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ABSTRACT 

Collating and synthesising ecological information is critical for guiding effective 

conservation policy and management plans. This is especially pertinent for species of 

conservation concern. This task may be further complicated when taxonomic revisions of 

species and species complexes occur. Species previously managed as a single taxon may be 

reclassified into multiple species, and hence species-specific concerns and management 

requirements may need to be revised rapidly. Until 2020, greater gliders were widely 

recognised as a single species (Petauroides volans) with an extensive distribution along 

Australia’s east coast. However, recent genetic evidence supports earlier descriptions of three 

separate greater glider species: Petauroides minor (northern greater glider), P. armillatus 

(central greater glider), and P. volans (southern greater glider). However, the current 

Environment Protection and Biodiversity Conservation Act 1999 currently recognises only P. 

volans (southern and central) and P. minor (northern) as unique species, which are listed as 

Endangered and Vulnerable, respectively. We conducted a systematic review of all literature 

relating to ecological research on greater gliders. Our aim was to inform appropriate 

conservation and management actions and identify future research priorities for the three 

species. We identified 178 unique greater glider studies and categorised them by geographic 

location and thematic focus, assigning them to each species based on previous work on 

distributional boundaries to evaluate the ecological knowledge base for each species. Most 



research addressed factors associated with occurrence, abundance, anthropogenic habitat 

destruction, fire, and spatial distribution, with a marked research bias toward the southern 

greater glider. Ecological knowledge for the central and northern species remains limited, 

potentially compromising species-specific conservation and management for these two taxa. 

Climate change, habitat destruction, and wildfire are considered key threats to greater glider 

populations. Additional research across all greater glider species is needed to understand key 

drivers of population dynamics, including the role of climate change and associated extreme 

weather events, life history traits, genetics, physiology, predation, competition, disease, 

habitat quality, planned burning, and spatial ecology. Such information is essential for 

accurate extinction risk and effective threat mitigation. Ensuring the long-term survival of 

greater gliders requires coordinated, species-specific conservation strategies informed by 

research, supported by legislative reform, and underpinned by strong environmental 

protections and habitat restoration. Our synthesis highlights the broader utility of re-

evaluating existing research in the context of taxonomic reclassification, particularly for 

directing future research and informing targeted and effective conservation responses for 

threatened species.   
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I.               INTRODUCTION 

Effective biodiversity conservation and management relies on a robust evidence base 

(Sutherland et al., 2004). However, decision-makers often struggle to utilise this evidence 

due to the sheer volume of relevant literature (Pullin & Knight, 2005). Instead, they may rely 

on subsets of information, such as published reviews (Pullin & Knight, 2005). Thus, the 

review and collation of evidence is fundamental to the development of effective conservation 

policy and subsequent biodiversity action and management plans (Sutherland et al., 2004). 

Another challenge to evidence-based conservation arises from disproportionate research 

effort across species and aspects of their ecology (Fleming & Bateman, 2016). This can lead 

to replication of research findings, which may divert research efforts from exploring other 

important aspects of a given species' ecology, while strengthening the evidence base and 

conclusions (Fleming & Bateman, 2016). Furthermore, taxonomic debates, uncertainty, and 

revisions can complicate species-specific conservation actions. Species once managed as a 

single species may be part of species complexes containing multiple species, each with 

potentially different needs (Silva et al., 2020). This has important implications given 



conservation management and planning for threatened taxa depends on recognition and 

definition of individual conservation units that may have differing management requirements 

(Mace, 2004; Dussex et al., 2018; Stronen et al., 2022). 

Australia has experienced one of the highest rates of species extinction globally over the last 

500 years (Woinarski et al., 2019; Legge et al., 2023). This rate is predicted to increase 

unless conservation and management actions improve (Geyle et al., 2018). Australia’s 

mammals have been disproportionately affected as a group, with 39 species considered 

extinct and over 112 species at risk of extinction (Department of Climate Change, Energy, the 

Environment and Water, 2025). Included in these threatened mammals are greater gliders. 

These folivorous, arboreal marsupials include the largest gliding marsupial species and the 

second largest gliding mammal in the world (the southern greater glider). Once considered a 

single species (Petauroides volans), recent genetic evidence supports their classification as 

three distinct species: the northern (P. minor), central (P. armillatus), and southern greater 

glider (P. volans) (McGregor et al., 2020). This separation agrees with earlier morphological 

assessments (Jackson & Groves, 2015). 

Greater gliders are distributed along Australia’s east coast, with the northern species found 

near Cairns and Townsville in the far north of Queensland, the central species’ range extends 

from south of Townsville to the Queensland and New South Wales border, while the southern 

species ranges from this border to southern Victoria. They were once considered common 

across their range but have suffered significant population declines (Lindenmayer et al., 

2011b), leading to the recent conservation listing of ‘Endangered’ for the southern and central 

species, which the listing inaccurately refers to both as P . volans, (Department of Climate 

Change, Energy, the Environment and Water, 2022a), while the northern species is listed as 

‘Vulnerable’(Department of Climate Change, Energy, the Environment and Water, 2022b). 



There has been an increase in research and public interest in greater gliders in recent years, 

driven by their rapidly declining populations exacerbated by climate change (Smith & Smith, 

2018; Wagner et al., 2020), logging (typically clearfelling in Australia), and land-clearing 

(Ashman et al., 2021; Lindenmayer et al., 2021, 2022) and concerns about the impacts of the 

2019-2020 large-scale fires (Smith & Smith, 2022; Driscoll et al., 2024). Their threatened 

conservation status has significantly elevated their profile, with the species’ becoming a high 

priority conservation target for researchers and environmental community groups. This has 

put pressure on governments to develop and enforce policies that will reduce the impact of 

key threatening processes such as logging, land clearing, habitat fragmentation, and the 

impacts of climate change (Ward et al., 2024). However, without adequate ecological 

knowledge and relevant research across the range of all three species, developing and 

implementing tailored, informed, and practical conservation policies is challenging. 

Given the importance of reviews for informing evidence-based conservation, we conducted 

the first comprehensive systematic review of greater glider research. Specifically, we 

synthesised the existing ecological knowledge base, which for most of this period, treated 

greater gliders as a single species, and reclassified studies according to the revised taxonomy 

recognising three distinct species: Petauroides volans, P. armillatus, and P. minor. To 

achieve this, we assigned each study to one or more species based on its geographic location 

relative to the best-available delineations of each species' distribution. We then quantified 

research effort per species and per ecological topic, identified core research themes, and 

summarised current ecological understanding, threats, management and policy 

recommendations. We highlight critical knowledge gaps and under-researched areas 

necessary for informing species-specific conservation and recovery efforts. This synthesis is 

intended to guide researchers, conservation practitioners, and policymakers by providing a 



consolidated evidence base to support the development of targeted and effective recovery 

plans, which as of 2025, have yet to be published. 

 

II.            MATERIALS AND METHODS 

(1) Literature searches and database compilation 

Our literature review followed best-practice recommendations from the ROSES (RepOrting 

standards for Systematic Evidence Syntheses) framework (Haddaway et al., 2018). We 

developed a review protocol and transparent inclusion and exclusion criteria (Haddaway et 

al., 2015; see Supporting Information) prior to conducting our review. Articles returned by 

bibliographic and citation searches were screened and reviewed according to the predefined 

review protocol (see Supporting Information). We searched five bibliographic databases—

Web of Science, Zoological Record, Scopus, ProQuest Dissertation and Theses Global, and 

Google Scholar—using the search string ("greater glider" OR "Schoinobates volans" OR 

"Petauroides volans" OR "Petauroides armillatus" OR "Petauroides minor"). Greater gliders 

have a complex and often confusing taxonomic history, having been classified under multiple 

genera and binomial names. Notably, they were referred to as Schoinobates volans for an 

extended period in the scientific literature (Maloney & Harris, 2008); accordingly, we 

included this genus in our search terms.  

Searches targeted terms located in the publication title, abstract, keywords, and main text. 

Relevant literature included peer-reviewed journal articles, theses, and government reports. In 

addition, we conducted citation searches systematically on included studies using a targeted 

set of key terms (see Supporting Information for details). We considered only articles written 



in English; however, we identified only one article in another language, which was 

subsequently excluded.  

(2) Data extraction & synthesis 

For each article included in the final synthesis, we recorded the title, authors, year of 

publication, article type, and study location and coordinates, where possible. Following a 

similar approach to previous systematic literature reviews (Ashman, Watchorn & Whisson, 

2019; Moore et al., 2021), we conducted a content analysis (Krippendorff, 2018) by 

categorising the focus of each study relative to 22 topics (Data S1). Individual studies could 

be categorised as multiple topics simultaneously.  

To assess research effort per greater glider species, we assigned each article to a species 

based on its geographic location, relative to the known or inferred species distribution, as 

described by Arbogast et al. (2011), Jackson & Groves (2015), McGregor et al. (2020), and 

Youngentob (personal communication; see Supporting Information). We assigned each study 

to one or more species, depending on whether its location overlapped with the inferred range 

of a single species or multiple species. This information was used to descriptively synthesise 

the research effort per research topic per species. 

  

III.          GREATER GLIDER STUDIES 

Our systematic literature searches identified 891 unique articles, of which 178 met our 

inclusion criteria and contained unique information that was subsequently summarised (see 

Supporting Information; Data S1). There has been a substantial increase in the number of 

greater glider studies published from the 1980s onwards (8% (n = 15) pre-1980 vs 92% (n = 

163) post-1980), with the first five and a half years of the current decade (2020-2025) being 



the most prolific decade with nearly one third of studies published (n = 52, 29%; Fig. 1). This 

increase in greater glider research is likely a result of the threatened conservation listing for 

greater gliders in 2016. The earliest study that met our search criteria was published in 1923 

and investigated the meiotic phase in male greater gliders, at an unreported location (Agar, 

1923).  

 

Figure 1. (a) Number of unique greater glider articles/studies per decade of publication for 

all species. This includes seven articles where the species could not be determined because of 



a lack of reported location data. Number of unique greater glider articles/studies per decade 

of publication is shown for (b) southern (Petauroides volans), (c) central (P. armillatus), and 

(d) northern (P. minor) greater gliders. 

 

(1) Geographic distribution of greater glider studies 

Most studies have been conducted within the southern extent of the greater glider distribution 

(Fig. 2). The highest proportion of greater glider studies has been conducted in New South 

Wales and the Australian Capital Territory (n = 102), followed by Victoria (n = 60), and then 

Queensland (n = 33). There were 20 studies that were conducted across more than one state 

(Data S1). 



 

Figure 2. Geographic distribution of studies for northern (Petauroides minor), central (P. 

armillatus), and southern greater gliders (P. volans). Species distributions and approximate 

species boundaries (black dashed lines) are based on findings by Arbogast et al. (2011), 

Jackson & Groves (2015), McGregor et al. (2020), and Youngentob (personal 

communication).  The pink shaded area shows the predicted geographic distribution of the 

three greater glider species in Australia (Species Profile and Threats Database; Department of 

Climate Change, Energy, the Environment and Water, 2023). 



The southern greater glider was the subject of the highest proportion of studies (85%, n = 

151), followed by 14% (n = 25) of studies for the central species, and 11% (n = 19) for the 

northern species (Fig. 3). A species could not be determined for 4% (n = 7) of studies because 

the research was conducted in a laboratory, or the study location could not be reliably 

determined (Fig. 3). There 15 studies (8%) that reported information for more than one 

species, hence the combined proportions sum to greater than 100%. 

 

Figure 3. Number of unique articles per greater glider species. Information for multiple 

greater glider species could be reported in the same article, thus the total number of unique 



articles (N = 178) does not equal the sum of all articles per species, and combined proportions 

sum to greater than 100%. 

 

(2) Distribution of research across greater glider species per research topic 

Research effort was not evenly distributed across topics or species (Fig. 4). The most 

frequently researched topics were factors associated with occurrence, abundance, 

anthropogenic habitat destruction, fire, and spatially explicit distribution (Fig. 4). There was a 

lack of research investigating life history, movement, predation and disease, and for the 

central and northern greater glider generally (Fig. 4). Numerous articles provided 

management and policy recommendations (Fig. 4) for improving the conservation of greater 

gliders, with the earliest of these published in 1987 by Kavanagh (1987) and Lunney (1987). 



 

Figure 4. Number of unique greater glider studies categorised by species and topic, 

indicating considerably greater research effort across most topics for the southern species 

(Petauroides volans) compared to the central (P. armillatus) and northern species (P. minor).  

 

IV.          TAXONOMY & GENETICS 



(1) Taxonomy  

A phylogenetic study into possums and gliders estimated that the divergence of P. volans 

occurred from a common ancestor of other possums approximately 39 million years ago 

(Edwards & Westerman, 1995). More recently, Petauroides volans, traditionally considered 

the only gliding member of the family Pseudocheiridae, was recognised as two subspecies by 

the Australian government: Petauroides volans volans and Petauroides volans minor. These 

subspecies differed in morphology, colour, and distribution (Comport, Ward & Foley, 1996; 

McKay, 2008). Recently it was proposed to split P. volans into three distinct species: P. 

volans, P. minor, and P. armillatus (Jackson, 2015; Jackson & Groves, 2015), based on 

geographical and morphological distinctions. The first test on a three species designation 

using molecular sequence data was performed by McGregor et al. (2020), which indicated 

three distinct species.  

However, the adoption a three species classification is not universal. Currently, only two 

species are formally recognised under the Environment Protection and Biodiversity 

Conservation Act 1999 (EPBC Act; Department of the Environment, 2025a, 2025b), while 

only one species is now recognised under Queensland’s Nature Conservation Act 1999 

(Queensland Government, 2025), following the Australasian Mammal Taxonomy 

Consortium which currently recognises two subspecies (i.e. P. volans volans and P. volans 

minor; (AMTC, 2024). Only one species is currently recognised by the IUCN Redlist 

(Burbidge & Woinarski, 2020). These discrepancies have implications for population and 

conservation assessments, and targeted management actions, particularly our review indicates 

that each of the three species have smaller distributions than that previously attributed to just 

P. volans. However, the genetic samples underpinning this classification have primarily 

utilised samples from Victoria and Queensland, leaving a significant gap in New South Wales 



(NSW) for taxonomic delegation. Further genetic sampling across the NSW distribution of 

greater gliders is of high importance for taxonomic work to identify the exact range, potential 

overlap and hybridisation between species.  

(2) Genetics 

Early genetic work for Petauroides species involved understanding the cytological 

characteristics contributing to the understanding of their meiotic processes, which was 

performed on southern greater gliders (Agar, 1923). Some of the first observations of B 

chromosomes in mammals was found in southern greater gliders (Hayman & Martin, 1965). 

Further chromosome work in southern and central greater gliders have investigated the 

composition of B chromosomes (Mcquade, Hill & Francis, 1994; McQuade, 1995) and the 

structure of sex chromosomes, chromosomal elimination and intrapopulation variation of 

chromosomal inactivation (Murray, McKay & Sharman, 1979; Murray & McKay, 1979, 

1982).  

There is an absence of conservation genetic research for most of the distribution of all greater 

glider species. Early work on southern greater glider conservation genetics used 

microsatellite data from southern greater gliders in a fragmented Eucalyptus forest 

surrounded by extensive stands of exotic Pinus radiata (Taylor, Tyndale-Biscoe & 

Lindenmayer, 2007). The study found that while the Pinus radiata plantation did not support 

populations, the southern greater glider could have potentially moved through the “soft 

matrix” of these exotic tree stands, maintaining some connectivity between isolated patches 

of remnant Eucalyptus forest (Taylor, Kraaijeveld & Lindenmayer, 2002; Taylor et al., 

2007). Only one other study into conservation genomics has occurred and this was for 

southern greater gliders on the south coast of NSW (Knipler, Gracanin & Mikac, 2023). 

