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Abstract

Caves and other subterranean ecosystems impose highly selective environmental  filters, 
driving the evolution of convergent and specialized traits in subterranean organisms. Here, 
we present the first comprehensive checklist and trait database for subterranean spiders of 
Macaronesia, thereby filling a significant knowledge gap relative to continental Europe. We 
compiled data through direct morphological measurements and literature review, covering 64 
morphological and ecological traits for 61 species (14 families) from Macaronesia, along with 
66 additional  species  in  continental  Europe not  included in  the  previous checklist.  After 
accounting for taxonomic changes, the checklist of European subterranean spiders now lists 
637  species,  of  which  278  are  considered  to  be  obligate  subterranean-dwellers 
(troglobionts).  Functional  trait  analyses  using  n-dimensional  hypervolumes  revealed 
moderate  overlap  in  the  functional  space  of  continental  Europe  and  Macaronesian 
subterranean spiders (β_total = 0.47), driven primarily by differences in trait richness rather 
than  the  replacement  of  functional  space,  with  the  Macaronesian  spiders  occupying  a 
smaller  functional  space  than  the  continental  European  ones.  The  Macaronesian 
assemblage  showed more  regular  (even)  niche  occupation  but  similar  overall  functional 
dispersion compared to Europe,  suggesting lower functional  redundancy yet  comparable 
trait diversity. These findings suggest that similar environmental pressures drive functional 
convergence  in  cave  faunas  despite  geographic,  geological  (karstic  vs.  volcanic),  and 
taxonomic differences. The expanded trait database is a valuable resource for ecological 
and conservation research, highlighting the need for continued exploration and protection of 
subterranean biodiversity on oceanic islands.

Keywords: Arachnida, functional diversity, Macaronesia, speleology, subterranean biology, 
troglobiont
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Introduction

Subterranean ecosystems—such as caves, aquifers, and fissure systems—are considered 
harsh  environments  for  organisms to  establish  in,  as  they  impose strong environmental 
filters  on  colonizing  taxa  from  the  surface  species  pool  (Fernandes  et  al.,  2016). 
Subterranean  animals  have  evolved  a  wide  array  of  morphological,  physiological,  and 
behavioral  adaptations  to  survive  the  conditions  imposed  primarily  by  the  absence  of 
sunlight and the resulting scarcity of food resources, which shape the typically small and 
species-poor biological communities found underground (Howarth & Moldovan, 2018; Lunghi 
et al., 2024). As a result, subterranean communities are typically depauperate in species but 
are notable for high endemism and unique adaptations (Deharveng & Besos, 2019).

Spiders (Araneae) and other arthropods, such as beetles (Coleoptera),  millipedes 
(Diplopoda),  isopods  (Isopoda),  and  pseudoscorpions  (Pseudoscorpiones),  have 
successfully colonized the subterranean domain multiple times throughout their evolutionary 
history  (Deharveng  &  Besos,  2019).  These  groups  play  critical  ecological  roles  in 
subterranean  ecosystems,  acting  as  apex  predators  (e.g.,  spiders  and  some  beetles), 
primary decomposers (e.g., isopods and millipedes), and important contributors to nutrient 
cycling and food web structure (Fernandes et al., 2016; Mammola & Isaia, 2017; Deharveng 
&  Besos,  2019).  Their  diversity  and  functional  adaptations  highlight  the  ecological 
significance of arthropod assemblages in subterranean ecosystems.

