OCoO~NOOOE WN -

Another brick in the wall of European subterranean spider knowledge:
adding Macaronesian species and their traits to the picture

Diego Patifio-Sauma’, Pedro Cardoso??, Pedro Oromi', Paulo A. V. Borges*, Adria Bellvert®,
Luis Carlos Crespo®, Isabel M. Amorim®, Karla Toli¢’, Martina Pavlek’®, Giuseppe Nicolosi®®, Nuria

Macias-

Hernandez'?**, Stefano Mammola®% 101’

Affiliations:

1.

© N

10.

Department of Animal Biology, Edaphology and Geology, University of La Laguna, La
Laguna, Tenerife, 38206 Canary Islands, Spain.

Centre for Ecology, Evolution and Environmental Changes (cE3c), Global Change and
Sustainability Institute (CHANGE), Faculdade de Ciéncias, Universidade de Lisboa, 1749-016
Lisboa, Portugal.

Finnish Museum of Natural History (LUOMUS), University of Helsinki, Pohjoinen Rautatiekatu
13, Helsinki 00100, Finland.

University of Azores, CE3C—Centre for Ecology, Evolution and Environmental Changes,
Azorean Biodiversity Group, CHANGE —Global Change and Sustainability Institute, School
of Agricultural and Environmental Sciences, Rua Capitdo Jodo d’Avila, Pico da Urze, 9700-
042 Angra do Heroismo, Azores, Portugal.

Molecular Ecology Group (MEG), Water Research Institute (CNR-IRSA), National Research
Council, Verbania Pallanza, Italy.

CE3C—~Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity
Group, CHANGE —Global Change and Sustainability Institute, Rua Capitdo Jodo d’Avila,
Pico da Urze, 9700-042 Angra do Heroismo, Azores, Portugal.

Croatian Biospeleological Society, Rooseveltov trg 6, 10000 Zagreb, Croatia.

Ruder Boskovic Institute, Bijenicka cesta 54, 10000 Zagreb, Croatia.

Department of Biological, Geological and Environmental Sciences, University of Catania, Via
A.Longo 19, 95125 Catania, Italy

NBFC, National Biodiversity Future Center, Palermo 90133, Italy.

TShared last author

Correspondence: Stefano Mammola (stefano.mammola@cnr.it)

Emails:

diegopsauma@gmail.com

pmcardoso@ciencias.ulisboa.pt

pedro.oromi@gmail.com

paulo.av.borges@uac.pt

abellvertba@gmail.com

luiscarloscrespo@gmail.com

isabel.ma.rosario@uac.pt



mailto:paulo.av.borges@uac.pt
mailto:isabel.ma.rosario@uac.pt
mailto:luiscarloscrespo@gmail.com
mailto:abellvertba@gmail.com
mailto:stefano.mammola@cnr.it

47
48
49
50
51

52
53
54
95
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

karlatolicO1@gmail.com

martina.pavlek@gmail.com

giuseppe.nicolosi@unict.it

nemacias@ull.edu.es

stefano.mammola@cnr.it

Acknowledgments

This research was funded by Biodiversa+ (project ‘DarCo’), the European Biodiversity
Partnership under the 2021-2022 BiodivProtect joint call for research proposals, co- funded
by the European Commission (GA N°101052342) and with the funding organizations
Ministry of Universities and Research (ltaly), Agencia Estatal de Investigacion—Fundacion
Biodiversidad (Spain), Fundo Regional para a Ciéncia e Tecnologia (Portugal), Suomen
Akatemia—Ministry of the Environment (Finland), Belgian Science Policy Office (Belgium),
Agence Nationale de la Recherche (France), Deutsche Forschungsgemeinschaft e.V.
(Germany), Schweizerischer Nationalfonds (Grant No. 31BD30_209583, Switzerland),
Fonds zur Foérderung der Wissenschaftlichen Forschung (Austria), Ministry of Higher
Education, Science and Innovation (Slovenia), and the Executive Agency for Higher
Education, Research, Development and Innovation Funding (Romania). Additional support is
provided by the P.R.I.N. 2022 “DEEP CHANGE” (2022MJSYF8), funded by the Ministry of
Universities and Research (ltaly). SM acknowledges the support of NBFC, funded by the
Italian Ministry of University and Research, P.N.R.R., Missione 4, Componente 2, “Dalla
ricerca all'impresa”, Investimento 1.4, Project CNO0O000033. PC was supported by cE3c (doi:
10.54499/UIDB/00329/2020), and CHANGE (doi: 10.54499/1a/p/0121/2020). IRA was funded
by national funds through FCT — Fundacao para a Ciéncia e a Tecnologia, I.P., under the
Norma Transitdria https://doi.org/10.54499/DL57/2016/CP1375/CT0003

