2	community trajectories across southeastern Australia
3	
4	Authors
5	
6	Rahil J. Amin ^{a*} , Jessie C. Buettel ^c , and Barry W. Brook ^{a,b}
7	
8	Authors affiliations
9 10	^a School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
11	^b ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), Australia
12 13	^c Fenner School of Environment and Society, The Australian National University, Acton, Australian Capital Territory 2601, Australia
14	
15	Corresponding author
16	Name: Rahil Jasminkumar Amin
17	Email: rahiljasminkumar.amin@utas.edu.au
18	
19	
20	
21	

Interacting disturbances reshape bird assemblages via divergent

Abstract

23

24 Species counts can remain stable even as ecological communities collapse. This paradox exposes a critical blind spot in biodiversity monitoring: richness metrics miss the 25 compositional upheaval that defines modern ecological change. As human pressures intensify, 26 specialists decline and generalists proliferate, creating numerically similar but functionally 27 different communities. Using three decades of citizen-science data on 272 bird species across 28 29 southeastern Australia's fragmented eucalypt woodlands, we analysed how woodland conversion, livestock grazing, and dominance by the native noisy miner (Manorina 30 31 melanocephala) reshape species richness and β-diversity. By partitioning β-diversity into turnover and nestedness, we distinguished distinct community change processes. Land 32 conversion and noisy miner presence reduced species turnover whilst increasing nestedness, 33 indicating directional filtering and systematic loss. Lightly grazed woodlands showed the 34 opposite, with higher turnover and lower nestedness, indicating resilience through species 35 replacement. When disturbances co-occurred, communities followed novel trajectories as 36 tolerant and introduced species assembled into unique configurations, boosting turnover at 37 broader scales. Species-level analyses revealed that widespread generalists drove 38 homogenisation while rare, range-restricted species generated local distinctiveness. Critically, 39 40 high β-diversity was not always ecologically valuable, as some unique sites harboured disturbance-adapted taxa. Consequently, community responses to disturbance followed no 41 42 single rule. Depending on the combination of stressors, communities underwent filtering, replacement, or novel divergence. Conservation strategies must therefore go beyond simple 43 44 species counts and aggregate indices. Understanding whether ecosystems are degrading, restorable, or shifting toward alternative stable states requires metrics that capture these 45 underlying processes. In an era of inevitable ecological transformation, the challenge is not 46 only to halt biodiversity loss but to manage the nature of ecological change. 47

Introduction

- 49 Human activity is reshaping Earth's disturbance regimes (Newbold et al. 2015, Turner and
- 50 Seidl 2023). Events once rare or cyclical now occur more frequently, with greater severity,
- and at scales unmatched in evolutionary history (e.g., Schwalm et al. 2017, Cunningham et al.
- 52 2024). Land clearing, infrastructure development, and biotic invasions further introduce
- novel pressures, often with no ecological precedent (Turner 2010, Johnstone et al. 2016).
- Today, over 70% of the land surface is modified by humans, with remaining wilderness
- bearing signs of extensive environmental degradation (Kerr et al. 2025). As these
- disturbances increasingly co-occur, the threats to biodiversity amplify. Consequently, red lists
- 57 grow longer each year as more taxa edge toward extinction. This is now widely known as the
- 58 biodiversity crisis (Butchart et al. 2010, Johnson et al. 2017).
- This crisis manifests inconsistently at local scales (McGill et al. 2015). Many long-term
- studies report stable or increasing species richness at local sites when facing the same threats
- 61 (Vellend et al. 2013, Dornelas et al. 2014). This paradox reveals a conceptual blind spot:
- species numbers may stay constant even as identities shift (Hillebrand et al. 2018). In
- 63 disturbed landscapes, invaders and disturbance-tolerant taxa often replace specialists,
- 64 generating communities that are compositionally novel, though not numerically depauperate
- 65 (Hillebrand et al. 2018, McGeoch et al. 2024). This limitation of alpha diversity points to the
- 66 power of beta diversity (β -diversity).
- 67 β-diversity measures compositional variation among communities (Tuomisto and
- Ruokolainen 2006, Legendre and De Cáceres 2013). Partitioning β-diversity into nestedness
- and species replacement (turnover) components distinguishes between disassembly and
- 70 reassembly: whether sites lose species hierarchically or replace them altogether (Baselga
- 71 2010, 2012). Different disturbances produce distinct signatures that reflect underlying
- mechanisms. For instance, deforestation can cause increases in turnover, accounting for 70–
- 73 90% of total β-diversity, as environmental filtering drives reassembly (Arroyo-Rodríguez et
- al. 2013). Hypercompetitive invasive species create the opposite pattern, generating nested
- subsets via the systematic exclusion of specialist species. Argentine ants, for example,
- 76 triggered rapid disassembly in California within one year (Sanders et al. 2003). Applying this
- 77 framework can disentangle whether pressures operate through species sorting or exclusion (Si
- et al. 2015, Morante-Filho et al. 2016)—critical insights for landscapes facing multiple,
- 79 interacting threats.

Woodland birds in southeastern Australia serve as indicator taxa for how multiple threats reshape communities. Four decades of monitoring have documented severe declines in 81 woodland bird populations, particularly among woodland and forest specialists (Prowse et. al. 82 2021). These changes are mainly driven by habitat loss and fragmentation. Once-contiguous 83 pristine habitat has been reduced to remnants from over a century of agricultural expansion, 84 85 grazing, and infrastructure development. The fragmented remnants, often bordered by cleared farmland, face further cascading disturbance interactions. Grazing and clearing reduce 86 understorey complexity, creating simplified habitats (Val et al. 2018). Such landscapes can 87 88 turn native species into ecological antagonists: the noisy miner (Manorina melanocephala), for instance, thrives in open, disturbed woodlands, aggressively excluding smaller birds 89 (Westgate et al. 2021). Above critical densities of 0.6 individuals per hectare (a threshold 90 typically exceeded in fragmented landscapes), they function as reverse keystone species, 91 excluding smaller insectivores through sustained territorial aggression (Maron et al. 2013, 92 Crates et al. 2023). The result is a feedback loop: habitat degrades, aggressive species 93 expand, and losses intensify. 94 Land conversion, grazing, and noisy miner dominance co-occur across these landscapes, yet 95 their combined influence on community reassembly remains unclear. While local population 96 trends are well documented, we still lack a regional view of how woodland bird assemblages 97 are being reorganised by multiple, interacting disturbances across southeastern Australia. 98 Communities may be shifting through nested species loss, as woodland specialists disappear 99 systematically, or through compositional turnover, as open-country generalists colonise 100 simplified habitats. Previous landscape analyses using β-diversity have described spatial 101 patterns across woodland mosaics (Neilan et al. 2019), but few have partitioned β-diversity 102 into turnover and nestedness, or linked these components to interacting disturbances. 103 104 Disentangling these patterns would reveal whether communities are collapsing through loss, restructuring under pressure, or diverging along novel, disturbance-driven trajectories. 105 106 Here, we model how woodland conversion, grazing, and noisy miner density shape species 107 richness and β-diversity across southeastern Australia's temperate woodlands. We draw on 108 large-scale citizen-science data collected across three decades, covering 272 terrestrial bird species, yielding a dataset of unprecedented scope and resolution. We quantify local diversity 109 110 patterns and partition regional β-diversity into turnover and nestedness components. By linking these metrics back to individual sites through local contributions to β-diversity 111 (LCBD), we identify where compositional change is most pronounced and which landscapes 112

are driving regional reorganisation. We also calculate species contributions to β -diversity
(SCBD) to uncover the taxa that are structuring community distinctiveness. This approach
reveals where communities are collapsing through systematic loss, where they are converging
under generalist dominance, and where novel assemblages are emerging from interacting
disturbances. Beyond distinguishing ecosystems that warrant protection from those locked
into ecological decline, our findings show how β -diversity partitioning can guide
conservation by exposing the mechanisms of community reassembly under multiple
pressures. These insights are critical for adaptive management in landscapes where species
counts alone fail to capture the scale and complexity of biodiversity change.

123

124

113

114

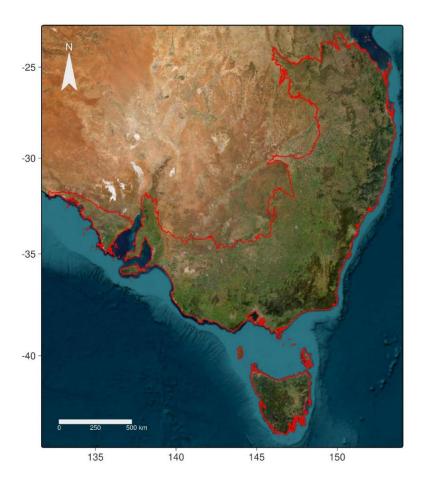
115

116

117

118

119


120

121

Methods

Study region and species selection

- 125 We analysed land-bird assemblages across southeastern Australia (Figure 1), from
- 126 Queensland to Tasmania, an ecologically diverse region once dominated by temperate
- eucalypt woodlands, now heavily fragmented by agriculture and plantation forestry (Yates
- and Hobbs 1997). We included 272 native, non-migratory land-bird species regularly
- recorded in both intact and modified habitats (see full species list in Table S1), encompassing
- both woodland specialists and habitat generalists.

Figure 1. Map showing the study region across southeastern Australia. The red boundary delineates the boundary covering temperate eucalypt woodlands from Queensland to Tasmania. Hexagons (not shown) were distributed across this extent to analyse bird community responses to landscape modification.

We deliberately retained generalist species rather than restricting analyses to woodland specialists alone. This inclusive approach was essential for three reasons. First, environmental filtering operates through both species loss and gain; excluding generalists would obscure how open-country species colonise simplified habitats (Lindenmayer 2022). Second, generalists often drive β -diversity patterns in disturbed systems, becoming locally important even when rare in intact woodlands. Third, excluding them would underestimate the scale of compositional reorganisation as traditional woodland communities shift toward assemblages dominated by disturbance-tolerant taxa (Filgueiras et al. 2021).