Despite advances in continental  cave biology,  the subterranean fauna of  oceanic 
islands  such  as  those  in  Macaronesia  has  historically  received  less  attention.  These 
archipelagos  offer  a  unique  opportunity  to  study  evolutionary  processes  in  isolated 
environments and to fill critical gaps in the biogeography of subterranean arthropods (Oromí 
et  al.,  1991;  Oromí,  2004;  Borges  et  al.,  2012).  Research  on  subterranean  spiders  in 
Macaronesia gained momentum in the late 20th century. In the Canary Islands, interest in 
cave spiders increased notably in the early 1980s with the establishment of the Group of 
Speleological Researchers of Tenerife (GIET - Grupo de Investigaciones Espeleológicas de 
Tenerife, Spain), which focused on biological analyses of caves and species descriptions 
(Oromí  &  Martín,  1990).  Initial  investigations  in  the  Azores  began  in  1987  through 
expeditions funded by the National  Geographic Society  and led by researchers from La 
Laguna  University  (Tenerife)  and  the  University  of  Edinburgh  (Scotland,  UK),  exploring 
caves on Terceira, Pico, and São Jorge islands. These efforts led to the discovery of the first 
troglobiont  species  in  the  archipelago,  the  spider  Rugathodes pico (Merrett  &  Ashmole, 
1989) (Merrett & Ashmole, 1989; Oromí et al., 1990).

In the early 1990s, Jörg Wunderlich conducted an extensive study on Macaronesian 
spiders. He described numerous species from Madeira, including Centromerus sexoculatus 
(Wunderlich, 1992) and Centromerus anoculus (Wunderlich, 1995)—the only two troglobiont 
spiders currently reported from the archipelago—and as many as 19 cave-dwelling species 
from the Canary Islands (Wunderlich, 1992, 1999, 2011). In Cape Verde, extensive cave 
exploration was carried out between 1997 and 1999 by the Speleo Club of Torres Vedras 
(ECTV- Espeleo Clube de Torres Vedras, Portugal) and the GIET team, during which two 
still-undescribed troglobitic spiders belonging to the families Hahniidae and Theridiidae were 
discovered (Hoch et al., 1999). This pioneering fieldwork paved the way for further research 
into the high diversity  and endemism of  subterranean spiders in Macaronesia,  providing 
valuable insights into evolutionary processes such as speciation and adaptive radiation on 
oceanic islands (e.g., Arnedo et al., 2007; Dimitrov & Ribera, 2007; Macías-Hernández et al., 
2024).
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Building on this legacy, we present an updated checklist of subterranean spiders in 
Macaronesia,  complementing  the  existing  checklist  and  trait  database  of  subterranean 
spiders  in  continental  Europe  (Mammola  et  al.,  2018,  2022),  and  release  a  new  trait 
database for all species included in the checklist. For the latter, we followed the recently 
proposed template  of  64  morphological  and ecological  traits  for  European cave spiders 
(Mammola  et  al.,  2022).  Additionally,  we  take  this  opportunity  to  update  the  European 
database  by  including  missing  species—5  species  described  since  2023,  3  species 
previously overlooked, and 58 species from the Dinaric karst currently under description.

To illustrate the dataset, we constructed a functional space (following Mammola et 
al., 2021a) for subterranean spiders in Macaronesia, mapping the position of species and 
families  within  this  multidimensional  space.  We  also  explore  the  extent  of  functional 
convergence  between subterranean  spider  communities  in  Macaronesia  and  continental 
Europe.  Our objectives are to quantify the extent of this convergence and to highlight unique 
adaptations and diversity patterns specific to Macaronesian faunas. Despite limited similarity 
in  their  taxonomic  composition,  we  hypothesize  that  strong  environmental  filtering—
especially  darkness,  spatial  constraints,  and food scarcity—should  drive  convergence in 
functional traits between species in Macaronesia and continental Europe.

Materials & Methods

Study area – Macaronesian subterranean habitats 

The Macaronesian biogeographical region is located in the northeastern Atlantic Ocean and 
comprises the Azores, Madeira, Selvagens, Canary Islands, and Cape Verde  (Fernández-
Palacios et al., 2024). These archipelagos share common geological characteristics, having 
all formed from the accumulation of primarily volcanic materials that emerged between the 
Tertiary and Quaternary periods. As a result, they lack developed karstic landscapes and, 
consequently, true caves (Oromí, 2004). In this context, lava tubes represent the majority of 
macro-caverns and are predominantly found in geologically young areas with recent volcanic 
activity, such as many of the Azores and Canary Islands (Oromí et al., 2021).