Across fourteen locations spanning an area of approximately 15,000 km2, the authors found 



most populations had low genetic diversity, evidence of inbreeding, and low effective 

population size, raising concerns over increasing localised population extinctions in the future 

(Knipler et al., 2023). Given the recent uplisting of the southern greater glider to 

‘Endangered’ under the EPBC Act, understanding the baseline genetic structure of 

populations across the distribution of all three species is critical to inform conservation 

management actions and identify stronghold populations.  

 

V.      DISTRIBUTION 

Greater gliders are distributed along the east coast of Australia with a range extending over 

3000 km north to south and up to ~400 km inland from the coast (Fig. 2). They occur across 

an elevational gradient of 0-1400 m above sea level (Lindenmayer et al., 2018; Emerson, 

Ballard & Vernes, 2019) but are more likely to occur at higher elevations (Bennett et al., 

1991; Kavanagh & Bamkin, 1995; Kavanagh, 2000; Smith & Smith, 2020; Ridley et al., 

2024). Greater glider distribution is broadly driven by availability of woodland and open 

eucalypt forest containing suitable food species (Eyre, 2006; Lindenmayer et al., 2022), 

hollow-bearing trees (Lindenmayer et al., 1990a; Eyre, 2006; Lindenmayer et al., 2021, 

2024a), and suitable climatic conditions (Kearney, Wintle & Porter, 2010; Smith & Smith, 

2020; Wagner et al., 2020). Numerous habitat characteristics are associated with greater 

glider occupancy (e.g. McCarthy & Lindenmayer, 1999b; Youngentob et al., 2012; Smith & 

Smith, 2018) and are discussed later in the manuscript.  

 

Across the distribution of all three greater glider species, annual average rainfall ranges from 

~400 to over 3000 mm and annual average temperatures range from ~6°C to 27°C (Bureau of 

Meteorology, 2024). However, species distribution modelling suggests that greater gliders in 

general are most likely to occur where temperatures peak at ~18°C during the warmest part of 

https://deakin365-my.sharepoint.com/personal/lemerson_deakin_edu_au/Documents/Non-PhD/GG%20review/GG%20manuscript_LDE.docx#_msocom_3


the year and annual rainfall is ~1500 mm, although this may not accurately describe the 

northern species’ tolerances due to a lack of data to inform such modelling (Torres, 2020). 

Within this broad climatic envelope, conditions vary for each species: northern greater gliders 

persist in the warmest environments and span both the driest and wettest parts of the range 

(~18–27°C; ~400–3000 mm annual averages), central greater gliders occur in intermediate 

conditions (~15–27°C; ~400–1500 mm), and southern greater gliders are largely restricted to 

cooler and wetter habitats (~6–21°C; ~600–2000 mm; Bureau of Meteorology, 2024). 

 

Since European invasion, the extent of occurrence has been contracting for all greater glider 

species and is estimated to be 43 655 to 48 946 km2 for the northern species (Woinarski, 

Burbidge & Harrison, 2014; Department of Climate Change, Energy, the Environment and 

Water, 2022b) and 752 962 to 1 066 146 km2 for the central and southern species combined 

(Woinarski et al., 2014; Department of Climate Change, Energy, the Environment and Water, 

2022a). Additionally, the area of occupancy has significantly decreased for all three species 

since European arrival, primarily due to habitat destruction (Woinarski et al., 2014), with 

further contraction being driven by forestry activities and fire (McLean et al., 2018; 

Lindenmayer & Sato, 2018; Ashman et al., 2021), habitat fragmentation and edge effects 

(Youngentob et al., 2012), and climate change (Smith & Smith, 2018; Wagner et al., 2020). 

Area of occupancy has been estimated at 500 to < 2000 km2 for the northern species 

(Woinarski et al., 2014; Department of Climate Change, Energy, the Environment and Water, 

2022b) and 15 244 to > 20 000 km2 for the central and southern species combined (Woinarski 

et al., 2014; Department of Climate Change, Energy, the Environment and Water, 2022a). 

However, this is likely a substantial underestimate because of limited sampling across the 

occupied range (Woinarski et al., 2014). Recorded dramatic declines and extirpation of some 

greater glider subpopulations (Woinarski et al., 2006; Smith & Smith, 2018; Lindenmayer et 



al., 2018), as well as continuing negative impacts of habitat destruction, fire (McLean et al., 

2018; Lindenmayer & Sato, 2018; Ashman et al., 2021; Campbell-Jones et al., 2022; 

Lindenmayer et al., 2022; Smith & Smith, 2022), and climate change (Kearney et al., 2010; 

Smith & Smith, 2020), strongly suggests that many unmonitored subpopulations of greater 

gliders are also declining (Department of Climate Change, Energy, the Environment and 

Water, 2022a). 

Northern greater gliders have the most restricted distribution of the three species occurring in 

the tropical region of north-eastern Australia from the Windsor Tablelands north of Cairns 

(~16°S; Fig. 2), to just south of Townsville (~19.5°S; Fig. 2). Their distribution likely 

overlaps with the northern extent of the central species, given hybridisation between the two 

species has been documented (McGregor et al., 2020). Two isolated subpopulations have also 

been recorded at Blackbraes National Park (Vanderduys, Kutt & Kemp, 2012) and the 

Gregory Range, at the western limit of the species’ distribution (~19.5°S & 143.5°E; Fig. 2), 

(Winter et al., 2004; Woinarski et al., 2014). This isolation, exacerbated by habitat 

destruction, could have conservation implications for these subpopulations (Winter et al., 

2004). Furthermore, the apparent lack of studies examining the distribution of northern and 

central greater gliders (Fig. 4) raises additional concerns regarding our understanding of their 

ecology and our subsequent ability to conserve and manage these threatened species. 

 The exact distribution of the central and southern greater glider species remains unresolved 

(McGregor et al., 2020). Genetic work indicates that the central species’ range extends from 

near Townsville (~19.5°S; Fig. 2) in the north to at least the Queensland and NSW border in 

the south (~28°S; Fig. 2) (McGregor et al., 2020). Similarly, the southern species’ range 

extends from Wombat State Forest in central Victoria (~37.5°S & 144.5°E) to at least the 

Victorian and NSW border (Fig. 2; Arbogast et al., 2011; Jackson & Groves, 2015; 



McGregor et al., 2020; Youngentob (personal communication)). Further genetic assessments 

are required to determine the range extents of these two species because it remains unclear 

how far south the central greater glider’s distribution extends, or how far north the southern 

species is distributed (McGregor et al., 2020). This uncertainty could inhibit species-specific 

monitoring and conservation actions, thus more surveys across the distribution of each 

species need to be conducted to determine accurate areas of occupancy.  

 

VI.      ANATOMY & PHYSIOLOGY 

Greater gliders are the largest of the Australian marsupial gliders. Adults of the southern 

species generally weigh between 1000 g and 1700 g (Norton, 1988; Viggers & Lindenmayer, 

2001; Cunningham, Pope & Lindenmayer, 2004), with a head-body length of 35-40 cm and a 

tail length of around 50 cm (Viggers & Lindenmayer, 2001; McGregor et al., 2020). The 

central and northern species are smaller; adults of the central species weigh about 900 g on 

average, while northern greater gliders are 600 g to 800 g (Foley et al., 1990; Comport et al., 

1996; McGregor et al., 2020). In all three species, males and females are similar in size 

(Norton, 1988; McGregor et al., 2020). 

Southern greater gliders are heavily furred with variable coat colour, ranging from white to 

mottled grey to dark brown, usually with a white belly and chest (Comport et al., 1996; 

McGregor et al., 2020). The central and northern species are less variable in colour and have 

dark brown dorsal hair with silvery or grey subterminal bands (Comport et al., 1996; 

McGregor et al., 2020). All three species have a patagium (gliding membrane) that connects 

the elbow on the forelimb to the ankle on the hind limb (Johnson-Murray, 1987). This differs 

from all other marsupial gliders, in which the gliding membrane predominantly connects the 



wrist to ankle (Johnson-Murray, 1987). When gliding, greater gliders extend their hindlimbs 

and keep their forelimbs flexed with the digits adjacent to the chin (Johnson-Murray, 1987). 

The gliding membrane also helps to insulate against heat dissipation at cooler temperatures 

(Rübsamen et al., 1984). At warmer temperatures, southern greater gliders can become 

hyperthermic at temperatures above 20-22°C and must expend significant energy and water 

for cooling (Rübsamen et al., 1984). This sensitivity to heat may explain why greater gliders 

are often found at higher elevations, where it is generally cooler (Moore et al., 2004; 

Lindenmayer et al., 2022). Less is known about the thermal physiology of northern and 

central greater gliders. This information could assist with understanding their current 

distribution and future implications of heat waves and climate change (Kearney et al., 2010). 

Captive southern greater gliders have a resting metabolic rate of around 210 kJ kg-0.75 d-1 

(Foley, 1987), while field metabolic rates of 520 kJ d-1 have been measured in central greater 

gliders (Foley et al., 1990). Higher field metabolic rates reflect the increased energy demands 

of activity, thermoregulation and locomotion in free living animals (Foley et al., 1990). In 

both studies, calculated values were similar to the predicted rates for marsupials of their size. 

The maintenance energy requirements of captive southern greater gliders fed Eucalyptus 

radiata foliage were 0.35 MJ of metabolizable energy kg-0.75 d-1, but this value may be 

somewhat dependent on the specific diet and the cost of metabolising and eliminating 

associated plant secondary metabolites (PSMs) (Foley, 1987).   

Large herbivores (greater than 1 kg) can survive on plant diets by eating large volumes of 

food and having slow gut passage rates that allow time for synergistic microbes to break 

down plant cell walls and maximise nutrient extraction (Tyndale-Biscoe, 2005). For smaller 

herbivores, however, food intake is constrained by gut fill (Crowe & Hume, 1997). Because 

greater gliders are close to the minimum size for a herbivore with a strictly folivorous diet, 



they have several anatomical and physiological adaptations that allow them to meet their 

nutritional requirements on a highly specialised diet of eucalypt leaves. These adaptations 

include shearing teeth that reduce leaves to small particles to increase surface area, and a 

large and complex caecum for microbial fermentation (Foley, Hume & Cork, 1989; Hume, 

1999). Microbial digestion facilitates the extraction of nutrients from food and also provides 

products from microbial digestion and potential detoxification of PSMs (Moore et al., 2004). 

The digestive physiology of greater gliders has predominantly been studied in the southern 

species. Like other arboreal folivores, southern greater gliders have long mean retention times 

for digesta (Foley & Hume, 1987). The gut-filling effect of eating fibrous leaves is reduced 

by excreting coarse particles more rapidly, while fine particles are selectively retained in the 

caecum (Foley & Hume, 1987). Although short chain fatty acids (SCFA) produced by 

fermentation in the caecum can be absorbed from all regions of the hindgut (Rübsamen et al., 

1983), they contribute relatively little (approx. 7%) to the digestible energy intake of southern 

greater gliders (Foley et al., 1989). Thus, the bulk of energy requirements come from cell 

contents (Foley et al., 1989). There is no evidence that southern greater gliders practice 

caecotrophy to improve nitrogen (N) assimilation as observed in the closely related eastern 

ring-tailed possum (Pseudocheirus peregrinus; Crowe & Hume, 1997). 

Southern greater gliders have an estimated truly digestible maintenance N requirement of 

0.56 g kg-0.75 d-1 when feeding on E. radiata foliage (Foley & Hume, 1987). This requirement 

is higher than other captive folivores eating Eucalyptus foliage, but it could be related to N 

loss in response to PSM detoxification on the specific diet offered (Foley & Hume, 1987). 

This is supported by field measurements in which free living central greater gliders 

maintained bodyweight when feeding on diets that were substantially lower in N than those 

fed to captive animals (Foley et al., 1990). 



One important physiological adaptation for a diet of eucalypt leaves is the capacity to 

metabolise PSMs, which are often found in high concentrations in these leaves. Terpenes 

(essential oils), for example, are readily absorbed and disappear from the stomach and small 

intestine before reaching the hindgut (Foley, Lassak & Brophy, 1987). In northern greater 

gliders, the process for metabolising monoterpenes involves extensive oxidation (Boyle et al., 

1999). There is minimal conjugation with glucuronic acid (derived from glucose), which is 

likely an adaptation to conserve nutrients on their low energy diet (Boyle et al., 1999). 

Nevertheless, the costs and limitations on the rate at which they can detoxify eucalypt PSMs 

relative to acquiring nutrients probably dictates feeding preferences and feeding rates (Moore 

et al., 2004; Marsh et al., 2006). 

 

VII.        LIFE HISTORY 

(1) Reproduction 

Empirical data on the life history of greater gliders, including reproductive traits, are limited 

to the southern species (P. volans), with no studies conducted on the central or northern 

species. This represents a substantial knowledge gap with important implications for 

conservation and management (Kearney et al., 2010). 

 

Southern greater gliders are highly seasonal, monoestrous breeders (Tyndale-Biscoe, 2005). 

Reproductive activity occurs in a narrow window, with mating typically observed between 

March and May and births occurring from April to May (Smith, 1969; Henry, 1985; Norton, 

1988). Sperm production in males is restricted to autumn and early winter (Smith, 1969; 

Baldwin, Temple-Smith & Tidemann, 1974), and social interactions between adult males and 

females peak in late summer and early autumn (Henry, 1985). Males maintain exclusive 



access to their associated female through den sharing or visiting them at night (Henry, 1985; 

Norton, 1988). 

 

Southern greater gliders are monovular, with only one offspring conceived at a time (Smith, 

1969) and breeding occurring annually, resulting in one young per year (Smith, 1969; 

Tyndale-Biscoe & Smith, 1969). Not all females breed annually, with proposed explanations 

including limitations on the number of available males and variation in habitat quality 

(Bancroft, 1970; Henry, 1985; Norton, 1988). Breeding is typically restricted to females 

weighing over 1 kg, suggesting sexual maturity is reached in the second year of life, where 

annually >80% of individuals were observed to be either pregnant or with a pouch young 

(Smith, 1969; Tyndale-Biscoe & Smith, 1969; Bancroft, 1970). However, in Victoria, natality 

rates of 50% or less were reported (Henry, 1985). 

 

Young are born in an underdeveloped state and continue development in the pouch, which 

opens forward and is well developed (Smith, 1969). Lactation is prolonged, helping females 

avoid peak nutritional demands (Moore et al., 2004). Pouch emergence occurs around 

October when the juvenile weighs ~150 g, after which they may ride on the mother's back 

until reaching ~300 g, or remain in tree hollows while the mother is foraging (Henry, 1985; 

Norton, 1988). Juveniles remain with the mother until they are about 10 months of age and 

weigh ~500–600 g around January of their first year (Smith, 1969; Bancroft, 1970; Henry, 

1985; Norton, 1988). Dispersal behaviour and survival rates of juveniles remain poorly 

understood (Henry, 1985; Norton, 1988). Male reproductive anatomy in greater gliders is 

similar to other marsupials (Smith, 1969). 

 



Mechanistic modelling indicated that the environmental drivers limiting reproduction (milk 

production) in greater gliders vary geographically (Kearney et al., 2010). At the northern and 

inland extremities of the northern species’ range, reproduction is primarily constrained by 

water availability and balance during September, when rainfall is typically low (Kearney et 

al., 2010). In contrast, protein is the major limiter of reproduction for the central and southern 

species, while energy availability also constrains reproduction in highland areas of the 

southern species range (Kearney et al., 2010). 

