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Abstract 21 

Citizen science data offer unprecedented spatial and temporal coverage for biodiversity 22 

research, yet sampling biases compromise their reliability for β-diversity analyses. We 23 

introduce a comprehensive framework to address these challenges, integrating space–time 24 

scaling, quality thresholds, and multiple partitioning approaches to enhance detection of 25 

ecological signals. Applying our framework to 38 million bird observations across 26 

southeastern Australia at six spatial resolutions, we demonstrate that uneven sampling distorts 27 

β-diversity patterns. Quality filtering altered β-diversity systematically across scales, with 28 

reductions ranging from 13% at coarse resolutions to 40% at fine grains. Components related 29 

to nestedness decreased more (22–45%) than turnover components (4–30%), indicating that 30 

sampling biases primarily inflate richness-difference patterns rather than species replacement 31 

processes. Sørensen indices were more sensitive to filtering than Jaccard indices at all scales, 32 

confirming theoretical predictions about their differential response to sampling completeness. 33 

Local contributions to β-diversity (LCBD) analyses revealed that incomplete sampling 34 

artificially inflated community uniqueness measures. This bias could misdirect conservation 35 

efforts toward areas that only appear to be biodiversity hotspots due to poor sampling. After 36 

filtering, LCBD patterns aligned with known biogeographic boundaries, demonstrating our 37 

framework's capacity to recover genuine ecological signals. Our findings reveal a 38 

fundamental trade-off: finer spatial grains provide higher resolution but sacrifice coverage, 39 

whereas coarser grains maintain coverage but may mask local variation. This scale-dependent 40 

framework enables researchers to leverage citizen science data more effectively for β-41 

diversity analysis, ensuring conservation decisions reflect true ecological patterns rather than 42 

sampling artefacts. 43 

Introduction 44 

Biodiversity varies across both space and time (Cardinale et al. 2012). Maps and predictions 45 

of how diversity changes along both these axes guide effective conservation strategies 46 

(Magurran 2021). However, cataloguing biodiversity is challenging because of its 47 

fundamentally multidimensional nature, which complicates reduction to a single, meaningful 48 

number (Purvis and Hector 2000). Understanding these spatio-temporal patterns requires 49 

metrics that capture not only species richness but also shifts in community composition 50 

across ecological gradients. 51 



Beta diversity (“β-diversity”) represents changes in species composition between sites, and 52 

has become a key metric for measuring change across space and time (Koleff et al. 2003). 53 

Decomposing β-diversity into turnover and nestedness links observed patterns to specific 54 

ecological processes (Baselga 2010). According to Baselga (2010), turnover reflects species 55 

replacement across environmental gradients due to environmental sorting, habitat 56 

heterogeneity and spatial or topographical barriers (Baselga 2012). Nestedness on the other 57 

hand arises when species-poor communities form subsets of species-rich ones, resulting from 58 

ordered extinction or colonisation along disturbance gradients or dispersal limitations 59 

(Baselga 2010). β-diversity components therefore offer insights into how communities 60 

respond to environmental sorting, dispersal constraints, and habitat availability patterns.  61 

While a useful metric, robust β-diversity analyses depend on high-quality community data. 62 

However, such data are typically available through extensive and resource-intensive 63 

ecological monitoring (Cardoso et al. 2009). Given the practical challenges of collecting such 64 

data, citizen science (CS) offers a valuable alternative (Viola et al. 2022). Indeed, the strength 65 

of CS repositories lies in the large amount of data collected over broad spatial and temporal 66 

scales (Dickinson et al. 2010). Recent guidelines have improved CS data use by determining 67 

the minimum sampling effort needed to quantify species diversity (Callaghan et al. 2022). 68 

However, other biases remain unresolved, leaving researchers sceptical about using CS data 69 

for β-diversity analysis. 70 

Most biases in CS data stem from its unstructured, opportunistic data collection which can 71 

alter interpretations of β-diversity patterns. Uneven sampling, for instance, clusters data in 72 

accessible or more populated areas, causing under-surveyed sites to appear less diverse and 73 

skewing the nestedness component of β-diversity (Beck et al. 2013). Positional inaccuracies 74 

from georeferencing errors misplace species records, distorting turnover by misrepresenting 75 

species replacement patterns (Smith et al. 2023). Detection biases such as false absences and 76 

variable detection probabilities among species can exaggerate differences between 77 

communities, affecting both turnover and nestedness calculations (Cao et al. 2002). Without 78 

accounting for these biases, conclusions drawn about β-diversity patterns and the ecological 79 

processes driving them may be misleading. 80 

The choice of spatial grain (plot size) and temporal scale (survey duration) further 81 

complicates β-diversity estimation from CS data (Barton et al. 2013). Small spatial grains or 82 

short-term surveys may exaggerate turnover because fewer shared species are detected, 83 



making communities appear more distinct. Conversely, larger spatial grains may overlook 84 

local variation and miss rare species, reducing perceived turnover and potentially 85 

underestimating biodiversity change (Barton et al. 2013). Temporal scaling is equally critical; 86 

short-term surveys might miss seasonal or interannual fluctuations in species presence, while 87 

long-term surveys provide general trends but may smooth over important temporal dynamics 88 

(Barton et al. 2013). 89 

While it is generally recommended to estimate β-diversity across multiple spatial grains 90 

(Barton et al. 2013), determining a minimum grain size can be important in the context of CS 91 

data. At higher resolutions, sampling errors such as uneven species detection or stochastic 92 

variability between closely situated sampling units become more pronounced, potentially 93 

affecting the relative importance of turnover and nestedness (Rahbek 2005). Interestingly, 94 

recent studies have shown that the components of β-diversity can remain consistent across 95 

scales when using certain metrics (Antão et al. 2019). For example, the Sørensen index was 96 

found to exhibit consistent patterns across spatial scales.  97 

Further, metric choice can either magnify or dampen the impact of sampling biases on 98 

turnover and nestedness. Different metric families vary in their sensitivity to sampling biases 99 

common in CS data (Schroeder and Jenkins 2018). Metrics that emphasise shared species 100 

more, like the Sørensen index, can be more prone to error due to uneven sampling than others 101 

like the Jaccard index (Schroeder and Jenkins 2018). Similarly, different partitioning 102 

frameworks (Baselga 2010, Podani et al. 2013), Schmera et al. 2020) parse out different 103 

conceptual aspects of β-diversity that may be unequally affected by sampling biases. As plot 104 

size increases and the number of shared species rises, the impact of metric choice on β-105 

diversity estimates becomes significant, particularly when using biased data sources like CS 106 

datasets. 107 

We propose a new framework that guides the effective use of big, open CS data for β-108 

diversity analysis. Building on recent guidelines for minimum sampling effort (Callaghan et 109 

al. 2022), our approach consolidates presence–absence selection, space-time scaling, and 110 

threshold-based filtering into a unified pipeline to address uneven sampling effort. We 111 

compare two β-diversity indices (Jaccard, Sørensen) and partitioning frameworks (Baselga, 112 

Podani, SET) to evaluate how they respond to biases in shared and unique species detection. 113 

We hypothesise that indices emphasising shared species (e.g., Sørensen) will be more 114 

sensitive to under-sampling. By rigorously quantifying these effects, our framework can help 115 



researchers make more reliable inferences from CS data, addressing a critical need in an era 116 

of accelerating biodiversity loss. 117 

Methods 118 

Given the established biases affecting β-diversity estimation from citizen science data, we 119 

developed a structured filtering framework to retain only well-sampled and ecologically 120 

credible grids. This approach directly addresses the sampling completeness and false absence 121 

problems that skew turnover and nestedness components. We then tested whether data quality 122 

affects observed patterns of compositional dissimilarity across multiple spatial scales, 123 

comparing different distance metrics (Jaccard and Sørensen) and partitioning methods 124 

