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Abstract

Citizen science data offer unprecedented spatial and temporal coverage for biodiversity
research, yet sampling biases compromise their reliability for B-diversity analyses. We
introduce a comprehensive framework to address these challenges, integrating space—time
scaling, quality thresholds, and multiple partitioning approaches to enhance detection of
ecological signals. Applying our framework to 38 million bird observations across
southeastern Australia at six spatial resolutions, we demonstrate that uneven sampling distorts
B-diversity patterns. Quality filtering altered B-diversity systematically across scales, with
reductions ranging from 13% at coarse resolutions to 40% at fine grains. Components related
to nestedness decreased more (22—45%) than turnover components (4-30%), indicating that
sampling biases primarily inflate richness-difference patterns rather than species replacement
processes. Segrensen indices were more sensitive to filtering than Jaccard indices at all scales,
confirming theoretical predictions about their differential response to sampling completeness.
Local contributions to B-diversity (LCBD) analyses revealed that incomplete sampling
artificially inflated community uniqueness measures. This bias could misdirect conservation
efforts toward areas that only appear to be biodiversity hotspots due to poor sampling. After
filtering, LCBD patterns aligned with known biogeographic boundaries, demonstrating our
framework's capacity to recover genuine ecological signals. Our findings reveal a
fundamental trade-off: finer spatial grains provide higher resolution but sacrifice coverage,
whereas coarser grains maintain coverage but may mask local variation. This scale-dependent
framework enables researchers to leverage citizen science data more effectively for -
diversity analysis, ensuring conservation decisions reflect true ecological patterns rather than

sampling artefacts.
Introduction

Biodiversity varies across both space and time (Cardinale et al. 2012). Maps and predictions
of how diversity changes along both these axes guide effective conservation strategies
(Magurran 2021). However, cataloguing biodiversity is challenging because of its
fundamentally multidimensional nature, which complicates reduction to a single, meaningful
number (Purvis and Hector 2000). Understanding these spatio-temporal patterns requires
metrics that capture not only species richness but also shifts in community composition

across ecological gradients.
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Beta diversity (“B-diversity”) represents changes in species composition between sites, and
has become a key metric for measuring change across space and time (Koleff et al. 2003).
Decomposing -diversity into turnover and nestedness links observed patterns to specific
ecological processes (Baselga 2010). According to Baselga (2010), turnover reflects species
replacement across environmental gradients due to environmental sorting, habitat
heterogeneity and spatial or topographical barriers (Baselga 2012). Nestedness on the other
hand arises when species-poor communities form subsets of species-rich ones, resulting from
ordered extinction or colonisation along disturbance gradients or dispersal limitations
(Baselga 2010). B-diversity components therefore offer insights into how communities

respond to environmental sorting, dispersal constraints, and habitat availability patterns.

While a useful metric, robust B-diversity analyses depend on high-quality community data.
However, such data are typically available through extensive and resource-intensive
ecological monitoring (Cardoso et al. 2009). Given the practical challenges of collecting such
data, citizen science (CS) offers a valuable alternative (Viola et al. 2022). Indeed, the strength
of CS repositories lies in the large amount of data collected over broad spatial and temporal
scales (Dickinson et al. 2010). Recent guidelines have improved CS data use by determining
the minimum sampling effort needed to quantify species diversity (Callaghan et al. 2022).
However, other biases remain unresolved, leaving researchers sceptical about using CS data

for B-diversity analysis.

Most biases in CS data stem from its unstructured, opportunistic data collection which can
alter interpretations of B-diversity patterns. Uneven sampling, for instance, clusters data in
accessible or more populated areas, causing under-surveyed sites to appear less diverse and
skewing the nestedness component of B-diversity (Beck et al. 2013). Positional inaccuracies
from georeferencing errors misplace species records, distorting turnover by misrepresenting
species replacement patterns (Smith et al. 2023). Detection biases such as false absences and
variable detection probabilities among species can exaggerate differences between
communities, affecting both turnover and nestedness calculations (Cao et al. 2002). Without
accounting for these biases, conclusions drawn about -diversity patterns and the ecological

processes driving them may be misleading.

The choice of spatial grain (plot size) and temporal scale (survey duration) further
complicates B-diversity estimation from CS data (Barton et al. 2013). Small spatial grains or

short-term surveys may exaggerate turnover because fewer shared species are detected,
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making communities appear more distinct. Conversely, larger spatial grains may overlook
local variation and miss rare species, reducing perceived turnover and potentially
underestimating biodiversity change (Barton et al. 2013). Temporal scaling is equally critical;
short-term surveys might miss seasonal or interannual fluctuations in species presence, while
long-term surveys provide general trends but may smooth over important temporal dynamics

(Barton et al. 2013).

While it is generally recommended to estimate B-diversity across multiple spatial grains
(Barton et al. 2013), determining a minimum grain size can be important in the context of CS
data. At higher resolutions, sampling errors such as uneven species detection or stochastic
variability between closely situated sampling units become more pronounced, potentially
affecting the relative importance of turnover and nestedness (Rahbek 2005). Interestingly,
recent studies have shown that the components of B-diversity can remain consistent across
scales when using certain metrics (Antdo et al. 2019). For example, the Sgrensen index was

found to exhibit consistent patterns across spatial scales.

Further, metric choice can either magnify or dampen the impact of sampling biases on
turnover and nestedness. Different metric families vary in their sensitivity to sampling biases
common in CS data (Schroeder and Jenkins 2018). Metrics that emphasise shared species
more, like the Serensen index, can be more prone to error due to uneven sampling than others
like the Jaccard index (Schroeder and Jenkins 2018). Similarly, different partitioning
frameworks (Baselga 2010, Podani et al. 2013), Schmera et al. 2020) parse out different
conceptual aspects of B-diversity that may be unequally affected by sampling biases. As plot
size increases and the number of shared species rises, the impact of metric choice on f3-
diversity estimates becomes significant, particularly when using biased data sources like CS

datasets.