Other widespread volcanic shallow subterranean habitats include networks of small 
to  medium-sized  interconnected  voids  and  spaces  within  the  shallow  underground—
commonly referred to as the milieu souterrain superficiel (MSS; Mammola et al., 2016). The 
MSS is an important habitat in the Canary Islands due to its extensive distribution across the 
archipelago  (Macías-Hernández  et  al.,  2024).  Numerous  troglobiont  species  have  been 
described from this environment since its discovery by the GIET team in the 1980s (Oromí et 
al., 1986), especially following the improvement of Juberthie’s MSS pitfall trap by López & 
Oromí (2010).

Pyroclastic deposits are also known to harbor subterranean taxa due to their capacity 
to  retain  humidity,  even at  high altitudes (Macías-Hernández et  al.,  2024;  Oromí  et  al.,  
2018). In contrast, deep subterranean habitats such as volcanic pits are less common but 
tend to reach greater depths and persist longer over geological timescales compared to lava 
tubes. These habitats are more typical of mature islands (Macías-Hernández et al., 2024).

Checklist compilation 
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We compiled  a  checklist  of  subterranean  spiders  in  Macaronesia  based  on  knowledge 
accumulated over more than 40 years of  field surveys in caves and other subterranean 
habitats, complemented with a thorough bibliographic survey. In the checklist, we included 
species that are described, or under description, focusing exclusively on those that carry out 
at  least  part  of  their  life  cycle  in  subterranean  ecosystems.  Conversely,  we  excluded 
“accidental  species”  (Trajano  &  de  Carvalho,  2017),  namely  surface-dwelling  spiders 
accidentally occurring underground. We classified each species listed in the checklist into 
two ecological categories:

i) Troglophiles, namely species able to maintain stable subterranean populations or prone to 
inhabit subterranean habitats,  being, however, associated with surface habitats for some 
biological functions or able to maintain surface populations too; and 

ii) Troglobionts, for species strictly bound to subterranean habitats.

We are aware this is a somewhat artificial ecological classification that oversimplifies real 
cases (see Ashby & Maddox,  2005).  The ultimate product  is  an artificial  categorization, 
which will work well for clear-cut cases but may fall short when the association of a species 
with the subterranean domain is less strict. Still, we provided it to offer a rough indication of 
the affinity of species for the subterranean medium and consistency with previous checklists 
on subterranean spiders (Mammola et al., 2018; 2022). 

We also took the opportunity to update the checklist and trait database for species in 
continental  Europe,  updating  taxonomy  and  incorporating  newly  described  species, 
previously overlooked species, and those currently under description (the latter are identified 
up to the genus level [morphospecies] and will have their names updated in future database 
revisions).

Trait compilation

We here use the definition of “trait” as in the World Spider Trait database (Lowe et al., 2020; 
Pekár et al., 2021), whereby a trait is considered any phenotypic characteristic measured at 
the  individual  or  species  level,  including  morphological,  anatomical,  ecological,  and 
behavioral attributes. We gathered 64 morphological and ecological traits for every species 
and  morphospecies  included  in  the  checklist.  These  traits  are  the  same  ones  used  to 
describe the functional space of European subterranean spiders. A detailed description of 
each trait and its functional significance can be found in Mammola et al. (2022). In brief, we 
collected morphological traits related to body size and subterranean adaptation, as well as 
ecological traits such as functional guild, foraging strategy, prey range, and type of habitats 
occupied  within  the  cave.  For  each  species,  we  collected  traits  through  both  direct 
measurements and literature data (primarily  taxonomic descriptions),  using individuals of 
both  sexes  when  available.  All  measured  specimens  are  stored  at  the  Department  of 
Zoology of the University of La Laguna DZUL collection (species from the Canary Islands), 
at the DTP – Dalberto Teixeira Pombo arthropod collection (University of the Azores, Angra 
do Heroísmo,  Portugal)  (species from the Azores),  and at  the Croatian Biospeleological 
Society  Collection  in  Zagreb (undescribed species from the Dinaric  karst).  We obtained 
literature through species-specific online searches in the World Spider Catalog (2025) and 
Google Scholar.
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Data Analysis