(Baselga, Podani, and SET) to evaluate their sensitivity to variable sampling quality. 125 

Study area and species occurrence data 126 

We focused on southeastern Australia, a region encompassing diverse habitats supporting 272 127 

land bird species (full species list in Table S1; Figure 1). We chose land birds as they exhibit 128 

higher detection probabilities than other taxa (Morelli et al. 2022), thereby reducing (though 129 

not eliminating) the false absence bias that inflates β-diversity estimates. Occurrence records 130 

spanning 1990–2024 were downloaded from the Atlas of Living Australia via the R package 131 

galah (Westgate et al. 2025). Species names were matched to an accepted reference 132 

taxonomy, and records with invalid dates were discarded. Post taxonomic standardisation and 133 

temporal validation, we restricted the dataset to in situ observations (human or camera-trap 134 

based) to exclude museum specimens. Potentially misidentified records and spatial anomalies 135 

were removed through manual validation, yielding approximately 38 million occurrence 136 

records. 137 



 138 

Figure 1. Map showing the study region across southeastern Australia. The red boundary 139 

delineates the boundary covering temperate eucalypt woodlands from Queensland to 140 

Tasmania.  141 

 142 

Spatial framework and data aggregation 143 

To examine how spatial grain affects β-diversity estimation from incomplete data, we 144 

generated independent hexagonal grids across six spatial resolutions: 2.5 km, 5 km, 10 km, 145 

15 km, 25 km, and 50 km using the sf package in R (Pebesma 2018). This range captures 146 

variation from local habitat patches (2.5 km) to broader landscape gradients (50 km), 147 

balancing fine-grained detection of localised assemblage shifts with the broader resolution 148 

required for wide-ranging species (Betts et al. 2014). We treated each resolution 149 

independently rather than using nested grids to ensure optimal coverage while avoiding 150 



artificial hierarchical constraints that might obscure scale-dependent patterns in community 151 

turnover. Hexagons were chosen over squares to mitigate edge effects and provide 152 

equidistant spacing of centroids, reducing spatial bias (Birch et al. 2007).  153 

To minimise georeferencing noise, occurrence records were first snapped to a standard 1 km 154 

grid, reflecting typical geolocation error limits. Each occurrence was then assigned to the 155 

nearest hexagon centroid based on Euclidean distance, calculated as: 156 

𝑑(𝐴, 𝐵) = √(𝑥𝐵 − 𝑥𝐴)2 + (𝑦𝐵 − 𝑦𝐴)2 157 

where A is the occurrence coordinate, B is the centroid of the relevant hexagon, x is 158 

longitude, and y is latitude. 159 

For temporal scaling, we aggregated occurrences into monthly or annual bins to account for 160 

both short-term fluctuations and longer-term variation, with duplicate records within 161 

spatiotemporal units merged to prevent inflation of occurrence frequencies. 162 

Estimating sampling completeness 163 

Building on established guidelines for minimum sampling effort (Callaghan et al. 2022), we 164 

applied the Chao2 estimator to approximate total species richness in each hexagon based on 165 

singleton and doubleton frequencies (Chao et al. 2009). This approach addresses the under-166 

sampling bias that causes sites to appear artificially distinct by providing asymptotic richness 167 

estimates that account for undetected species. Although packages like iNext offer bootstrap 168 

confidence intervals (Hsieh et al. 2016), computational constraints with thousands of 169 

hexagons necessitated direct Chao2 calculation without resampling. 170 

Within each hexagon h, monthly or annual time bins served as independent sampling units. 171 

For each species s, observation frequency was calculated as the number of time bins 172 

containing that species. We then calculated: 173 

𝑄1 =∑1(freqℎ,𝑠 = 1),

𝑠

                    𝑄2 =∑1(freqℎ,𝑠 = 2),

𝑠

 174 

where Q1 is the total number of species observed in exactly one time unit, and Q2 is the total 175 

number of species observed in exactly two time units. Observed species richness in hexagon 176 

h was denoted as Sh. The expected richness, 𝑆̂ℎ, was then computed by: 177 



𝑆̂ℎ = 

{
 
 

 
 𝑆ℎ +

𝑄1 ∙ (𝑄1 −  1)

2 ∙ (𝑄2 + 1)
 ,   𝑖𝑓 𝑄2 = 0

𝑆ℎ +
𝑄1
2

2 ∙ 𝑄2
 ,                  𝑖𝑓 𝑄2 > 0

 178 

Finally, sampling completeness for each hexagon was defined as the ratio of observed to 179 

estimated species richness: 180 

𝐶ℎ =
𝑆ℎ

𝑆̂ ℎ
 181 

In hexagons with insufficient observations, incidental singletons can inflate the predicted 182 

richness, so we interpret completeness 𝐶ℎ as a heuristic measure of survey thoroughness 183 

rather than an exact estimate of true richness. Hexagons with very few sampling units or an 184 

abundance of singletons may thus overestimate  𝑆̂ℎ, reinforcing the need for minimum 185 

thresholds. 186 

Determining minimum sampling thresholds 187 

We developed a logistic-based approach to determine the minimum sampling effort required 188 

for reliable community data, leveraging the asymptotic nature of species accumulation 189 

curves. Specifically, we modelled the relationship between the number of sampling units (S) 190 

and sampling completeness 𝐶̂(𝑆) with the function:  191 

𝐶̂(𝑆) =
𝜙𝑆

𝜅 +  𝑆
 192 

where 𝜙 is the asymptotic maximum completeness (approaching 1 with infinite number of 193 

samples) and 𝜅 is the half-saturation constant (the number of samples needed to reach half of 194 

that asymptote). This model was fit separately for each spatial scale and temporal unit using 195 

non-linear least squares (the nls function in R). 196 

We retained only hexagons achieving 90% completeness relative to Chao2 estimates, a 197 

threshold indicating a strict, but near-complete, sampling (Callaghan et al. 2022). 198 

Additionally, to avoid elevated dissimilarities from sparse checklists, hexagons had to contain 199 

a minimum of 10 species (Hanberry et al. 2012). This dual-threshold approach specifically 200 

addresses the false absence problem that inflates β-diversity components, which particularly 201 

affects nestedness calculations in under-surveyed sites.  202 



β-Diversity calculation and framework comparison 203 

For each spatial grain, we constructed presence-absence matrices for both raw data (all 204 

hexagons with ≥10 species) and filtered data (meeting full quality thresholds). We calculated 205 

β-diversity using Jaccard and Sørensen indices to test our hypothesis that metrics 206 

emphasising shared species (Sørensen) are more sensitive to under-sampling bias than those 207 

weighting unique species more heavily (Jaccard).  208 

To evaluate how different conceptual frameworks respond to sampling biases, we applied 209 

three partitioning approaches that differ in their sensitivity to complex community patterns. 210 

Baselga's framework separates turnover (species replacement) from nestedness-resultant 211 

dissimilarities while maintaining mathematical independence from richness differences 212 