We propose a new framework that guides the effective use of big, open CS data for -
diversity analysis. Building on recent guidelines for minimum sampling effort (Callaghan et
al. 2022), our approach consolidates presence—absence selection, space-time scaling, and
threshold-based filtering into a unified pipeline to address uneven sampling effort. We
compare two B-diversity indices (Jaccard, Serensen) and partitioning frameworks (Baselga,
Podani, SET) to evaluate how they respond to biases in shared and unique species detection.
We hypothesise that indices emphasising shared species (e.g., Serensen) will be more

sensitive to under-sampling. By rigorously quantifying these effects, our framework can help
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researchers make more reliable inferences from CS data, addressing a critical need in an era

of accelerating biodiversity loss.
Methods

Given the established biases affecting B-diversity estimation from citizen science data, we
developed a structured filtering framework to retain only well-sampled and ecologically
credible grids. This approach directly addresses the sampling completeness and false absence
problems that skew turnover and nestedness components. We then tested whether data quality
affects observed patterns of compositional dissimilarity across multiple spatial scales,
comparing different distance metrics (Jaccard and Serensen) and partitioning methods

(Baselga, Podani, and SET) to evaluate their sensitivity to variable sampling quality.
Study area and species occurrence data

We focused on southeastern Australia, a region encompassing diverse habitats supporting 272
land bird species (full species list in Table S1; Figure 1). We chose land birds as they exhibit
higher detection probabilities than other taxa (Morelli et al. 2022), thereby reducing (though
not eliminating) the false absence bias that inflates B-diversity estimates. Occurrence records
spanning 1990-2024 were downloaded from the Atlas of Living Australia via the R package
galah (Westgate et al. 2025). Species names were matched to an accepted reference
taxonomy, and records with invalid dates were discarded. Post taxonomic standardisation and
temporal validation, we restricted the dataset to in situ observations (human or camera-trap
based) to exclude museum specimens. Potentially misidentified records and spatial anomalies
were removed through manual validation, yielding approximately 38 million occurrence

records.
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Figure 1. Map showing the study region across southeastern Australia. The red boundary
delineates the boundary covering temperate eucalypt woodlands from Queensland to

Tasmania.

Spatial framework and data aggregation

To examine how spatial grain affects B-diversity estimation from incomplete data, we
generated independent hexagonal grids across six spatial resolutions: 2.5 km, 5 km, 10 km,
15 km, 25 km, and 50 km using the s f package in R (Pebesma 2018). This range captures
variation from local habitat patches (2.5 km) to broader landscape gradients (50 km),
balancing fine-grained detection of localised assemblage shifts with the broader resolution
required for wide-ranging species (Betts et al. 2014). We treated each resolution

independently rather than using nested grids to ensure optimal coverage while avoiding



151
152
153

154
155
156

157

158
159

160
161
162

163

164
165
166
167
168
169
170

171
172
173

174

175
176

177

artificial hierarchical constraints that might obscure scale-dependent patterns in community
turnover. Hexagons were chosen over squares to mitigate edge effects and provide

equidistant spacing of centroids, reducing spatial bias (Birch et al. 2007).

To minimise georeferencing noise, occurrence records were first snapped to a standard 1 km
grid, reflecting typical geolocation error limits. Each occurrence was then assigned to the

nearest hexagon centroid based on Euclidean distance, calculated as:

d(A,B) = \/(XB —x4)* + (g —ya)?

where 4 is the occurrence coordinate, B is the centroid of the relevant hexagon, x is

longitude, and y is latitude.

For temporal scaling, we aggregated occurrences into monthly or annual bins to account for
both short-term fluctuations and longer-term variation, with duplicate records within

spatiotemporal units merged to prevent inflation of occurrence frequencies.
Estimating sampling completeness

Building on established guidelines for minimum sampling effort (Callaghan et al. 2022), we
applied the Chao2 estimator to approximate total species richness in each hexagon based on
singleton and doubleton frequencies (Chao et al. 2009). This approach addresses the under-
sampling bias that causes sites to appear artificially distinct by providing asymptotic richness
estimates that account for undetected species. Although packages like 1 Next offer bootstrap
confidence intervals (Hsieh et al. 2016), computational constraints with thousands of

hexagons necessitated direct Chao2 calculation without resampling.

Within each hexagon /, monthly or annual time bins served as independent sampling units.
For each species s, observation frequency was calculated as the number of time bins

containing that species. We then calculated:

01 =) 1(freq, = 1), Q2= ) 1(freqn = 2)
S S

where Q1 is the total number of species observed in exactly one time unit, and Q- is the total

number of species observed in exactly two time units. Observed species richness in hexagon

h was denoted as Si. The expected richness, Sj,, was then computed by:
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Finally, sampling completeness for each hexagon was defined as the ratio of observed to

estimated species richness:

In hexagons with insufficient observations, incidental singletons can inflate the predicted
richness, so we interpret completeness C, as a heuristic measure of survey thoroughness
rather than an exact estimate of true richness. Hexagons with very few sampling units or an

abundance of singletons may thus overestimate S, reinforcing the need for minimum

thresholds.
Determining minimum sampling thresholds

We developed a logistic-based approach to determine the minimum sampling effort required
for reliable community data, leveraging the asymptotic nature of species accumulation
curves. Specifically, we modelled the relationship between the number of sampling units (S)
and sampling completeness C (S) with the function:

¢S
K+ S

C(S) =

where ¢ is the asymptotic maximum completeness (approaching 1 with infinite number of
samples) and k is the half-saturation constant (the number of samples needed to reach half of
that asymptote). This model was fit separately for each spatial scale and temporal unit using

non-linear least squares (the n1s function in R).

We retained only hexagons achieving 90% completeness relative to Chao2 estimates, a
threshold indicating a strict, but near-complete, sampling (Callaghan et al. 2022).
Additionally, to avoid elevated dissimilarities from sparse checklists, hexagons had to contain
a minimum of 10 species (Hanberry et al. 2012). This dual-threshold approach specifically
addresses the false absence problem that inflates B-diversity components, which particularly

affects nestedness calculations in under-surveyed sites.
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[-Diversity calculation and framework comparison

For each spatial grain, we constructed presence-absence matrices for both raw data (all
hexagons with >10 species) and filtered data (meeting full quality thresholds). We calculated
B-diversity using Jaccard and Serensen indices to test our hypothesis that metrics
emphasising shared species (Serensen) are more sensitive to under-sampling bias than those

weighting unique species more heavily (Jaccard).

To evaluate how different conceptual frameworks respond to sampling biases, we applied
three partitioning approaches that differ in their sensitivity to complex community patterns.
Baselga's framework separates turnover (species replacement) from nestedness-resultant
dissimilarities while maintaining mathematical independence from richness differences
(Baselga 2010). However, Baselga's turnover component can falsely indicate 100%
replacement when communities exhibit anti-nested patterns. Anti-nested patterns arise when
communities display both species replacement and richness differences simultaneously,
rather than forming simple nested subsets (Schmera et al. 2020). Citizen science data
frequently exhibit such patterns because uneven sampling effort creates artificial richness
differences while genuine species turnover occurs across environmental gradients, producing
the dual signature that confounds Baselga's framework. Podani's method divides dissimilarity
into replacement versus richness differences, with the replacement component remaining
dependent on richness differences. The SET framework partitions B-diversity into
intersection and relative complement components, efficiently identifying response types of
communities (Schmera et al. 2020). Comparing these frameworks reveals which pB-diversity
patterns remain consistent across methods versus those sensitive to sampling artifacts,

directly testing whether incomplete data creates systematic biases in ecological inference.
Local Contributions to B-Diversity