We conducted all analyses using R version 4.1.0 (R Core Team, 2024). Following the same 
approach as in Mammola et al. (2022), we generated a visual representation of the trait 
space  for  subterranean  spiders,  mapping  the  position  of  each  species  and  family  from 
Macaronesia and continental Europe. First, we selected a subset of traits from the complete 
trait matrix, representing: i) Species body size and overall morphology (Average body size, 
Sexual  size  dimorphism,  and  Prosoma  shape);  ii)  Morphological  adaptation  to  the 
subterranean  conditions,  including  binary  (Presence/absence  of  Eyes,  Eye  regression), 
continuous  (Femur  elongation,  Profile  reduction,  Anterior  median  eyes  [AME],  Anterior 
lateral eyes [ALE], Posterior median eyes [PME], and Posterior lateral eyes [PLE]), ordinal 
(Pigment), and categorical (AME type) traits; and iii) Hunting strategy (all binary variables 
referring  to  diet,  hunting  strategy,  and  food  specialization). Then,  we  carried  out  data 
exploration on this trait matrix following Palacio et al. (2022). As a result of data exploration, 
we  log-transformed  all  continuous  traits  to  homogenize  their  distributions.  We  also 
standardized all traits to mean = 0 and standard deviation = 1 to ensure comparable ranges 
among traits. 

Since the trait matrix is a mixture of continuous, binary, ordinal, and categorical traits, 
we estimated functional dissimilarity among species with a Gower distance (Gower, 1971). 
In calculating Gower distance,  we attributed equal  weight  to  traits  encompassing similar 
functions within the three groups of traits defined above. This approach resulted in a high-
quality  hyperspace,  with limited distortion of  original  functional  distances among species 
[quality of 0.99 based on the approach by Maire et al. (2015)]. We visualized the trait space 
as the first two axes of a Principal Coordinate Analysis using the trait dissimilarity matrix as 
input data. For graphical visualization, we estimated the density of species on the ordination 
diagram with a kernel density. 

Finally, we tested for convergence in the functional space of subterranean spiders in 
Macaronesia versus continental Europe. For this, we used the three axes of the Principal 
Coordinate Analysis to construct n-dimensional hypervolumes (sensu  Blonder et al. 2014) 
for the two pools of species. We computed hypervolumes using a Gaussian kernel density 
estimator and a default bandwidth for each axis (Blonder et al. 2018), as implemented in the 
function hypervolume_gaussian in the package ‘hypervolume’ version 3.0.1 (Blonder 2022). 
We characterized the estimated hypervolumes with  functions from the R package ‘BAT’ 
version  2.7.1  (Cardoso  et  al.  2015,  2021),  calculating  their  dispersion  and  regularity 
(Mammola & Cardoso 2020). We measured the dissimilarity between the two hypervolumes 
using the kernel.beta function (Mammola & Cardoso 2020). This estimation decomposes the 
two processes underlying overall  dissimilarity (β_total)  among hypervolumes (Carvalho & 
Cardoso 2020): the replacement of trait space between hypervolumes (β_replacement), and 
the net differences between the amount of trait  space enclosed by the two communities 
(β_richness).