(Baselga 2010). However, Baselga's turnover component can falsely indicate 100% 213 

replacement when communities exhibit anti-nested patterns. Anti-nested patterns arise when 214 

communities display both species replacement and richness differences simultaneously, 215 

rather than forming simple nested subsets (Schmera et al. 2020). Citizen science data 216 

frequently exhibit such patterns because uneven sampling effort creates artificial richness 217 

differences while genuine species turnover occurs across environmental gradients, producing 218 

the dual signature that confounds Baselga's framework. Podani's method divides dissimilarity 219 

into replacement versus richness differences, with the replacement component remaining 220 

dependent on richness differences. The SET framework partitions β-diversity into 221 

intersection and relative complement components, efficiently identifying response types of 222 

communities (Schmera et al. 2020). Comparing these frameworks reveals which β-diversity 223 

patterns remain consistent across methods versus those sensitive to sampling artifacts, 224 

directly testing whether incomplete data creates systematic biases in ecological inference. 225 

Local Contributions to β-Diversity 226 

We calculated local contributions to β-diversity (LCBD) using the Jaccard-based distance 227 

matrices, following Legendre and De Cáceres (2013). We computed the Jaccard distance 228 

matrix D = [dij] for all pairs of hexagons, squared each distance to obtain D2, and then applied 229 

standard double-centred formula:  230 

𝐺 = −
1

2
𝐻𝐷2𝐻, 231 

where 𝐻 =  I − 1

𝑛
11𝑇 is the centring matrix. The diagonal elements of G, denoted Gii 232 

represent the sum of squares associated with site i, and the LCBD for site i is given by:  233 



𝐿𝐶𝐵𝐷𝑖 =
𝐺𝑖𝑖

∑ 𝐺𝑘𝑘
𝑛
𝑘=1

 234 

These LCBD values range from 0 to 1, with values closer to 1 indicating more unique 235 

community composition. LCBD analysis helps separate genuinely unique sites (e.g., those 236 

with high endemism or unusual assemblages) from those appearing unique due to sampling 237 

artefacts.  238 

Testing sampling bias effects on ecological inference 239 

To test whether incomplete sampling artificially inflates apparent community uniqueness, we 240 

modelled LCBD response to sampling completeness before and after filtering. LCBD values 241 

were transformed using the Smithson and Verkuilen (2006) method to constrain them to the 242 

[0,1] interval, satisfying distributional assumptions for Beta regression. We fitted generalised 243 

additive models (GAMs) using the mgcv package with sampling completeness as the 244 

predictor (fit as smooth spline) and hexagon identity as a random effect to account for 245 

repeated measures across scales. 246 

We present LCBD spatial patterns before and after filtering at the 50 km grain to demonstrate 247 

the filtering effects on apparent community uniqueness. We selected the 50 km resolution for 248 

visualisation because finer grains (2.5 km, 5 km) are too small to discern clear spatial patterns 249 

across our large study extent, while the 50 km grain effectively demonstrates how filtering 250 

removes sampling artefacts that create spurious hotspots of apparent endemism. This analysis 251 

reveals whether sampling biases systematically elevate LCBD values in under-surveyed 252 

areas, creating false conservation priorities, and whether our filtering approach successfully 253 

removes these artefacts while preserving genuine patterns of community uniqueness. 254 

 255 

Results 256 

Effects of Quality Filtering on Coverage 257 

Applying our quality thresholds reduced the number of analysable hexagons, with data loss 258 

following clear spatial and scale-dependent patterns. Hexagons failing to meet quality criteria 259 

clustered in remote inland regions and protected areas, while data were retained primarily 260 

around population centres and accessible coastal areas (Figure 2). This clustering effect 261 

intensified at finer spatial resolutions. Retention rates declined systematically with spatial 262 



grain: 48.4% of hexagons (404 of 834) met all quality criteria at 50 km resolution, while only 263 

1.5% (1,788 of 117,633) qualified at 2.5 km resolution (Figure S1).  264 

 265 



 266 



Figure 2. Kernel density estimation maps showing bird occurrence distribution across 267 

southeastern Australia. Panel (a) shows raw data distribution; panel (b) shows distribution 268 

after applying quality thresholds (≥90% completeness, ≥10 species). Colour intensity 269 

represents observation density, with darker areas indicating higher occurrence densities. 270 

Maps are displayed across six spatial grains: 50, 25, 15, 10, 5 and 2.5 km. 271 

Scale-Dependent Reductions in Total β-Diversity 272 

Quality filtering reduced total β-diversity systematically across all spatial grains, with effects 273 

varying predictably by dissimilarity index. The magnitude of reduction increased consistently 274 

from coarse to fine spatial resolutions. Jaccard-based total β-diversity decreased by 0.071 275 

(13.2%) at 50 km and by 0.234 (29.0%) at 5 km. Sørensen-based β-diversity showed larger 276 

reductions at all grain sizes, decreasing by 0.067 (17.3%) at 50 km and by 0.277 (43.8%) at 277 

2.5 km (Figure 3).  278 

 279 

Figure 3. Percentage reduction in total β-diversity following quality filtering across spatial 280 

grains (2.5–50 km). Bars represent Jaccard (yellow) and Sørensen (red) indices, calculated as 281 

the percentage change between unfiltered and filtered datasets. Values show the magnitude of 282 

reduction after applying quality thresholds (≥90% completeness, ≥10 species). 283 

 284 



Changes in β-diversity components 285 

Quality filtering affected β-diversity components differentially across all frameworks. 286 

Nestedness-related components showed larger reductions than turnover-related components 287 

across all spatial grains. Under Baselga's framework, turnover decreased modestly (8.97% at 288 

50 km to 30.3% at 5 km) compared to nestedness (22.1% to 28.9%). However, the difference 289 

between components narrowed at finer grains, with turnover and nestedness reductions nearly 290 

converging at 2.5 km resolution (Figure 4). Under Podani's framework, replacement 291 

components showed minimal changes (3.85% to 13.6%) while richness difference 292 

components decreased dramatically (22.5% at 50 km to 44.9% at 5 km). The SET framework 293 

showed similar patterns, with relative complement components showing modest reductions 294 

compared to substantial decreases in intersection components (Figure 4). 295 

 296 

 297 

 298 

Figure 4. Percentage reduction in Jaccard-based β-diversity components following quality 299 

filtering across six spatial grains (2.5–50 km). Components are partitioned using Baselga, 300 

Podani, and SET frameworks. Bars represent total β-diversity (yellow), turnover/replacement 301 

components (orange), and nestedness/richness difference components (maroon). Values show 302 

the percentage change between unfiltered and filtered datasets (≥90% completeness, ≥10 303 

species). 304 

 305 



Local Contributions to β-diversity 306 

LCBD analysis revealed a strong inverse relationship between sampling completeness and 307 

community uniqueness measures before quality filtering (Figure 5a). Sites with low 308 

completeness exhibited higher LCBD values across all spatial scales. After quality filtering, 309 

the relationship between LCBD values and sampling completeness changed substantially 310 

(Figure 5b). Above sampling completeness of 0.9, LCBD values showed a nearly flat 311 

relationship with completeness, with a slight increase at completeness values approaching 1. 312 

However, few hexagons achieved complete sampling (completeness = 1). 313 

 314 

 315 



 316 

Figure 5. Relationship between sampling completeness and local contributions to β-diversity 317 

(LCBD) values across six spatial grains (2.5–50 km). Panel (a) shows relationships before 318 

quality filtering; panel (b) shows relationships after quality filtering (≥90% completeness, 319 

≥10 species). Hexagonal bins represent data density, with darker colours indicating higher 320 

numbers of observations at each completeness-LCBD combination. Black lines show 321 

generalised additive model (GAM) curves with 95% confidence intervals (grey shading). 322 

LCBD values represent community uniqueness, with higher values indicating more distinct 323 

assemblages. 324 



Quality filtering altered the spatial distribution of LCBD values (Figure 6). Before filtering, 325 

LCBD values showed limited spatial structure across southeastern Australia. Post-filtering, 326 