We calculated local contributions to B-diversity (LCBD) using the Jaccard-based distance
matrices, following Legendre and De Céceres (2013). We computed the Jaccard distance
matrix D = [dj] for all pairs of hexagons, squared each distance to obtain D?, and then applied

standard double-centred formula:
1 2
G =— EH D“H,

where H = 1 — 2117 is the centring matrix. The diagonal elements of G, denoted Gi:

represent the sum of squares associated with site 7, and the LCBD for site i is given by:
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These LCBD values range from 0 to 1, with values closer to 1 indicating more unique
community composition. LCBD analysis helps separate genuinely unique sites (e.g., those
with high endemism or unusual assemblages) from those appearing unique due to sampling

artefacts.
Testing sampling bias effects on ecological inference

To test whether incomplete sampling artificially inflates apparent community uniqueness, we
modelled LCBD response to sampling completeness before and after filtering. LCBD values
were transformed using the Smithson and Verkuilen (2006) method to constrain them to the
[0,1] interval, satisfying distributional assumptions for Beta regression. We fitted generalised
additive models (GAMs) using the mgcv package with sampling completeness as the
predictor (fit as smooth spline) and hexagon identity as a random effect to account for

repeated measures across scales.

We present LCBD spatial patterns before and after filtering at the 50 km grain to demonstrate
the filtering effects on apparent community uniqueness. We selected the 50 km resolution for
visualisation because finer grains (2.5 km, 5 km) are too small to discern clear spatial patterns
across our large study extent, while the 50 km grain effectively demonstrates how filtering
removes sampling artefacts that create spurious hotspots of apparent endemism. This analysis
reveals whether sampling biases systematically elevate LCBD values in under-surveyed
areas, creating false conservation priorities, and whether our filtering approach successfully

removes these artefacts while preserving genuine patterns of community uniqueness.

Results
Effects of Quality Filtering on Coverage

Applying our quality thresholds reduced the number of analysable hexagons, with data loss
following clear spatial and scale-dependent patterns. Hexagons failing to meet quality criteria
clustered in remote inland regions and protected areas, while data were retained primarily
around population centres and accessible coastal areas (Figure 2). This clustering effect

intensified at finer spatial resolutions. Retention rates declined systematically with spatial



263  grain: 48.4% of hexagons (404 of 834) met all quality criteria at 50 km resolution, while only
264  1.5% (1,788 of 117,633) qualified at 2.5 km resolution (Figure S1).
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Figure 2. Kernel density estimation maps showing bird occurrence distribution across
southeastern Australia. Panel (a) shows raw data distribution; panel (b) shows distribution
after applying quality thresholds (>90% completeness, >10 species). Colour intensity
represents observation density, with darker areas indicating higher occurrence densities.

Maps are displayed across six spatial grains: 50, 25, 15, 10, 5 and 2.5 km.
Scale-Dependent Reductions in Total f-Diversity

Quality filtering reduced total B-diversity systematically across all spatial grains, with effects
varying predictably by dissimilarity index. The magnitude of reduction increased consistently
from coarse to fine spatial resolutions. Jaccard-based total B-diversity decreased by 0.071
(13.2%) at 50 km and by 0.234 (29.0%) at 5 km. Serensen-based B-diversity showed larger
reductions at all grain sizes, decreasing by 0.067 (17.3%) at 50 km and by 0.277 (43.8%) at
2.5 km (Figure 3).

-20 1

Percentage change (%)

-30 1

40 4

25km 5km 10 km 15 km 25 km 50 km
Grain size

Dissimilarity Index |:| jaccard . sorensen

Figure 3. Percentage reduction in total B-diversity following quality filtering across spatial
grains (2.5-50 km). Bars represent Jaccard (yellow) and Serensen (red) indices, calculated as
the percentage change between unfiltered and filtered datasets. Values show the magnitude of

reduction after applying quality thresholds (=90% completeness, >10 species).
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Changes in [-diversity components

Quality filtering affected B-diversity components differentially across all frameworks.
Nestedness-related components showed larger reductions than turnover-related components
across all spatial grains. Under Baselga's framework, turnover decreased modestly (8.97% at
50 km to 30.3% at 5 km) compared to nestedness (22.1% to 28.9%). However, the difference
between components narrowed at finer grains, with turnover and nestedness reductions nearly
converging at 2.5 km resolution (Figure 4). Under Podani's framework, replacement
components showed minimal changes (3.85% to 13.6%) while richness difference
components decreased dramatically (22.5% at 50 km to 44.9% at 5 km). The SET framework
showed similar patterns, with relative complement components showing modest reductions

compared to substantial decreases in intersection components (Figure 4).

baselga | I podani I | set

-20

Percentage change (%)

-40

$ & & S & N\ S & & & & & & & N <& &
q:;«- A \Q\L RS n(;;f o q/(?w A \Q\& \:,;* qﬁ)‘b @w« «'],‘?\k A \Qw \(,;e qf;é %Q\L
Grain size
Turnover-type Nestedness-type
Component type |:| Total beta (Replacement/Intersection) (Richness Difference/Relative Complement)

Figure 4. Percentage reduction in Jaccard-based B-diversity components following quality
filtering across six spatial grains (2.5-50 km). Components are partitioned using Baselga,
Podani, and SET frameworks. Bars represent total B-diversity (yellow), turnover/replacement
components (orange), and nestedness/richness difference components (maroon). Values show
the percentage change between unfiltered and filtered datasets (>90% completeness, >10

species).
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Local Contributions to B-diversity

LCBD analysis revealed a strong inverse relationship between sampling completeness and
community uniqueness measures before quality filtering (Figure 5a). Sites with low
completeness exhibited higher LCBD values across all spatial scales. After quality filtering,
the relationship between LCBD values and sampling completeness changed substantially
(Figure 5b). Above sampling completeness of 0.9, LCBD values showed a nearly flat
relationship with completeness, with a slight increase at completeness values approaching 1.