(2) Sex ratio 

Sex ratios have been reported exclusively for the southern greater glider. At birth, the sex 

ratio is approximately 1:1 (Smith, 1969; Henry, 1985), however, as offspring mature, a 

female-biased sex ratio emerges, with males comprising less than 40% of the population 

(Smith, 1965; Tyndale-Biscoe & Smith, 1969). Other studies in southeastern Australia 

similarly report female-biased sex ratios (Kehl & Borsboom, 1984; Henry, 1985), with only 

one study reporting near parity near Armidale, NSW (Griffith, 1973).  Although not 

specifically tested for greater gliders, the local-resource-competition hypothesis, observed in 

other arboreal mammals such as common brushtail possums (Trichosurus vulpecula), may 

also apply, whereby sex ratios are biased towards the dispersing sex when philopatric 

offspring compete with their mothers for resources, such as food or dens (Johnson et al., 

2001).  

(3) Life expectancy 

In southeastern NSW, life spans of greater gliders were theoretically estimated to be between 

five and ten years with annual mortality rates of ~20% of adult individuals (Smith, 1965). In 

the absence of a sound method for age determination in adult individuals, calculations of life 

expectancy are problematic and include assumptions of some animals being able to live for 



15 years (Tyndale-Biscoe & Smith, 1969). Differential mortalities about 20% in favour of 

females were hypothesised prenatally or in pouch life, which may also be a factor in driving 

the unequal sex-ratio in the southern species (Smith, 1965). In southeastern NSW, juvenile 

mortality averaged 15.8%, with no evidence of juvenile mortality within the studied 

population in some years (Tyndale-Biscoe & Smith, 1969). The greatest mortality occurs 

when juveniles become >300 g, which coincides with the observed decline in the proportion 

of male individuals (Smith, 1965; Tyndale-Biscoe & Smith, 1969). 

 

VIII.      BEHAVIOUR & MOVEMENT 

(1) Social Behaviours 

Greater gliders spend most of their time either stationary (resting), or feeding on foliage 

(Norton, 1988; Comport et al., 1996; Cunningham et al., 2004; Starr et al., 2021). All 

three species are generally solitary during the night, with the majority of spotlighting 

observations identifying gliders as alone in a tree, rarely sharing trees with conspecifics 

(Kavanagh & Lambert, 1990; Comport et al., 1996; Cunningham et al., 2004). Den 

sharing has been observed among male-female pairs in all species (Norton, 1988; 

Lindenmayer et al., 1991c; Comport et al., 1996), although it is considered rare for both 

the southern (Kehl & Borsboom, 1984; Lindenmayer, Pope & Cunningham, 2004) and 

northern species (Comport et al., 1996). More recently however, high rates of den sharing 

by southern greater gliders has been observed in Tallaganda NSW (Gracanin, A., 

unpublished data). 

Patterns of den use vary among the species, reflecting resource availability. Central greater 

gliders were found to use between four and 20 dens, sometimes sharing dens either 



concurrently or sequentially in landscapes where hollow-bearing trees were limited 

(Smith, Mathieson & Hogan, 2007). Southern greater gliders utilised between one and 13 

dens (Norton, 1988; Kavanagh & Wheeler, 2004; Lindenmayer et al., 2004), while the 

northern species used between one and six (Comport et al., 1996; Starr et al., 2021; 

McGregor et al., 2023).   

Social interactions between females and male southern greater gliders include behaviours 

such as nasaling, mutual sniffing, climbing over the top of another, and sitting beside a 

consort (Henry, 1985; Norton, 1988). Similar behaviours have been reported for northern 

greater gliders (Comport et al., 1996). Antagonistic interactions have been observed 

between females, and between males and females in the southern species (Henry, 1985; 

Norton, 1988), while both neutral and antagonistic interactions have been observed 

between males for the northern species (Comport et al., 1996). Soft vocalisations between 

females and their young at den entrances have been described for southern greater gliders 

(Henry, 1985). 

Scent-marking is common for both sexes and appears to guide movements (Kehl & 

Borsboom, 1984; Henry, 1985; Norton, 1988). It typically involves rubbing of the cloacal 

region on tree branches and trunks; in one instance a male was observed dribbling urine 

while scent marking (Henry, 1985). These behaviours likely play a role in territory 

delineation and individual recognition. 

Methodological variation and differences in survey effort between behavioural studies—

most of which were conducted during the late 20th century—highlight the need for 

updated research on social and individual behaviours. The application of advanced 

technologies (e.g. motion-activated cameras; (Gracanin et al., 2025) thermal and infrared 



imaging; (Vinson, Johnson & Mikac, 2020)) offers promising opportunities to refine and 

expand our understanding of greater glider behaviour. 

(2) Mating systems 

Only four copulation events have been observed in the wild for the southern greater glider 

(Henry, 1985; Ritchie, 2025). For each event, the same sequence was observed. Before 

mating, the male chased the female. The female engaged in scent-marking using her 

cloacal region, prompting the male to sniff the area and mark it with his own cloaca. The 

male also sniffed the female's cloaca before attempting to mount her. The female initially 

evaded his attempts, but after several tries, the male succeeded. On one occasion, this 

pursuit phase lasted 30 minutes (Henry, 1985). The act of copulation itself was brief, 

lasting less than a minute. Afterward, the male showed a decrease in persistent following 

behaviour, although he continued to share her den and maintain nightly associations with 

her in the following months. 

Monogamous and polygynous mating systems have been observed in greater gliders 

(inferred from home range size, overlap, den sharing and direct social behaviours), with  

some of this plasticity attributed to differences in population density (Norton, 1988; 

Comport et al., 1996; Pope, Lindenmayer & Cunningham, 2004). Social monogamy has 

been associated with lower population densities (Norton, 1988), whereas evidence 

suggesting polygamous individuals has been documented in higher-density populations, 

such as in a study of northern greater gliders (Comport et al., 1996). In southern greater 

gliders, both mating strategies have been reported. Henry (1985) observed evidence of 

both monogamy and polygyny, while Norton (1988) found that all individuals studied 

were socially monogamous, except for a single bigamous male. Further support for 



polygynous behaviour in southern gliders was provided by Pope et al. (2004), who 

documented males mating with multiple females. 

Studies on the mountain brushtail possum (Trichosurus cunninghami) show that shifts 

between monogamy and polygyny can arise from variation in resource distribution 

(Martin, Handasyde & Taylor, 2007; Martin & Handasyde, 2007; Martin & Martin, 2007). 

In this species, evenly distributed and abundant food and den trees promote smaller, 

overlapping female ranges and polygyny in roadside populations, whereas patchier 

resources in contiguous forests result in larger, more dispersed female ranges and social 

monogamy (Martin & Martin, 2007). These findings indicate that resource distribution 

shapes female home range size, which in turn determines the degree of male–female range 

overlap and thus the prevailing mating system. Similar mechanisms may underlie mating 

system variation in greater gliders, where habitat quality and hollow availability likely 

influence female spacing and, consequently, male mating opportunities. 

(2) Dispersal, colonisation & recovery 

Research on dispersal, colonisation, and recovery in greater gliders has primarily focused 

on the southern species. However, all three species exhibit specialised habitat 

requirements and strong site fidelity (Tyndale-Biscoe & Smith, 1969; Kavanagh & 

Wheeler, 2004), which likely limit their capacity to colonise new or distant habitat 

patches. Empirical data on dispersal, colonisation, and inter-subpopulation movements is 

scarce across all species (Norton, 1988; Lindenmayer & Lacy, 1995; McCarthy & 

Lindenmayer, 1999a). To address these knowledge gaps, several studies have used 

population modelling to assess the role of dispersal and colonisation in metapopulation 

viability and recovery for southern greater gliders (Lindenmayer & Lacy, 1995; 



Lindenmayer, McCarthy & Pope, 1999c; McCarthy & Lindenmayer, 1999a; Lindenmayer, 

Lacy & Pope, 2000) .  

Dispersal typically occurs when juveniles leave their mothers at 10–11 months of age 

(Kerle, 2001). Modelling for southern greater gliders has demonstrated that although 

dispersal can facilitate colonisation, it does not ensure recovery unless subpopulations are 

large enough and habitat patches are of sufficient quality to support viable populations 

(Lindenmayer & Lacy, 1995). Dispersal can lead to biased sex ratios (Norton, 1988; 

Lindenmayer & Lacy, 1995), and elevated dispersal can destabilise small subpopulations 

and increase extinction risk (Lindenmayer & Lacy, 1995). Accordingly, simulations 

suggest that a single large habitat patch may provide better prospects for population 

persistence than several smaller patches of equivalent total area (Lindenmayer & Lacy, 

1995; McCarthy & Lindenmayer, 1999a; Wagner, Baker & Nitschke, 2021b). However, in 

highly fragmented landscapes, even modest rates of dispersal—particularly if aided by 

connectivity-enhancing interventions such as habitat corridors or crossing structures—can 

substantially reduce extinction risk for small subpopulations (Taylor & Goldingay, 2009). 

Additionally, modelling by Goldingay, McHugh and Parkyn (2022) found that 

colonisation increases with rainforest cover, even though rainforest trees do not provide 

food for greater gliders. This finding was potentially due to the favourable thermal 

buffering and productivity of habitats containing rainforest patches, though this requires 

further investigation. 

Empirical studies investigating greater glider dispersal and colonisation have 

predominantly examined responses to habitat disturbance events, particularly logging. 

Southern greater gliders respond negatively to intense logging, which can cause direct 

mortality or a reduction in their home range size, with little evidence of individuals 



dispersing into nearby unlogged areas (Kavanagh & Wheeler, 2004). This limited 

dispersal response may not only be influenced by their strong home range fidelity 

(Tyndale-Biscoe & Smith, 1969), but also by physiological and ecological constraints that 

hinder movement following habitat disturbance (McCarthy & Lindenmayer, 1999a). 

Additionally, greater gliders possess low body fat reserves and rely on a low-energy 

folivorous diet, both of which can lead to rapid declines in body condition under 

energetically demanding conditions, such as those experienced during dispersal (Hume, 

1999).  

(3) Movement 

Similar to research on dispersal, colonisation and recovery, studies on movement have 

focused on the southern species. No key differences have been identified between the 

movement behaviour of the southern and central species. The movement of greater gliders 

is almost exclusively arboreal, involving gliding between trees or walking along 

interlocking branches (Smith, 1969; Kavanagh & Wheeler, 2004). Greater gliders use their 

tail as a rudder to change direction when gliding (Kerle, 2001; Van Dyck & Strahan, 

2008). Greater gliders are frequently cited as capable of gliding up to 100m in a single 

glide (Troughton, 1941, cited in Wakefield, 1970), although the evidence for this claim is 

limited and is not reliable as the species observed gliding was clearly a yellow-bellied 

glider (Petaurus australis) misidentified as a greater glider. A maximum glide angle of 40° 

below the horizontal was estimated (Wakefield, 1970) and this indicates a steeper descent. 

Calculating the glide angle of greater gliders is critical for informing the design of roads 

and mitigation structures that may potentially allow safe gliding across gaps in forest 

cover, thereby helping to reduce habitat fragmentation and the risk of vehicle collisions 

(Taylor & Goldingay, 2009). However, the use of such structures by greater gliders has 



not been evaluated. Further field-based research is needed to accurately determine the 

gliding angle and distance for greater gliders. Gliding enables greater gliders to move 

between trees in their forest habitats, which is essential for foraging and avoiding ground-

based predators, particularly as they are slow and clumsy when on the ground (Kerle, 

2001). However, greater gliders typically avoid unnecessary gliding, often choosing to 

walk or jump between the tree canopy where possible (Norton, 1988; Kavanagh & 

Wheeler, 2004). This avoidance of gliding may be related to energy conservation or 

predator avoidance. Gliding results in considerable height loss, with gliders usually 

landing low on the trunk of their target tree. Climbing back up to the canopy requires 

substantial energy and can increase exposure to predators (Norton, 1988).  

A comparison of emergence times among hollow-dependent marsupials, showed that 

larger bodied animals like southern greater gliders are among the last to emerge from their 

dens (Lindenmayer et al., 1991c). Southern greater gliders typically emerge from their 

dens an average of 100 minutes after sunset and return approximately 165 minutes before 

sunrise (Kavanagh & Wheeler, 2004). Emergence timing varies seasonally, occurring 

earlier in summer when nights are shorter (~72 minutes after sunset) and later in winter 

(~161 minutes after sunset), with individuals spending the longest periods outside their 

dens in late winter and early spring (~507 minutes; Kavanagh & Wheeler, 2004). Greater 

gliders spend long periods (~40–60%) of their nightly emergence period stationary to 

conserve energy and aid digestion, with peak periods of activity occurring at the start and 

end of the night (Norton, 1988; Kavanagh & Wheeler, 2004; Miritis et al., 2025).  

Nightly movements of greater gliders are influenced by home range size and the 

distribution of resources following disturbance events such as fire (Norton, 1988; Miritis 

et al., 2025). Research using GPS telemetry showed that southern greater gliders 



undertook longer and more direct movements in habitat that had experienced severe fire 

(average 513 m moved per night) compared to unburnt forest (average 462 m moved per 

night; Miritis et al., 2025). Similarly, Norton (1988) found southern greater gliders 

increased their travel distances in low-quality habitats, concluding that these movements 

were a response to reduced food availability. 

(4) Home range 

Home range sizes of greater gliders vary both within and between species (Table 1), but 

comparisons are limited by the small number of studies and variation in methodologies 

employed. Most studies report small home ranges across each species (Table 1). However, 

larger home ranges have been observed where resources, particularly food and tree 

hollows, are more spatially dispersed (Norton, 1988; Pope et al., 2004; Smith et al., 2007; 

McGregor et al., 2023). Resource availability appears to influence not only home range 

size but also population densities and mating systems of greater gliders (Henry, 1985; 

Norton, 1988; Smith et al., 2007). High quality habitats can result in smaller and 

overlapping home ranges and facilitate facultative polygyny (Henry, 1985; Norton, 1988). 

Males often maintain larger home ranges than females (Table 1), particularly where males 

exhibit polygynous mating behaviour, allowing them to encompass the ranges of multiple 

females and increase mating opportunities (Henry, 1985; Comport et al., 1996).  

Notably, northern greater gliders, despite their smaller body size, tend to have larger home 

ranges than their southern counterparts (Table 1), likely reflecting lower resource density 

in tropical sclerophyll forests (McGregor et al., 2023). Similarly, central greater gliders 

were found to have substantially larger home ranges and lower population densities in 

areas with low hollow availability (0.8 den trees ha-1; Smith et al., 2007) compared to 

areas with higher hollow densities (7.7 den trees ha-1; (Kehl & Borsboom, 1984); Table 1). 



To date, ten studies have investigated home range sizes of greater gliders, limiting our 

ability to generalise across species and habitats, or understand the ecological drivers of 

observed differences. Further research is needed to clarify how resource distribution, 

population density, and social organisation interact to shape greater glider space use. This 

knowledge is crucial for estimating population sizes and carrying capacities throughout the 

range of each species, and for guiding conservation and management strategies focussed 

on habitat retention and restoration.  

 

 



Table 1. Comparison of home range area estimates (ha) for three species of greater glider. Geometric home range estimates are shown as 

either Minimum Convex Polygon (MCP) or Modified Minimum Area Method (MMAM). Kernel Home Range Areas are shown as either 

Kernel Utilisation Distribution (KUD) or Kernel Density Estimate (KDE), the latter either using a fixed or adaptive approach.  