Data collection and spatial framework

Occurrence data were sourced from the Atlas of Living Australia using the galah package in R (Westgate et al. 2025). We retained records from 1990–2024 with valid dates and accepted species names. Only in situ detections (visual, audio, or camera-trap) were included; museum

specimens and other vouchered records were excluded. Spatial outliers and likely 148 misidentifications were removed through automated and manual screening, yielding over 38 149 million curated records. Raw occurrences were gridded into 1 km cells to reduce geolocation 150 151 error. To assess diversity at the landscape scale, we generated hexagonal grids with 2.5 km cell 152 diameters across the study extent using the sf package in R (Pebesma 2018). We chose 153 hexagons as they minimise edge effects and provide equidistant centroid spacing. Each record 154 was assigned to the nearest hexagon centroid by Euclidean distance. The 2.5 km grain size 155 balances the need to capture landscape-scale fragmentation patterns while avoiding 156 aggregation that would obscure patch configuration (Wang et al. 2014). Studies in 157 comparable systems have identified 2.5 km as the optimal scale for detecting biodiversity 158 responses to fragmentation (Steffan-Dewenter et al. 2002): smaller grains miss landscape 159 processes, while larger ones homogenise critical spatial variation (Wang et al. 2014). 160 Although multi-scale analyses would be ideal, the spatial and temporal patchiness of citizen-161 science data precluded consistent nested sampling. Standardising on a single, ecologically 162 163 meaningful grain size ensured sampling completeness while maintaining spatial 164 independence among analysis units. Reducing noise from incomplete samples 165 Unstructured citizen-science data often include incomplete samples, leading to biases that 166 distort β-diversity patterns (Callaghan et al. 2018). To reduce this bias, we used the Chao2 167 estimator to approximate asymptotic species richness in each hexagon. Chao2 infers 168 undetected species based on the frequency of rare observations, making it suitable for 169 datasets with uneven sampling effort (Chao et al. 2009). While bootstrap intervals can be 170 estimated using the iNext package (Hsieh et al. 2016), we used point estimates without 171 resampling to preserve computational efficiency at scale. 172 Species detection frequency was defined as the number of unique month-year combinations 173 in that a species was recorded. Let S_h denote the observed richness in hexagon h and let Q_1 174 and Q_2 represent the number of species observed in exactly one or two sampling unit(s), 175 respectively. Chao 2 asymptotic richness \hat{S}_h was computed as: 176

177
$$\hat{S}_h = \begin{cases} S_h + \frac{Q_1^2}{2Q_2}, & \text{if } Q_2 > 0 \\ S_h + \frac{Q_1(Q_1 - 1)}{2(Q_2 + 1)}, & \text{if } Q_2 = 0 \end{cases}$$

178 Sample completeness was then calculated as the proportion of observed to estimated richness:

$$C_h = \frac{S_h}{\hat{S}_h} \ .$$

We retained hexagons that met all of the following criteria: $\geq 80\%$ completeness, ≥ 6 months of sampling, and ≥ 10 recorded species. The 80% completeness threshold preserves spatial coverage while limiting noise from under-sampled sites, thereby improving the reliability of β -diversity estimates (Prenda et al. 2024). The 6-month minimum captures sufficient temporal coverage to account for seasonal variation in bird activity and detectability across Australia's distinct wet and dry seasons. This threshold avoids biases from short-term sampling that miss key phenological events (Callaghan et al. 2019). The 10-species minimum excludes sites with poor sampling or extremely low richness, which contribute little to β -diversity analyses and inflate variance in richness estimates (Duflot and Vähätalo 2024).

190 Landscape Predictor

We derived spatial predictors from national vegetation and land-use datasets. Vegetation data were obtained from the National Vegetation Information System (NVIS v7.0 [2024], 30 m; www.dcceew.gov.au), and land-use data from Catchment Scale Land Use Mapping (CLUM v2 [2024], 50 m; www.agriculture.gov.au). Both rasters were aggregated to a 250 m resolution using the modal value within each block and aligned spatially by snapping to the study extent.

To avoid overfitting due to overly granular classification, we reclassified vegetation into three structural categories based on NVIS Major Vegetation Groups: (1) closed woodland (including eucalypt tall open forests, open forests, low open forests, and eucalypt woodlands with crown cover 30–80%); (2) open woodland (eucalypt woodlands with crown cover 10–30%); and (3) non-habitat (grasslands, shrublands, and non-eucalypt vegetation). This classification captures a key structural gradient from dense to sparse woody vegetation that influences woodland bird assemblages. Using the landscapemetrics package in R

(Hesselbarth et al. 2019), we calculated five structural metrics for both closed and open

woodland: percent cover, patch number, mean patch area, aggregation index, and edge density. These represent total habitat amount, degree of fragmentation, fragment size, spatial clustering, and habitat—matrix interface complexity. All metrics were derived from the reclassified NVIS vegetation data at 250 m resolution.

Landscape metrics showed substantial collinearity, with several pairwise correlations exceeding 0.7 (Figure S1, S2). To reduce redundancy, we applied principal components analysis (PCA) to standardised woodland metrics. The first two axes explained 83.4% of variance (Table S2). Open woodland metrics were excluded due to missing values after completeness filtering. Land use was classified as converted (intensive agriculture or plantation forestry, excluding urban infrastructure), grazed native vegetation, or minimal use. We computed the percentage of each land-use type per hexagon using

We computed the percentage of each land-use type per hexagon using

216 landscapemetrics.

Noisy miner (*Manorina melanocephala*) activity was estimated from ALA records accessed via galah (Westgate et al. 2025). A visit was defined as a unique combination of hexagon, date, and sampling protocol. Visitation rate was calculated as the proportion of visits with noisy miner detections, restricted to hexagons with at least one detection and five or more visits. Hexagons with no detections were coded as missing to avoid treating unsurveyed or unsuitable areas as true absences. This metric was then standardised prior to modelling. All retained predictors had Pearson correlations < 0.7 and acceptable variance inflation factors (VIF < 5) (Table S3).

Local contributions to β-diversity and its components

We constructed presence—absence matrices for each hexagon and calculated pairwise Jaccard dissimilarity to quantify compositional differences between sites (Legendre and De Cáceres 2013). For any pair of hexagons h_i and h_j , where a is the number of shared species, b is the number of species unique to h_i , and c is the number of species unique to h_j , total β -diversity (β_{tot}) was computed as:

$$\beta_{tot} = \frac{b+c}{a+b+c}$$

To distinguish between different mechanisms of community change, we partitioned total β -diversity into two components following the Podani framework:

$$\beta_{repl} = \frac{2\min(b,c)}{a+b+c} \qquad \beta_{rich} = \frac{|b-c|}{a+b+c}$$

- Here, β_{repl} captures species replacement (turnover) and β_{rich} reflects difference in species
- 237 richness (nestedness).
- We computed LCBD from each distance matrix (β_{tot} , β_{repl} , β_{rich}) following Legendre and De
- Cáceres (2013). With squared dissimilarity matrix D^2 , the centred matrix G was:

$$G = -\frac{1}{2}HD^2H,$$

- where H = I $-\frac{1}{n}11^T$ is the centring matrix, and G_{ii} denotes the sum of squares associated
- 242 with site i. LCBD for hexagon i was then:

$$LCBD_i = \frac{G_{ii}}{\sum_{k=1}^{n} G_{kk}}$$

245

Statistical Analysis

- We modelled α and β -diversity responses using generalised additive models (GAMs) via the
- 247 mgcv package in R (Wood and Wood 2015). All predictors were included as fixed effects to
- estimate and interpret their partial contributions. To account for spatial structure and variation
- in sampling effort, two smooth terms were added: (1) a Gaussian-process spline over hexagon
- centroids (longitude, latitude) to control for spatial autocorrelation, and (2) a smooth spline
- over sampling units to account for heterogeneity in sampling effort across space. These terms
- 252 improve model reliability by absorbing background spatial and sampling-related variation.
- 253 Because smooth terms are held constant when estimating fixed-effect coefficients, predictor
- effects are interpreted independently of spatial and sampling noise. We excluded noisy miner
- 255 from α and β -diversity calculations to avoid circularity, as its visitation rate was included as
- a predictor.
- 257 Species richness was modelled using a negative binomial distribution to account for
- overdispersion. LCBD for total, turnover, and nestedness components were modelled using
- beta regression with logit link functions. LCBD values were transformed using the Smithson
- and Verkuilen (2006) method to constrain them to the (0,1) interval, satisfying distributional
- assumptions. Initial exploratory analyses showed no interactions between woodland structure
- 262 (PC axes) and land-use variables. However, we retained a three-way interaction among

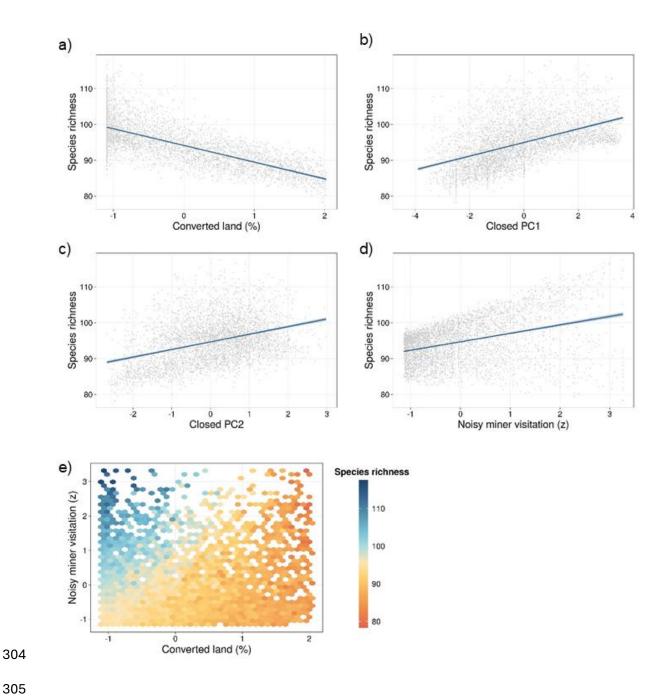
converted land, grazing, and noisy miner visitation to test for compound disturbance effects. Model diagnostics included checks for overdispersion, residual uniformity, and spatial autocorrelation using Moran's I. All final models showed adequately controlled residual spatial structure.

Species contributions to β-diversity

We estimated each species' influence on regional compositional heterogeneity using species contribution to β -diversity (SCBD) (Legendre and De Cáceres 2013). SCBD quantifies the proportion of total β -diversity attributable to each species, based on the variance it creates in community composition. To compute SCBD, we applied a Hellinger transformation (square root of species relative frequencies) to the presence—absence community matrix and used the beta.div function from the R package adespatial (Dray et al. 2018):

SCBD_j =
$$\frac{\sum_{i} (y_{ij}^{\text{Hel}} - y_{j}^{-\text{Hel}})^{2}}{\sum_{k} \sum_{i} (y_{ik}^{\text{Hel}} - y_{k}^{-\text{Hel}})^{2}},$$

where y_{ij}^{Hel} is the Hellinger-transformed presence of species j in site i, and the denominator represents total community variance. Species with high SCBD values contribute strongly to regional β -diversity. Because we used binary (presence–absence) data, SCBD captures compositional leverage rather than abundance.