However, few hexagons achieved complete sampling (completeness = 1).
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Figure 5. Relationship between sampling completeness and local contributions to B-diversity
(LCBD) values across six spatial grains (2.5-50 km). Panel (a) shows relationships before
quality filtering; panel (b) shows relationships after quality filtering (=90% completeness,
>10 species). Hexagonal bins represent data density, with darker colours indicating higher
numbers of observations at each completeness-LCBD combination. Black lines show
generalised additive model (GAM) curves with 95% confidence intervals (grey shading).
LCBD values represent community uniqueness, with higher values indicating more distinct

assemblages.
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Quality filtering altered the spatial distribution of LCBD values (Figure 6). Before filtering,

LCBD values showed limited spatial structure across southeastern Australia. Post-filtering,

Tasmania displayed markedly higher LCBD values in its central highlands and western

regions. Coastal eastern Australia exhibited more heterogeneous LCBD values, while inland

regions showed increased differentiation in community uniqueness values.
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Figure 6. Spatial distribution of local contributions to B-diversity (LCBD) at 50 km
resolution across southeastern Australia. Panel (a) shows LCBD values from all hexagons
with >10 species; panel (b) shows LCBD values from hexagons meeting quality criteria
(>90% completeness, >10 species). Colour intensity represents community uniqueness, with

darker areas indicating higher LCBD values.
Discussion

Our analysis shows that sampling biases in citizen science data obscure spatial B-diversity
patterns across multiple scales. Incomplete sampling masks genuine community dissimilarity
patterns and creates spurious signals of nestedness and community uniqueness. By
implementing systematic quality filtering, however, we extracted reliable ecological
information from these highly variable, biased datasets. These findings provide both
diagnostic insights into citizen science data limitations and practical solutions for detecting

genuine ecological signals.



344  Quality filtering consistently reduced B-diversity estimates across all spatial grains.

345 Incomplete sampling typically generates overestimates rather than underestimates, as false
346  absences create exaggerated dissimilarities between sites (Beck et al. 2013). This effect

347  manifested most strongly in nestedness and richness difference components while turnover
348  and replacement components remained stable. This differential response meets theoretical
349  expectations (Beck et al. 2013), confirming that sampling incompleteness primarily generates
350 false absences rather than false species replacements. Since turnover depends more on

351  species presence than absence, it remains more robust to sampling variation. Studies using
352  unfiltered citizen science data therefore risk overestimating the importance of nestedness-

353  generating processes (Matthews et al. 2016).

354  Reduced sample sizes after filtering create two statistical artifacts that compound these

355 interpretive challenges. Removing under-sampled sites eliminates artificially inflated

356  dissimilarities, while fewer hexagons in the analysis naturally shift B-diversity estimates

357 downward. This effect proves particularly pronounced at finer resolutions where data loss
358  becomes severe. B-diversity estimates prove sensitive to both sampling effort and the number
359  of sites retained, making cross-scale comparisons difficult without explicit controls for

360 completeness. Beyond creating systematic bias, incomplete sampling reduces estimate

361  precision, meaning that datasets may sometimes reflect true patterns closely while others

362  show opposite patterns due to stochastic variation alone.

363  The scale-dependent nature of data loss creates cascading methodological constraints. Finer
364  grains generate exponentially more sites across the landscape, yet most fall below our

365 completeness thresholds because citizen science effort concentrates around population

366  centres. The remaining sites cluster near urban areas, creating pronounced spatial bias that
367 intensifies with decreasing grain size. This geographic selectivity makes it increasingly

368 difficult to distinguish dispersal limitation from habitat sorting processes, as under-

369  represented regions may harbour distinct assemblages shaped by different ecological

370  mechanisms. Analyses at finer grains consequently require more stringent quality control to
371  avoid sampling artifacts, potentially confining their application to intensively sampled

372  regions.

373  These scale effects interact with metric sensitivity to create complex analytical trade-offs.
374  Serensen-based measures showed greater sensitivity to filtering than Jaccard-based ones,

375  confirming our hypothesis that indices emphasising shared species suffer more from under-
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sampling. This occurs because metrics weighting abundant species achieve higher robustness
to incomplete detection, while those emphasising shared species become increasingly
affected by false absences, as Schroeder and Jenkins (2018) predicted theoretically. Metric
selection should therefore balance data quality considerations with research objectives.
Jaccard offers more robust results for unevenly sampled data, while Serensen better captures

community patterns when sampling proves adequate.

Three B-diversity partitioning frameworks produced consistent patterns that strengthen
confidence in our findings while revealing complementary insights. As predicted from their
mathematical properties, Baselga's framework proved most susceptible to under-sampling
effects, particularly when anti-nested patterns occurred in the data. The Podani and SET
frameworks provided more stable estimates across different sampling intensities. Filtering
had stronger impacts on richness-difference components than replacement components across
all frameworks, suggesting that sampling biases primarily affect perceptions of alpha

diversity gradients rather than species turnover patterns.

These methodological insights directly inform conservation planning challenges. The
differential framework performance reveals critical implications for how we interpret
biodiversity patterns from citizen science data. Quality filtering reduced apparent community
differences, suggesting that conservation priorities based on raw citizen science data might
overestimate spatial heterogeneity and lead to suboptimal reserve placement. Sampling biases
distort understanding of ecological processes driving community assembly, as inflated
nestedness signals may lead planners to overemphasise dispersal limitation while
underestimating environmental sorting and habitat heterogeneity (e.g., Soininen et al. 2018).
This creates a fundamental tension: studies focused on conserving rare species require

metrics sensitive to uncommon taxa, yet these prove most vulnerable to sampling bias.

This conservation challenge becomes particularly evident when examining local
contributions to B-diversity. Under-sampled sites show inflated LCBD values because rarity
becomes overestimated, creating false signals of community uniqueness that could mislead
conservation prioritisation. Our analysis reveals this bias through a clear pattern: sites with
low sampling completeness consistently exhibited higher LCBD values across all spatial
scales. In our dataset, quality filtering removes these artifacts, allowing remaining LCBD
peaks to align with known biogeographic transitions such as Tasmanian highlands and coastal

vegetation boundaries. This geographic correspondence strengthens ecological credibility and
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demonstrates that quality-controlled citizen science data can effectively identify areas of

genuine compositional uniqueness rather than sampling-induced false hotspots.
Limitations and Future Directions

While our framework effectively addresses key sampling biases, some limitations remain.
Our logistic curve approach may not capture all taxonomic heterogeneity in sampling
requirements, as species rarity in citizen science data often becomes confounded by
detectability issues and observer skill variation. Quality filtering inevitably introduces spatial
bias, with remote areas disproportionately excluded due to insufficient sampling. This
geographic selectivity may under-represent arid interior assemblages and consequently
underestimate B-diversity in those regions. Sample size reduction follows existing sampling
effort patterns, potentially reinforcing biases toward well-studied coastal and urban areas
rather than correcting them. Our framework also does not account for temporal variation in
community composition, as seasonal and yearly fluctuations could affect B-diversity

estimates in ways our cross-sectional approach does not capture.

Future research should prioritise three complementary directions. Firstly, integrating
occupancy modelling with B-diversity analysis offers an immediately actionable approach to
retain partially sampled sites while accounting for imperfect detection (Doser et al. 2022).
Secondly, extending our approach to temporal B-diversity analyses would illuminate how
sampling biases affect perceived community changes over time (Legendre 2019), particularly
relevant for climate change research. Finally, developing covariate-informed completeness
models could better distinguish sampling artifacts from genuine ecological patterns by
incorporating environmental and accessibility variables. These advances would enable

researchers to match big data abundance with scientific rigour more effectively.