Species Study Tracking Method Mean geometric home 
range ± S.D 

Mean Kernel Home 
Range Area  ± S.D 

Population 
density (ha-1) 

Habitat type Factors 
investigated 

Southern 
greater glider 

Miritis et al., 
2025 

GPS collars Females: 1.61 ± 0.78 
Males: 3.63 ± 1.68 
Range: 0.64–6.43 
 
Method: 100% MCP 

Females: 1.58 ± 0.99 
Males: 3.29 ± 1.32 
Range: 0.71 – 5.47 
 
Method: 95% KDE 

 Wet 
sclerophyll 
forest 

Burnt versus 
unburnt, sex 

McGregor et al., 
2023 

GPS and radio-
tracking collars 

Females: 0.91 ± 0.44 
Males: 0.85 ± 0.21 
Range: 0.4–1.6 
 
Method:  95% MCP 

Females: 1.99 ± 0.39 
Males: 2.10 ± 0.71 
Range: 1.5 - 2.6 
 
Method: 95% KUD 

0.61–2.49 Open 
sclerophyll 
forest and 
woodland 

Resource 
availability, 
sex 

Kavanagh & 
Wheeler, 2004 

Collared radio-
tracking 

Females: 0.8 ± 0.21 
Males: 2.0 ± 0.69 
Range: 0.47–2.91 
 
Method: 100% MCP 

Females: 0.8 ± 0.25  
Males: 1.9 ± 0.83 
Range: 0.46–3.11  
 
Method: 95% 
adaptive KDE 

 Wet 
sclerophyll 
forest 

Before-After 
Logging, sex 

Pope et al., 
2004 

Collared radio-
tracking 

 Females: 2.0 ± 0.6 
Males: 2.6 ± 0.8 
Range: 1.26 – 4.10 
 
Method: 95% fixed 
KDE 

0.24–1.66 Remnant 
patches of 
eucalyptus 
forest in a 
matrix of 
radiata pine 

Patch size, 
population 
density, sex 

Norton, 1988 Tagged or unique 
individuals re-

Population 1 
Females: 1.5 ± 0.2 
Males: 1.8 ± 0.1 

 Population 1: 
0.88 
  

Dry 
sclerophyll 
forest 

Forest type, 
population 
density, sex 



sighted repeatedly 
via spotlighting 

Range: 0.8–1.9 
  
Population 2 
Females: 1.5 ± 0.1 
Males: 1.4 ± 0.1 
Range: 0.9–1.6 
 
Method: MMAM 

Population 2: 
0.89–1.67 

Henry, 1985 Tagged or unique 
individuals re-
sighted repeatedly 
via spotlighting 

Females: 1.25 ± 0.46 
M. Males: 1.36 ± 0.19 
P. Males: 2.08 ± 0.66 
Range: 0.7–2.94 
 
Method: MMAM 

 0.56 Wet 
sclerophyll 
forest 

Breeding 
system, sex 

Central 
greater glider 

Smith et al., 
2007 

Collared radio-
tracking 

Females: 3.3 ± 2.1 
Males: 11.5 ± 7.2 
Range: 1.4–19.3 
 
Method: 100% MCP  

Females: 4.1 ± 2.3 
Males: 10.8 ± 6.7 
Range: 1.8–17.8 
 
Method: 95% Fixed 
KDE 

0.1–0.36 Dry 
sclerophyll 
forest 

Hollow-
availability, 
sex 

Kehl & 
Borsboom, 1984 

Collared radio-
tracking 

Females: 2.5 ± 1.2 
Males: 2.6 ± 1.7 
 
Method: 100% MCP 

 1.2–2.3 Coastal 
lowland forest 

Sex 

Northern 
greater glider 

McGregor et al., 
2023 

GPS and radio-
tracking collars 

Females: 3.13 ± 1.11 
Males: 3.16 ± 1.14 
Range: 2.0–4.7 
 
Method: 95% MCP 
 

Females: 5.00 ± 1.41 
Males: 4.66 ± 0.77 
Range: 3.7 – 6.5 
 
Method: 95% KUD 

0.96–1.92 Dry 
sclerophyll 
forest 

Resource 
availability, 
sex 

Starr et al. 2021 Collared radio-
tracking 

NA Females: 4.14 ± 2.67 
Males: 6.74 ± 3.18 
Range: 1.03 -11.45 
 
Method: 95% fixed 
KDE 

0.24 (in wet 
forest) 
 
0.38 (in dry 
forest) 

Wet and dry 
sclerophyll 
forest 

Sex 



Comport et al., 
1996 

Collared radio-
tracking 

Females: 1.02 ± 0.29 
Males: 2.32 ± 1.31 
Range: 0.8 - 4.1 
 
Method: 95% MCP 

Females: 1.30 ± 0.33 
Males: 2.48 ± 1.10 
Range: 0.9 - 4.2 
 
Method: 95% 
adaptive KDE 

3.3–3.8 Wet-dry 
tropics open 
sclerophyll 
forest 

Sex 



IX.          DIET 

All three greater glider species are considered strict herbivores that specialise on eating 

eucalypt leaves from the related tree genera Eucalyptus, Corymbia and Angophora, although 

they will also occasionally eat eucalypt buds and flowers or leaves from non-eucalypts 

(Marples, 1973; Kehl & Borsboom, 1984; Henry, 1985; Kavanagh, 1987; Norton, 1988; 

Foley et al., 1990; Comport et al., 1996; Cunningham et al., 2004; Kavanagh & Wheeler, 

2004). Greater gliders are nocturnal and spend around 2.3 hours feeding each night, 

approximately one quarter of their active time (Kehl & Borsboom, 1984; Norton, 1988).  

Across their distribution, greater gliders are known to feed on a variety of eucalypt species 

(see Data S2). A synthesis of available studies identified greater glider associations with 66 

tree species, of which 51 have been observed to be fed on and 21 are considered highly 

preferred, although preferences for particular tree species appear to vary regionally (Data S2). 

Feeding preferences remain poorly understood in many areas. Characterising feeding 

preferences in the wild requires extensive periods of night-time observation. In some cases, 

tree use by wild individuals is used as a surrogate for feeding observations (e.g. Kavanagh, 

1987), but trees that are not suitable for feeding may be used for other purposes, such as 

denning or social interactions (Comport et al., 1996; Eyre, 2006), making it difficult to 

discern which are critical browse species. More research is needed to address knowledge gaps 

surrounding diet to ensure that appropriate habitat can be identified and conserved and that 

revegetation activities target eucalypt species that provide high quality food for greater 

gliders in restored habitat. 

The availability of eucalypt species and variations in nutritional quality within and between 

tree species are thought to be important drivers of the patchy distribution of greater gliders in 

eucalypt forests (Braithwaite, Dudzihski & Turner, 1983; Braithwaite, Turner & Kelly, 1984; 



Tyndale-Biscoe, 2005; Youngentob et al., 2011). Animals need to obtain sufficient nutrients 

from their food to survive, and, to sustain populations, there must also be enough nutrients to 

support the growth and development of young (Tyndale-Biscoe, 2005). Although eucalypt 

leaves are widespread and abundant, they are low in protein and energy, high in fibre, and 

contain high concentrations of deterrent, toxic, or nutrient-binding plant secondary 

metabolites (PSMs) (Kavanagh & Lambert, 1990; Comport et al., 1996). This makes them a 

relatively poor-quality food source. 

To meet their nutritional requirements, greater gliders actively select eucalypt species, 

individual trees, or leaf types that are higher in nutritional quality or lower in deterrent PSMs 

(Kavanagh & Lambert, 1990; Youngentob et al., 2011; Jensen et al., 2014; Jensen, Wallis & 

Foley, 2015). Each night, they feed in multiple trees, often of different eucalypt species (Kehl 

& Borsboom, 1984; Henry, 1985; Norton, 1988; Foley et al., 1990; Kavanagh & Wheeler, 

2004). Many studies have also noted that all greater glider species preferentially eat young 

foliage from some (but not all) eucalypt species when it is available, likely increasing their 

intake of digestible nutrients (Kavanagh, 1987; Norton, 1988; Kavanagh & Lambert, 1990; 

Comport et al., 1996). This can lead to seasonal differences in diet composition depending on 

which species are producing young leaves (Henry, 1985; Kavanagh, 1987; Norton, 1988). 

Within eucalypt species of the subgenus Symphyomyrtus, greater gliders also prefer 

individual trees with lower concentrations of a PSM known as sideroxylonal (Youngentob et 

al., 2011; Jensen et al., 2014, 2015). Because of their apparent preference for young leaves, 

some studies have suggested that high quality habitat for greater gliders should contain a 

diversity of tree species to facilitate access to young leaves for a large portion of the year 

(Moore et al., 2004). Additionally, in times of nutritional stress, greater gliders may favour 

Symphyomyrtus species which offer more digestible forms of nitrogen (Youngentob et al., 

2011; Jensen et al., 2014). 



Foliar nutritional quality and PSM concentrations can vary between trees and sites (Norton, 

1988; Youngentob et al., 2015), but these variables are not influenced by soil composition or 

fertility in a straightforward manner (McIlwee, 2001). Because nutrition underpins many 

physiological processes, the nutritional quality of available eucalypts can influence the 

distribution and abundance of southern greater gliders (Braithwaite et al., 1983, 1984; 

Norton, 1988; Youngentob et al., 2015). Work on central and northern greater glider 

populations suggest that these types of relationships cannot be determined using simple 

measures such as total nitrogen (N; Comport et al., 1996). It is likely that there is a nutrient 

threshold below which populations of greater gliders cannot be sustained, but densities are 

highly variable above this threshold in response to other environmental and social factors 

(Braithwaite et al., 1983, 1984; Moore et al., 2004).  

The eucalypt species preferences of greater gliders differ from other eucalypt folivores, likely 

reducing competition with co-occurring species such as eastern ring-tailed possums (Henry, 

1985; Moore et al., 2004; Jensen et al., 2014). This may be driven partly by different nutrient 

requirements and partly by differences in tolerance for particular PSMs. For example, 

southern greater gliders from Tumut, NSW, tolerated higher concentrations of formylated 

phloroglucinol compounds (FPCs – a class of deterrent PSMs) in leaves than did eastern ring-

tailed possums (Jensen et al., 2014), while ring-tailed possums are highly tolerant of tannins 

and have low N requirements compared to greater gliders (Foley & Hume, 1987; Marsh et 

al., 2003). Similarly, greater gliders appear to be more tolerant of PSMs in species from the 

Eucalyptus subgenus (common name, Monocalypt) than koalas, and therefore may utilise 

these species to a greater extent (Moore et al., 2004; Marsh et al., 2021; Gopalan, 2022). 

 

X.          HABITAT ASSOCIATIONS 



(1) Tree species associations 

Greater glider occurrence and density are strongly influenced by the availability of both food 

and denning resources (McCarthy & Lindenmayer, 1999a; Eyre, 2006; Kearney et al., 2010; 

Lindenmayer et al., 2021, 2024a), which are in turn shaped by the species composition, stand 

age, and structural attributes of eucalypt-dominated forests (Braithwaite et al., 1983; 

Lindenmayer et al., 1991c; Wagner et al., 2021b). Although greater gliders consume leaves 

from a variety of eucalypt species (see above and Data S2), their presence and abundance are 

often associated with specific tree species that provide both suitable foliage for foraging and 

hollows for shelter (Braithwaite et al., 1983, 1984; Youngentob et al., 2011). Many of these 

preferred species occur predominantly in wetter, higher-elevation forests (Kavanagh & 

Lambert, 1990; Smith et al., 2007; McLean et al., 2015; Wagner et al., 2021b). 

 

Greater gliders use a variety of tree species for shelter (Kehl & Borsboom, 1984; Comport et 

al., 1996; Kavanagh & Wheeler, 2004; Smith et al., 2007; Starr et al., 2021; Eyre et al., 2022; 

Hofman, Gracanin & Mikac, 2022), but southern greater gliders may favour smooth-barked 

eucalypts as den trees, possibly because they form large hollows more readily than rough-

barked species (Kavanagh & Wheeler, 2004). While species such as E. fibrosa, E. 

latisinensis, E. moluccana, and E. tereticornis, along with dead trees, have been noted as 

important for denning for central and northern greater gliders (Kehl & Borsboom, 1984; 

Comport et al., 1996; Smith et al., 2007; Starr et al., 2021; Eyre et al., 2022), evidence 

suggests tree size rather than tree species is the more influential determinant of den tree 

selection, particularly as tree hollow availability is primarily determined by tree age and size 

(Lindenmayer et al., 1991b; Gibbons et al., 2000).  

 



The use of tree species by greater gliders for foraging is predominantly driven by foliar 

chemistry (see diet section). Greater gliders show localised preferences for particular eucalypt 

species (Data S2) within their home ranges, likely driven by complex interactions between 

nutrient content and the presence of PSMs (Cork & Foley, 1991; Cork & Catling, 1996; 

Youngentob et al., 2011; Jensen et al., 2015), as well as physical characteristics of the trees 

(Kavanagh & Wheeler, 2004; Hofman et al., 2022).  

 

The detoxification limitation hypothesis (Marsh et al., 2006) provides a potential mechanism 

for some observed feeding patterns and tree species associations. Greater gliders may forage 

preferentially on species from one eucalypt subgenus until detoxification constraints 

necessitate a switch to the other subgenus (Marsh et al., 2006; Youngentob et al., 2011; 

Jensen et al., 2015). Thus, stands containing eucalypts from both major subgenera, should 

allow less restricted feeding by greater gliders and may enhance as a critical indicator of 

habitat quality for such folivorous marsupials (Au et al., 2019; Wagner et al., 2021a). 

However, more research is needed to determine the effects of stand composition on foraging 

quality for greater glider populations. 

 

Tree species which support populations of greater gliders in the southern extent of their 

distribution, include Eucalyptus regnans, E. radiata, E. viminalis, E. cypellocarpa, 

E.fastigata, E. obliqua and E. pilularis (Lindenmayer et al., 1999b; Youngentob et al., 2011; 

Vinson et al., 2020; Wagner et al., 2021b); Data S2). Further north (northern NSW and 

throughout Queensland), commonly occupied forests consist of Corymbia citriodora, C. 

intermedia, E. acmenoides, E. latisinensis  and E. tereticornis (Eyre, 2006; Eyre et al., 2022; 

Data S2). Within Queensland, additional species including E. fibrosa, E. moluccana, E. 

portuensis, and C. dallachiana have also been identified as important and preferred species 



for foraging (Kehl & Borsboom, 1984; Wormington et al., 2002; Eyre, 2006; Smith et al., 

2007; McGregor et al., 2023; Data S2).  

 

Stand composition, particularly the mix and structural characteristics of dominant eucalypt 

species, represents a key determinant of habitat suitability for greater gliders (Braithwaite et 

al., 1983, 1984; McLean et al., 2015; Wagner et al., 2021a; Lindenmayer et al., 2024a). 

Forest stands that support both high-quality foraging and denning resources are likely to be 

especially favourable (McCarthy & Lindenmayer, 1999a; Eyre, 2006; Smith et al., 2007). 

However, further research is required to quantify how specific combinations of tree species, 

tree sizes, and stand ages influence foraging efficiency and habitat quality for greater gliders 

at multiple scales. 