Tasmania displayed markedly higher LCBD values in its central highlands and western 327 

regions. Coastal eastern Australia exhibited more heterogeneous LCBD values, while inland 328 

regions showed increased differentiation in community uniqueness values. 329 

 330 

Figure 6. Spatial distribution of local contributions to β-diversity (LCBD) at 50 km 331 

resolution across southeastern Australia. Panel (a) shows LCBD values from all hexagons 332 

with ≥10 species; panel (b) shows LCBD values from hexagons meeting quality criteria 333 

(≥90% completeness, ≥10 species). Colour intensity represents community uniqueness, with 334 

darker areas indicating higher LCBD values. 335 

Discussion 336 

Our analysis shows that sampling biases in citizen science data obscure spatial β-diversity 337 

patterns across multiple scales. Incomplete sampling masks genuine community dissimilarity 338 

patterns and creates spurious signals of nestedness and community uniqueness. By 339 

implementing systematic quality filtering, however, we extracted reliable ecological 340 

information from these highly variable, biased datasets. These findings provide both 341 

diagnostic insights into citizen science data limitations and practical solutions for detecting 342 

genuine ecological signals. 343 



Quality filtering consistently reduced β-diversity estimates across all spatial grains. 344 

Incomplete sampling typically generates overestimates rather than underestimates, as false 345 

absences create exaggerated dissimilarities between sites (Beck et al. 2013). This effect 346 

manifested most strongly in nestedness and richness difference components while turnover 347 

and replacement components remained stable. This differential response meets theoretical 348 

expectations (Beck et al. 2013), confirming that sampling incompleteness primarily generates 349 

false absences rather than false species replacements. Since turnover depends more on 350 

species presence than absence, it remains more robust to sampling variation. Studies using 351 

unfiltered citizen science data therefore risk overestimating the importance of nestedness-352 

generating processes (Matthews et al. 2016). 353 

Reduced sample sizes after filtering create two statistical artifacts that compound these 354 

interpretive challenges. Removing under-sampled sites eliminates artificially inflated 355 

dissimilarities, while fewer hexagons in the analysis naturally shift β-diversity estimates 356 

downward. This effect proves particularly pronounced at finer resolutions where data loss 357 

becomes severe. β-diversity estimates prove sensitive to both sampling effort and the number 358 

of sites retained, making cross-scale comparisons difficult without explicit controls for 359 

completeness. Beyond creating systematic bias, incomplete sampling reduces estimate 360 

precision, meaning that datasets may sometimes reflect true patterns closely while others 361 

show opposite patterns due to stochastic variation alone. 362 

The scale-dependent nature of data loss creates cascading methodological constraints. Finer 363 

grains generate exponentially more sites across the landscape, yet most fall below our 364 

completeness thresholds because citizen science effort concentrates around population 365 

centres. The remaining sites cluster near urban areas, creating pronounced spatial bias that 366 

intensifies with decreasing grain size. This geographic selectivity makes it increasingly 367 

difficult to distinguish dispersal limitation from habitat sorting processes, as under-368 

represented regions may harbour distinct assemblages shaped by different ecological 369 

mechanisms. Analyses at finer grains consequently require more stringent quality control to 370 

avoid sampling artifacts, potentially confining their application to intensively sampled 371 

regions. 372 

These scale effects interact with metric sensitivity to create complex analytical trade-offs. 373 

Sørensen-based measures showed greater sensitivity to filtering than Jaccard-based ones, 374 

confirming our hypothesis that indices emphasising shared species suffer more from under-375 



sampling. This occurs because metrics weighting abundant species achieve higher robustness 376 

to incomplete detection, while those emphasising shared species become increasingly 377 

affected by false absences, as Schroeder and Jenkins (2018) predicted theoretically. Metric 378 

selection should therefore balance data quality considerations with research objectives. 379 

Jaccard offers more robust results for unevenly sampled data, while Sørensen better captures 380 

community patterns when sampling proves adequate. 381 

Three β-diversity partitioning frameworks produced consistent patterns that strengthen 382 

confidence in our findings while revealing complementary insights. As predicted from their 383 

mathematical properties, Baselga's framework proved most susceptible to under-sampling 384 

effects, particularly when anti-nested patterns occurred in the data. The Podani and SET 385 

frameworks provided more stable estimates across different sampling intensities. Filtering 386 

had stronger impacts on richness-difference components than replacement components across 387 

all frameworks, suggesting that sampling biases primarily affect perceptions of alpha 388 

diversity gradients rather than species turnover patterns. 389 

These methodological insights directly inform conservation planning challenges. The 390 

differential framework performance reveals critical implications for how we interpret 391 

biodiversity patterns from citizen science data. Quality filtering reduced apparent community 392 

differences, suggesting that conservation priorities based on raw citizen science data might 393 

overestimate spatial heterogeneity and lead to suboptimal reserve placement. Sampling biases 394 

distort understanding of ecological processes driving community assembly, as inflated 395 

nestedness signals may lead planners to overemphasise dispersal limitation while 396 

underestimating environmental sorting and habitat heterogeneity (e.g., Soininen et al. 2018). 397 

This creates a fundamental tension: studies focused on conserving rare species require 398 

metrics sensitive to uncommon taxa, yet these prove most vulnerable to sampling bias. 399 

This conservation challenge becomes particularly evident when examining local 400 

contributions to β-diversity. Under-sampled sites show inflated LCBD values because rarity 401 

becomes overestimated, creating false signals of community uniqueness that could mislead 402 

conservation prioritisation. Our analysis reveals this bias through a clear pattern: sites with 403 

low sampling completeness consistently exhibited higher LCBD values across all spatial 404 

scales. In our dataset, quality filtering removes these artifacts, allowing remaining LCBD 405 

peaks to align with known biogeographic transitions such as Tasmanian highlands and coastal 406 

vegetation boundaries. This geographic correspondence strengthens ecological credibility and 407 



demonstrates that quality-controlled citizen science data can effectively identify areas of 408 

genuine compositional uniqueness rather than sampling-induced false hotspots. 409 

Limitations and Future Directions 410 

While our framework effectively addresses key sampling biases, some limitations remain. 411 

Our logistic curve approach may not capture all taxonomic heterogeneity in sampling 412 

requirements, as species rarity in citizen science data often becomes confounded by 413 

detectability issues and observer skill variation. Quality filtering inevitably introduces spatial 414 

bias, with remote areas disproportionately excluded due to insufficient sampling. This 415 

geographic selectivity may under-represent arid interior assemblages and consequently 416 

underestimate β-diversity in those regions. Sample size reduction follows existing sampling 417 

effort patterns, potentially reinforcing biases toward well-studied coastal and urban areas 418 

rather than correcting them. Our framework also does not account for temporal variation in 419 

community composition, as seasonal and yearly fluctuations could affect β-diversity 420 

estimates in ways our cross-sectional approach does not capture. 421 

Future research should prioritise three complementary directions. Firstly, integrating 422 

occupancy modelling with β-diversity analysis offers an immediately actionable approach to 423 

retain partially sampled sites while accounting for imperfect detection (Doser et al. 2022). 424 

Secondly, extending our approach to temporal β-diversity analyses would illuminate how 425 

sampling biases affect perceived community changes over time (Legendre 2019), particularly 426 

relevant for climate change research. Finally, developing covariate-informed completeness 427 

models could better distinguish sampling artifacts from genuine ecological patterns by 428 

incorporating environmental and accessibility variables. These advances would enable 429 

researchers to match big data abundance with scientific rigour more effectively. 430 