We recommend that practitioners implement multiple, complementary quality filters rather
than relying on presence thresholds. Our combination of completeness estimates, minimum
species thresholds, and required sampling effort effectively reduced artificial nestedness
inflation while preserving turnover signals. Researchers should carefully consider the trade-
off between spatial resolution and data quality when selecting grain sizes, as finer grains
retained substantially fewer sites while coarser grains maintained coverage but sacrificed

spatial detail.

Metric choice must align with research objectives and data quality constraints (see Schroeder

and Jenkins 2018). Studies focused on rare species conservation require metrics sensitive to
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uncommon taxa despite their vulnerability to sampling bias, whereas functional ecosystem
studies may appropriately emphasise common taxa through more robust metrics. Multiple -
diversity frameworks ensure robust interpretations, as our parallel analyses revealed that
richness-difference components were consistently more sensitive to sampling biases than
turnover components. Researchers must explicitly account for spatial variation in sampling
effort when interpreting biodiversity patterns, particularly given how our LCBD analyses
demonstrated that incomplete sampling creates false signals of community uniqueness at

finer spatial resolutions.
Conclusions

The accelerating biodiversity crisis demands reliable frameworks that leverage citizen science
data without succumbing to sampling biases. Our framework reconciles the tension between
data abundance and quality by demonstrating how sampling incompleteness systematically
distorts B-diversity metrics in predictable, component-specific ways. The stronger bias in
nestedness than turnover, scale-dependent sensitivity of diversity components, and artificial
inflation of site uniqueness suggest that past analyses using unfiltered citizen science data
require critical reassessment. These patterns reveal fundamental properties of compositional
indices that extend beyond our case study and highlight the need for improved data
processing protocols. As open biodiversity data continues expanding, frameworks that
address data quality while maintaining scale flexibility will prove essential for balancing big
data abundance with scientific rigour and maximising the valuable contributions of citizen

scientists worldwide.
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Appendix A: Pairwise f-diversity formulas and their partitioning

This appendix details the equations used to calculate pairwise compositional dissimilarity
(B-diversity) between hexagons and to partition that dissimilarity into component terms under
two alternative frameworks. All formulas are expressed for both the Serensen and Jaccard

coefficient families.
For any pair of hexagons 4; and 4;, we define:
a = number of species present in both sites (shared),
b = number of species present only in h;,
¢ = number of species present only in h;.
These values form the basis for calculating pairwise B-diversity metrics.
Total p-Diversity

Total B-diversity quantifies the overall compositional dissimilarity between two sites. For
presence—absence data, two commonly used indices are the Serensen and Jaccard indices.

These are defined as follows:

_ b+c
Bsor = 2a+ b+c

b+c
ﬁjac:—
a+ b+c

where B, and Bjq represent total dissimilarity under the Serensen and Jaccard frameworks,

respectively. Both range from 0 (identical species composition) to 1 (no species in common).
Partitioning pB-Diversity: Baselga (2010) Framework

Baselga’s approach decomposes total B-diversity into two additive components: turnover,
representing species replacement, and nestedness-resultant dissimilarity, reflecting

differences in richness patterns.
The turnover component is defined as:

min (b, c)

Bsim = o min (5, 0)
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for the Serensen family, and

2min (b, c)
a + 2min (b, c¢)

Bjtu =

for the Jaccard family.

The nestedness component is the residual difference between total B-diversity and turnover:

_ max(b,c) —min (b, c) a

sne 2a+b+c a + min (b, ¢)
B max(b,c) — min (b, c) a

Bine = a+b+c a + 2min (b, c¢)

Thus, total B-diversity is partitioned as:

Bsor = Bsim + Bsnes ﬁjac = ﬁjtu + ﬁjne-

Partitioning B-Diversity: Podani et al. (2013) Framework

Podani and colleagues provide an alternative partitioning that separates total B-diversity into

replacement and richness difference components, defined as:

2min(b, c)
Piret = v e
_ 2min(b,c)
Bsrept = 2a+b+c
for replacement, and
|b —c|
Pirien = ¥ b+ e
_ b—c|
Bsricn = 2a+b+c

for richness differences.



589  Partitioning B-Diversity: Schmera et al. (2020) Framework

590  Under the SET framework, the relative complement of nestedness in -diversity (RC) for

591  pairwise sites is:

592
2min(b,c) . . b+c
= ——2 > r'w
593 Bsrept Sothic if a > 0 otherwise S s
2min(b,c) . .
. = 20 >
594 Bjrept o if a > 0 otherwise —

595  And the intersection of nestedness and pB-diversity (RC) for pairwise sites is:

596
[b—c| . )
597 Bsrich = Py if @ > 0 otherwise 0
|b—c| . )
598 Bjrich = hie if a > 0 otherwise 0
599

600
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Supplementary materials

Table S1. List of the included land bird species across southeast Australia

Family Genus Species Name Vernacular Name
Meliphagidae Acanthorhynchus  Acanthorhynchus tenuirostris Eastern Spinebill
Meliphagidae Anthochaera Anthochaera phrygia Regent Honeyeater
Meliphagidae Anthochaera Anthochaera carunculata Red Wattlebird
Meliphagidae Anthochaera Anthochaera paradoxa Yellow Wattlebird
Meliphagidae Anthochaera Anthochaera chrysoptera Little Wattlebird
Meliphagidae Caligavis Caligavis chrysops Yellow-faced Honeyeater
Meliphagidae Entomyzon Entomyzon cyanotis Blue-faced Honeyeater
Meliphagidae Epithianura Epthianura albifrons White-fronted Chat
Meliphagidae Gavicalis Gavicalis fasciogularis Mangrove Honeyeater
Tawny-crowned
Meliphagidae Gliciphila Gliciphila melanops Honeyeater
Meliphagidae Grantiella Grantiella picta Painted Honeyeater
Yellow-tufted
Meliphagidae Lichenostomus Lichenostomus melanops Honeyeater
Meliphagidae Lichmera Lichmera indistincta Brown Honeyeater
Meliphagidae Manorina Manorina melanophrys Bell Miner
Meliphagidae Manorina Manorina melanocephala Noisy Miner
Meliphagidae Meliphaga Meliphaga lewinii Lewin's Honeyeater
Black-chinned
Meliphagidae Melithreptus Melithreptus gularis Honeyeater
Meliphagidae Melithreptus Melithreptus validirostris Strong-billed Honeyeater
Brown-headed
Meliphagidae Melithreptus Melithreptus brevirostris Honeyeater
White-throated
Meliphagidae Melithreptus Melithreptus albogularis Honeyeater
Meliphagidae Melithreptus Melithreptus lunatus White-naped Honeyeater
Meliphagidae Melithreptus Melithreptus affinis Black-headed Honeyeater
Meliphagidae Myzomela Myzomela sanguinolenta Scarlet Honeyeater
Meliphagidae Nesoptilotis Nesoptilotis leucotis White-eared Honeyeater
Yellow-throated
Meliphagidae Nesoptilotis Nesoptilotis flavicollis Honeyeater
Meliphagidae Philemon Philemon corniculatus Noisy Friarbird
Meliphagidae Philemon Philemon citreogularis Little Friarbird
Meliphagidae Phylidonyris Phylidonyris pyrrhopterus Crescent Honeyeater
Meliphagidae Phylidonyris Phylidonyris novaehollandiae New-Holland Honeyeater
White-cheeked
Meliphagidae Phylidonyris Phylidonyris niger Honeyeater
Meliphagidae Plectorhyncha Plectorhyncha lanceolata Striped Honeyeater
Meliphagidae Ptilotula Ptilotula fusca Fuscous Honeyeater
White-plumed
Meliphagidae Ptilotula Ptilotula penicillata Honeyeater
Pardalotidae Pardalotus Pardalotus punctatus Spotted Pardalote
Pardalotidae Pardalotus Pardalotus quadragintus Forty-spotted Pardalote
Pardalotidae Pardalotus Pardalotus striatus Striated Pardalote



Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae

Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae

Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae

Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Pardalotidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Petroicidae
Orthonchidae

Pomatostomidae
Pomatostomidae

Dasyornis
Dasyornis
Pycnoptilus
Origma

Neosericornis
Sericornis
Sericornis
Sericornis
Acanthornis

Hylacola
Hylacola
Calamanthus
Calamanthus
Pyrrholaemus
Pyrrholaemus
Smicrornis
Gerygone
Gerygone
Gerygone
Gerygone
Gerygone
Acanthiza
Acanthiza
Acanthiza

Acanthiza
Acanthiza
Acanthiza
Acanthiza
Acanthiza
Acanthiza

Aphelocephala

Microeca
Petroica
Petroica
Petroica
Petroica
Petroica
Melanodryas
Melanodryas
Tregellasia
Eopsaltria
Eopsaltria
Drymodes
Orthonyx

Pomatostomus
Pomatostomus

Dasyornis brachypterus
Dasyornis broadbenti
Pycnoptilus floccosus
Origma solitaria

Neosericornis citreogularis
Sericornis frontalis
Sericornis humilis
Sericornis magnirostra
Acanthornis magna

Hylacola pyrrhopygia
Hylacola cauta
Calamanthus fuliginosus
Calamanthus campestris
Pyrrholaemus brunneus
Pyrrholaemus sagittatus
Smicrornis brevirostris
Gerygone mouki
Gerygone levigaster
Gerygone fusca
Gerygone palpebrosa
Gerygone olivacea
Acanthiza pusilla
Acanthiza apicalis
Acanthiza ewingii

Acanthiza uropygialis
Acanthiza reguloides
Acanthiza iredalei
Acanthiza chrysorrhoa
Acanthiza nana
Acanthiza lineata
Aphelocephala leucopsis
Microeca fascinans
Petroica boodang
Petroica goodenovii
Petroica phoenicea
Petroica rosea

Petroica rodinogaster
Melanodryas cucullata
Melanodryas vittata
Tregellasia capito
Eopsaltria australis
Eopsaltria griseogularis
Drymodes brunneopygia
Orthonyx temminckii
Pomatostomus temporalis
Pomatostomus superciliosus

Eastern Bristlebird
Rufous Bristlebird
Pilotbird

Rockwarbler
Yellow-throated
Scrubwren

White-browed Scrubwren
Tasmanian Scrubwren
Large-billed Scrubwren

Scrubtit
Chestnut-rumped
Heathwren

Shy Heathwren
Striated Fieldwren
Rufous Fieldwren
Redthroat

Speckled Warbler
Weebill

Brown Gerygone
Mangrove Gerygone
Western Gerygone
Fairy Gerygone
White-throated Gerygone
Brown Thornbill
Inland Thornbill

Tasmanian Thornbill
Chestnut-rumped
Thornbill

Buff-rumped Thornbill
Slender-billed Thornbill
Yellow-rumped Thornbill
Yellow Thornbill
Striated Thornbill
Southern Whiteface
Jacky Winter

Scarlet Robin
Red-capped Robin
Flame Robin

Rose Robin

Pink Robin

Hooded Robin

Dusky Robin
Pale-yellow Robin
Eastern Yellow Robin
Western Yellow Robin
Southern Scrub-robin
Australian Logrunner
Grey-crowned Babbler
White-browed Babbler
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Cinclosomatidae
Cinclosomatidae
Cinclosomatidae
Neosittidae

Pachycephalidae
Pachycephalidae
Pachycephalidae
Pachycephalidae
Pachycephalidae
Pachycephalidae
Pachycephalidae
Pachycephalidae
Pachycephalidae

Cacatuidae
Cacatuidae

Cacatuidae
Cacatuidae
Cacatuidae
Cacatuidae
Cacatuidae

Cacatuidae
Cacatuidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae

Psophodes
Psophodes
Cinclosoma
Cinclosoma
Daphoenositta
Falcunculus
Oreoica
Pachycephala
Pachycephala
Pachycephala
Pachycephala
Pachycephala
Colluricincla
Colluricincla

Calyptorhynchus
Calyptorhynchus

Zanda
Callocephalon
Eolophus
Cacatua
Cacatua

Cacatua
Nymphicus
Trichoglossus
Trichoglossus
Glossopsitta
Parvipsitta
Parvipsitta
Alisterus
Aprosmictus
Polytelis
Polytelis
Platycercus
Platycercus
Platycercus
Platycercus
Barnardius
Northiella
Lathamus
Psephotus
Psephotus
Melopsittacus
Neophema
Neophema
Neophema
Neophema

Psophodes olivaceus
Psophodes nigrogularis
Cinclosoma punctatum
Cinclosoma castanotum
Daphoenositta chrysoptera
Falcunculus frontatus
Oreoica gutturalis
Pachycephala olivacea
Pachycephala rufogularis
Pachycephala inornata
Pachycephala pectoralis
Pachycephala rufiventris
Colluricincla megarhyncha
Colluricincla harmonica

Calyptorhynchus banksii
Calyptorhynchus lathami

Zanda funerea
Callocephalon fimbriatum
Eolophus roseicapilla
Cacatua tenuirostris
Cacatua sanguinea

Cacatua galerita
Nymphicus hollandicus
Trichoglossus haematodus

Trichoglossus chlorolepidotus

Glossopsitta concinna
Parvipsitta pusilla
Parvipsitta porphyrocephala
Alisterus scapularis
Aprosmictus erythropterus
Polytelis swainsonii
Polytelis anthopeplus
Platycercus caledonicus
Platycercus elegans
Platycercus eximius
Platycercus adscitus
Barnardius zonarius
Northiella haematogaster
Lathamus discolor
Psephotus haematonotus
Psephotellus varius
Melopsittacus undulatus
Neophema chrysostoma
Neophema elegans
Neophema chrysogaster
Neophema pulchella