Results & Discussion

Subterranean spiders in Macaronesia by numbers
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The checklist of Macaronesian subterranean spiders includes 61 species—of which three 
are currently under description—belonging to 14 families (Figure 1). The most species-rich 
family  is  Linyphiidae,  with  15  species  shared  among  different  genera,  especially 
Lepthyphantes  (four  spp.),  Centromerus (three  spp.), and  Troglohyphantes (three  spp.). 
Note,  however,  that  preliminary  genetic  data  place the Canarian  Troglohyphantes in  an 
unrelated  Linyphiidae  lineage,  indicating  they  probably  belong  to  a  separate,  still 
undescribed genus. In second place, Dysderidae is represented by 14 species, all within the 
genus Dysdera, which underwent a large adaptive radiation, especially in the Canary Islands 
(Arnedo et al. 2007; Macías-Hernández et al. 2016). Pholcidae is the third most species-rich 
family  (13  species,  3  genera),  with  the  majority  of  species  belonging  to  the  genus 
Spermophorides (6 spp.) and Pholcus (6 spp.), and a single species from the monospecific 
genus  Ossinissa.  All  other families consist  of  fewer than three species.  Linyphiidae and 
Dysderidae comprise,  for  the  most  part,  specialised species only  found in  subterranean 
habitats  and  showing  traits  such  as  the  loss  of  eyes,  appendage  elongation,  and 
depigmentation  (Arnedo  et  al.  2007),  whereas  many  Pholcidae  are  generalist  species 
exhibiting a low degree of morphological specialisation to subterranean life (Huber 2018). 
Concerning  the  distribution  by  island,  subterranean  Dysderidae species  seem  to  occur 
exclusively in the Canary Islands, whereas other species-rich families such as Pholcidae and 
Linyphiidae  are  represented  to  different  extents  in  almost  all  archipelagos. 

The  Selvagens  Islands  and  Cape  Verde  exhibit  much  lower  family  and  species 
richness of subterranean spiders—there are still no records of cave spiders in Cape Verde—
compared to other islands (Figure 1B), which may be partly due to research bias, as both 
archipelagos  remain  poorly  studied.  In  the  case  of  the  Selvagens  Islands,  another 
contributing factor could be their small geographic area and the resulting limited availability 
of  subterranean  habitats.  The  islands  experience  high  erosion  and  have  unfavorable 
conditions for supporting troglobitic fauna, with only one cave known on Selvagem Grande 
(Oromí, 2004), and two known troglophile spiders. In contrast, Cape Verde is the second-
largest archipelago in terms of surface area (4,033 km²) and contains multiple caves, but in 
general is poorly explored.

Another factor driving cave spider diversity in Macaronesia could be the degree of 
island nature preservation and habitat intactness. For instance, family and species richness 
is slightly higher in Madeira compared to the Azores (Figure 1B), even though the surface 
area of the latter is almost three times larger, and the Azores has a greater number of caves 
(Pereira et al., 2015) and therefore more habitat availability (Oromí et al., 2021), which can 
be positively correlated with cave arthropod diversity (Borges et al., 2012). However, many 
of these cavities in the Azores are located in areas heavily impacted by human activity and 
land-use change. Although a new legal framework for the conservation of Azorean caves 
has  recently  been  established  (Regional  Legislative  Decree  No.  10/2019/A  of  22  May; 
Resolution of the Regional Government Council No. 163/2024 of 4 November 2024), these 
subterranean habitats have historically received limited attention in conservation strategies, 
and ongoing efforts are needed to ensure their effective protection (Borges et al., 2012). 

Additions to the subterranean spider species in continental Europe

We update the list of species (and trait information) for spiders in continental Europe, adding 
77 new species to the list, of which 61 are undescribed species from the Dinaric karst—one 
of  the  largest  karst  landscapes  in  the  world  and  the  largest  hotspot  of  subterranean 
biodiversity globally (Culver et al.  2021). We also made several taxonomic changes and 
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removed some doubtful species. The new checklist (including Macaronesian species) now 
lists 637 species, of which 278 are considered troglobionts.

Trait database

We collected traits for all species for which adult specimens were available to us. The trait  
database  is  available  in  Figshare  (https://doi.org/10.6084/m9.figshare.16574255.v3)  as  a 
tab-delimited file (.csv) and in Excel format (.xlsx). We refer to Mammola et al. (2022) for a 
lengthy description of each trait and its functional meaning.