To further identify the compositional contexts that the species occupied, we calculated $\Delta LCBD$: the mean difference in local contribution to β -diversity (LCBD) between sites where a species was present versus absent. This was done separately for total LCBD, turnover, and nestedness:

 Δ_i = mean LCBD | species i present – mean LCBD | species i absent

Positive Δ LCBD values indicate that a species increases a site's contribution to β -diversity. For turnover, this reflects species involved in novel assemblages. For nestedness, it indicates presence in compositionally reduced communities. Negative values suggest association with compositionally typical or homogenised sites. Together, SCBD and Δ LCBD identify species that shape regional heterogeneity versus those that track biotic homogenisation.

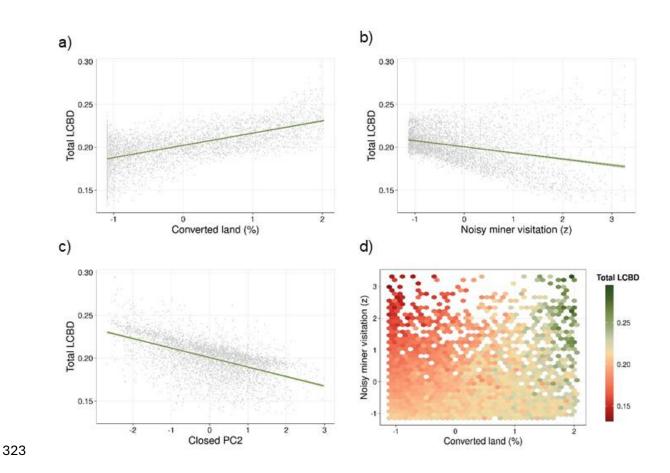
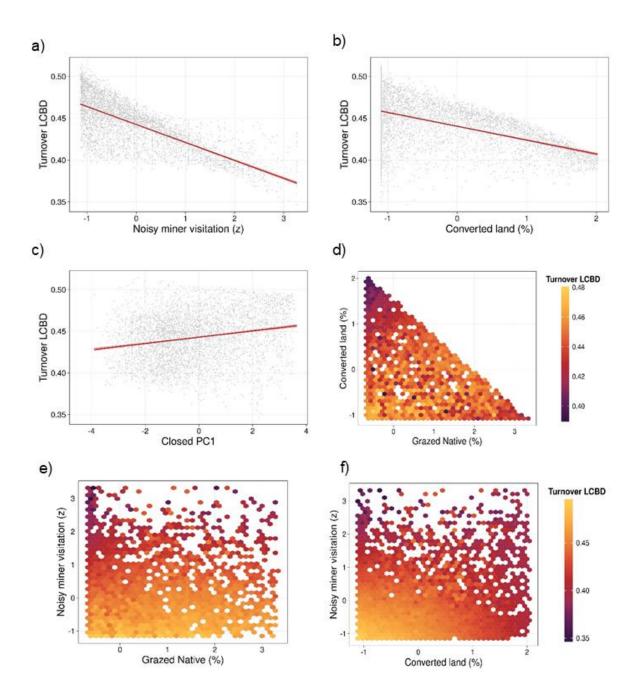
Response of α-diversity to disturbance

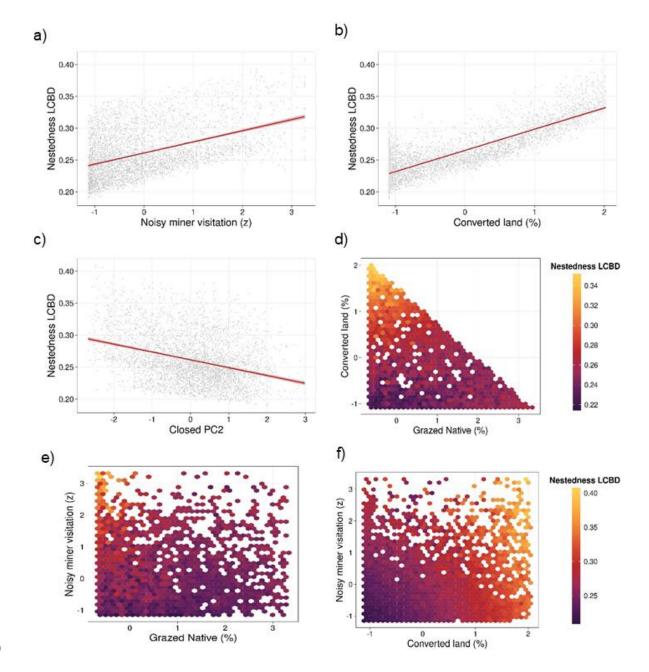
- 292 Species richness responded strongly to landscape modification (deviance explained = 72.4%).
- Richness declined with increasing land conversion (estimate = -0.036, SE = 0.006; Figure
- 294 2a), but increased with woodland structure. Both principal component axes were positively
- associated with richness: PC1, reflecting woodland extent and cohesion (estimate = 0.014, SE
- = 0.002), and PC2, representing reduced fragmentation (estimate = 0.017, SE = 0.003)
- 297 (Figure 2b, 2c; Table S4).
- Sites with frequent noisy miner activity had higher richness (estimate = 0.030, SE = 0.004),
- 299 though this effect was context dependent. In heavily converted landscapes, miner presence no
- 300 longer aligned with increased richness. The negative interaction term (conversion × miner;
- estimate = -0.016, SE = 0.004) indicated that these gains eroded under intensive modification
- 302 (Figure 2). Grazing within native vegetation had no detectable effect on species richness
- 303 (Figure S4).

Figure 2. Predicted effects of landscape modification and woodland structure on land bird species richness across southeastern Australia. Plots show partial generalised additive models relationships with 95% confidence bands (grey shading) for: (a) converted land cover, (b) woodland extent and cohesion (PC1), (c) reduced fragmentation (PC2), (d) noisy miner visitation rate, and (e) interaction between conversion and noisy miner visitation rate. Points represent individual hexagon observations; predictions are made with other variables held at their median values. Only significant terms are plotted.

Patterns of β-diversity

Highly modified sites increased regional compositional variation (est. = 0.073, SE = 0.014; Figure 3a). Conversely, noisy miner activity reduced local distinctiveness, lowering contributions to β -diversity (est. = -0.062, SE = 0.009; Figure 3). Fragmentation also weakened β -diversity signals, as sites with more fragmented woodlands contributed less to regional variation (est. = -0.057, SE = 0.007; Figure 3c). However, conversion and noisy miner activity interacted positively (estimate = 0.059, SE = 0.009), with co-affected sites more compositionally distinct than expected from either factor alone (Figure 3d). Woodland extent (PC1) and native woodland under grazing showed no effects (Figure S5).


Figure 3. Predicted effects of landscape modification on total local contributions to β-diversity (LCBD) across southeastern Australia. Plots show partial relationships from generalised additive models with 95% confidence bands (grey shading). Effects are shown for: (a) converted land cover, (b) noisy miner visitation rate, (c) reduced fragmentation (PC2), and (d) heatmap showing interaction effects between converted land cover and noisy miner visitation. Points represent individual hexagon observations; predictions are made with other variables held at their mean values. Only significant terms are plotted.

332	Interactions between land conversion and noisy miner activity reduced site-level
333	contributions to turnover-based β -diversity (conversion: estimate = -0.062 , SE = 0.013 ;
334	miners: estimate = -0.083 , SE = 0.009 ; Figure 4f), indicating homogenisation. Native
335	woodland under grazing amplified turnover when combined with either land conversion
336	(estimate = 0.045 , SE = 0.014 ; Figure 4d) or miner activity (estimate = 0.027 , SE = 0.010 ;
337	Figure 4e). The interaction between conversion and miner activity was also positive (estimate
338	= 0.050, SE = 0.009; Figure 4f). Woodland extent (PC1) had a weak negative association
339	with turnover (estimate = -0.013 , SE = 0.005 ; Figure 4), while fragmentation (PC2) had no
340	detectable influence on turnover (Figure S6).

Figure 4. Predicted effects of landscape modification on turnover local contributions to β-diversity (LCBD) across southeastern Australia. Plots show partial relationships from generalised additive models with 95% confidence bands (grey shading). Effects are shown for: (a) noisy miner visitation rate, (b) converted land cover, (c) reduced fragmentation (PC2), and heatmaps showing interaction effects between (d) converted land cover and grazed native woodland cover, (e) noisy miner visitation rate and grazed native woodland cover, and (f) noisy miner visitation rate and converted land cover. Points represent individual hexagon observations; predictions are made with other variables held at their mean values. Only significant terms are plotted.

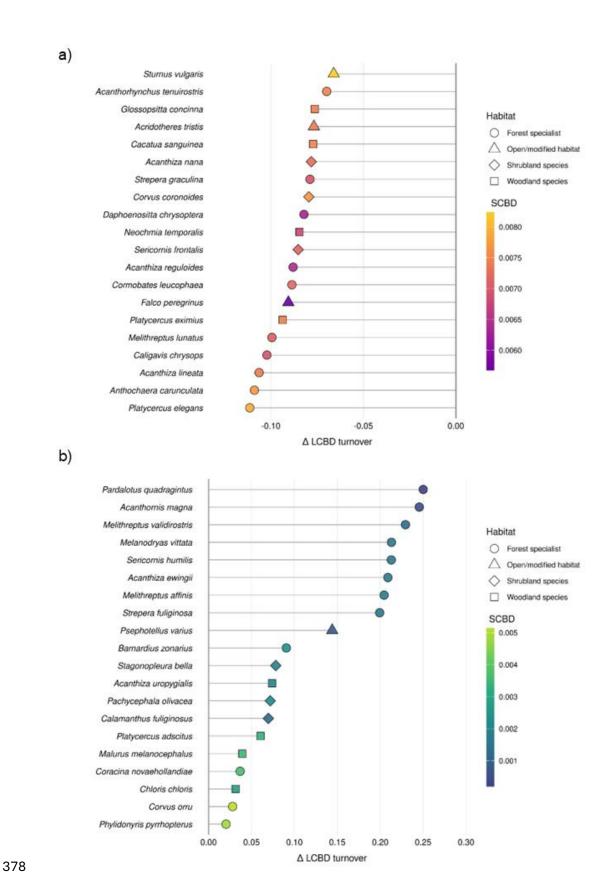

Nestedness increased with land conversion (estimate = 0.148, SE = 0.022; Figure 5a) and noisy miner activity (estimate = 0.075, SE = 0.014; Figure 5b), indicating systematic species loss. Conversion within grazed native vegetation lowered nestedness contributions (estimate = -0.056, SE = 0.024), as did miner activity within the same context (estimate = -0.047, SE = 0.018; Figure 5c, 5d). The interaction between conversion and miner activity was negative (estimate = -0.035, SE = 0.015). We found no effects for grazing or woodland PC1 on nestedness (Figure S7).