We recommend that practitioners implement multiple, complementary quality filters rather 431 

than relying on presence thresholds. Our combination of completeness estimates, minimum 432 

species thresholds, and required sampling effort effectively reduced artificial nestedness 433 

inflation while preserving turnover signals. Researchers should carefully consider the trade-434 

off between spatial resolution and data quality when selecting grain sizes, as finer grains 435 

retained substantially fewer sites while coarser grains maintained coverage but sacrificed 436 

spatial detail. 437 

Metric choice must align with research objectives and data quality constraints (see Schroeder 438 

and Jenkins 2018). Studies focused on rare species conservation require metrics sensitive to 439 



uncommon taxa despite their vulnerability to sampling bias, whereas functional ecosystem 440 

studies may appropriately emphasise common taxa through more robust metrics. Multiple β-441 

diversity frameworks ensure robust interpretations, as our parallel analyses revealed that 442 

richness-difference components were consistently more sensitive to sampling biases than 443 

turnover components. Researchers must explicitly account for spatial variation in sampling 444 

effort when interpreting biodiversity patterns, particularly given how our LCBD analyses 445 

demonstrated that incomplete sampling creates false signals of community uniqueness at 446 

finer spatial resolutions. 447 

Conclusions 448 

The accelerating biodiversity crisis demands reliable frameworks that leverage citizen science 449 

data without succumbing to sampling biases. Our framework reconciles the tension between 450 

data abundance and quality by demonstrating how sampling incompleteness systematically 451 

distorts β-diversity metrics in predictable, component-specific ways. The stronger bias in 452 

nestedness than turnover, scale-dependent sensitivity of diversity components, and artificial 453 

inflation of site uniqueness suggest that past analyses using unfiltered citizen science data 454 

require critical reassessment. These patterns reveal fundamental properties of compositional 455 

indices that extend beyond our case study and highlight the need for improved data 456 

processing protocols. As open biodiversity data continues expanding, frameworks that 457 

address data quality while maintaining scale flexibility will prove essential for balancing big 458 

data abundance with scientific rigour and maximising the valuable contributions of citizen 459 

scientists worldwide.  460 
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  542 



Appendix A: Pairwise β-diversity formulas and their partitioning  543 

This appendix details the equations used to calculate pairwise compositional dissimilarity 544 

(β-diversity) between hexagons and to partition that dissimilarity into component terms under 545 

two alternative frameworks. All formulas are expressed for both the Sørensen and Jaccard 546 

coefficient families. 547 

For any pair of hexagons hi and hj, we define: 548 

 𝑎 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝑏𝑜𝑡ℎ 𝑠𝑖𝑡𝑒𝑠 (𝑠ℎ𝑎𝑟𝑒𝑑), 549 

𝑏 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑜𝑛𝑙𝑦 𝑖𝑛 ℎ𝑖 , 550 

𝑐 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑜𝑛𝑙𝑦 𝑖𝑛 ℎ𝑗 . 551 

These values form the basis for calculating pairwise β-diversity metrics. 552 

Total β-Diversity 553 

Total β-diversity quantifies the overall compositional dissimilarity between two sites. For 554 

presence–absence data, two commonly used indices are the Sørensen and Jaccard indices. 555 

These are defined as follows: 556 

 557 

𝛽𝑠𝑜𝑟 = 
𝑏 + 𝑐

2𝑎 +  𝑏 + 𝑐
 558 

𝛽𝑗𝑎𝑐 = 
𝑏 + 𝑐

𝑎 +  𝑏 + 𝑐
 559 

where 𝛽𝑠𝑜𝑟 and 𝛽𝑗𝑎𝑐 represent total dissimilarity under the Sørensen and Jaccard frameworks, 560 

respectively. Both range from 0 (identical species composition) to 1 (no species in common). 561 

Partitioning β-Diversity: Baselga (2010) Framework 562 

Baselga’s approach decomposes total β-diversity into two additive components: turnover, 563 

representing species replacement, and nestedness-resultant dissimilarity, reflecting 564 

differences in richness patterns. 565 

The turnover component is defined as: 566 

𝛽𝑠𝑖𝑚 =
min (𝑏, 𝑐)

𝑎 + min (𝑏, 𝑐)
 567 



for the Sørensen family, and 568 

𝛽𝑗𝑡𝑢 =
2min (𝑏, 𝑐)

𝑎 + 2min (𝑏, 𝑐)
 569 

for the Jaccard family. 570 

The nestedness component is the residual difference between total β-diversity and turnover: 571 

𝛽𝑠𝑛𝑒 =
max(𝑏, 𝑐) − min (𝑏, 𝑐)

2𝑎 + 𝑏 + c
×

𝑎

𝑎 +min (𝑏, 𝑐)
 572 

𝛽𝑗𝑛𝑒 =
max(𝑏, 𝑐) − min (𝑏, 𝑐)

𝑎 + 𝑏 + 𝑐
×

𝑎

𝑎 + 2min (𝑏, 𝑐)
 573 

Thus, total β-diversity is partitioned as: 574 

𝛽𝑠𝑜𝑟 = 𝛽𝑠𝑖𝑚 + 𝛽𝑠𝑛𝑒 , 𝛽𝑗𝑎𝑐 = 𝛽𝑗𝑡𝑢 + 𝛽𝑗𝑛𝑒 . 575 

 576 

Partitioning β-Diversity: Podani et al. (2013) Framework 577 

Podani and colleagues provide an alternative partitioning that separates total β-diversity into 578 

replacement and richness difference components, defined as: 579 

𝛽𝑗𝑟𝑒𝑝𝑙  =  
2𝑚𝑖𝑛(𝑏, 𝑐)

𝑎 + 𝑏 + 𝑐
 580 

 581 

 582 

𝛽𝑠𝑟𝑒𝑝𝑙  =  
2𝑚𝑖𝑛(𝑏, 𝑐)

2𝑎 + 𝑏 + 𝑐
 583 

for replacement, and 584 

𝛽𝑗𝑟𝑖𝑐ℎ =
|𝑏 − 𝑐|

𝑎 + 𝑏 + 𝑐
 585 

 586 

𝛽𝑠𝑟𝑖𝑐ℎ =
|𝑏 − 𝑐|

2𝑎 + 𝑏 + 𝑐
 587 

for richness differences. 588 



Partitioning β-Diversity: Schmera et al. (2020) Framework 589 

Under the SET framework, the relative complement of nestedness in β-diversity (RC) for 590 

pairwise sites is: 591 

 592 

𝛽𝑠𝑟𝑒𝑝𝑙  =  
2𝑚𝑖𝑛(𝑏,𝑐)

2𝑎+𝑏+𝑐
 if a > 0 otherwise  

𝑏+𝑐

2𝑎+ 𝑏+𝑐
 593 

𝛽𝑗𝑟𝑒𝑝𝑙  =  
2𝑚𝑖𝑛(𝑏,𝑐)

𝑎+𝑏+𝑐
 if a > 0 otherwise  

𝑏+𝑐

𝑎+ 𝑏+𝑐
 594 

And the intersection of nestedness and β-diversity (RC) for pairwise sites is: 595 