 

(2) Habitat associations other than tree species 

Greater gliders are hollow-dependent and hence their distribution and abundance is 

associated with older forest stands that are more likely to contain hollow-bearing trees with 

suitability large hollows essential for denning (Kehl & Borsboom, 1984; Lindenmayer et al., 

1991c; Eyre, 2006; McLean et al., 2018; Lindenmayer et al., 2024a). For example, southern 

greater gliders at Seven Mile Beach National Park in NSW preferred trees with a mean 

diameter at breast height (DBH) of 114 cm for denning, most commonly selecting branch-end 

hollows, and hollows with a mean depth of  2.5 m, a mean minimum entrance of 18 cm, and 

cavity walls a mean minimum thickness of ~8 cm, features likely important for temperature 

buffering (Hofman et al., 2022). The preference for large trees may also extend to foraging, 

as greater gliders have been found to preferentially select trees >50-70 cm DBH while 



avoiding trees < 30cm DBH (Smith et al., 2007; McGregor et al., 2023), although data on 

this remains limited. 

Although trees provide both food and shelter for greater gliders, several other environmental 

factors also influence the ability of landscapes to support populations of these species. 

Climatic conditions such as temperature, rainfall and humidity play a substantial role in 

determining habitat suitability for greater gliders, with multiple studies reporting a positive 

association between the presence of greater gliders and wetter, cooler forest environments 

(e.g., (Goldingay & Daly, 1997; Smith & Smith, 2020; Wagner et al., 2020). In support of 

this, the Normalised Difference Vegetation Index (NDVI), a remotely sensed measure of 

vegetation productivity, is strongly correlated with temperature and rainfall, and has been 

found to have a positive association with greater glider occurrence and abundance in some 

forest types (Youngentob et al., 2015).  

The persistence of southern greater glider populations at higher elevations, and their decline 

or disappearance in similar forest types at lower elevations, has also been attributed to the 

cooler and wetter conditions characteristic of these environments (Smith & Smith, 2020; 

Lindenmayer et al., 2022). This has led to the suggestion that future climate refugia for 

greater gliders, and in particular the southern species, are likely to be in areas of higher 

elevation with cooler microclimates (Wagner et al., 2020). However, additional research is 

urgently needed to better understand the bounds of this assumption, as other studies have 

found that some higher elevation areas also lack critical foliar nutrients, like sodium, which 

could limit upward range expansions for some leaf eating animals (Au et al., 2017). In the far 

north, it appears that water balance limits greater glider distribution (Kearney et al., 2010). 

More research is needed to understand how climate and climate change affects habitat 

suitability for the central and northern greater glider species and how particular genetic 



variations found in some populations of the southern species may help them persist in 

warmer, lowland coastal conditions (Knipler et al., 2023). 

The importance of temperature and moisture in determining greater glider habitat suitability 

is likely driven by their relatively low thermal tolerance and reliance on leaf moisture and 

condensation to obtain water for evaporative cooling (Rübsamen et al., 1984; Foley et al., 

1990). Most of the research in this area has focused on the southern species; however, Eyre 

(2006) also reported an association between the central species and taller, more productive 

forest types that are typically associated with higher rainfall and cooler temperatures. Hotter, 

drier temperatures can also increase fire occurrence and severity, which negatively affect 

greater glider populations and habitat quality, although the magnitude and duration of 

impacts are influenced by the forest type and the intensity and frequency of fire (Berry et al., 

2015; McLean et al., 2018; May-Stubbles, Gracanin & Mikac, 2022).  

While greater gliders are reliant on mature eucalypt forest or woodlands and absent from 

heathland and shrub dominated landscapes, most studies have not found a relationship 

between understorey vegetation density or type, and greater glider occurrence (e.g., (Eyre, 

2006; Youngentob, Wood & Lindenmayer, 2013). However, a dense understorey may 

obscure ground-based observations and lower survey counts, making it unclear how native, or 

invasive understorey species affect greater glider habitat quality and abundance when the 

availability of suitable overstorey trees remains unchanged. Research suggests that trees in 

exposed landscape positions are more vulnerable to loss from windthrow or decay, which 

could contribute to lower glider densities in these areas due to limited hollow availability for 

denning (Lindenmayer, Cunningham & Donnelly, 1997). For the southern species in 

particular, there is some evidence that they may be more abundant on slopes with north and 

westerly aspects than south and easterly aspects (Lindenmayer et al., 2013). Notably, other 



studies have found no association between aspect or slope and the presence or abundance of 

greater gliders (Lindenmayer, Cunningham & McCarthy, 1999a). 

A few studies have reported relationships between the occurrence of greater gliders and soil 

types associated with higher “productivity” or particular soil nutrients for both the southern 

species (Braithwaite et al., 1984; Wagner et al., 2020) and the northern species (Starr et al., 

2021). It is often thought that soils with higher nutrient levels may result in foliage that also 

has higher nutritional value for Eucalyptus leaf eating animals; however, the evidence for this 

is equivocal (Kavanagh, 1987; McIlwee, 2001). While some eucalypt species grown under 

controlled glasshouse conditions have shown increased palatability of their foliage for some 

species, such as common brushtail possums, in response to higher soil fertility (e.g., 

McArthur et al., 2003), other studies have reported that eucalypts growing in more fertile 

soils produce leaves that are less palatable to various arboreal marsupials due to higher 

concentrations of herbivore-deterrent PSMs (e.g., Gleadow & Woodrow, 2002; Moore et al., 

2004). While increased soil fertility has been linked with rates of tree growth and hollow 

formation (Forrester et al., 2007; Wagner, 2021; Wagner, Baker & Nitschke, 2024), several 

studies have also found no relationships between key indicators of soil fertility (e.g., soil 

nitrogen) and leaf nitrogen, as a proxy for protein (e.g., (de la Fuente et al., 2024), which is 

thought to be a key limiting nutrient for greater gliders (Foley & Hume, 1987). Phenotypic 

variation within and between tree species, which can influence the production of foliar 

chemicals, coupled with local adaptation, creates a more complex relationship between soil 

fertility and eucalypt foliar chemistry than what might be observed in agricultural crops or 

wild species adapted to highly fertile soils (Youngentob et al., 2011; Youngentob, Marsh & 

Skewes, 2021; Marsh et al., 2018). More research is needed to understand potential 

relationships between soil chemistry and habitat quality for greater gliders before soil types 

or geology are used as an indicator of habitat suitability for these widely distributed species.  



 XI.          ABUNDANCE 

Numerous studies have attempted to quantify greater glider abundance across a range of 

habitat types and geographic regions (Fig. 4; Table 2). However, most of these have focussed 

on the southern greater glider, with few abundance estimates for the central and northern 

species (Fig. 4; Table 2). Most reported estimates are indices or measures of relative 

abundance, such as individuals per spotlight hour or kilometre, rather than standardised and 

ecologically meaningful metrics like density (individuals ha-1; Table 2). Even when densities 

are reported, cross-study comparisons remain challenging due to methodological 

inconsistencies. These can include the use of raw counts, strip transects, and circular plots 

that do not account for detection probability, in contrast to more robust approaches such as 

single- or double-observer line transect distance sampling, which explicitly account for 

detectability and yield more reliable estimates (Buckland et al., 2001; Emerson et al., 2019; 

Cripps et al., 2021).  

Densities for southern greater gliders are highly variable across studies, ranging from as low 

as 0.01 individuals ha⁻¹ (Braithwaite, 1983; Davey, 1989) to as high as 2.77 individuals ha⁻¹ 

((Downes, Handasyde & Elgar, 1997; Table 2). Most studies using robust methods that 

account for detection probability report mean densities for southern greater gliders between 

0.3 and 2.5 individuals ha⁻¹ (e.g., McGregor et al., 2023; Cally et al., 2025; Table 2). Habitat 

disturbance events such as severe fire or storms resulted in southern greater glider densities 

below 0.3 individuals ha⁻¹ (e.g., May-Stubbles et al., 2022; Cally et al., 2025; Table 2).  

Density estimates for central greater gliders are generally lower and less variable compared to 

those reported for the southern species, with mean values ranging from 0.10 to 2.3 

individuals ha⁻¹ (Kehl & Borsboom, 1984; Smith et al., 2007; Table 2). Higher density 

estimates for central greater gliders (>1.5 individuals ha⁻¹) have been recorded in coastal 



woodlands (Kehl & Borsboom, 1984; Table 2). However, none of the studies estimating 

central greater glider densities have accounted for detection probability, limiting the 

reliability and comparability of these estimates (Table 2). 

Densities for northern greater gliders vary substantially, with estimates ranging from 0 to 3.8 

individuals ha⁻¹ (McIlwee, 2001; Ward cited in Comport et al., 1996; Table 2). The highest 

densities of northern greater gliders are from unpublished data (Ward cited in Comport et al., 

1996), although the methods for these estimates are unclear (Table 2). 



Table 2. Comparative density, method and habitat data for three species of greater glider (table adapted and updated from Emerson et al. 2019). 

Species Study Survey method Density (individuals ha-1) Accounts for detection 
probability  

Habitat 

Southern greater 
glider 

Cally et al. (2025) Spotlight – line transect mark–recapture 
distance sampling  

Pre-storm: 0.37 (mean)  

Post-storm: 0.28 (mean) 

Fire past 40 years: 0.027 
(mean), 0.009–0.061 (90% 
CI) 

Unburnt: 0.352 (mean), 
0.241–0.507 (90% CI)  

Yes Open eucalypt forest, central 
Victoria 

Mulley, Gracanin & 
Mikac, 2024 

Spotlight – line transect mark–recapture 
distance sampling  

0.46 (mean), 0.21-0.84 
(95% CI) 

Yes Dry sclerophyll forest with 
sections of littoral rainforest, 
south-east New South Wales 

McGregor et al. 
(2023) 

Spotlight – line transect distance sampling 
(road-driven transects) 

Eastern site: 0.61 (mean), 
0.51–0.73 (95% CI) 

Western site: 2.49 (mean), 
1.89–3.28 (95% CI) 

Yes Tall-open eucalypt forest, 
central and eastern Victoria 



May-Stubbles et al. 
(2022) 

Spotlight – line transect multi-covariate 
distance sampling (off track) 

0.456 (mean), 0.256–0.654 
(95% CI) 

Low fire severity: 0.779 
(mean), 0.358–1.692 (95% 
CI) 

Moderate fire severity: 
0.472 (mean), 0.262–0.848 
(95% CI) 

High fire severity: 0.077 
(mean), 0.014–0.414 (95% 
CI) 

Yes Wet and dry eucalypt forest, 
south-east New South Wales 

Cripps et al. (2021) Spotlight – line transect mark–recapture 
distance sampling  

0.96 (mean), 0.60–1.50 
(95% CI) 

Yes Open eucalypt forest, north-
east Victoria 

Vinson, Johnson & 
Mikac, 2021 

Spotlight – strip transect (total width 50 m) 0.41 (mean) No Open eucalypt forest, south-
east New South Wales 

Emerson et al. 
(2019) 

Spotlight – line transect distance sampling 
(off track)  

1.36 (mean), 1.07–1.72 
(95% CI) 

Yes Open eucalypt forest, north-
east New South Wales 

Smith and Smith 
(2018) 

Spotlight – strip transect (total width 120 m) >500m elevation: 0.349 
(mean) 

<500m elevation: 0.053 
(mean) 

No Tall eucalypt forest, Blue 
Mountains, eastern New South 
Wales 



Pope et al. (2004) Animal capture 0.24–1.66 (means) Assumes 100% detection  Dry to wet, open eucalypt 
forest, south-east New South 
Wales 

Downes et al. (1997)  Spotlight – transects (on and off track) 1.90–2.77 (means) No Open, wet, eucalypt forest, 
north-east Victoria 

Davey (1989) Spotlight – circular plot (55-m radius) 0.01–2.00 (means) No Wet and dry eucalypt forest 
with temperate rainforest 
patches, south-east New South 
Wales  

Norton (1988) Spotlight – transects (information lacking) 0.88–1.67 (means) No Open eucalypt forest, south-
east New South Wales 

Shields 
(unpublished) cited 
in Norton (1988) 

Unknown 0.08–1.36 Unknown Riparian eucalypt forest 
corridors within pine 
plantation, south-east New 
South Wales 

Henry (1984) Tagging and spotlight (information lacking) 0.56 (mean) Assumes 100% detection  Dry and wet open eucalypt 
forest, south-east Victoria 



Kavanagh (1984) Spotlight – line transect distance sampling 
(off track) and strip transect (total width 20 
m)  

Distance sampling: 0.3–
1.2 (means)  

Strip transect: 0.5–1.3 
(means) 

Yes (distance sampling) 
No (strip transect)  

Wet eucalypt forest, south-east 
New South Wales 

Braithwaite (1983) Sightings (dead or alive) during clear felling 
operations  

0.01–0.60 (means) Assumes 100% detection  Open dry and wet eucalypt 
forest, south-east New South 
Wales 

Griffith (1973) Spotlight and shooting – road strip transect 
(total width 50 m)  

0.24 (mean) Assumes 100% detection  Dry and wet eucalypt forest, 
north-east New South Wales  

Tyndale-Biscoe and 
Smith (1969) 

Sightings (dead or alive) during clear felling 
operations and shootings  

0.83 (mean) Assumes 100% detection  Wet eucalypt forest, south-east 
New South Wales 

Smith (unpublished) Spotlight (information lacking) 0.31–0.98 (mean) Unknown Open eucalypt forest, north-
east New South Wales 

Central greater 
glider 

Ferguson, Laidlaw 
& Eyre, 2018 

Spotlight – strip transect (total width 50 m) 0.3 (mean) No Dry to wet, eucalypt forest, 
south-east Queensland 

Taylor & Goldingay 
2009 

Spotlight – strip transect (total width 80 m) 0.36 mean Assumes 100% detection Dry sclerophyll open forest and 
woodland, south-east 
Queensland 



Smith et al. (2007) Spotlight – transects (off track) 0.10–0.36 (means) Information lacking Dry sclerophyll forest, 
Southern Queensland 

Eyre (2006) Spotlight – strip transect (total width 100 m) 0.14–0.53 (mean) 

0.33–0.60 (range) 

No Tall moist and dry mixed 
eucalypt forest, south-east 
Queensland  

Kehl and Borsboom 
(1984) 

Tagging and spotlight (information lacking) 1.6–2.3 (range) Assumes 100% detection  Coastal woodland, south-east 
Queensland 

Northern greater 
glider 

McGregor et al. 
(2023) 

Spotlight – line transect distance sampling 
(road-driven transects)  

Eastern site: 0.96 (mean), 
0.77–1.19 (95% CI) 

Western site: 1.92 (mean), 
1.52–2.43 (95% CI) 

Yes Open eucalypt forest and 
woodland, north Queensland 

Starr et al. (2021) Spotlight – strip transect (total width 50 m) Dry sclerophyll: 0.38 
(mean) 

Wet sclerophyll: 0.24 
(mean) 

No Wet and dry sclerophyll forest, 
north Queensland 

McIlwee 2001 Spotlight – line transect distance sampling 0.00–1.85 (range) Yes Tropical eucalypt forest, north 
Queensland 



Ward (unpublished) 
cited in Comport et 
al. (1996) 

Unknown 3.3–3.8 Unknown Tropical eucalypt forest, north 
Queensland 

 



 

XII.        THREATS 

Greater glider populations are subject to a range of direct and indirect threats (Fig. 5). Direct 

threats include climate change, habitat destruction and modification, logging, fire, predation, 

competition, disease, genetic isolation, and artificial materials and structures such as ropes 

and fencing (Kavanagh, 1988; van der Ree, 1999; McCarthy & Lindenmayer, 1999a; 

Youngentob et al., 2012; Wagner et al., 2020; Lindenmayer et al., 2022; Green et al., 2024; 

Mulley et al., 2024). Concerningly, some of these direct threats may be compounded by 

indirect drivers such as ongoing habitat degradation, increasing climatic extremes (Smith & 

Smith, 2020; Mulley et al., 2024), and the predatory habits of invasive predators that may 

indirectly lead to increased predation pressure on greater gliders from native predators 

(Tyndale-Biscoe & Smith, 1969; Bilney, Cooke & White, 2006) (Fig. 5). 