Eastern Whipbird
Western Whipbird
Spotted Quail-thrush
Chestnut Quail-thrush
Varied Sittella
Crested Shrike-tit
Crested Bellbird
Olive Whistler
Red-lored Whistler
Gilbert's Whistler
Golden Whistler
Rufous Whistler
Little Shrike-thrush

Grey Shrike-thrush
Red-tailed Black-
cockatoo

Glossy Black-cockatoo
Yellow-tailed Black-
cockatoo

Gang-gang Cockatoo
Galah

Long-billed Corella
Little Corella

Sulphur-crested
Cockatoo

Cockatiel

Rainbow Lorikeet
Scaly-brested Lorikeet
Musk Lorikeet

Little Lorikeet
Purple-crowned Lorikeet
Australian King-parrot
Red-winged Parrot
Superb Parrot

Regent Parrot

Green Rosella
Crimson Rosella
Eastern Rosella
Pale-headed Rosella
Australian Ringneck
Bluebonnet

Swift Parrot
Red-rumped Parrot
Mulga Parrot
Budgerugar
Blue-winged Parrot
Elegant Parrot
Orange-bellied Parrot
Turquoise Parrot



Psittacidae
Cuculidae
Cuculidae
Cuculidae
Cuculidae
Cuculidae

Cuculidae
Cuculidae
Cuculidae
Cuculidae
Cuculidae
Cuculidae
Alcedinidae
Halcyonidae
Halcyonidae
Halcyonidae
Halcyonidae
Halcyonidae
Meropidae
Coraciidae

Meliphagidae
Meliphagidae
Meliphagidae
Meliphagidae
Meliphagidae

Meliphagidae
Meliphagidae

Meliphagidae
Meliphagidae
Meliphagidae
Meliphagidae
Meliphagidae
Meliphagidae
Pittidae
Menuridae
Menuridae

Atrichornithidae

Climacteridae

Climacteridae
Climacteridae
Climacteridae
Maluridae
Maluridae

Pezoporus
Cuculus
Heteroscenes
Cacomantis
Cacomantis
Chalcites

Chalcites
Chalcites
Chalcites
Eudynamys
Scythrops
Centropus
Ceyx

Dacelo
Dacelo
Todiramphus
Todiramphus
Todiramphus
Merops
Eurystomus

Acanthagenys
Manorina
Manorina
Gavicalis

Lichenostomus

Ptilotula
Ptilotula

Purnella
Sugomel
Certhionyx
Myzomela
Epthianura
Epthianura
Pitta
Menura
Menura
Atrichornis

Cormobates

Climacteris
Climacteris
Climacteris
Malurus
Malurus

Pezoporus wallicus
Cuculus optatus
Heteroscenes pallidus
Cacomantis variolosus
Cacomantis flabelliformis
Chalcites osculans

Chalcites basalis

Chalcites lucidus
Chalcites minutillus
Eudynamys orientalis
Scythrops novaehollandiae
Centropus phasianinus
Ceyx azureus

Dacelo novaeguineae
Dacelo leachii
Todiramphus macleayii
Todiramphus pyrrhopygius
Todiramphus sanctus
Merops ornatus
Eurystomus orientalis

Acanthagenys rufogularis
Manorina flavigula
Manorina melanotis
Gavicalis virescens
Lichenostomus cratitius

Ptilotula ornata
Ptilotula plumula

Purnella albifrons
Sugomel niger
Certhionyx variegatus
Myzomela obscura
Epthianura tricolor
Epthianura aurifrons
Pitta versicolor

Menura alberti

Menura novaechollandiae
Atrichornis rufescens

Cormobates leucophaea

Climacteris affinis
Climacteris erythrops
Climacteris picumnus
Malurus cyaneus
Malurus splendens

Ground Parrot
Oriental Cuckoo
Pallid Cuckoo
Brush Cuckoo
Fan-tailed Cuckoo

Black-eared Cuckoo
Horsfield's Bronze-
cuckoo

Shining Bronze-cuckoo
Little Bronze-cuckoo
Asian Koel
Channel-billed Cuckoo
Pheasant Coucal

Azure Kingfisher
Laughing Kookaburra
Blue-winged Kookaburra
Forest Kingfisher
Red-backed Kingfisher
Sacred Kingfisher
Rainbow Bee-eater
Dollarbird
Spiny-cheeked
Honeyeater
Yellow-throated Miner
Black-eared Miner
Singing Honeyeater
Purple-gaped Honeyeater
Yellow-plumed
Honeyeater

Grey-fronted Honeyeater
White-fronted
Honeyeater

Black Honeyeater
Pied Honeyeater
Dusky Honeyeater
Crimson Chat
Orange Chat
Noisy Pitta
Albert's Lyrebird
Superb Lyrebird

Rufous Scrub-bird
White-throated
Treeceeper
White-browed
Treecreeper

Red-browed Treecreeper
Brown Treecreeper
Superb Fairy-wren
Splendid Fairy-wren



Maluridae
Maluridae
Maluridae
Maluridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Accipitridae
Falconidae
Falconidae
Falconidae
Falconidae
Falconidae
Megapodiidae
Monarchidae
Monarchidae
Monarchidae
Monarchidae
Monarchidae
Monarchidae
Monarchidae
Monarchidae
Rhipiduridae
Rhipiduridae
Rhipiduridae
Dicruridae

Campephagidae
Campephagidae

Campephagidae
Campephagidae
Campephagidae
Campephagidae
Oriolidae
Oriolidae

Artamidae

Malurus
Malurus
Malurus
Stipiturus
Aviceda
Elanus
Milvus
Haliastur
Haliastur
Haliaeetus
Circus
Circus
Accipiter
Accipiter
Accipiter
Aquila
Hieraaetus
Lophoictinia

Erythrotriorchis

Falco
Falco
Falco
Falco
Falco
Alectura
Monarcha

Symposiachrus

Carterornis
Myiagra
Myiagra
Myiagra
Myiagra
Grallina
Rhipidura
Rhipidura
Rhipidura
Dicrurus

Coracina
Coracina

Coracina
Edolisoma
Coracina
Lalage
Oriolus
Sphecotheres

Artamus

Malurus lamberti
Malurus pulcherrimus
Malurus melanocephalus
Stipiturus malachurus
Aviceda subcristata
Elanus axillaris

Milvus migrans
Haliastur indus
Haliastur sphenurus
Haliaeetus leucogaster
Circus assimilis