 596 

𝛽𝑠𝑟𝑖𝑐ℎ =
|𝑏−𝑐|

2𝑎+𝑏+𝑐
 if a > 0 otherwise  0 597 

𝛽𝑗𝑟𝑖𝑐ℎ =
|𝑏−𝑐|

𝑎+𝑏+𝑐
 if a > 0 otherwise  0 598 

 599 

600 



Supplementary materials 601 

 602 

Table S1. List of the included land bird species across southeast Australia 603 

Family Genus Species Name Vernacular Name 

Meliphagidae Acanthorhynchus Acanthorhynchus tenuirostris Eastern Spinebill 

Meliphagidae Anthochaera Anthochaera phrygia Regent Honeyeater 

Meliphagidae Anthochaera Anthochaera carunculata Red Wattlebird 

Meliphagidae Anthochaera Anthochaera paradoxa Yellow Wattlebird 

Meliphagidae Anthochaera Anthochaera chrysoptera Little Wattlebird 

Meliphagidae Caligavis Caligavis chrysops Yellow-faced Honeyeater 

Meliphagidae Entomyzon Entomyzon cyanotis Blue-faced Honeyeater 

Meliphagidae Epithianura Epthianura albifrons White-fronted Chat 

Meliphagidae Gavicalis Gavicalis fasciogularis Mangrove Honeyeater 

Meliphagidae Gliciphila Gliciphila melanops 

Tawny-crowned 

Honeyeater 

Meliphagidae Grantiella Grantiella picta Painted Honeyeater 

Meliphagidae Lichenostomus Lichenostomus melanops 

Yellow-tufted 

Honeyeater 

Meliphagidae Lichmera Lichmera indistincta Brown Honeyeater 

Meliphagidae Manorina Manorina melanophrys Bell Miner 

Meliphagidae Manorina Manorina melanocephala Noisy Miner 

Meliphagidae Meliphaga Meliphaga lewinii Lewin's Honeyeater 

Meliphagidae Melithreptus Melithreptus gularis 

Black-chinned 

Honeyeater 

Meliphagidae Melithreptus Melithreptus validirostris Strong-billed Honeyeater 

Meliphagidae Melithreptus Melithreptus brevirostris 

Brown-headed 

Honeyeater 

Meliphagidae Melithreptus Melithreptus albogularis 

White-throated 

Honeyeater 

Meliphagidae Melithreptus Melithreptus lunatus White-naped Honeyeater 

Meliphagidae Melithreptus Melithreptus affinis Black-headed Honeyeater 

Meliphagidae Myzomela Myzomela sanguinolenta Scarlet Honeyeater 

Meliphagidae Nesoptilotis Nesoptilotis leucotis White-eared Honeyeater 

Meliphagidae Nesoptilotis Nesoptilotis flavicollis 

Yellow-throated 

Honeyeater 

Meliphagidae Philemon Philemon corniculatus Noisy Friarbird 

Meliphagidae Philemon Philemon citreogularis Little Friarbird 

Meliphagidae Phylidonyris Phylidonyris pyrrhopterus Crescent Honeyeater 

Meliphagidae Phylidonyris Phylidonyris novaehollandiae New-Holland Honeyeater 

Meliphagidae Phylidonyris Phylidonyris niger 

White-cheeked 

Honeyeater 

Meliphagidae Plectorhyncha Plectorhyncha lanceolata Striped Honeyeater 

Meliphagidae Ptilotula Ptilotula fusca Fuscous Honeyeater 

Meliphagidae Ptilotula Ptilotula penicillata 

White-plumed 

Honeyeater 

Pardalotidae Pardalotus Pardalotus punctatus Spotted Pardalote 

Pardalotidae Pardalotus Pardalotus quadragintus Forty-spotted Pardalote 

Pardalotidae Pardalotus Pardalotus striatus Striated Pardalote 



Pardalotidae Dasyornis Dasyornis brachypterus Eastern Bristlebird 

Pardalotidae Dasyornis Dasyornis broadbenti Rufous Bristlebird 

Pardalotidae Pycnoptilus Pycnoptilus floccosus Pilotbird 

Pardalotidae Origma Origma solitaria Rockwarbler 

Pardalotidae Neosericornis Neosericornis citreogularis 

Yellow-throated 

Scrubwren 

Pardalotidae Sericornis Sericornis frontalis White-browed Scrubwren 

Pardalotidae Sericornis Sericornis humilis Tasmanian Scrubwren 

Pardalotidae Sericornis Sericornis magnirostra Large-billed Scrubwren 

Pardalotidae Acanthornis Acanthornis magna Scrubtit 

Pardalotidae Hylacola Hylacola pyrrhopygia 

Chestnut-rumped 

Heathwren 

Pardalotidae Hylacola Hylacola cauta Shy Heathwren 

Pardalotidae Calamanthus Calamanthus fuliginosus Striated Fieldwren 

Pardalotidae Calamanthus Calamanthus campestris Rufous Fieldwren 

Pardalotidae Pyrrholaemus Pyrrholaemus brunneus Redthroat 

Pardalotidae Pyrrholaemus Pyrrholaemus sagittatus Speckled Warbler 

Pardalotidae Smicrornis Smicrornis brevirostris Weebill 

Pardalotidae Gerygone Gerygone mouki Brown Gerygone 

Pardalotidae Gerygone Gerygone levigaster Mangrove Gerygone 

Pardalotidae Gerygone Gerygone fusca Western Gerygone 

Pardalotidae Gerygone Gerygone palpebrosa Fairy Gerygone 

Pardalotidae Gerygone Gerygone olivacea White-throated Gerygone 

Pardalotidae Acanthiza Acanthiza pusilla Brown Thornbill 

Pardalotidae Acanthiza Acanthiza apicalis Inland Thornbill 

Pardalotidae Acanthiza Acanthiza ewingii Tasmanian Thornbill 

Pardalotidae Acanthiza Acanthiza uropygialis 

Chestnut-rumped 

Thornbill 

Pardalotidae Acanthiza Acanthiza reguloides Buff-rumped Thornbill 

Pardalotidae Acanthiza Acanthiza iredalei Slender-billed Thornbill 

Pardalotidae Acanthiza Acanthiza chrysorrhoa Yellow-rumped Thornbill 

Pardalotidae Acanthiza Acanthiza nana Yellow Thornbill 

Pardalotidae Acanthiza Acanthiza lineata Striated Thornbill 

Pardalotidae Aphelocephala Aphelocephala leucopsis Southern Whiteface 

Petroicidae Microeca Microeca fascinans Jacky Winter 

Petroicidae Petroica Petroica boodang Scarlet Robin 

Petroicidae Petroica Petroica goodenovii Red-capped Robin 

Petroicidae Petroica Petroica phoenicea Flame Robin 

Petroicidae Petroica Petroica rosea Rose Robin 

Petroicidae Petroica Petroica rodinogaster Pink Robin 

Petroicidae Melanodryas Melanodryas cucullata Hooded Robin 

Petroicidae Melanodryas Melanodryas vittata Dusky Robin 

Petroicidae Tregellasia Tregellasia capito Pale-yellow Robin 

Petroicidae Eopsaltria Eopsaltria australis Eastern Yellow Robin 

Petroicidae Eopsaltria Eopsaltria griseogularis Western Yellow Robin 

Petroicidae Drymodes Drymodes brunneopygia Southern Scrub-robin 

Orthonchidae Orthonyx Orthonyx temminckii Australian Logrunner 

Pomatostomidae Pomatostomus Pomatostomus temporalis Grey-crowned Babbler 

Pomatostomidae Pomatostomus Pomatostomus superciliosus White-browed Babbler 



Cinclosomatidae Psophodes Psophodes olivaceus Eastern Whipbird 

Cinclosomatidae Psophodes Psophodes nigrogularis Western Whipbird 

Cinclosomatidae Cinclosoma Cinclosoma punctatum Spotted Quail-thrush 

Cinclosomatidae Cinclosoma Cinclosoma castanotum Chestnut Quail-thrush 