 

Figure 5. Summary of direct (inner ring) and indirect (outer ring) threats to greater glider 

populations. 

 

(1) Climate change 

Climatic conditions are major determinants of greater glider habitat suitability and 

distribution at the landscape scale. Southern greater gliders becoming hyperthermic at 



ambient temperatures above 20˚C (Rübsamen et al., 1984). This limited thermoregulatory 

capacity, coupled with poor water-use efficiency, due to low foliar moisture, restricted water 

access, and evaporative cooling, renders greater gliders particularly vulnerable to heat stress 

if hot conditions persist over extended periods (Rübsamen et al., 1984). Consequently, their 

occurrence in cooler, high-elevation forests likely reflects their thermal constraints (Wagner 

et al., 2020). 

 

The range contraction of southern greater gliders over the last 40 years has been attributed to 

increasing temperatures and extended periods of severe drought (Wagner et al., 2020). 

Studies across the southern distribution of greater gliders support climate-driven declines 

(Smith & Smith, 2020; Lindenmayer et al., 2024a), including local extirpations that appear 

unrelated to habitat disturbance (Smith & Smith, 2020). Empirical observations link southern 

greater glider density in the Blue Mountains of  NSW to climatic factors such as high mean 

annual temperatures, low precipitation, and increased fire frequency (Smith & Smith, 2020), 

while in Victoria, habitat suitability and species occurrence correlates with aridity and the 

frequency of night-time temperatures exceeding 20˚C (Wagner et al., 2020). Furthermore, 

species distribution models predict a range contraction of 76.3 to 98.4% and possible 

extinction of the northern species under a 3˚C increase in warming scenario (Kearney et al., 

2010).  

 

Given the geographic range that the three greater glider species occupy, there are likely 

species-specific and local adaptations to elevated ambient temperatures (Kearney et al., 2010; 

Knipler et al., 2023), however climatic and physiological thresholds for the central and 

northern species remain unknown. Nonetheless, climatic warming and an increase in extreme 

heatwaves pose serious threats to arboreal mammals across northern Australia (Handayani et 



al., 2018; de la Fuente & Williams, 2023). Projected increases in temperature and aridity 

across the distribution of all greater glider species are also expected to elevate fire frequency 

and severity, plus the frequency of severe storm events, further reducing habitat suitability by 

reducing foraging and denning resources (Green et al., 2024; Ridley et al., 2024; Wagner et 

al., 2024; Cally et al., 2025). 

 

(2) Fire 

Wildfires can dramatically alter habitat structure and composition for greater gliders, with 

both direct and indirect consequences. Extensive high-severity fires have been widely 

associated with southern greater glider population declines due to direct mortality and 

reduced resource availability (e.g. Lindenmayer et al., 2013; Chia et al., 2015; McLean et al., 

2018; Campbell-Jones et al., 2022; May-Stubbles et al., 2022; Smith & Smith, 2022, 2025; 

Green et al., 2024). Although we found no empirical studies reporting the impacts of severe 

fire on northern or central greater gliders, similar responses to southern greater gliders are 

likely given their ecological similarities (Department of Climate Change, Energy, the 

Environment and Water, 2022c).  

Southern greater gliders are less likely to occupy sites in landscapes with increasing fire 

extent (Lindenmayer et al., 2021). Although the rates of direct mortality according to 

different fire severities are unknown, the absence of greater gliders from many high-severity 

burn sites strongly suggests that resident individuals are killed during such events 

(Lindenmayer et al., 2013; Chia et al., 2015; McLean et al., 2018; Ridley et al., 2024; Smith 

& Smith, 2025). As obligate folivores, even those that survive high-severity fires may face 

acute food shortages due to loss of live foliage (Lindenmayer et al., 2013; Chia et al., 2015; 

McLean et al., 2018; Smith & Smith, 2022, 2025), while reduced canopy cover may elevate 



predation risk (Smith & Smith, 2020), as observed in eastern ring-tailed possums (Russell, 

Smith & Augee, 2003). 

Wildfires can significantly reduce the abundance of hollow-bearing trees, resulting in a loss 

of shelter and breeding sites for greater gliders (Lindenmayer et al., 2013; Gibbons et al., 

2024). Severe wildfires may lead to the depletion of suitable hollows when damaged trees 

collapse, are removed post-fire for public safety, or because they become unsuitable for 

occupancy (Andrew et al., 2014; Berry et al., 2015; McLean et al., 2018; Lindenmayer et al., 

2021; Smith & Smith, 2022; Green et al., 2024; Wagner et al., 2024). Declines in hollow-

bearing trees are strongly linked to reduced abundance and site occupancy of southern greater 

gliders (Lindenmayer et al., 2013, 2024a). Recovery from high-severity burns is slow, with 

gliders often absent or present in low numbers for more than a decade post-fire (Braithwaite 

et al., 1983; Lunney, 1987; Andrew et al., 2014; Campbell-Jones et al., 2022; Lindenmayer 

et al., 2024a; Smith & Smith, 2025). Low- and moderate-severity fires generally have less 

severe impacts on greater gliders, with southern greater gliders more frequently detected in 

habitats where the canopy is only partially burnt or remains intact, compared to completely 

scorched areas (Chia et al., 2015; Campbell-Jones et al., 2022; May-Stubbles et al., 2022; 

Smith & Smith, 2022, 2025; Green et al., 2024). Gliders also persist in unburnt patches 

within fire affected areas, although at significantly lower abundance compared to outside the 

burn area (Lunney, 1987; Lindenmayer et al., 2013; Berry et al., 2015; Green et al., 2024). 

However, small, isolated patches of refugia within the fire boundary may support populations 

in the short term but with reduced genetic diversity (Knipler et al., 2023) and low long-term 

viability (Possingham et al., 1994; Mulley et al., 2024). Post-fire population recovery is 

likely facilitated by the availability of unburnt habitat and habitat burnt at lower severities 

where mortality has been lower and where some canopy cover has remained (Chia et al., 

2015; Smith & Smith, 2020, 2025; Campbell-Jones et al., 2022; Lothian, Denny & Tong, 



2022; May-Stubbles et al., 2022). Low-severity burns may also facilitate the formation of 

new tree hollows, enhancing habitat suitability for recovering populations (Wagner et al., 

2024). 

Planned burning, which aims to reduce fuel loads and limit wildfire severity, may pose 

additional risks to greater gliders (Smith & Smith, 2018). If burns are more intense than 

intended, they can cause extensive foliage scorching, loss of hollow-bearing trees (Smith & 

Smith, 2018), and may result in significant high mortality rates of arboreal mammals, as 

observed for a population of the critically endangered ngwayir (Pseudocheirus occidentalis) 

in Western Australia (Zylstra, 2023). Hollow-bearing trees may also be removed before 

planned burns for safety (Bluff, 2016), which may further reduce habitat resources for greater 

gliders.  

While no studies have directly examined the impacts of planned burning on greater gliders, 

limited observations suggest that low-intensity, small-scale burns may be tolerated. For 

example, a radio-collared northern greater glider temporarily left its home range during a cool 

patch burn and returned a week later (Starr et al., 2021). However, vulnerable individuals, 

such as females with pouch young, may be particularly sensitive (Starr et al., 2021), and 

short-term displacement may disrupt population dynamics. Concerningly, some studies 

suggest planned burns could increase the risk of severe fire in some forest types, which would 

be detrimental to greater glider populations (Lindenmayer & Zylstra, 2024). The paucity of 

empirical data highlights the need for further research into both the direct and indirect effects 

of planned burning on greater glider populations and habitat (McLean et al., 2018). 

 

 



(3) Anthropogenic habitat disturbance and destruction 

All three greater glider species depend on forested environments containing hollow-bearing 

trees and are threatened by human activities that degrade or destroy their habitat. Most 

research exploring the impact of human caused habitat disturbance has focused on southern 

greater gliders, while this review indicates that the impacts on the central and northern 

species remain underexplored (Fig. 4), although similar outcomes are likely.  

Southern and central greater gliders are highly sensitive to habitat destruction and 

fragmentation, leading to direct mortality, increased predation (Tyndale-Biscoe & Smith, 

1969), lower occurrence and abundance (Eyre, 2006; Lindenmayer et al., 2022), decreased 

dispersal ability, and elevated extinction risk (Taylor & Goldingay, 2009). Logging was 

previously considered the major form of habitat destruction for southern greater gliders in 

Victoria. Although industrial scale native forest logging on public land in Victoria ceased in 

2024, logging of some areas of private land continues. Further north in NSW and 

Queensland, habitat destruction is attributed to deforestation for agriculture, mining, logging, 

and urbanisation (Tyndale-Biscoe & Smith, 1969; Lindenmayer et al., 1990b; Eyre, 2006; 

Ashman et al., 2021).  

Logging significantly reduces the availability of hollow-bearing trees essential for greater 

glider denning (Lindenmayer et al., 2016). This was particularly critical in the montane ash 

forests of Victoria’s Central Highlands, where typical logging intervals (40–120 years) were 

shorter than the time needed for new hollows to form (typically greater than >170 years; 

Lindenmayer et al., 2017). Consequently, southern greater gliders are less common in young 

regrowth than in long-undisturbed forests (Lindenmayer et al., 2022). Alarmingly, high 

conservation value forests where greater gliders are most likely to occur are also among the 



most frequently logged, both in NSW (Ward et al., 2024), and until recently, in Victoria 

(Taylor & Lindenmayer, 2019). 

Even on unlogged sites, increasing amounts of logging in the surrounding landscape (6.25 

km2) has been shown to have a negative effect on long-term levels of site occupancy of 

southern greater gliders (Lindenmayer et al., 2021). Central greater gliders appear to be 

similarly sensitive to the proportion of cleared habitat in the surrounding landscape (3.14 

km2) with density predicted to decline to less than one glider per three hectares if more than 

15% of habitat is cleared (Eyre, 2006). Logging can also alter forest composition and reduce 

habitat suitability for greater gliders. For example, logging operations in southern NSW have 

resulted in forests that are now dominated by tree species such as silver-top ash (Eucalyptus 

sieberi) which represent less preferred or suboptimal food species for southern greater gliders 

(Au et al., 2019; Gopalan, 2022). This is a widespread problem in landscapes that have been 

subject to recurrent logging and fire-related disturbances for many decades (Au et al., 2019; 

Lutze et al., 2025). Additionally, logging operations following disturbance events such as fire 

or logging (i.e., salvage logging) removes large numbers of remaining hollow-bearing trees 

(Lindenmayer & Ough, 2006), with likely compounding negative impacts on cavity-

dependent species such as greater gliders. 

Replacement of native eucalypt forests with exotic species such as radiata pine (Pinus 

radiata) represents an additional threat. These exotic stands create unsuitable habitat for 

gliders, although research has shown that southern greater gliders can persist in adjacent 

native forest patches (Lindenmayer et al., 1999b; Youngentob et al., 2013). Moreover, 

animals appear to be able to move between patches, even though the surrounding pine matrix 

is unsuitable habitat for them (Taylor et al., 2007). 

Interactions between different types of disturbances may magnify impacts on greater glider 

habitat. For example, young forests regenerating after logging can increase the risk of high-



severity wildfire relative to intact or long unburnt forest (Taylor, McCarthy & Lindenmayer, 

2014), or support fewer hollow-bearing trees (Lindenmayer et al., 2016; Ferguson et al., 

2018), therefore increasing the time required for forests to recover, mature and support 

greater glider populations.  

Given the strong relationship between central and southern greater gliders and long 

undisturbed forest containing hollow-bearing trees (Lindenmayer et al., 1990a, 2022; 

Ferguson et al., 2018), disturbances that lead to a loss of trees with suitable cavities (such as 

logging and fire) will likely have major negative impacts on populations of greater gliders 

(Possingham et al., 1994; Lindenmayer & Lacy, 1995; McCarthy & Lindenmayer, 1999a; 

Eyre, 2006; Lindenmayer & McCarthy, 2006; Taylor & Goldingay, 2009). Notably, whilst 

both logging and wildfire have detrimental impacts on greater gliders, logging can have more 

severe impact on key habitat resources such as hollow-bearing trees (McLean et al., 2015). 

(4) Predation 

Research examining the role of predation in shaping greater glider populations or the 

importance of gliders as a prey species is limited, particularly for the central and northern 

species, where no predation studies have been conducted (Fig. 4). Among avian predators, 

the powerful owl (Ninox strenua) is considered an important predator capable of substantially 

reducing the local abundance of southern greater glider populations (Kavanagh, 1988). The 

greater sooty owl (Tyto tenebricosa) also preys on greater gliders and appears to have 

increased its reliance on arboreal marsupials since European colonisation (Bilney et al., 

2006). This shift may be linked to habitat modification and the introduction of red foxes 

(Vulpes vulpes) and cats (Felis catus), which primarily prey on small terrestrial mammals 

(Bilney et al., 2006). As a result, competition between sooty owls and powerful owls for 

shared prey, including greater gliders, may have intensified (Bilney et al., 2006; Bilney, 



Cooke & White, 2010, 2011). However, a study in the Blue Mountains, NSW, found no 

significant relationship between greater glider abundance and the presence of either owl 

species (Smith & Smith, 2018). Predation of southern greater gliders by wedge-tailed eagles 

(Aquila audax) has been recorded following logging operations, however greater gliders are 

not considered regular prey of diurnal hunting eagles outside of these disturbance events, 

given greater gliders are nocturnal (Tyndale-Biscoe & Smith, 1969). 

Southern greater gliders are also prey for the near-threatened spotted-tailed quoll (Dasyurus 

maculatus), representing the dominant prey species in some regions (Glen & Dickman, 2006; 

Belcher, Nelson & Darrant, 2007). However, the potential impact of quoll predation on 

greater glider populations, as well as the relationship between quoll and glider abundance, 

remains unknown. Logging operations can displace gliders to lower strata or even to the 

ground, rendering them vulnerable to predation by powerful owls and introduced red foxes 

(Tyndale-Biscoe & Smith, 1969). However, due to their largely arboreal habits, greater 

gliders are not generally considered common prey for red foxes, feral cats, or wild 

dogs/dingoes (Canis familiaris/C. Dingo; Triggs, Brunner & Cullen, 1984; Lunney, 1987). 

Reptilian predators such as large pythons and lace monitors (Varanus varius) also pose a 

predation risk to greater gliders (Smith et al., 2007). It is possible that predation risk from 

reptiles could increase following disturbance events such as fire, as was found for eastern 

ring-tailed possums (Russell et al., 2003). 

Despite the extensive distribution of greater glider species, their ecological importance as 

prey species, pollinators, or players in nutrient cycling within forest ecosystems remains 

understudied. This lack of understanding may pose a risk to forest ecosystems given the 

decline of greater gliders and other arboreal marsupials in Australia. 

(5) Disease 



There is limited information on diseases and parasites known to affect greater gliders. The 

only known disease found to be present in the greater glider is Chlamydia, with evidence of 

the disease in southern greater gliders (Lindenmayer, 2002; Bodetti et al., 2003; Burnard & 

Polkinghorne, 2016). The greater glider harbours several types of ectoparasites, including 

mites (Domrow, 1974; Domrow & Lester, 1985), fleas and ticks (Lindenmayer, 2002). 