Figure 5. Predicted effects of landscape modification on nestedness local contributions to β-diversity (LCBD) across southeastern Australia. Plots show partial relationships from generalised additive models with 95% confidence bands (grey shading). Effects are shown for: (a) noisy miner visitation rate, (b) converted land cover, (c) reduced fragmentation (PC2), and heatmaps showing interaction effects between (d) converted land cover and grazed native woodland cover, (e) noisy miner visitation rate and grazed native woodland cover, and (f) noisy miner visitation rate and converted land cover. Points represent individual hexagon observations; predictions are made with other variables held at their mean values. Only significant terms are plotted.

Species-level Responses

Open-country generalists such as *Platycercus elegans*, *Anthochaera carunculata*, and *Acanthiza lineata* exhibited strongly negative Δ LCBD values (Figure 6a). Tasmanian endemics, including *Pardalotus quadragintus*, *Acanthornis magna*, and *Melithreptus validirostris* produced positive Δ LCBD values (Figure 6b). Woodland specialists with broader, but still constrained, distributions (e.g. *Glossopsitta concinna*) showed more moderate Δ LCBD values.

Figure 6. Species-level contributions to turnover-based β-diversity. Panel (a) shows species most associated with homogenised assemblages (negative Δ LCBD), while panel (b) shows species associated with high compositional distinctiveness (positive Δ LCBD). Points show

the mean difference in local contribution to β -diversity (Δ LCBD) between sites where a species was present versus absent. Colours indicate species contributions to total β -diversity (SCBD); shapes denote primary habitat affinity. Together, SCBD and Δ LCBD identify taxa that contribute to regional distinctiveness versus those linked to simplified communities. Only species with the top 20 positive and negative Δ LCBD values are shown.

Biodiversity loss is often framed as a decline in species richness. Our findings reveal a more

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

382

383

384

385

386

Discussion

complex picture. While richness declined under land conversion, bird communities also reorganised along divergent trajectories, exposed by partitioning β -diversity. Across southeastern Australia's temperate woodlands, some sites lost species through nested filtering, while others shifted toward novel assemblages. Where disturbances overlapped, communities responded in ways distinct from the effects of single pressures. These patterns show that ecological change is not just erosion: it is reassembly, shaped by the type and combination of stressors. Similar shifts have been reported globally, from generalist filtering in European farmland (Santana et al. 2017) to rising nestedness in fragmented tropical forests (Morante-Filho et al. 2016). Disturbance does not simply reduce diversity, it reshapes it (Mori et al. 2018). Both land conversion and noisy miner dominance reduced turnover and increased nestedness, indicating a shift from dynamic species replacement to ordered species filtering through systematic species loss. As human pressures intensify, β-diversity transitions from variation driven by environmental sorting to nested disassembly driven through exclusion (Legendre and De Cáceres 2013, Si et al. 2015). This shift appears linked to the selective loss of woodland specialists; species that are more sensitive to structural simplification and miner aggression (Maron et al. 2013). These communities are not enriched by new arrivals but hollowed by repeated loss: a structural convergence that mimics stability but eroding distinctiveness. The noisy miner paradox exemplifies this. Though these birds appeared to raise diversity, they homogenised communities by excluding smaller species and promoting generalist-dominated assemblages. Their role as reverse keystone species demonstrates how native taxa can become ecological antagonists in simplified landscapes (Howes et al. 2014).

412	While livestock grazing reduced understorey cover, grazed woodlands retained enough
413	canopy structure to enable persistence of edge-tolerant woodland birds, altering the dominant
414	pattern of systematic species loss. As a result, nestedness declined and turnover increased,
415	suggesting that species were replaced, not simply lost. This supports earlier findings that low-
416	intensity grazing can sustain avifauna if adequate woodland cover is retained and
417	commercial-scale grazing is excluded (Martin and McIntyre 2007, Dorrough et al. 2012).
418	Unlike intermediate disturbance effects, this outcome reflects minimal structural retention
419	that enables partial persistence, rather than peak diversity.
420	Where disturbances co-occurred, communities followed unexpected trajectories. Sites with
421	both conversion and miners contributed more to β -diversity than expected, but not through
422	nestedness. Instead, they hosted unique combinations of tolerant and introduced species.
423	Grazing intensified this effect. When combined with conversion or miners, turnover
424	increased further. Even modest retained structure in grazed woodlands appeared sufficient for
425	varied generalists to establish, even as original assemblages disappeared. These findings echo
426	broader evidence that interacting disturbances can trigger unexpected ecological shifts (Buma
427	2015, Côté et al. 2016), proving that community responses to multiple stressors cannot be
428	predicted from single disturbance effects alone.
429	Open-country raptors, generalists and introduced species drove community homogenisation
430	across the disturbance gradient. European starling (Sturnus vulgaris) and red wattlebird
431	(Anthochaera carunculata) were frequent in low-turnover, low-distinctiveness sites. Their
432	broad environmental tolerances enabled establishment under varied disturbance regimes.
433	Though high in SCBD, their presence marked convergence toward simplified, disturbance-
434	adapted assemblages with low LCBD. These findings reinforce how individual disturbances
435	impose directional environmental filtering. These species emerge as 'winners' in degraded
436	landscapes, shaping homogenised communities under both land conversion and miner
437	dominance (Devictor et al. 2008).
438	In contrast, range-restricted species and island endemics were linked to high-turnover sites
439	with narrow distributions. Tasmanian endemics, including the forty-spotted pardalote
440	(Pardalotus quadragintus) and scrubtit (Acanthornis magna), contributed little to SCBD but
441	drove extreme local distinctiveness (high LCBD) where they persisted. These species
442	delineate ecological boundaries between functional woodland assemblages and simplified

restricted taxa (Sverdrup-Thygeson et al. 2017). 444 445 These findings reshape how β-diversity metrics should inform conservation. High LCBD does not always equate to ecological value, as many such sites were dominated by tolerant 446 generalists and behavioural dominants like noisy miners. Though compositionally distinct, 447 these assemblages often reflected degradation. Conversely, sites with modest β -diversity 448 might support rare specialists. Without species-level context, β-diversity can mislead 449 450 conservation priorities (Landeiro et al. 2018, Rocha et al. 2023). Turnover and nestedness, therefore, do not map cleanly onto value. Turnover may reflect resilience, endemism, or 451 disturbance-driven reassembly. Nestedness can signal loss, but also survival in harsh or 452 species-poor sites. These results challenge simple dichotomies of 'intact' versus 'degraded' 453 454 by revealing continuous gradients of community structure. Effective conservation must identify where specialists persist, and where systems have crossed ecological thresholds. This 455 456 needs matching strategy to condition. Such landscapes require adaptive management (Landeiro et al. 2018). 457 Limitations and methodological considerations 458 We cannot infer direct mechanisms linking disturbance to community change, as our models 459 460 are correlational rather than causal. While citizen science data provided broad spatial coverage, they introduced biases toward accessible areas and more visible species. We 461 462 mitigated this using completeness thresholds (Callaghan et al. 2022) and spatial smoothing, 463 but under-detection of cryptic ground birds likely inflates nestedness in under-sampled interiors. Our Gaussian-process spline absorbed spatial autocorrelation but cannot 464 465 compensate for unobserved data (Barve et al. 2011): Inference is likely stronger in wellsampled areas. Furthermore, our analysis summarises dynamic processes in a static view. 466 467 Communities currently showing high turnover may transition toward nestedness as landscapes continue to degrade. Incorporating temporal data would provide a fuller picture of 468 469 how communities reorganise over space and time (Legendre 2019). 470 *Implications for biodiversity science* Across southeastern Australia, bird communities are not merely declining but restructuring 471 along complex trajectories that become apparent when β-diversity is partitioned into its 472 constituent components. Some undergo systematic filtering; others reassemble around 473 474 tolerant taxa; a few persist through retained complexity. These patterns demand conservation

systems, their occurrence signalling habitat patches where conditions remain viable for range-

strategies that interpret spatial structure cautiously and recognise the ecological context behind it. Though region-specific, our approach may apply across fragmented temperate woodlands globally. As pressures intensify, distinguishing disassembly from functional reassembly becomes vital. Some sites retain restoration potential; others have shifted beyond conventional targets. Recognising these differences is critical for efficient resource allocation. Future research should focus on predicting how landscape features influence β-diversity trajectories and detect tipping points in community structure. Conservation planning must combine compositional metrics with species-level insight to protect not only diversity counts but also the ecological relationships that sustain them. As environmental change accelerates, the challenge is no longer to halt every loss but to steer systems away from tipping points. The real threshold is no longer between pristine and degraded, but between dynamic community reassembly and irreversible functional collapse.

487	References
488	
489	Arroyo-Rodríguez, V., M. Rös, F. Escobar, F. P. Melo, B. A. Santos, M. Tabarelli, and R.
490	Chazdon. 2013. Plant β-diversity in fragmented rain forests: testing floristic
491	homogenization and differentiation hypotheses. Journal of Ecology 101:1449-1458.
492	Barve, N., V. Barve, A. Jiménez-Valverde, A. Lira-Noriega, S. P. Maher, A. T. Peterson, J.
493	Soberón, and F. Villalobos. 2011. The crucial role of the accessible area in ecological
494	niche modeling and species distribution modeling. Ecological Modelling 222:1810-
495	1819.
496	Buma, B. 2015. Disturbance interactions: characterization, prediction, and the potential for
497	cascading effects. Ecosphere 6:1-15.
498	Butchart, S. H., M. Walpole, B. Collen, A. Van Strien, J. P. Scharlemann, R. E. Almond, J. E.
499	Baillie, B. Bomhard, C. Brown, and J. Bruno. 2010. Global biodiversity: indicators of
500	recent declines. Science 328:1164-1168.
501	Callaghan, C. T., D. E. Bowler, S. A. Blowes, J. M. Chase, M. B. Lyons, and H. M. Pereira.
502	2022. Quantifying effort needed to estimate species diversity from citizen science
503	data. Ecosphere 13:e3966.
504	Callaghan, C. T., J. M. Martin, R. E. Major, and R. T. Kingsford. 2018. Avian monitoring-
505	comparing structured and unstructured citizen science. Wildlife Research 45:176-184.
506	Callaghan, C. T., A. G. Poore, R. E. Major, J. J. Rowley, and W. K. Cornwell. 2019.
507	Optimizing future biodiversity sampling by citizen scientists. Proceedings of the
508	Royal Society B 286 :20191487.
509	Chao, A., R. K. Colwell, CW. Lin, and N. J. Gotelli. 2009. Sufficient sampling for
510	asymptotic minimum species richness estimators. Ecology 90:1125-1133.
511	Côté, I. M., E. S. Darling, and C. J. Brown. 2016. Interactions among ecosystem stressors and
512	their importance in conservation. Proceedings of the Royal Society B: Biological
513	Sciences 283 :20152592.
514	Crates, R., P. G. McDonald, C. B. Melton, M. Maron, D. Ingwersen, E. Mowat, M.
515	Breckenridge, L. Murphy, and R. Heinsohn. 2023. Towards effective management of
516	an overabundant native bird: The noisy miner. Conservation Science and Practice
517	5 :16.
518	Cunningham, C. X., G. J. Williamson, and D. M. Bowman. 2024. Increasing frequency and
519	intensity of the most extreme wildfires on Earth. Nature Ecology & Evolution 8:1420-
520	1425.