Comparison between subterranean spiders in Macaronesia and continental Europe 

Using a selection of mostly complete traits from the trait matrix, we mapped the position of 
each  species  and  family  in  the  trait  space  (Figure  2),  obtaining  a  quantification  of  the 
functional spread of this trait space and its redundancy (e.g., if multiple species fall within 
highly sampled areas of the trait space). The overall organization of the trait space is similar 
to that of the trait  space for European cave spiders (cfr. Mammola et al.,  2022: Fig. 4). 
Several families are isolated in specific regions of the trait space, suggesting the expression 
of unique combinations of functions and ecological strategies. 

Hypervolume analysis revealed that  the functional  space of  continental  European 
and Macaronesian subterranean spiders moderately overlapped in a multidimensional space 
(β_total  =  0.47;  Figure  3).  This  degree  of  overlap  suggests  an  effect  of  environmental 
filtering in shaping subterranean ecosystems, leading to some general convergence in the 
functionality of spider communities in these environments (Cardoso 2012; Mammola et al., 
2024).  Differences  between  the  two  functional  spaces  were  primarily  driven  by  net 
differences in the amount of trait space enclosed by the two hypervolumes (β_richness = 
0.30),  rather than by functional  replacement (β_replacement = 0.17).  This dominance of 
β_richness in shaping the pattern indicates that, although trait profiles are similar between 
Macaronesia  and  continental  Europe,  the  frequency  of  the  most  abundant  traits  differs 
substantially.

The functional space of subterranean spiders in Macaronesia was more even than 
that of continental Europe (regularity: 0.28 vs. 0.14), possibly due to lower redundancy in 
species functions and greater filling of functional niches (Martínez et al., 2022) in the former. 
Both trait spaces, however, were similarly dispersed (dispersion: 0.34 vs. 0.31), suggesting 
that the broader space of functionalities has been similarly explored in both regions. 

The specific drivers underlying these patterns are likely multifaceted and may relate 
to taxonomic similarities and differences between the two species pools, as well as other 
factors. First, 9 of the 61 species listed in the checklist for the Macaronesian region are also 
found in continental European subterranean habitats, contributing to some of the observed 
overlap  in  functional  space  (Figure  1A).  These  species  occur  in  circum-Mediterranean 
countries  and  typically  inhabit  the  twilight  zones  of  caves  (e.g.,  Loxosceles  rufescens, 
Metellina merianae,  Steatoda grossa, and two species of  Tegenaria), as well as the alien 
species Eidmannella pallida, which can likely exploit caves opportunistically across different 
climatic regions (Nicolosi et al., 2023).
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Second,  it  appears  that  the  two  regions  have  undergone  somewhat  different 
evolutionary  radiations.  In  continental  European  caves,  the  most  significant  radiation 
involves  Linyphiidae—especially  the  highly  speciose genus  Troglohyphantes (Deeleman-
Reinhold et al., 1978; Isaia et al., 2017)—along with Nesticidae and Leptonetidae (Mammola 
et al., 2018, 2022). In contrast, although Linyphiidae are also speciose in the Canary Islands, 
there has been a major radiation of  Dysdera  in this archipelago, which contributes unique 
functionalities that are scarcely present in continental Europe—with the notable exception of 
the Dinaric karst, where other genera of Dysderidae are highly diversified (Platania et al. 
2020; Adrián-Serrano et al. 2024).