Endoparasites are also known to occur, including species from the class Cestoda and 

Nematoda phylum (Lindenmayer, 2002). Given the severity of impacts of Chlamydia and 

mange (as caused by sarcoptic mites) on wildlife populations throughout Australia (Bodetti et 

al., 2003; Burnard & Polkinghorne, 2016; Fraser et al., 2016; Kasimov et al., 2022), further 

research is warranted on the identity, distribution, and epidemiology of Chlamydia and mites 

affecting greater glider populations. There is limited information on diseases and parasites 

known to affect greater gliders. Recent work in gut microbiome profiling in southern gliders 

have detected potential evidence of mycobacterial infection in the form of a M. tuberculosis 

complex (Clough, Schwab & Mikac, 2023); understanding the risk posed by this pathogen 

warrants further screening of gliders for Mycobacterium. 

 

(6) Other threats and competition 

The delicate gliding membrane of greater gliders, known as the patagium, makes them 

vulnerable to entanglement in fencing, especially barbed wire, when attempting to cross gaps 

that exceed their gliding capacity (van der Ree, 1999). There has also been a documented 

case of a greater glider which died after becoming entangled in a rope left in a tree, and they 

have been observed to snag their long nails on enclosure structures when kept in captivity, 

requiring intervention to free themselves (K. Youngentob, et al., unpublished data). These 



observations underscore the need for careful design and placement of artificial structures in 

their habitat, including nest boxes, to minimize the risk of unintended harm to greater gliders.   

Greater gliders depend on large, old trees with suitable hollows for shelter, but competition 

for these limited resources can be intense (Gibbons & Lindenmayer, 2002). Larger, hollow-

dependent arboreal marsupials, including the common brushtail possum and mountain 

brushtail possum (Trichosurus cunninghami), have been observed displacing greater gliders 

from hollows (Lindenmayer et al., 2011a; Youngentob et al., 2012). These more generalist, 

hollow-dependent species can utilise mid- and understorey vegetation and often occur at 

higher densities in disturbed landscapes and along forest edges, where such vegetation is 

more abundant, placing additional pressure on greater gliders (Youngentob et al., 2012). 

Predator control, particularly of red foxes, may exacerbate this competition by reducing 

predation pressure on brushtail possums, thereby indirectly contributing to declines in greater 

gliders (Dexter et al., 2012) Additional competition can arise from other taxa that use 

hollows, including birds such as the sulfur-crested cockatoo (Cacatua galerita) and insects 

like the European honeybee (Apis mellifera), which have been observed usurping nesting 

hollows used by other arboreal marsupial species (Wood & Wallis, 1998; Smith & Smith, 

2018).  

 

(7) Extinction risk 

Exploration of population viability and extinction risk has predominantly focussed on the 

southern greater glider (Fig. 4). Local extinctions have already occurred, including within 

protected areas such as Booderee National Park in the Jervis Bay Territory, where other 

arboreal marsupials like the yellow-bellied glider (Petaurus australis) have also disappeared, 

and species such as the eastern ring-tailed possum have undergone steep declines 



(Lindenmayer et al., 2018). Although the specific causes of these population declines remain 

unclear, multiple concurrent threats are likely contributing factors (Lindenmayer et al., 2018). 

For example, a population viability analysis (PVA) of a declining southern greater glider 

population in Seven Mile Beach National Park, NSW, revealed a 99% probability of 

extinction over 50 years, primarily due to fire, followed by low effective population size and 

inbreeding (Mulley et al., 2024).  

PVA studies for southern greater gliders have also indicated elevated extinction risk with 

decreasing patch size and declining resource availability (McCarthy & Lindenmayer, 1999a; 

Lindenmayer & McCarthy, 2006). Small, isolated patches of suitable habitat have limited 

capacity to support long-term occupancy of southern greater gliders (Possingham et al., 

1994), while contiguous areas of old-growth forest and reductions in the extent of timber 

harvesting appear critical for maintaining viable populations (McCarthy & Lindenmayer, 

1999a). Furthermore, declines in effective population sizes, genetic diversity, and habitat 

quality, along with increased frequency of high-intensity wildfire, are predicted to have 

significant negative impacts on the persistence of southern greater glider populations 

(Possingham et al., 1994; Lindenmayer & Lacy, 1995). 

PVA modelling for the central greater glider indicates that habitat fragmentation, wildfire, 

and barriers to movement such as roads pose significant threats to population viability 

(Taylor & Goldingay, 2009). Although extinction risk may be reduced with relatively low 

levels of dispersal between habitat patches, frequent fires remain a major threat to the 

survival of fragmented glider populations, reinforcing the importance of habitat connectivity 

for population persistence (Taylor & Goldingay, 2009). 

We found no species-specific PVA studies for northern greater glider populations. This 

highlights a critical knowledge gap, and underscores the need for comprehensive, species-



specific assessments of extinction risk for all greater glider populations to determine the most 

at-risk populations and to inform threat mitigation actions. 

 

XIII.      SURVEY METHODS 

As a large gliding possum, the greater glider is relatively conspicuous during nocturnal 

surveys due to its bright reflective eyeshine (Harris & Maloney, 2010) and tendency to 

remain stationary for prolonged periods. Greater gliders are generally non-vocal, so they are 

most often detected visually using methods aimed at detecting their eye-shine, silhouettes, or 

body heat. We identified 10 studies that examined the effectiveness of different survey 

methods for greater gliders, with the majority focussed on the southern species (Fig. 4). 

Three main survey methods were identified: spotlighting, stag watching, and more recently, 

thermal imaging. During the late 1980s and 1990s, stag watching of den trees (Smith et al., 

1989) and ground-based spotlighting (Davey, 1990) were considered the most effective 

methods for detecting greater gliders. However, both methods are subject to imperfect  

detection, influenced by environmental conditions such as fog, rainfall, high temperature, 

moon phase, time after dusk, habitat quality, and time of year (Smith et al., 1989; Davey, 

1990; Eyre, 2004; Wintle et al., 2005). 

Spotlighting remains the most widely used technique for detecting greater gliders, however 

indicates that spotlighting surveys may significantly underestimate the number of greater 

gliders seen (Lindenmayer et al., 2001). As a result, most monitoring programs have used 

relative abundance indices rather than absolute counts, particularly in large forest patches. In 

response, recent literature advocates for more sophisticated spotlighting protocols that 

explicitly account for imperfect detection (Emerson et al., 2019; Cripps et al., 2021). 

Distance sampling techniques improve population estimates by accounting for declining 



detection probability with increasing distance from the transect line (Buckland et al., 2001). 

Research has shown that using two independent observers on a transect can yield abundance 

and density estimates with good precision (Cripps et al., 2021), although assumptions 

underpinning distance sampling protocols for greater gliders warrant further investigation. 

Decisions around which survey method to use will depend on the research question and the 

type of habitat surveyed. 

The use of emerging technologies, such as thermal imaging cameras, for conducting greater 

glider surveys, have shown promise but remain understudied. Published evaluations of their 

effectiveness for surveys of southern greater gliders are mixed, with Vinson et al. (2020), 

finding no significant improvement over traditional spotlighting methods, particularly at 

ambient temperatures above 24oC. However, (Wagner et al., 2025) recently showed that 

thermal drone surveys achieved high detection rates for arboreal mammals, including 

southern greater gliders, particularly in dense vegetation or low-density populations. The use 

of thermal imaging technologies warrants further exploration across a variety of habitat types. 

Only one study has examined the effectiveness of survey methods for each of the central and 

northern greater glider species (Fig. 4). Although survey methods suitable for southern 

greater gliders should be effective for all greater glider species, differences in vegetation 

density and ambient temperatures could influence detection efficacy across regions. 

Traditional methods such as spotlighting and stag watching remain valuable for locating 

individuals and den trees (Hofman et al., 2022), facilitating capture (Gracanin et al., 2021), 

and tracking long-term population trends (Lindenmayer et al., 2024a). However, the 

validation and standardisation of both traditional and emerging survey methods are critical to 

ensure comparability and accuracy across the range of all three species. Establishing robust, 

standardised protocols will be essential for effective long-term monitoring and management. 



 

XIV.      POLICY & CONSERVATION MANAGEMENT RECOMMENDATIONS 

(1) Policy recommendations 

Policy reform is urgently required to address inconsistencies between state and federal 

environmental laws that currently permit the continued degradation and destruction of greater 

glider habitat. Existing regulatory frameworks are failing to prevent ongoing species declines 

(Lindenmayer et al., 2011b; Ashman et al., 2021) and do not adequately account for the 

cumulative impacts of forest destruction and degradation since European invasion (Ward et 

al., 2024), indirect impacts (Khaine & and Woo, 2015), and interacting effects of logging 

(Lindenmayer et al., 2021), fire (Campbell-Jones et al., 2022), and climate change on greater 

gliders (Smith & Smith, 2018; Lindenmayer & Sato, 2018). For example, under current 

policy arrangements, logging in part of the range of greater gliders is exempt from 

assessment under the EPBC Act due to Regional Forest Agreements (RFAs) between state 

and federal governments (Samuel, 2020), thus undermining conservation efforts for these 

threatened species (Ashman et al., 2021). 

RFAs are now outdated instruments that fail to reflect contemporary ecological knowledge, 

do not account for compounding effects of climate change and increasingly frequent 

wildfires, and are inadequate for protecting threatened species (Lindenmayer, 2018; Samuel, 

2020). Logging operations permitted under RFAs continue to contribute to the destruction 

and degradation of native forest habitat of greater gliders, resulting in ongoing population 

declines of the species (McLean et al., 2018; Lindenmayer et al., 2021; Wardell-Johnson & 

Robinson, 2022), which is inconsistent with the conservation objectives of the EPBC Act.. 

These issues are unlikely to be resolved by simply amending Regional Forest Agreements, or 

by amending the EPBC Act to allow greater oversight over these agreements. Rather than 



amending RFAs or modifying the EPBC Act to allow greater oversight, a more effective and 

precautionary approach would be to remove exemptions altogether. Destructive practices 

likely to impact greater gliders and other threatened species should be subject to consistent, 

robust, enforceable, and independent national environmental regulation (Environmental 

Defenders Office, 2020; Samuel, 2020). 

Immediate formal protection of native forest habitats from further destruction and 

degradation is essential if Australia is to meet its global commitments (Ritchie & Nimmo, 

2025) and will facilitate threatened species persistence and recovery (Legge et al., 2023), and 

respond to the global biodiversity and climate crises. In particular, the prevention of further 

logging and clearing of mature native forests is critical to the persistence of greater gliders 

and other threatened species (Ashman et al., 2021; Lindenmayer & Taylor, 2023; Ward et al., 

2024). 

Greater glider conservation cannot be achieved in isolation from climate action. Climate 

change is a major and intensifying driver of habitat degradation, altered fire regimes, and 

physiological stress in arboreal marsupials (Wagner et al., 2020; Nitschke et al., 2020; 

Bergstrom et al., 2021). Accordingly, national climate and emissions policies must be aligned 

with biodiversity conservation goals to mitigate direct and indirect climate-related threats. 

Policies aimed at reducing emissions and limiting warming will contribute substantially to the 

protection of climate-sensitive species such as greater gliders (Kearney et al., 2010; Smith & 

Smith, 2022). 

(2) Management recommendations 

Management recommendations for greater gliders in the reviewed literature emphasise four 

key strategies for their conservation: 1) habitat protection and restoration, 2) appropriate fire 

management, 3) ongoing monitoring and research, and 4) community engagement and 



education (Lindenmayer et al., 2013; Ashman et al., 2021; Campbell-Jones et al., 2022; 

Smith & Smith, 2022; Wardell-Johnson & Robinson, 2022; Knipler et al., 2023). Central to 

effective conservation management and legislation is the formal recognition of the three 

distinct species of greater glider (Petauroides spp.; (McGregor et al., 2020)), along with 

consistency in species recognition and listings across state and national jurisdictions (Smith 

& Smith, 2022). Effective conservation also requires the separate management of 

populations, given the unique genetic structures, ecological contexts, and threatening 

processes influencing each (Knipler et al., 2023). Furthermore, the management of greater 

gliders and associated biodiversity must occur at a landscape scale to enhance resilience to 

disturbance events (Smith & Smith, 2022). The following recommendations are intended to 

guide land managers and policy makers to take actions that address the primary threats facing 

greater gliders and their habitats to support their long-term survival. 

Habitat protection and restoration 

Protection of areas from logging, land clearing, development, firewood collection, hazardous 

tree removal, fence line clearing, and other land-use changes that could further degrade 

greater glider habitat availability, quality, and connectivity are key priorities (Lunney, 1987; 

Ashman et al., 2021; Vinson et al., 2021; Wardell-Johnson & Robinson, 2022; Lindenmayer 

et al., 2024a). The trees and hollows that greater gliders depend upon can take long 

timeframes to form (Lindenmayer et al., 1991a). Consequently, in many regions, suitable 

habitat is limited or continuing to decline, and extinction debts (older trees dying but not 

being replaced) will compound this issue (Kuussaari et al., 2009).  

At the policy and planning level, stronger vegetation preservation laws are required, 

including in roadside areas that often contain remnants with limited formal protection 

(Ashman et al., 2021; Wardell-Johnson & Robinson, 2022; Lindenmayer & Taylor, 2023). 



Roadside corridors can provide important habitat for a variety of wildlife, including greater 

gliders (Downes et al., 1997; Martin & Martin, 2004; Tingate, 2021). At broader scales, 

spatial conservation planning supported by species distribution modelling, which incorporates 

current and projected greater glider distributions under climate change (Kearney et al., 2010) 

and the degree of protection across land tenures (Norman & Mackey, 2023), would enable 

targeted conservation acquisitions (Lindenmayer & Taylor, 2023). Such modelling also helps 

to identify large-scale climate refugia (areas that are climatically stable or becoming more 

suitable in the future) that need to be conserved or restored to maintain connectivity between 

greater glider populations and support viable meta-populations (Taylor & Goldingay, 2009).  

Where natural connectivity is disrupted, engineered solutions may provide interim support 

and ensure population viability. Artificial structures such as gliding poles may facilitate 

movement across fragmented landscapes, including urban infrastructure or areas affected by 

disturbance events such as fire, thereby supporting gene flow (Taylor & Goldingay, 2009).  

In addition to maintaining connectivity, conservation strategies have been proposed to 

mitigate extinction risk through interventions such as genetic reinforcement via translocation 

and the installation of nest boxes to supplement hollow availability (Mulley et al., 2024). 

However, conserving and connecting forest fragments should remain the priority, as this 

reduces reliance on translocations and minimises the risk of outbreeding depression (Knipler 

et al., 2023). Ultimately, suitably large areas of intact habitat are required to sustain viable 

populations of greater gliders. For example, theoretical long-term viable breeding populations 

of southern greater gliders have been estimated at between 2 375 and 5 000 individuals 

(Davey, 1989). 