- 521 Devictor, V., R. Julliard, and F. Jiguet. 2008. Distribution of specialist and generalist species
- along spatial gradients of habitat disturbance and fragmentation. Oikos 117:507-514.
- 523 Dornelas, M., N. J. Gotelli, B. McGill, H. Shimadzu, F. Moyes, C. Sievers, and A. E.
- Magurran. 2014. Assemblage time series reveal biodiversity change but not
- 525 systematic loss. Science **344**:296-299.
- Dorrough, J., S. McIntyre, G. Brown, J. Stol, G. Barrett, and A. Brown. 2012. Differential
- responses of plants, reptiles and birds to grazing management, fertilizer and tree
- 528 clearing. Austral Ecology **37**:569-582.
- Dray, S., G. Blanchet, D. Borcard, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N.
- Madi, H. H. Wagner, and M. S. Dray. 2018. Package 'adespatial'. R package 2018:3-
- 531 8.
- Duflot, R., and A. V. Vähätalo. 2024. Identifying sites with high biodiversity value using
- filtered species records from a biodiversity information facility. Diversity and
- 534 Distributions **30**:e13864.
- Filgueiras, B. K., C. A. Peres, F. P. Melo, I. R. Leal, and M. Tabarelli. 2021. Winner-loser
- species replacements in human-modified landscapes. Trends in Ecology & Evolution
- **36**:545-555.
- Hesselbarth, M. H., M. Sciaini, K. A. With, K. Wiegand, and J. Nowosad. 2019.
- landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography
- **42**:1648-1657.
- Hillebrand, H., B. Blasius, E. T. Borer, J. M. Chase, J. A. Downing, B. K. Eriksson, C. T.
- Filstrup, W. S. Harpole, D. Hodapp, and S. Larsen. 2018. Biodiversity change is
- uncoupled from species richness trends: Consequences for conservation and
- monitoring. Journal of Applied Ecology **55**:169-184.
- Howes, A., R. Mac Nally, R. Loyn, J. Kath, M. Bowen, C. McAlpine, and M. Maron. 2014.
- Foraging guild perturbations and ecological homogenization driven by a despotic
- native bird species. Ibis **156**:341-354.
- Hsieh, T., K. Ma, and A. Chao. 2016. iNEXT: an R package for rarefaction and extrapolation
- of species diversity (H ill numbers). Methods in ecology and evolution 7:1451-1456.
- Johnson, C. N., A. Balmford, B. W. Brook, J. C. Buettel, M. Galetti, L. Guangchun, and J. M.
- Wilmshurst. 2017. Biodiversity losses and conservation responses in the
- 552 Anthropocene. Science **356**:270-275.
- Johnstone, J. F., C. D. Allen, J. F. Franklin, L. E. Frelich, B. J. Harvey, P. E. Higuera, M. C.
- Mack, R. K. Meentemeyer, M. R. Metz, and G. L. Perry. 2016. Changing disturbance

555	regimes, ecological memory, and forest resilience. Frontiers in Ecology and the
556	Environment 14 :369-378.
557	Kerr, M. R., A. Ordonez, F. Riede, J. Atkinson, E. A. Pearce, M. Sykut, J. Trepel, and JC.
558	Svenning. 2025. Widespread ecological novelty across the terrestrial biosphere.
559	Nature Ecology & Evolution:1-10.
560	Landeiro, V. L., B. Franz, J. Heino, T. Siqueira, and L. M. Bini. 2018. Species-poor and low-
561	lying sites are more ecologically unique in a hyperdiverse Amazon region: Evidence
562	from multiple taxonomic groups. Diversity and Distributions 24:966-977.
563	Legendre, P. 2019. A temporal beta-diversity index to identify sites that have changed in
564	exceptional ways in space-time surveys. Ecology and evolution 9:3500-3514.
565	Legendre, P., and M. De Cáceres. 2013. Beta diversity as the variance of community data:
566	dissimilarity coefficients and partitioning. Ecology letters 16:951-963.
567	Lindenmayer, D. 2022. Birds on farms: a review of factors influencing bird occurrence in the
568	temperate woodlands of south-eastern Australia. Emu-Austral Ornithology 122:238-
569	254.
570	Lindenmayer, D. B., and R. B. Cunningham. 2011. Longitudinal patterns in bird reporting
571	rates in a threatened ecosystem: Is change regionally consistent? Biological
572	Conservation 144 :430-440.
573	Maron, M., M. J. Grey, C. P. Catterall, R. E. Major, D. L. Oliver, M. F. Clarke, R. H. Loyn, R.
574	Mac Nally, I. Davidson, and J. R. Thomson. 2013. Avifaunal disarray due to a single
575	despotic species. Diversity and Distributions 19:1468-1479.
576	Martin, T. G., and S. McIntyre. 2007. Impacts of livestock grazing and tree clearing on birds
577	of woodland and riparian habitats. Conservation Biology 21:504-514.
578	McGeoch, M. A., D. A. Clarke, N. A. Mungi, and A. Ordonez. 2024. A nature-positive future
579	with biological invasions: theory, decision support and research needs. Philosophical
580	Transactions of the Royal Society B 379:20230014.
581	McGill, B. J., M. Dornelas, N. J. Gotelli, and A. E. Magurran. 2015. Fifteen forms of
582	biodiversity trend in the Anthropocene. Trends in Ecology & Evolution 30:104-113.
583	Morante-Filho, J. C., V. Arroyo-Rodríguez, and D. Faria. 2016. Patterns and predictors of β -
584	diversity in the fragmented Brazilian Atlantic forest: a multiscale analysis of forest
585	specialist and generalist birds. Journal of Animal Ecology 85:240-250.
586	Mori, A. S., F. Isbell, and R. Seidl. 2018. β-diversity, community assembly, and ecosystem
587	functioning. Trends in Ecology & Evolution 33:549-564.

- Neilan, W. L., P. S. Barton, C. A. McAlpine, J. T. Wood, and D. B. Lindenmayer. 2019.
- Contrasting effects of mosaic structure on alpha and beta diversity of bird
- assemblages in a human-modified landscape. Ecography **42**:173-186.
- Newbold, T., L. N. Hudson, S. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, D. J.
- Bennett, A. Choimes, and B. Collen. 2015. Global effects of land use on local
- 593 terrestrial biodiversity. Nature **520**:45-50.
- Pebesma, E. 2018. Simple features for R: standardized support for spatial vector data.
- Prenda, J., J. L. Domínguez-Olmedo, E. López-Lozano, R. Fernández de Villarán, and J. J.
- Negro. 2024. Assessing citizen science data quality for bird monitoring in the Iberian
- 597 Peninsula. Scientific Reports **14**:20307.
- Rocha, M. P., T. J. Morris, K. Cottenie, and A. N. Schwalb. 2023. Limitations of beta
- diversity in conservation site selection. Ecological Indicators **154**:110732.
- Sanders, N. J., N. J. Gotelli, N. E. Heller, and D. M. Gordon. 2003. Community disassembly
- by an invasive species. Proceedings of the National Academy of Sciences 100:2474-
- 602 2477.
- Santana, J., M. Porto, L. Reino, F. Moreira, P. F. Ribeiro, J. L. Santos, J. T. Rotenberry, and P.
- Beja. 2017. Using beta diversity to inform agricultural policies and conservation
- actions on Mediterranean farmland. Journal of Applied Ecology **54**:1825-1835.
- 606 Schwalm, C. R., W. R. Anderegg, A. M. Michalak, J. B. Fisher, F. Biondi, G. Koch, M.
- Litvak, K. Ogle, J. D. Shaw, and A. Wolf. 2017. Global patterns of drought recovery.
- 608 Nature **548**:202-205.
- 609 Si, X., A. Baselga, and P. Ding. 2015. Revealing beta-diversity patterns of breeding bird and
- lizard communities on inundated land-bridge islands by separating the turnover and
- nestedness components. PLoS ONE **10**:e0127692.
- 612 Smithson, M., and J. Verkuilen. 2006. A better lemon squeezer? Maximum-likelihood
- regression with beta-distributed dependent variables. Psychological methods 11:54.
- 614 Steffan-Dewenter, I., U. Münzenberg, C. Bürger, C. Thies, and T. Tscharntke. 2002. Scale-
- dependent effects of landscape context on three pollinator guilds. Ecology 83:1421-
- 616 1432.
- 617 Sverdrup-Thygeson, A., O. Skarpaas, S. Blumentrath, T. Birkemoe, and M. Evju. 2017.
- Habitat connectivity affects specialist species richness more than generalists in
- veteran trees. Forest Ecology and Management **403**:96-102.
- 620 Turner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology
- **91**:2833-2849.

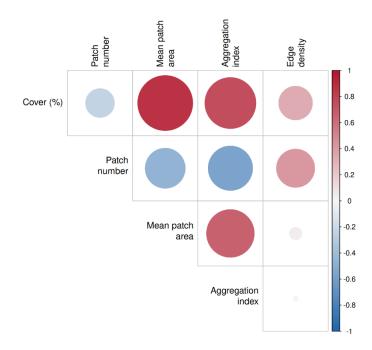
622	Turner, M. G., and R. Seidl. 2023. Novel disturbance regimes and ecological responses.
623	Annual Review of Ecology, Evolution, and Systematics 54:63-83.
624	Val, J., D. J. Eldridge, S. K. Travers, and I. Oliver. 2018. Livestock grazing reinforces the
625	competitive exclusion of small-bodied birds by large aggressive birds. Journal of
626	Applied Ecology 55 :1919-1929.
627	Vellend, M., L. Baeten, I. H. Myers-Smith, S. C. Elmendorf, R. Beauséjour, C. D. Brown, P.
628	De Frenne, K. Verheyen, and S. Wipf. 2013. Global meta-analysis reveals no net
629	change in local-scale plant biodiversity over time. Proceedings of the National
630	Academy of Sciences 110:19456-19459.
631	Walsh, J. C., M. R. Gibson, J. S. Simmonds, H. J. Mayfield, C. Bracey, C. B. Melton, A. E.
632	Reside, and M. Maron. 2023. Effectiveness of conservation interventions for
633	Australian woodland birds: A systematic review. Biological Conservation 282.
634	Wang, X., F. G. Blanchet, and N. Koper. 2014. Measuring habitat fragmentation: An
635	evaluation of landscape pattern metrics. Methods in Ecology and Evolution 5:634-
636	646.
637	Westgate, M. J., M. Crane, D. Florance, and D. B. Lindenmayer. 2021. Synergistic impacts of
638	aggressive species on small birds in a fragmented landscape. Journal of Applied
639	Ecology 58 :825-835.
640	Wood, S., and M. S. Wood. 2015. Package 'mgev'. R package version 1:729.
641	Yates, C. J., and R. J. Hobbs. 1997. Temperate eucalypt woodlands: a review of their status,
642	processes threatening their persistence and techniques for restoration. Australian
643	Journal of Botany 45 :949-973.
644	Westgate M, Kellie D, Stevenson M, Newman P (2025). galah: Biodiversity Data from the
645	GBIF Node Network. R package version 2.1.2.
646	
647	

