Passeridae	Passer	Passer domesticus	House Sparrow
Passeridae	Passer	Passer montanus	Eurasian Tree Sparrow
Estrildidae	Taeniopygia	Taeniopygia guttata	Zebra Finch
Estrildidae	Stizoptera	Stizoptera bichenovii	Double-barred Finch
Estrildidae	Aidemosyne	Aidemosyne modesta	Plum-headed Finch
Estrildidae	Neochmia	Neochmia temporalis	Red-browed Finch
Estrildidae	Stagonopleura	Stagonopleura guttata	Diamond Firetail
Estrildidae	Stagonopleura	Stagonopleura bella	Beautiful Firetail
Estrildidae	Lonchura	Lonchura punctulata	Nutmeg Mannikin
Fringillidae	Chloris	Chloris chloris	European Greenfinch
Fringillidae	Carduelis	Carduelis carduelis	European Goldfinch
Motacillidae	Anthus	Anthus novaeseelandiae	Australasian Pipit
Motacillidae	Motacilla	Motacilla tschutschensis	Yellow Wagtail
Dicaeidae	Dicaeum	Dicaeum hirundinaceum	Mistletoebird
Hirundinidae	Cheramoeca	Cheramoeca leucosterna	White-backed Swallow
Hirundinidae	Hirundo	Hirundo neoxena	Welcome Swallow
Hirundinidae	Petrochelidon	Petrochelidon nigricans	Tree Martin
Hirundinidae	Petrochelidon	Petrochelidon ariel	Fairy Martin
Pycnonotidae	Pycnonotus	Pycnonotus jocosus	Red-whiskered Bulbul
Acrocephalidae	Acrocephalus	Acrocephalus australis	Australian Reed Warbler
Locustellidae	Cincloramphus	Cincloramphus timoriensis	Tawny Grassbird
200000000000000000000000000000000000000	omoronampinas	Cineva ampinas umor tensas	Tamily Glassona

Locustellidae	Poodytes	Poodytes gramineus	Little Grassbird
Locustellidae	Cincloramphus	Cincloramphus mathewsi	Rufous Songlark
Locustellidae	Cincloramphus	Cincloramphus cruralis	Brown Songlark
Locustellidae	Cisticola	Cisticola exilis	Golden-headed Cisticola
Zosteropidae	Zosterops	Zosterops lateralis	Silvereye
Turdidae	Zoothera	Zoothera lunulata	Bassian Thrush
Turdidae	Zoothera	Zoothera heinei	Russet-tailed Thrush
Turdidae	Turdus	Turdus merula	Common Blackbird
Sturnidae	Sturnus	Sturnus vulgaris	Common Starling
Sturnidae	Acridotheres	Acridotheres tristis	Common Myna

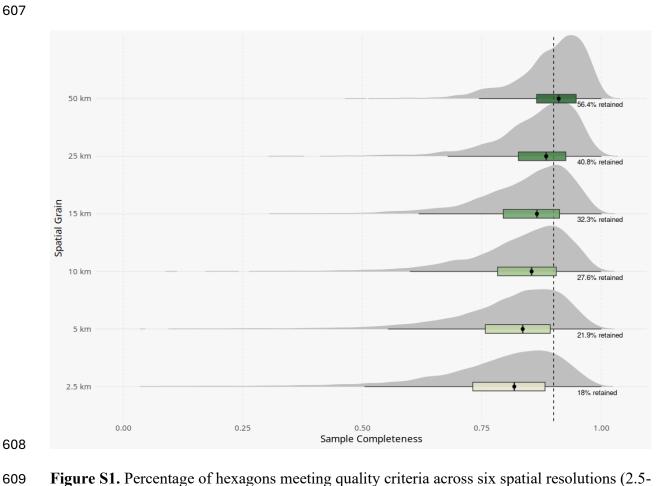


Figure S1. Percentage of hexagons meeting quality criteria across six spatial resolutions (2.5-50 km). Quality criteria include \geq 90% completeness, minimum required sampling units, and \geq 10 species.