Beyond these broad-scale strategies, the protection of fine-scale habitat features, and local 

refuges is also critical. Habitat containing preferred feeding trees (Eyre, 2006; McGregor et 



al., 2023), microrefugia such as sheltered gullies or patches that buffer against disturbance 

events like fire, storm damage, or heat extremes, and areas that remain within suitable climate 

windows at local scales are particularly important (Lunney, 1987; Kearney et al., 2010; 

Wagner et al., 2020; Smith & Smith, 2022; Cally et al., 2025). Retention of large old trees 

that are more likely to contain hollows is especially vital for protecting greater gliders 

(Davey, 1989; Lindenmayer et al., 1991a, 2022). Trees >80 cm DBH are of greatest 

importance, with over 80% of denning trees for southern greater gliders occurring in this size 

class, while no denning occurred in trees <40 cm DBH (Davey, 1989). Southern greater 

gliders were more likely to occur where there were more than 20 hollow-bearing trees 

(HBTs) >80 cm DBH per hectare (Lindenmayer et al., 2022). For central greater gliders, 

retention of trees >60 cm DBH in logged areas has also been recommended, regardless of 

whether they currently contain hollows (Eyre, 2006). Modelling indicated that approximately 

three HBTs per hectare were required to maintain one central greater glider per three hectares 

(Eyre, 2006). To protect HBTs used by wildlife, logging operations should occur at low 

intensity where greater gliders are present (Lunney, 1987), and adequate densities of HBTs 

should be retained to support greater gliders and other hollow-dependent species 

(Lindenmayer et al., 1991a, 2022). The importance of drainage lines and protection of all 

trees in these areas have also been emphasised for greater gliders (Lunney, 1987). 

Appropriate fire management 

Fire management is also central to greater glider conservation (Ridley et al., 2024). Frequent 

and severe fires risk direct impacts on greater gliders, as well as indirectly affecting the 

species by removing hollow-bearing trees (Lunney, 1987; Lindenmayer et al., 2013; Chia et 

al., 2015; Smith & Smith, 2022). The risk of large, severe and frequent fires needs to be 

minimised. Identifying key areas of greater glider habitat that are at risk of fire will aid 



prioritising attempts at any fire suppression (where this is practical) prior to any fire 

occurring. Hazard reduction burning needs to consider the cumulative impacts of fires on tree 

health and potential loss of hollows. A planned fire that overlaps with large, old trees has the 

capacity to destroy key habitat, and this can compound through time given gliders require 

multiple den trees through which they cycle their use (Kavanagh & Wheeler, 2004). Raking 

around and protecting such trees prior to any prescribed fire should be prioritised. Where 

planned burning is employed, low-intensity burns that avoid canopy scorch are recommended 

to minimise potential impacts (Chia et al., 2015; Ridley et al., 2024).  

Monitoring and research 

Ongoing monitoring and research is vital to assess population health (Lindenmayer et al., 

2013; Knipler et al., 2023), habitat conditions, and the effectiveness of management actions, 

enabling adaptive strategies based on up-to-date information. Research on genetic structuring, 

diversity, and taxonomy remains critical to ensure that conservation actions are appropriately 

targeted, prevent the masking of declines within distinct taxa, and allow monitoring programs 

to detect species- or population-specific responses to threats and management interventions. 

Central to this should be the establishment of a network of systematic monitoring sites to 

assess changes in greater glider distribution and abundance through time and across their 

range (Lindenmayer et al., 2025).  

Greater gliders can co-occur with other arboreal marsupials (Lindenmayer & Cunningham, 

1997; Emerson et al., 2019), which could interest in using biodiversity indicators or 

surrogates (Landres, Verner & Thomas, 1988; Lindenmayer et al., 2024b). However, co-

occurrence patterns are generally weak, inconsistent, or site-specific (Lindenmayer & 

Cunningham, 1997; Lindenmayer et al., 2024b). Although some associations with species 

from other trophic groups have been observed—for example, the occurrence of southern 



greater gliders were positively correlated with sooty owls (Tyto tenebricosa) (Hogg, Wang & 

Stone, 2021), a known predator of greater gliders (Bilney et al., 2006)— these correlations 

are context-specific and do not provide a reliable basis for surrogate monitoring. Targeted 

conservation and monitoring efforts are therefore recommended to ensure effective 

management outcomes (Lindenmayer et al., 2024b).  

Commitments to long-term funding are essential to support ongoing monitoring, active forest 

management, and conservation efforts. Sustained investment enables the consistent 

application of monitoring protocols, the maintenance of systematic sites over time, and the 

capacity to respond adaptively to emerging threats, ensuring that management actions are 

evidence-based and effective (Smith & Smith, 2022). 

Community engagement and education 

Engaging with local communities and raising awareness about the importance of 

conservation, including species’ habitat requirements, can foster support for wildlife 

conservation efforts (Ikin et al., 2015). Central to this is engagement with and decision 

making by First Nations peoples and rural communities where greater glider populations 

occur (Norman & Mackey, 2023). Large areas of greater glider habitat are outside of formal 

conservation protection, on private land (Wagner et al., 2020; Norman & Mackey, 2023). 

Market-based initiatives such as conservation covenants (Ashman et al., 2021) offer 

opportunities to greatly enhance the area of greater glider habitat that is protected and 

connected. 

 

 XV.         CONCLUSIONS 



(1) This review demonstrates the value of reassessing existing literature following recent 

species reclassifications. We have shown that such analyses can highlight strengths 

and gaps in the species-specific ecological and conservation evidence base that may 

have otherwise been overlooked, thereby guiding future research and informing 

species-specific conservation, management, and policy. Similar reviews for other taxa 

would be valuable as genetic studies increasingly uncover cryptic species (e.g., 

Petaurus spp.; Cremona et al., 2021). 

(2) Further genetic sampling across all greater glider species—particularly in northern 

NSW and geographic isolates such as Blackbraes National Park in northern 

Queensland—is essential to clarify species boundaries, evolutionary significant units, 

detect potential hybridisation, and guide targeted conservation. Establishing baseline 

genetic structure will also enable assessment of the genetic impacts of climate change, 

habitat fragmentation, and other disturbances, and underpin robust population 

viability analyses. 

(3) Current ecological knowledge is disproportionately concentrated on the southern 

greater glider, leaving the central and northern species understudied and potentially 

vulnerable to poor conservation outcomes. Research across all three species is needed 

to understand key drivers of population dynamics, including the roles of climate 

change, life history traits, genetics, physiology, predation, competition, disease, 

habitat quality, prescribed burning, and spatial ecology. This information is essential 

for accurate extinction risk assessments and effective threat mitigation.    

(4) The long-term persistence of all three greater glider species and the habitats they 

occupy requires coordinated actions encompassing habitat protection and restoration, 

community engagement and education, urgent legislative reform, and expanded, 

robust, and ongoing research and monitoring. Monitoring programs should 



incorporate fine-scale habitat–density analyses, standardised protocols, and remote 

sensing technologies to enable rapid, landscape-scale assessment. Strengthening 

environmental protections and implementing large-scale restoration and climate 

change mitigation are critical to addressing cumulative threats across the species’ 

distribution. 

(5) Central to effective conservation of greater gliders is the formal recognition of the 

three distinct species and the consistent application of this taxonomy across state and 

national legislation. Development of species- and population-specific recovery plans 

will provide a legally binding framework for coordinating research and management 

actions, mitigating threats, and supporting the long-term survival of all greater glider 

species. 

(6) To facilitate ongoing synthesis and support future research, we have developed an 

interactive online database and visualisation tool available at 

https://lukedanielemerson.shinyapps.io/greaterglidershinyapp/. We encourage 

researchers studying greater gliders to engage with this resource to prioritise research 

efforts and to notify us of newly published papers, datasets, or reports, so this resource 

remains current and guides future research across all species. 
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XVIII.  SUPPORTING INFORMATION 

Additional supporting information may be found online in the Supporting Information section at the 
end of the article. 

Data S1. (separate file) Included studies and study themes for each greater glider species 

Data S2. (separate file) Tree species associations and feeding preferences 
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I. STUDY DESIGN 
 
1.1 Systematic literature review and data synthesis protocol 
 
1.1.1 Aims and objectives 
 
Our aim was to conduct a systematic literature review following the recommendations from 
the ROSES approach (Haddaway et al., 2018), according to transparent criteria (Haddaway et 
al., 2015), and a content analysis (Krippendorff, 2018) to determine the extent of species-
specific research for each of the three greater glider species as described by Arbogast et al. 
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(2011), Jackson & Groves (2015), and McGregor et al.(2020). The core objectives of our 
review were to: 
 

(i) identify and collate relevant greater glider literature 
(ii) evaluate geographic patterns in research effort for each species 
(iii) conduct a content analysis (Krippendorff, 2018) and descriptive synthesis to 

determine the distribution of research effort across different research topics and to 
identify research deficiencies for each species (gap analysis)  

(iv) summarise and synthesise key research findings for each greater glider species 
(v) summarise explicit management and policy recommendations 
(vi) provide a list of recommendations to inform future species-specific research, 

policies and conservation actions.  
 
 
1.1.2 Approach to bibliographic database searches 
 
We conducted bibliographic database searches in English only using Web of Science Core 
Collection, Zoological Record, Scopus, ProQuest Dissertations & Theses Global, and Google 
Scholar. We conducted initial database searches on 29th November 2022, and conducted an 
additional search of all databases on the 5th September 2023 to capture any new articles that 
were published during the intervening time (Fig. S1.1). We conducted additional Google 
Scholar searches on the 12th October 2024 and 2nd April 2025 to identify any other articles 
published since the last search of all databases (Fig. S1.1). The final Google scholar search 
was a rapid screen of recently published literature and contributed to articles returned ad hoc, 
resulting in just 14 additional relevant articles (Fig. S1.1). All returned articles were imported 
into Zotero reference manager, where duplicate articles were identified and removed, and 
open-source articles imported.  
 
 
1.1.3 Search string used for all bibliographic database searches  
 
"greater glider" OR "schoinobates volans" OR "petauroides volans" OR "petauroides 
armillatus" OR "petauroides minor" 
 
 
1.1.4 Search syntax 
 
Web of Science-Core Collection, and Zoological Record: 
TS=() 
 
Scopus: 
TITLE-ABS-KEY() 
 
ProQuest Dissertations & Theses Global: 
NOFT() 
 
Limits applied to ProQuest Dissertations & Theses Global database searches:  
• Manuscript type: Master’s theses and Doctoral dissertations 
• Language: English 
• Spelling variants and form variants of search terms deselected 
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• All dates 
• Exclude duplicate documents 
 
Google Scholar:  
() OR () 
 
Note: Just the first 400 articles were exported from Google Scholar in the first round of 
searches. 
 
 
 
1.1.5 Title and abstract screening process 
 
Owing to limited human resources, a single reviewer (K.N.K) independently screened the 
title and abstracts of each article returned by the first two rounds of bibliographic database 
searches. The last round of searches was solely conducted by the primary investigator 
(L.D.E.). The chance of incorrectly omitting potentially relevant articles at this stage was 
negligible given we erred on the side of inclusion. For articles to be considered for the full-
text review stage, they had to meet all the inclusion criteria and none of the exclusion criteria. 
 
Inclusion criteria:  

• Aspect of greater glider ecology, management, impacts or policy appear to be focus of 
study  

• Greater glider, arboreal marsupial, folivorous marsupial, gliding marsupial, arboreal 
mammal mentioned but is unclear if relevant or not 

 
Exclusion criteria: 

• Not in English 
• Does not refer to greater gliders or arboreal marsupials 
• Simple biodiversity survey that may or may not mention greater glider 
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Figure S1. Summary of data sources, and the number of studies identified, screened/reviewed, excluded, and included at each stage of each 
round of the systematic review process. 
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1.1.6 Full-text review process 
 
Two people were involved in the full-text review process. K.N.K independently performed 
the full-text review for the first two rounds of searches and L.D.E. resolved any uncertainties 
that were flagged by K.N.K., thereby the chance of incorrectly omitting a relevant article at 
this stage was negligible. L.D.E independently conducted the full-text review of the last 
round of searches. To be considered for inclusion, an article had to meet all the inclusion 
criteria and none of the exclusion criteria.  
 
Inclusion criteria: 

• An aspect of greater glider ecology, genetics, anatomy & physiology, impacts & 
threats, survey methods, habitat, conservation history or management, associated 
indigenous knowledge, or policy/management recommendations is the focus of the 
study/article 

 
Exclusion criteria:  

• Does not refer to greater gliders 
• Statistical analysis or results are not specific to greater gliders 
• Review article that does not reanalyse original data or contribute any new findings 
• Blog, news article, website 
• Simple biodiversity survey that does not mention greater gliders or if mentioned, does 

not attempt to calculate standardised abundance estimates or assess 
detections/abundance relative to potentially influencing variables 

 
 
1.1.7 Systematic citation searches 
 
The titles of articles in the reference lists of included articles or any relevant excluded 
articles, such as reviews, were screened for the following terms. If any one of the following 
were observed in the title, that article was also located and reviewed. The search terms 
included ‘glider’ (determine if ambiguous or relevant based on other terms e.g. greater, sugar, 
etc.), ‘Schoinobates’, ‘Petauroides’, ‘arboreal marsupial’, ‘folivorous marsupial’, ‘gliding 
marsupial’, and ‘arboreal mammal’. 
 
 
1.1.8 Data extraction 
 
We developed a data extraction tool in the form of a Microsoft Excel spreadsheet (Data S1). 
We extracted important article information including title, authors, year of publication, article 
type, and study location/s.  
 
We conducted a content analysis (Krippendorff, 2018) by developing the following list of 
pre-defined research / topic areas and coding studies relative to each code. This information 
was used to descriptively synthesise the research effort per research topic per species. 
 
Pre-defined research / topic areas for content analysis: 

• Genetics & taxonomy 
• Anatomy & physiology 
• Life history 
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• Behaviour 
• Colonisation, dispersal, recovery 
• Movement 
• Home range 
• Abundance 
• Diet 
• Factors associated with occurrence 
• Spatially explicit distribution 
• Anthropogenic habitat destruction 
• Climate change 
• Fire 
• Predation 
• Disease 
• Other threats or competition 
• Extinction risk 
• Survey methods 
• Assessing statistical modelling approaches 
• Management recommendations 
• Explicit policy recommendations  

 
 
1.1.9 Determining unique studies 
 
We identified unique studies to avoid pseudo-replication when summarising research effort 
per species. If the same information was reported across multiple articles and no new 
information was presented, we kept the article reporting the most comprehensive information 
and excluded the other articles with overlapping information. 
 
 
1.1.10 Determining research effort per topic per species 
 
To assess research effort by greater glider species, we assigned each study to a species based 
on its geographic location relative to the known or inferred distribution of each species, as 
described by Arbogast et al. (2011), Jackson & Groves (2015), McGregor et al. (2020), and 
Youngentob (personal communication). 
 
Studies conducted in Victoria or New South Wales were assigned to the southern greater 
glider (Petauroides volans). The central greater glider (P. armillatus) was considered to occur 
from the New South Wales–Queensland border northward to just south of Townsville. The 
northern greater glider (P. minor) was considered to occur from just south of Townsville and 
further north to the Windsor Tablelands north of Cairns. 
 
Using the aforementioned sources, we delineated the approximate distributional extents of 
each species in ArcGIS Pro (Esri Inc. 2024) and spatially mapped the locations of all 
included studies. Based on this mapping, we assigned each study to one or more species, 
depending on whether its location overlapped with the inferred range of a single species or 
multiple species. 
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It is important to note that species boundaries remain uncertain. The precise northern extent 
of P. volans and the southern extent of P. armillatus are not clearly defined, though the New 
South Wales–Queensland border is considered to mark an approximate transition between 
these species. Similarly, the boundary between P. armillatus and P. minor is imprecise but is 
assumed to lie near Townsville (Arbogast et al., 2011; Jackson & Groves, 2015; McGregor et 
al., 2020; Youngentob (personal communication). 
 
Where studies encompassed locations spanning the inferred distribution of multiple species, 
we considered those studies to contribute to the research effort of each relevant species. 
Research effort per species and per topic was synthesised and visualised using the ggplot2 R 
package (v3.3.6; Wickham, 2016) in R Statistical Software (v4.1.1; R Core Team, 2021).  
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