Third, it is also important to note that our analysis compares the pool of species of 
Macaronesia  and  continental  Europe,  which  may  be  somewhat  artificial  from  a 
biogeographic standpoint. While continental Europe (and in particular the Iberian Peninsula) 
is  likely  the  most  appropriate  reference  pool  for  the  Azores  and  Madeira—the 
biogeographical context is more complex for the Canary Islands (see, e.g., Martínez et al.,  
2022). Although the Iberian Peninsula seems to be the most likely source of forest fauna, 
both due to patterns of wind dispersal colonization (Juan et al., 2000) and the presence of 
paleo-islands until the end of the last glacial maximum (Fernández-Palacios et al., 2011), 
alternative routes of colonization cannot be ruled out for lowland dry areas. Some species 
from  the  Canary  Islands  may,  in  fact,  be  more  closely  related  to  North  African  fauna, 
particularly that of Morocco (e.g., Emerson et al., 2000; Carranza et al., 2002; Bidegaray-
Batista et al.,  2007; Opatova & Arnedo, 2014). However, the current scarcity of data on 
subterranean  spiders  from  this  region  limits  further  analysis—an  issue  that  could  be 
addressed as soon as new data becomes available.

Outlook

We provide an updated account  of  spider  species diversity  in  subterranean ecosystems 
across Europe,  with a particular  emphasis on expanding knowledge from major oceanic 
islands.  In  addition,  we  present  species-level  trait  data  for  all  recorded  species—an 
important resource for advancing research in ecology, evolution, and conservation. Despite 
these advances, our current understanding remains incomplete, especially in Macaronesia. 
Several species are still under description or have not been discovered yet, especially for the 
islands/archipelagos where less sampling has been performed. In the future, both cryptic 
and conspicuous diversity are likely to be uncovered—especially in poorly studied habitats 
such as the MSS. Importantly, subterranean habitats on the Macaronesian archipelagos face 
similar threats to those on the mainland, including forest conversion to pasture in the Azores, 
damage from tourism and uncontrolled cave visits in Madeira, and sewage pollution in caves 
of the Canary Islands (O romí, 2004; Borges et al., 2012; Macías-Hernández et al., 2024). 
Additionally,  broader  drivers  such  as  climate  change,  urban  expansion,  infrastructure 
development, agricultural runoff, and non-native species introductions further exacerbate the 
pressures  on  these  subterranean ecosystems,  highlighting  the  urgent  need  for  effective 
management, long-term monitoring, and enforcement of conservation regulations (Borges et 
al., 2012). Improved knowledge of species distributions is essential to guide extinction risk 
assessments and to prioritize conservation efforts. These efforts are further strengthened by 
the availability of comprehensive species trait datasets (Gallagher et al., 2021).
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Data and code availability

The trait database is available in Figshare (https://doi.org/10.6084/m9.figshare.16574255) as 
a tab-delimited file (.csv) and in Excel format (.xlsx). We also deposited traits in the Spider 
Traits Database (https://spidertraits.sci.muni.cz/; Pekar et al., 2021). R code to reproduce 
the  analysis  is  available  on  GitHub 
(https://github.com/StefanoMammola/Cave_Spider_Macaronesia).
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Figures

Figure 1. Macaronesian subterranean spiders by  numbers. a) Network diagram showing 
the number of shared species among Macaronesian islands and between the islands and 
continental Europe. The number inside each dot represents the total number of species on 
each island and in continental Europe.  b) Breakdown of species numbers by archipelago 
and spider family.
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Figure 2. Trait space representation for Macaronesian subterranean spiders. The plot 
is based on the first two axes of a principal coordinate analysis (PCoA 1 & 2) describing the 
trait similarity among species. Small black and white dots are individual species, and large 
orange dots are the centroids for each family. Colour gradient reflects the density of species 
(higher density in darker areas) and, in turn, highly represented trait combinations. 
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Figure 3. A comparison of the functional space of subterranean spiders in continental 
Europe versus Macaronesia. For each pair plot, 6000 random points sampled from the 
estimated 3-dimensional  kernel  density hypervolumes are shown, and represent the real 
boundaries of the two hypervolumes. Contour lines are drawn only for visual presentation, 
using the “alphahull” method. Larger dots represent hypervolume centroids. PCoA refers to 
the axes extracted from the principal coordinate analysis (Figure 2).
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