Neosittidae Daphoenositta Daphoenositta chrysoptera Varied Sittella 

Pachycephalidae Falcunculus Falcunculus frontatus Crested Shrike-tit 

Pachycephalidae Oreoica Oreoica gutturalis Crested Bellbird 

Pachycephalidae Pachycephala Pachycephala olivacea Olive Whistler 

Pachycephalidae Pachycephala Pachycephala rufogularis Red-lored Whistler 

Pachycephalidae Pachycephala Pachycephala inornata Gilbert's Whistler 

Pachycephalidae Pachycephala Pachycephala pectoralis Golden Whistler 

Pachycephalidae Pachycephala Pachycephala rufiventris Rufous Whistler 

Pachycephalidae Colluricincla Colluricincla megarhyncha Little Shrike-thrush 

Pachycephalidae Colluricincla Colluricincla harmonica Grey Shrike-thrush 

Cacatuidae Calyptorhynchus Calyptorhynchus banksii 

Red-tailed Black-

cockatoo 

Cacatuidae Calyptorhynchus Calyptorhynchus lathami Glossy Black-cockatoo 

Cacatuidae Zanda Zanda funerea 

Yellow-tailed Black-

cockatoo 

Cacatuidae Callocephalon Callocephalon fimbriatum Gang-gang Cockatoo 

Cacatuidae Eolophus Eolophus roseicapilla Galah 

Cacatuidae Cacatua Cacatua tenuirostris Long-billed Corella 

Cacatuidae Cacatua Cacatua sanguinea Little Corella 

Cacatuidae Cacatua Cacatua galerita 

Sulphur-crested 

Cockatoo 

Cacatuidae Nymphicus Nymphicus hollandicus Cockatiel 

Psittacidae Trichoglossus Trichoglossus haematodus Rainbow Lorikeet 

Psittacidae Trichoglossus Trichoglossus chlorolepidotus Scaly-brested Lorikeet 

Psittacidae Glossopsitta Glossopsitta concinna Musk Lorikeet 

Psittacidae Parvipsitta Parvipsitta pusilla Little Lorikeet 

Psittacidae Parvipsitta Parvipsitta porphyrocephala Purple-crowned Lorikeet 

Psittacidae Alisterus Alisterus scapularis Australian King-parrot 

Psittacidae Aprosmictus Aprosmictus erythropterus Red-winged Parrot 

Psittacidae Polytelis Polytelis swainsonii Superb Parrot 

Psittacidae Polytelis Polytelis anthopeplus Regent Parrot 

Psittacidae Platycercus Platycercus caledonicus Green Rosella 

Psittacidae Platycercus Platycercus elegans Crimson Rosella 

Psittacidae Platycercus Platycercus eximius Eastern Rosella 

Psittacidae Platycercus Platycercus adscitus Pale-headed Rosella 

Psittacidae Barnardius Barnardius zonarius Australian Ringneck 

Psittacidae Northiella Northiella haematogaster Bluebonnet 

Psittacidae Lathamus Lathamus discolor Swift Parrot 

Psittacidae Psephotus Psephotus haematonotus Red-rumped Parrot 

Psittacidae Psephotus Psephotellus varius Mulga Parrot 

Psittacidae Melopsittacus Melopsittacus undulatus Budgerugar 

Psittacidae Neophema Neophema chrysostoma Blue-winged Parrot 

Psittacidae Neophema Neophema elegans Elegant Parrot 

Psittacidae Neophema Neophema chrysogaster Orange-bellied Parrot 

Psittacidae Neophema Neophema pulchella Turquoise Parrot 



Psittacidae Pezoporus Pezoporus wallicus Ground Parrot 

Cuculidae Cuculus Cuculus optatus Oriental Cuckoo 

Cuculidae Heteroscenes Heteroscenes pallidus Pallid Cuckoo 

Cuculidae Cacomantis Cacomantis variolosus Brush Cuckoo 

Cuculidae Cacomantis Cacomantis flabelliformis Fan-tailed Cuckoo 

Cuculidae Chalcites Chalcites osculans Black-eared Cuckoo 

Cuculidae Chalcites Chalcites basalis 

Horsfield's Bronze-

cuckoo 

Cuculidae Chalcites Chalcites lucidus Shining Bronze-cuckoo 

Cuculidae Chalcites Chalcites minutillus Little Bronze-cuckoo 

Cuculidae Eudynamys Eudynamys orientalis Asian Koel 

Cuculidae Scythrops Scythrops novaehollandiae Channel-billed Cuckoo 

Cuculidae Centropus Centropus phasianinus Pheasant Coucal 

Alcedinidae Ceyx Ceyx azureus Azure Kingfisher 

Halcyonidae Dacelo Dacelo novaeguineae Laughing Kookaburra 

Halcyonidae Dacelo Dacelo leachii Blue-winged Kookaburra 

Halcyonidae Todiramphus Todiramphus macleayii Forest Kingfisher 

Halcyonidae Todiramphus Todiramphus pyrrhopygius Red-backed Kingfisher 

Halcyonidae Todiramphus Todiramphus sanctus Sacred Kingfisher 

Meropidae Merops Merops ornatus Rainbow Bee-eater 

Coraciidae Eurystomus Eurystomus orientalis Dollarbird 

Meliphagidae Acanthagenys Acanthagenys rufogularis 

Spiny-cheeked 

Honeyeater 

Meliphagidae Manorina Manorina flavigula Yellow-throated Miner 

Meliphagidae Manorina Manorina melanotis Black-eared Miner 

Meliphagidae Gavicalis Gavicalis virescens Singing Honeyeater 

Meliphagidae Lichenostomus Lichenostomus cratitius Purple-gaped Honeyeater 

Meliphagidae Ptilotula Ptilotula ornata 

Yellow-plumed 

Honeyeater 

Meliphagidae Ptilotula Ptilotula plumula Grey-fronted Honeyeater 

Meliphagidae Purnella Purnella albifrons 

White-fronted 

Honeyeater 

Meliphagidae Sugomel Sugomel niger Black Honeyeater 

Meliphagidae Certhionyx Certhionyx variegatus Pied Honeyeater 

Meliphagidae Myzomela Myzomela obscura Dusky Honeyeater 

Meliphagidae Epthianura Epthianura tricolor Crimson Chat 

Meliphagidae Epthianura Epthianura aurifrons Orange Chat 

Pittidae Pitta Pitta versicolor Noisy Pitta 

Menuridae Menura Menura alberti Albert's Lyrebird 

Menuridae Menura Menura novaehollandiae Superb Lyrebird 

Atrichornithidae Atrichornis Atrichornis rufescens Rufous Scrub-bird 

Climacteridae Cormobates Cormobates leucophaea 

White-throated 

Treeceeper 

Climacteridae Climacteris Climacteris affinis 

White-browed 

Treecreeper 

Climacteridae Climacteris Climacteris erythrops Red-browed Treecreeper 

Climacteridae Climacteris Climacteris picumnus Brown Treecreeper 

Maluridae Malurus Malurus cyaneus Superb Fairy-wren 

Maluridae Malurus Malurus splendens Splendid Fairy-wren 



Maluridae Malurus Malurus lamberti Variegated Fairy-wren 

Maluridae Malurus Malurus pulcherrimus Blue-breasted Fairy-wren 

Maluridae Malurus Malurus melanocephalus Red-backed Fairy-wren 

Maluridae Stipiturus Stipiturus malachurus Southern Emu-wren 

Accipitridae Aviceda Aviceda subcristata Pacific Baza 

Accipitridae Elanus Elanus axillaris Black-shouldered Kite 

Accipitridae Milvus Milvus migrans Black Kite 

Accipitridae Haliastur Haliastur indus Brahminy Kite 

Accipitridae Haliastur Haliastur sphenurus Whistling Kite 