648 Supplementary

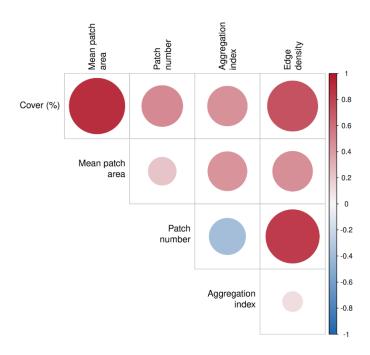
Table S1. List of the included land bird species across southeast Australia

Family	Genus	Species Name	Vernacular Name
Meliphagidae	Acanthorhynchus	Acanthorhynchus tenuirostris	Eastern Spinebill
Meliphagidae	Anthochaera	Anthochaera phrygia	Regent Honeyeater
Meliphagidae	Antochaera	Anthochaera carunculata	Red Wattlebird
Meliphagidae	Antochaera	Anthochaera paradoxa	Yellow Wattlebird
Meliphagidae	Antochaera	Anthochaera chrysoptera	Little Wattlebird
Meliphagidae	Caligavis	Caligavis chrysops	Yellow-faced Honeyeater
Meliphagidae	Entomyzon	Entomyzon cyanotis	Blue-faced Honeyeater
Meliphagidae	Epithianura	Epthianura albifrons	White-fronted Chat
Meliphagidae	Gavicalis	Gavicalis fasciogularis	Mangrove Honeyeater Tawny-crowned
Meliphagidae	Gliciphila	Gliciphila melanops	Honeyeater
Meliphagidae	Grantiella	Grantiella picta	Painted Honeyeater Yellow-tufted
Meliphagidae	Lichenostomus	Lichenostomus melanops	Honeyeater
Meliphagidae	Lichmera	Lichmera indistincta	Brown Honeyeater
Meliphagidae	Manorina	Manorina melanophrys	Bell Miner
Meliphagidae	Manorina	Manorina melanocephala	Noisy Miner
Meliphagidae	Meliphaga	Meliphaga lewinii	Lewin's Honeyeater Black-chinned
Meliphagidae	Melithreptus	Melithreptus gularis	Honeyeater
Meliphagidae	Melithreptus	Melithreptus validirostris	Strong-billed Honeyeater Brown-headed
Meliphagidae	Melithreptus	Melithreptus brevirostris	Honeyeater White-throated
Meliphagidae	Melithreptus	Melithreptus albogularis	Honeyeater
Meliphagidae	Melithreptus	Melithreptus lunatus	White-naped Honeyeater
Meliphagidae	Melithreptus	Melithreptus affinis	Black-headed Honeyeater
Meliphagidae	Myzomela	Myzomela sanguinolenta	Scarlet Honeyeater
Meliphagidae	Nesoptilotis	Nesoptilotis leucotis	White-eared Honeyeater Yellow-throated
Meliphagidae	Nesoptilotis	Nesoptilotis flavicollis	Honeyeater
Meliphagidae	Philemon	Philemon corniculatus	Noisy Friarbird
Meliphagidae	Philemon	Philemon citreogularis	Little Friarbird
Meliphagidae	Phylidonyris	Phylidonyris pyrrhopterus	Crescent Honeyeater
Meliphagidae	Phylidonyris	Phylidonyris novaehollandiae	New-Holland Honeyeater White-cheeked
Meliphagidae	Phylidonyris	Phylidonyris niger	Honeyeater
Meliphagidae	Plectorhyncha	Plectorhyncha lanceolata	Striped Honeyeater
Meliphagidae	Ptilotula	Ptilotula fusca	Fuscous Honeyeater White-plumed
Meliphagidae	Ptilotula	Ptilotula penicillata	Honeyeater
Pardalotidae	Pardalotus	Pardalotus punctatus	Spotted Pardalote
Pardalotidae	Pardalotus	Pardalotus quadragintus	Forty-spotted Pardalote
Pardalotidae	Pardalotus	Pardalotus striatus	Striated Pardalote
Pardalotidae	Dasyornis	Dasyornis brachypterus	Eastern Bristlebird

Pardalotidae	Dasyornis	Dasyornis broadbenti	Rufous Bristlebird
Pardalotidae	Pycnoptilus	Pycnoptilus floccosus	Pilotbird
Pardalotidae	Origma	Origma solitaria	Rockwarbler Yellow-throated
Pardalotidae	Neosericornis	Neosericornis citreogularis	Scrubwren
Pardalotidae	Sericornis	Sericornis frontalis	White-browed Scrubwren
Pardalotidae	Sericornis	Sericornis humilis	Tasmanian Scrubwren
Pardalotidae	Sericornis	Sericornis magnirostra	Large-billed Scrubwren
Pardalotidae	Acanthornis	Acanthornis magna	Scrubtit Chestnut-rumped
Pardalotidae	Hylacola	Hylacola pyrrhopygia	Heathwren
Pardalotidae	Hylacola	Hylacola cauta	Shy Heathwren
Pardalotidae	Calamanthus	Calamanthus fuliginosus	Striated Fieldwren
Pardalotidae	Calamanthus	Calamanthus campestris	Rufous Fieldwren
Pardalotidae	Pyrrholaemus	Pyrrholaemus brunneus	Redthroat
Pardalotidae	Pyrrholaemus	Pyrrholaemus sagittatus	Speckled Warbler
Pardalotidae	Smicrornis	Smicrornis brevirostris	Weebill
Pardalotidae	Gerygone	Gerygone mouki	Brown Gerygone
Pardalotidae	Gerygone	Gerygone levigaster	Mangrove Gerygone
Pardalotidae	Gerygone	Gerygone fusca	Western Gerygone
Pardalotidae	Gerygone	Gerygone palpebrosa	Fairy Gerygone
Pardalotidae	Gerygone	Gerygone olivacea	White-throated Gerygone
Pardalotidae	Acanthiza	Acanthiza pusilla	Brown Thornbill
Pardalotidae	Acanthiza	Acanthiza apicalis	Inland Thornbill
Pardalotidae	Acanthiza	Acanthiza ewingii	Tasmanian Thornbill Chestnut-rumped
Pardalotidae	Acanthiza	Acanthiza uropygialis	Thornbill
Pardalotidae	Acanthiza	Acanthiza reguloides	Buff-rumped Thornbill
Pardalotidae	Acanthiza	Acanthiza iredalei	Slender-billed Thornbill
Pardalotidae	Acanthiza	Acanthiza chrysorrhoa	Yellow-rumped Thornbill
Pardalotidae	Acanthiza	Acanthiza nana	Yellow Thornbill
Pardalotidae	Acanthiza	Acanthiza lineata	Striated Thornbill
Pardalotidae	Aphelocephala	Aphelocephala leucopsis	Southern Whiteface
Petroicidae	Microeca	Microeca fascinans	Jacky Winter
Petroicidae	Petroica	Petroica boodang	Scarlet Robin
Petroicidae	Petroica	Petroica goodenovii	Red-capped Robin
Petroicidae	Petroica	Petroica phoenicea	Flame Robin
Petroicidae	Petroica	Petroica rosea	Rose Robin
Petroicidae	Petroica	Petroica rodinogaster	Pink Robin
Petroicidae	Melanodryas	Melanodryas cucullata	Hooded Robin
Petroicidae	Melanodryas	Melanodryas vittata	Dusky Robin
Petroicidae	Tregellasia	Tregellasia capito	Pale-yellow Robin
Petroicidae	Eopsaltria	Eopsaltria australis	Eastern Yellow Robin
Petroicidae	Eopsaltria	Eopsaltria griseogularis	Western Yellow Robin
Petroicidae	Drymodes	Drymodes brunneopygia	Southern Scrub-robin
Orthonchidae	Orthonyx	Orthonyx temminckii	Australian Logrunner
Pomatostomidae	Pomatostomus	Pomatostomus temporalis	Grey-crowned Babbler
Pomatostomidae	Pomatostomus	Pomatostomus superciliosus	White-browed Babbler


Cinclosomatidae	Psophodes	Psophodes nigrogularis	Western Whipbird
Cinclosomatidae	Cinclosoma	Cinclosoma punctatum	Spotted Quail-thrush
Cinclosomatidae	Cinclosoma	Cinclosoma castanotum	Chestnut Quail-thrush
Neosittidae	Daphoenositta	Daphoenositta chrysoptera	Varied Sittella
Pachycephalidae	Falcunculus	Falcunculus frontatus	Crested Shrike-tit
Pachycephalidae	Oreoica	Oreoica gutturalis	Crested Bellbird
Pachycephalidae	Pachycephala	Pachycephala olivacea	Olive Whistler
Pachycephalidae	Pachycephala	Pachycephala rufogularis	Red-lored Whistler
Pachycephalidae	Pachycephala	Pachycephala inornata	Gilbert's Whistler
Pachycephalidae	Pachycephala	Pachycephala pectoralis	Golden Whistler
Pachycephalidae	Pachycephala	Pachycephala rufiventris	Rufous Whistler
Pachycephalidae	Colluricincla	Colluricincla megarhyncha	Little Shrike-thrush
Pachycephalidae	Colluricincla	Colluricincla harmonica	Grey Shrike-thrush Red-tailed Black-
Cacatuidae	Calyptorhynchus	Calyptorhynchus banksii	cockatoo
Cacatuidae	Calyptorhynchus	Calyptorhynchus lathami	Glossy Black-cockatoo
			Yellow-tailed Black-
Cacatuidae	Zanda	Zanda funerea	cockatoo
Cacatuidae	Callocephalon	Callocephalon fimbriatum	Gang-gang Cockatoo
Cacatuidae	Eolophus	Eolophus roseicapilla	Galah
Cacatuidae	Cacatua	Cacatua tenuirostris	Long-billed Corella
Cacatuidae	Cacatua	Cacatua sanguinea	Little-corella Sulphur-crested
Cacatuidae	Cacatua	Cacatua galerita	Cockatoo
Cacatuidae	Nymphicus	Nymphicus hollandicus	Cockatiel
Psittacidae	Trichoglossus	Trichoglossus haematodus	Rainbow Lorikeet
Psittacidae	Trichoglossus	Trichoglossus chlorolepidotus	Scaly-brested Lorikeet
Psittacidae	Glossopsitta	Glossopsitta concinna	Musk Lorikeet
Psittacidae	Parvipsitta	Parvipsitta pusilla	Little Lorikeet
Psittacidae	Parvipsitta	Parvipsitta porphyrocephala	Purple-crowned Lorikeet
Psittacidae	Alisterus	Alisterus scapularis	Australian King-parrot
Psittacidae	Aprosmictus	Aprosmictus erythropterus	Red-winged Parrot
Psittacidae	Polytelis	Polytelis swainsonii	Superb Parrot
Psittacidae	Polytelis	Polytelis anthopeplus	Regent Parrot
Psittacidae	Platycercus	Platycercus caledonicus	Green Rosella
Psittacidae	Platycercus	Platycercus elegans	Crimson Rosella
Psittacidae	Platycercus	Platycercus eximius	Eastern Rosella
Psittacidae	Platycercus	Platycercus adscitus	Pale-headed Rosella
Psittacidae	Barnardius	Barnardius zonarius	Australian Ringneck
Psittacidae	Northiella	Northiella haematogaster	Bluebonnet
Psittacidae	Lathamus	Lathamus discolor	Swift Parrot
Psittacidae	Psephotus	Psephotus haematonotus	Red-rumped Parrot
Psittacidae	Psephotus	Psephotellus varius	Mulga Parrot
Psittacidae	Melopsittacus	Melopsittacus undulatus	Budgerugar
Psittacidae	Neophema	Neophema chrysostoma	Blue-winged Parrot
Psittacidae	Neophema	Neophema elegans	Elegant Parrot
Psittacidae	Neophema	Neophema chrysogaster	Orange-bellied Parrot
Psittacidae	Neophema	Neophema pulchella	Turquoise Parrot
Psittacidae	Pezoporus	Pezoporus wallicus	Ground Parrot