Circus approximans
Accipiter novaehollandiae
Accipiter fasciatus
Accipiter cirrocephalus
Aquila audax

Hieraaetus morphnoides
Lophoictinia isura
Erythrotriorchis radiatus
Falco berigora

Falco cenchroides

Falco longipennis

Falco subniger

Falco peregrinus
Alectura lathami
Monarcha melanopsis
Symposiachrus trivirgatus
Carterornis leucotis
Myiagra rubecula
Myiagra cyanoleuca
Myiagra alecto

Myiagra inquieta
Grallina cyanoleuca
Rhipidura rufifrons
Rhipidura albiscapa
Rhipidura leucophrys
Dicrurus bracteatus

Coracina novaehollandiae
Coracina lineata

Coracina papuensis
Edolisoma tenuirostre
Coracina maxima
Lalage leucomela
Oriolus sagittatus
Sphecotheres vieilloti

Artamus leucorynchus

Variegated Fairy-wren
Blue-breasted Fairy-wren
Red-backed Fairy-wren
Southern Emu-wren
Pacific Baza
Black-shouldered Kite
Black Kite

Brahminy Kite
Whistling Kite
White-bellied Sea-eagle
Spotted Harrier

Swamp Harrier

Grey Goshawk

Brown Goshawk
Collared Sparrowhawk
Wedge-tailed Eagle
Little Eagle
Square-tailed Kite

Red Goshawk

Brown Falcon
Nankeen Kestrel
Australian Hobby
Black Falcon

Peregrine Falcon
Australian Brush-turkey
Black-faced Monarch
Spectacled Monarch
White-eared Monarch
Leaden Flycatcher
Satin Flycatcher
Shining Flycatcher
Restless Flycatcher
Magpie-lark

Rufous Fantail

Grey Fantail

Willie Wagtail
Spangled Drongo

Black-faced Cuckoo-
shrike

Barred Cuckoo-shrike
White-bellied Cuckoo-
shrike

Cicadabird

Ground Cuckoo-shrike
Varied Triller
Olive-backed Oriole

Australasian Figbird
White-breasted
Woodswallow



Artamidae
Artamidae

Artamidae
Artamidae
Artamidae
Artamidae
Artamidae
Artamidae
Artamidae
Artamidae
Artamidae
Paradisaeidae
Corvidae
Corvidae
Corvidae
Corvidae
Corvidae
Corcoracidae
Corcoracidae
Ptilonorhynchidae
Ptilonorhynchidae
Ptilonorhynchidae
Ptilonorhynchidae
Alaudidae
Alaudidae
Passeridae
Passeridae
Estrildidae
Estrildidae
Estrildidae
Estrildidae
Estrildidae
Estrildidae
Estrildidae
Fringillidae
Fringillidae
Motacillidae
Motacillidae
Dicacidae
Hirundinidae
Hirundinidae
Hirundinidae
Hirundinidae
Pycnonotidae
Acrocephalidae
Locustellidae

Artamus
Artamus

Artamus
Artamus
Artamus
Cracticus
Cracticus
Strepera
Strepera
Strepera
Gymnorhina
Ptiloris
Corvus
Corvus
Corvus
Corvus
Corvus
Corcorax
Struthidea
Ailuroedus
Sericulus

Ptilonorhynchus

Chlamydera
Mirafra
Alauda

Passer

Passer
Taeniopygia
Stizoptera
Aidemosyne
Neochmia
Stagonopleura
Stagonopleura
Lonchura
Chloris
Carduelis
Anthus
Motacilla
Dicaeum
Cheramoeca
Hirundo
Petrochelidon
Petrochelidon
Pycnonotus
Acrocephalus
Cincloramphus

Artamus personatus
Artamus superciliosus

Artamus cinereus
Artamus cyanopterus
Artamus minor
Cracticus torquatus
Cracticus nigrogularis
Strepera graculina
Strepera fuliginosa
Strepera versicolor
Gymnorhina tibicen
Ptiloris paradiseus
Corvus coronoides
Corvus tasmanicus
Corvus mellori

Corvus orru

Corvus bennetti
Corcorax melanorhamphos
Struthidea cinerea
Ailuroedus crassirostris
Sericulus chrysocephalus
Ptilonorhynchus violaceus
Chlamydera maculata
Mirafra javanica
Alauda arvensis

Passer domesticus
Passer montanus
Taeniopygia guttata
Stizoptera bichenovii
Aidemosyne modesta
Neochmia temporalis
Stagonopleura guttata
Stagonopleura bella
Lonchura punctulata
Chloris chloris
Carduelis carduelis
Anthus novaeseelandiae
Motacilla tschutschensis
Dicaeum hirundinaceum
Cheramoeca leucosterna
Hirundo neoxena
Petrochelidon nigricans
Petrochelidon ariel
Pycnonotus jocosus
Acrocephalus australis
Cincloramphus timoriensis

Masked Woodswallow
White-browed
Woodswallow
Black-faced
Woodswallow

Dusky Woodswallow
Little Woodswallow
Grey Butcherbird
Pied Butcherbird

Pied Currawong
Black Currawong
Grey Currawong
Australian Magpie
Paradise Riflebird
Australian Raven
Forest Raven

Little Raven
Torresian Crow

Little Crow
White-winged Chough
Apostlebird

Green Catbird

Regent Bowerbird
Satin Bowerbird
Spotted Bowerbird
Horsfield's Bushlark
Eurasian Skylark
House Sparrow
Eurasian Tree Sparrow
Zebra Finch
Double-barred Finch
Plum-headed Finch
Red-browed Finch
Diamond Firetail
Beautiful Firetail
Nutmeg Mannikin
European Greenfinch
European Goldfinch
Australasian Pipit
Yellow Wagtail
Mistletoebird
White-backed Swallow
Welcome Swallow
Tree Martin

Fairy Martin
Red-whiskered Bulbul
Australian Reed Warbler
Tawny Grassbird



Locustellidae Poodytes Poodytes gramineus Little Grassbird

Locustellidae Cincloramphus Cincloramphus mathewsi Rufous Songlark
Locustellidae Cincloramphus Cincloramphus cruralis Brown Songlark
Locustellidae Cisticola Cisticola exilis Golden-headed Cisticola
Zosteropidae Zosterops Zosterops lateralis Silvereye
Turdidae Zoothera Zoothera lunulata Bassian Thrush
Turdidae Zoothera Zoothera heinei Russet-tailed Thrush
Turdidae Turdus Turdus merula Common Blackbird
Sturnidae Sturnus Sturnus vulgaris Common Starling
Sturnidae Acridotheres Acridotheres tristis Common Myna
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609  Figure S1. Percentage of hexagons meeting quality criteria across six spatial resolutions (2.5-
610 50 km). Quality criteria include >90% completeness, minimum required sampling units, and

611  >10 species.
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