Accipitridae Haliaeetus Haliaeetus leucogaster White-bellied Sea-eagle 

Accipitridae Circus Circus assimilis Spotted Harrier 

Accipitridae Circus Circus approximans Swamp Harrier 

Accipitridae Accipiter Accipiter novaehollandiae Grey Goshawk 

Accipitridae Accipiter Accipiter fasciatus Brown Goshawk 

Accipitridae Accipiter Accipiter cirrocephalus Collared Sparrowhawk 

Accipitridae Aquila Aquila audax Wedge-tailed Eagle 

Accipitridae Hieraaetus Hieraaetus morphnoides Little Eagle 

Accipitridae Lophoictinia Lophoictinia isura Square-tailed Kite 

Accipitridae Erythrotriorchis Erythrotriorchis radiatus Red Goshawk 

Falconidae Falco Falco berigora Brown Falcon 

Falconidae Falco Falco cenchroides Nankeen Kestrel 

Falconidae Falco Falco longipennis Australian Hobby 

Falconidae Falco Falco subniger Black Falcon 

Falconidae Falco Falco peregrinus Peregrine Falcon 

Megapodiidae Alectura Alectura lathami Australian Brush-turkey 

Monarchidae Monarcha Monarcha melanopsis Black-faced Monarch 

Monarchidae Symposiachrus Symposiachrus trivirgatus Spectacled Monarch 

Monarchidae Carterornis Carterornis leucotis White-eared Monarch 

Monarchidae Myiagra Myiagra rubecula Leaden Flycatcher 

Monarchidae Myiagra Myiagra cyanoleuca Satin Flycatcher 

Monarchidae Myiagra Myiagra alecto Shining Flycatcher 

Monarchidae Myiagra Myiagra inquieta Restless Flycatcher 

Monarchidae Grallina Grallina cyanoleuca Magpie-lark 

Rhipiduridae Rhipidura Rhipidura rufifrons Rufous Fantail 

Rhipiduridae Rhipidura Rhipidura albiscapa Grey Fantail 

Rhipiduridae Rhipidura Rhipidura leucophrys Willie Wagtail 

Dicruridae Dicrurus Dicrurus bracteatus Spangled Drongo 

Campephagidae Coracina Coracina novaehollandiae 

Black-faced Cuckoo-

shrike 

Campephagidae Coracina Coracina lineata Barred Cuckoo-shrike 

Campephagidae Coracina Coracina papuensis 

White-bellied Cuckoo-

shrike 

Campephagidae Edolisoma Edolisoma tenuirostre Cicadabird 

Campephagidae Coracina Coracina maxima Ground Cuckoo-shrike 

Campephagidae Lalage Lalage leucomela Varied Triller 

Oriolidae Oriolus Oriolus sagittatus Olive-backed Oriole 

Oriolidae Sphecotheres Sphecotheres vieilloti Australasian Figbird 

Artamidae Artamus Artamus leucorynchus 

White-breasted 

Woodswallow 



Artamidae Artamus Artamus personatus Masked Woodswallow 

Artamidae Artamus Artamus superciliosus 

White-browed 

Woodswallow 

Artamidae Artamus Artamus cinereus 

Black-faced 

Woodswallow 

Artamidae Artamus Artamus cyanopterus Dusky Woodswallow 

Artamidae Artamus Artamus minor Little Woodswallow 

Artamidae Cracticus Cracticus torquatus Grey Butcherbird 

Artamidae Cracticus Cracticus nigrogularis Pied Butcherbird 

Artamidae Strepera Strepera graculina Pied Currawong 

Artamidae Strepera Strepera fuliginosa Black Currawong 

Artamidae Strepera Strepera versicolor Grey Currawong 

Artamidae Gymnorhina Gymnorhina tibicen Australian Magpie 

Paradisaeidae Ptiloris Ptiloris paradiseus Paradise Riflebird 

Corvidae Corvus Corvus coronoides Australian Raven 

Corvidae Corvus Corvus tasmanicus Forest Raven 

Corvidae Corvus Corvus mellori Little Raven 

Corvidae Corvus Corvus orru Torresian Crow 

Corvidae Corvus Corvus bennetti Little Crow 

Corcoracidae Corcorax Corcorax melanorhamphos White-winged Chough 

Corcoracidae Struthidea Struthidea cinerea Apostlebird 

Ptilonorhynchidae Ailuroedus Ailuroedus crassirostris Green Catbird 

Ptilonorhynchidae Sericulus Sericulus chrysocephalus Regent Bowerbird 

Ptilonorhynchidae Ptilonorhynchus Ptilonorhynchus violaceus Satin Bowerbird 

Ptilonorhynchidae Chlamydera Chlamydera maculata Spotted Bowerbird 

Alaudidae Mirafra Mirafra javanica Horsfield's Bushlark 

Alaudidae Alauda Alauda arvensis Eurasian Skylark 

Passeridae Passer Passer domesticus House Sparrow 

Passeridae Passer Passer montanus Eurasian Tree Sparrow 

Estrildidae Taeniopygia Taeniopygia guttata Zebra Finch 

Estrildidae Stizoptera Stizoptera bichenovii Double-barred Finch 

Estrildidae Aidemosyne Aidemosyne modesta Plum-headed Finch 

Estrildidae Neochmia Neochmia temporalis Red-browed Finch 

Estrildidae Stagonopleura Stagonopleura guttata Diamond Firetail 

Estrildidae Stagonopleura Stagonopleura bella Beautiful Firetail 

Estrildidae Lonchura Lonchura punctulata Nutmeg Mannikin 

Fringillidae Chloris Chloris chloris European Greenfinch 

Fringillidae Carduelis Carduelis carduelis European Goldfinch 

Motacillidae Anthus Anthus novaeseelandiae Australasian Pipit 

Motacillidae Motacilla Motacilla tschutschensis Yellow Wagtail 

Dicaeidae Dicaeum Dicaeum hirundinaceum Mistletoebird 

Hirundinidae Cheramoeca Cheramoeca leucosterna White-backed Swallow 

Hirundinidae Hirundo Hirundo neoxena Welcome Swallow 

Hirundinidae Petrochelidon Petrochelidon nigricans Tree Martin 

Hirundinidae Petrochelidon Petrochelidon ariel Fairy Martin 

Pycnonotidae Pycnonotus Pycnonotus jocosus Red-whiskered Bulbul 

Acrocephalidae Acrocephalus Acrocephalus australis Australian Reed Warbler 

Locustellidae Cincloramphus Cincloramphus timoriensis Tawny Grassbird 



Locustellidae Poodytes Poodytes gramineus Little Grassbird 

Locustellidae Cincloramphus Cincloramphus mathewsi Rufous Songlark 

Locustellidae Cincloramphus Cincloramphus cruralis Brown Songlark 

Locustellidae Cisticola Cisticola exilis Golden-headed Cisticola 

Zosteropidae Zosterops Zosterops lateralis Silvereye 

Turdidae Zoothera Zoothera lunulata Bassian Thrush 

Turdidae Zoothera Zoothera heinei Russet-tailed Thrush 

Turdidae Turdus Turdus merula Common Blackbird 

Sturnidae Sturnus Sturnus vulgaris Common Starling 

Sturnidae Acridotheres Acridotheres tristis Common Myna 
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Figure S1. Percentage of hexagons meeting quality criteria across six spatial resolutions (2.5-609 

50 km). Quality criteria include ≥90% completeness, minimum required sampling units, and 610 

≥10 species. 611 
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