Cuculidae	Cuculus	Cuculus optatus	Oriental Cuckoo
Cuculidae	Heteroscenes	Heteroscenes pallidus	Pallid Cuckoo
Cuculidae	Cacomantis	Cacomantis variolosus	Brush Cuckoo
Cuculidae	Cacomantis	Cacomantis flabelliformis	Fan-tailed Cuckoo
Cuculidae	Chalcites	Chalcites osculans	Black-eared Cuckoo Horsfield's Bronze-
Cuculidae	Chalcites	Chalcites basalis	cuckoo
Cuculidae	Chalcites	Chalcites lucidus	Shining Bronze-cuckoo
Cuculidae	Chalcites	Chalcites minutillus	Little Bronze-cuckoo
Cuculidae	Eudynamys	Eudynamys orientalis	Asian Koel
Cuculidae	Scythrops	Scythrops novaehollandiae	Channel-billed Cuckoo
Cuculidae	Centropus	Centropus phasianinus	Pheasant Coucal
Alcedinidae	Ceyx	Ceyx azureus	Azure Kingfisher
Halcyonidae	Dacelo	Dacelo novaeguineae	Laughing Kookaburra
Halcyonidae	Dacelo	Dacelo leachii	Blue-winged Kookaburra
Halcyonidae	Todiramphus	Todiramphus macleayii	Forest Kingfisher
Halcyonidae	Todiramphus	Todiramphus pyrrhopygius	Red-backed Kingfisher
Halcyonidae	Todiramphus	Todiramphus sanctus	Sacred Kingfisher
Meropidae	Merops	Merops ornatus	Rainbow Bee-eater
Coraciidae	Eurystomus	Eurystomus orientalis	Dollarbird
			Spiny-cheeked
Meliphagidae	Acanthagenys	Acanthagenys rufogularis	Honeyeater
Meliphagidae	Manorina	Manorina flavigula	Yellow-throated Miner
Meliphagidae	Manorina	Manorina melanotis	Black-eared Miner
Meliphagidae	Gavicalis	Gavicalis virescens	Singing Honeyeater
Meliphagidae	Lichenostomus	Lichenostomus cratitius	Purple-gaped Honeyeater Yellow-plumed
Meliphagidae	Ptilotula	Ptilotula ornata	Honeyeater
Meliphagidae	Ptilotula	Ptilotula plumula	Grey-fronted Honeyeater White-fronted
Meliphagidae	Purnella	Purnella albifrons	Honeyeater
Meliphagidae	Sugomel	Sugomel niger	Black Honeyeater
Meliphagidae	Certhionyx	Certhionyx variegatus	Pied Honeyeater
Meliphagidae	Myzomela	Myzomela obscura	Dusky Honeyeater
Meliphagidae	Epthianura	Epthianura tricolor	Crimson Chat
Meliphagidae	Epthianura	Epthianura aurifrons	Orange Chat
Pittidae	Pitta	Pitta versicolor	Noisy Pitta
Menuridae	Menura	Menura alberti	Albert's Lyrebird
Menuridae	Menura	Menura novaehollandiae	Superb Lyrebird
Atrichornithidae	Atrichornis	Atrichornis rufescens	Rufous Scrub-bird White-throated
Climacteridae	Cormobates	Cormobates leucophaea	Treecreeper White-browed
Climacteridae	Climacteris	Climacteris affinis	Treecreeper
Climacteridae	Climacteris	Climacteris erythrops	Red-browed Treecreeper
Climacteridae	Climacteris	Climacteris picumnus	Brown Treecreeper
Maluridae	Malurus	Malurus cyaneus	Superb Fairy-wren
Maluridae	Malurus	Malurus splendens	Splendid Fairy-wren
Maluridae	Malurus	Malurus lamberti	Variegated Fairy-wren


Maluridae	Malurus	Malurus pulcherrimus	Blue-breasted Fairy-wren
Maluridae	Malurus	Malurus melanocephalus	Red-backed Fairy-wren
Maluridae	Stipiturus	Stipiturus malachurus	Southern Emu-wren
Accipitridae	Aviceda	Aviceda subcristata	Pacific Baza
Accipitridae	Elanus	Elanus axillaris	Black-shouldered Kite
Accipitridae	Milvus	Milvus migrans	Black Kite
Accipitridae	Haliastur	Haliastur indus	Brahminy Kite
Accipitridae	Haliastur	Haliastur sphenurus	Whistling Kite
Accipitridae	Haliaeetus	Haliaeetus leucogaster	White-bellied Sea-eagle
Accipitridae	Circus	Circus assimilis	Spotted Harrier
Accipitridae	Circus	Circus approximans	Swamp Harrier
Accipitridae	Accipiter	Accipiter novaehollandiae	Grey Goshawk
Accipitridae	Accipiter	Accipiter fasciatus	Brown Goshawk
Accipitridae	Accipiter	Accipiter cirrocephalus	Collared Sparrowhawk
Accipitridae	Aquila	Aquila audax	Wedge-tailed Eagle
Accipitridae	Hieraaetus	Hieraaetus morphnoides	Little Eagle
Accipitridae	Lophoictinia	Lophoictinia isura	Square-tailed Kite
Accipitridae	Erythrotriorchis	Erythrotriorchis radiatus	Red Goshawk
Falconidae	Falco	Falco berigora	Brown Falcon
Falconidae	Falco	Falco cenchroides	Nankeen Kestrel
Falconidae	Falco	Falco longipennis	Australian Hobby
Falconidae	Falco	Falco subniger	Black Falcon
Falconidae	Falco	Falco peregrinus	Peregrine Falcon
Megapodiidae	Alectura	Alectura lathami	Australian Brush-turkey
Monarchidae	Monarcha	Monarcha melanopsis	Black-faced Monarch
Monarchidae	Symposiachrus	Symposiachrus trivirgatus	Spectacled Monarch
Monarchidae	Carterornis	Carterornis leucotis	White-eared Monarch
Monarchidae	Myiagra	Myiagra rubecula	Leaden Flycatcher
Monarchidae	Myiagra	Myiagra cyanoleuca	Satin Flycatcher
Monarchidae	Myiagra	Myiagra alecto	Shining Flycatcher
Monarchidae	Myiagra	Myiagra inquieta	Restless Flycatcher
Monarchidae	Grallina	Grallina cyanoleuca	Magpie-lark
Rhipiduridae	Rhipidura	Rhipidura rufifrons	Rufous Fantail
Rhipiduridae	Rhipidura	Rhipidura albiscapa	Grey Fantail
Rhipiduridae	Rhipidura	Rhipidura leucophrys	Willie Wagtail
Dicruridae	Dicrurus	Dicrurus bracteatus	Spangled Drongo Black-faced Cuckoo-
Campephagidae	Coracina	Coracina novaehollandiae	shrike
Campephagidae	Coracina	Coracina lineata	Barred Cuckoo-shrike White-bellied Cuckoo-
Campephagidae	Coracina	Coracina papuensis	shrike
Campephagidae	Edolisoma	Edolisoma tenuirostre	Cicadabird
Campephagidae	Coracina	Coracina maxima	Ground Cuckoo-shrike
Campephagidae	Lalage	Lalage leucomela	Varied Triller
Oriolidae	Oriolus	Oriolus sagittatus	Olive-backed Oriole
Oriolidae	Sphecotheres	Sphecotheres vieilloti	Australasian Figbird White-breasted
Artamidae	Artamus	Artamus leucorynchus	Woodswallow
		· · · · · · · · · · · · · · · · · · ·	

		4	White-browed
Artamidae	Artamus	Artamus superciliosus	Woodswallow
Artamidae	Artamus	Artamus cinereus	Black-faced Woodswallow
Artamidae	Artamus		
		Artamus cyanopterus	Dusky Woodswallow
Artamidae	Artamus	Artamus minor	Little Woodswallow
Artamidae	Cracticus	Cracticus torquatus	Grey Butcherbird
Artamidae	Cracticus	Cracticus nigrogularis	Pied Butcherbird
Artamidae	Strepera	Strepera graculina	Pied Currawong
Artamidae	Strepera	Strepera fuliginosa	Black Currawong
Artamidae	Strepera	Strepera versicolor	Grey Currawong
Artamidae	Gymnorhina	Gymnorhina tibicen	Australian Magpie
Paradisaeidae	Ptiloris	Ptiloris paradiseus	Paradise Riflebird
Corvidae	Corvus	Corvus coronoides	Australian Raven
Corvidae	Corvus	Corvus tasmanicus	Forest Raven
Corvidae	Corvus	Corvus mellori	Little Raven
Corvidae	Corvus	Corvus orru	Torresian Crow
Corvidae	Corvus	Corvus bennetti	Little Crow
Corcoracidae	Corcorax	Corcorax melanorhamphos	White-winged Chough
Corcoracidae	Struthidea	Struthidea cinerea	Apostlebird
Ptilonorhynchidae	Ailuroedus	Ailuroedus crassirostris	Green Catbird
Ptilonorhynchidae	Sericulus	Sericulus chrysocephalus	Regent Bowerbird
Ptilonorhynchidae	Ptilonorhynchus	Ptilonorhynchus violaceus	Satin Bowerbird
Ptilonorhynchidae	Chlamydera	Chlamydera maculata	Spotted Bowerbird
Alaudidae	Mirafra	Mirafra javanica	Horsfield's Bushlark
Alaudidae	Alauda	Alauda arvensis	Eurasian Skylark
Passeridae	Passer	Passer domesticus	House Sparrow
Passeridae	Passer	Passer montanus	Eurasian Tree Sparrow
Estrildidae	Taeniopygia	Taeniopygia guttata	Zebra Finch
Estrildidae	Stizoptera	Stizoptera bichenovii	Double-barred Finch
Estrildidae Estrildidae	Aidemosyne	Aidemosyne modesta	Plum-headed Finch
Estrildidae Estrildidae	Neochmia	•	Red-browed Finch
Estrildidae Estrildidae		Neochmia temporalis	Diamond Firetail
Estrildidae Estrildidae	Stagonopleura	Stagonopleura guttata	Beautiful Firetail
	Stagonopleura	Stagonopleura bella	
Estrildidae	Lonchura	Lonchura punctulata	Nutmeg Mannikin
Fringillidae	Chloris	Chloris chloris	European Greenfinch
Fringillidae	Carduelis	Carduelis carduelis	European Goldfinch
Motacillidae	Anthus	Anthus novaeseelandiae	Australasian Pipit
Motacillidae	Motacilla	Motacilla tschutschensis	Yellow Wagtail
Dicaeidae	Dicaeum	Dicaeum hirundinaceum	Mistletoebird
Hirundinidae	Cheramoeca	Cheramoeca leucosterna	White-backed Swallow
Hirundinidae	Hirundo	Hirundo neoxena	Welcome Swallow
Hirundinidae	Petrochelidon	Petrochelidon nigricans	Tree Martin
Hirundinidae	Petrochelidon	Petrochelidon ariel	Fairy Martin
Pycnonotidae	Pycnonotus	Pycnonotus jocosus	Red-whiskered Bulbul
Acrocephalidae	Acrocephalus	Acrocephalus australis	Australian Reed Warbler
Locustellidae	Cincloramphus	Cincloramphus timoriensis	Tawny Grassbird
Locustellidae	Poodytes	Poodytes gramineus	Little Grassbird

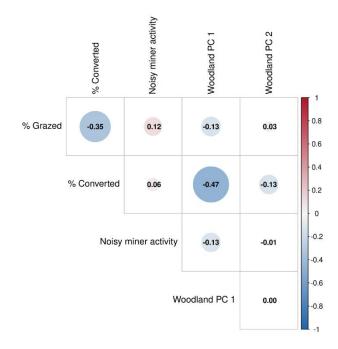

Locustellidae	Cincloramphus	Cincloramphus mathewsi	Rufous Songlark
Locustellidae	Cincloramphus	Cincloramphus cruralis	Brown Songlark
Locustellidae	Cisticola	Cisticola exilis	Golden-headed Cisticola
Zosteropidae	Zosterops	Zosterops lateralis	Silvereye
Turdidae	Zoothera	Zoothera lunulata	Bassian Thrush
Turdidae	Zoothera	Zoothera heinei	Russet-tailed Thrush
Turdidae	Turdus	Turdus merula	Common Blackbird
Sturnidae	Sturnus	Sturnus vulgaris	Common Starling
Sturnidae	Acridotheres	Acridotheres tristis	Common Myna

Figure S1. Pairwise Pearson correlation matrix among landscape structure metrics in closed woodland patches. Size and colour of circles indicate strength and direction of correlation. Woodland cover was strongly collinear with mean patch area and aggregation index and was retained for modelling alongside PCA-derived patch structure metrics.

Figure S2. Pairwise Pearson correlation matrix among landscape structure metrics in open woodland patches. Woodland cover showed strong positive correlations with mean patch area, patch number, and aggregation index. Patch metrics were summarised using PCA to reduce dimensionality and collinearity.

Table S2. Variance explained by each principal component used to summarise woodland patch structure.

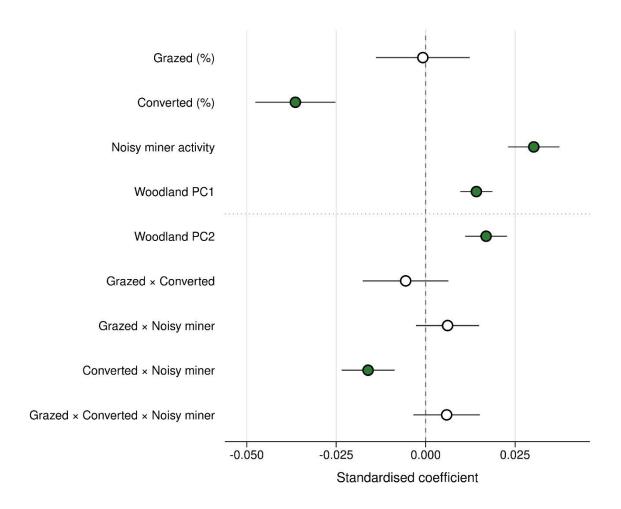

statistic	Standard deviation	Proportion of Variance	Cumulative Proportion
1	1.7374967	0.60378	0.60378
2	1.0739833	0.23069	0.83447
3	0.6456685	0.08338	0.91784
4	0.5909583	0.06985	0.98769
5	0.2480839	0.01231	1.00000

Table S3. Variance inflation factors (VIF) for fixed effects used in generalised additive models. All VIF values were below 2, indicating low collinearity among predictors.

1.281774
1.562226
1.028308
1.377535
1.033282

Table S4. Principal component loadings for woodland structure in closed canopy habitats. PC1 captures increasing woodland area, aggregation, and cover; PC2 is strongly associated with edge density. These components were used to summarise patch structure in GAMs.

variable	PC1	PC2
Woodland_pland	0.52073406	0.278478288
Woodland_np	-0.44397097	0.339464668
Woodland_area_mn	0.53306661	-0.007705067
Woodland_ai	0.49491577	0.112080091
Woodland_ed	-0.05122684	0.891399051

Figure S4. Standardised coefficients from generalised additive models predicting species richness across southeastern Australia. Points show effect sizes with 95% confidence intervals. Filled circles indicate statistically significant effects (p < 0.05); open circles

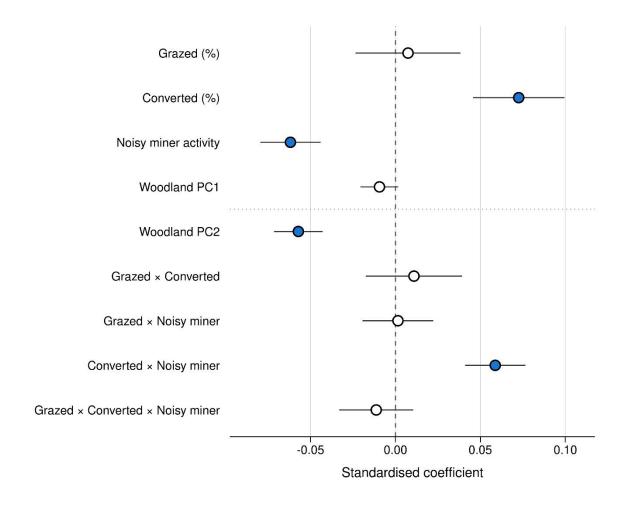


Figure S5. Standardised coefficients from generalised additive models predicting total local contributions to β -diversity (LCBD) across southeastern Australia. Points show effect sizes with 95% confidence intervals. Filled circles indicate statistically significant effects (p < 0.05); open circles indicate non-significant effects. Positive values indicate increased contribution to regional compositional variation; negative values indicate decreased contribution.

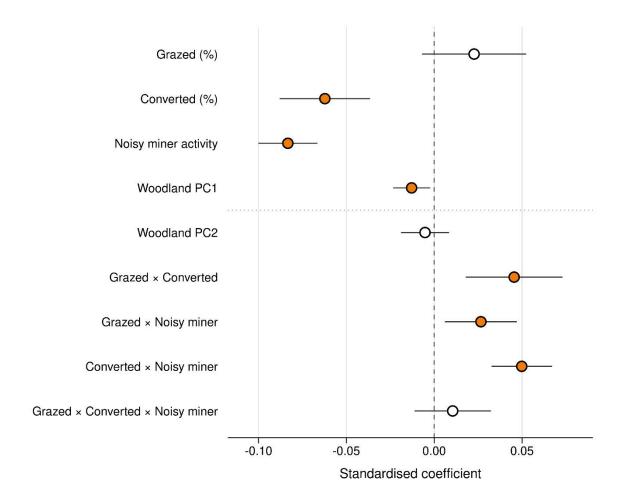


Figure S6. Standardised coefficients from generalised additive models predicting turnover local contributions to β-diversity (LCBD) across southeastern Australia. Points show effect sizes with 95% confidence intervals. Filled circles indicate statistically significant effects (p < 0.05); open circles indicate non-significant effects. Positive values indicate increased contribution to species replacement patterns; negative values indicate decreased contribution.

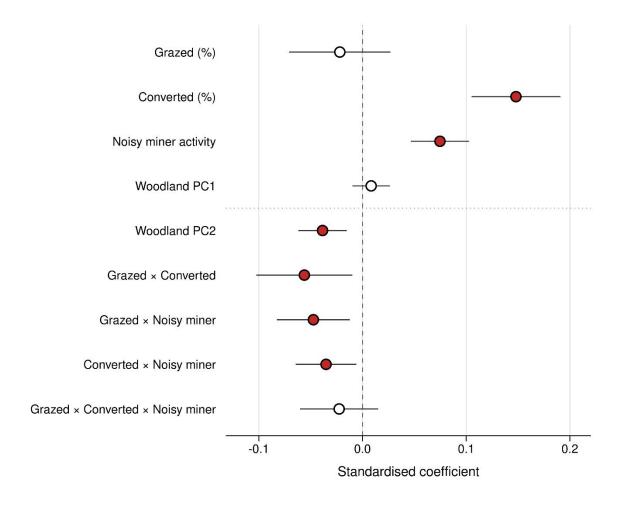


Figure S7. Standardised coefficients from generalised additive models predicting nestedness local contributions to β -diversity (LCBD) across southeastern Australia. Points show effect sizes with 95% confidence intervals. Filled circles indicate statistically significant effects (p < 0.05); open circles indicate non-significant effects. Positive values indicate increased contribution to nested species loss patterns; negative values indicate decreased contribution.