Author contribution

DPS, NMH, and SM conceived the study. DPS, PC, AB, MP, LC, KT, GN, NMH, and SM
compiled traits and/or curated data. SM analysed the data. DPS, NMH, and SM wrote the
first draft. All authors contributed to the writing with suggestions and critical comments.
Conflicts of Interest

No conflicts of interest are declared by the authors.


mailto:nemacias@ull.edu.es
mailto:martina.pavlek@gmail.com
mailto:karlatolic01@gmail.com
https://doi.org/10.54499/la/p/0121/2020
https://doi.org/10.54499/UIDB/00329/2020

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

Abstract

Caves and other subterranean ecosystems impose highly selective environmental filters,
driving the evolution of convergent and specialized traits in subterranean organisms. Here,
we present the first comprehensive checklist and trait database for subterranean spiders of
Macaronesia, thereby filling a significant knowledge gap relative to continental Europe. We
compiled data through direct morphological measurements and literature review, covering 64
morphological and ecological traits for 61 species (14 families) from Macaronesia, along with
66 additional species in continental Europe not included in the previous checklist. After
accounting for taxonomic changes, the checklist of European subterranean spiders now lists
637 species, of which 278 are considered to be obligate subterranean-dwellers
(troglobionts). Functional trait analyses using n-dimensional hypervolumes revealed
moderate overlap in the functional space of continental Europe and Macaronesian
subterranean spiders (B_total = 0.47), driven primarily by differences in trait richness rather
than the replacement of functional space, with the Macaronesian spiders occupying a
smaller functional space than the continental European ones. The Macaronesian
assemblage showed more regular (even) niche occupation but similar overall functional
dispersion compared to Europe, suggesting lower functional redundancy yet comparable
trait diversity. These findings suggest that similar environmental pressures drive functional
convergence in cave faunas despite geographic, geological (karstic vs. volcanic), and
taxonomic differences. The expanded trait database is a valuable resource for ecological
and conservation research, highlighting the need for continued exploration and protection of
subterranean biodiversity on oceanic islands.

Keywords: Arachnida, functional diversity, Macaronesia, speleology, subterranean biology,
troglobiont
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Introduction

Subterranean ecosystems—such as caves, aquifers, and fissure systems—are considered
harsh environments for organisms to establish in, as they impose strong environmental
fiters on colonizing taxa from the surface species pool (Fernandes et al.,, 2016).
Subterranean animals have evolved a wide array of morphological, physiological, and
behavioral adaptations to survive the conditions imposed primarily by the absence of
sunlight and the resulting scarcity of food resources, which shape the typically small and
species-poor biological communities found underground (Howarth & Moldovan, 2018; Lunghi
et al., 2024). As a result, subterranean communities are typically depauperate in species but
are notable for high endemism and unique adaptations (Deharveng & Besos, 2019).

Spiders (Araneae) and other arthropods, such as beetles (Coleoptera), millipedes
(Diplopoda), isopods (Isopoda), and pseudoscorpions (Pseudoscorpiones), have
successfully colonized the subterranean domain multiple times throughout their evolutionary
history (Deharveng & Besos, 2019). These groups play critical ecological roles in
subterranean ecosystems, acting as apex predators (e.g., spiders and some beetles),
primary decomposers (e.g., isopods and millipedes), and important contributors to nutrient
cycling and food web structure (Fernandes et al., 2016; Mammola & Isaia, 2017; Deharveng
& Besos, 2019). Their diversity and functional adaptations highlight the ecological
significance of arthropod assemblages in subterranean ecosystems.

Despite advances in continental cave biology, the subterranean fauna of oceanic
islands such as those in Macaronesia has historically received less attention. These
archipelagos offer a unique opportunity to study evolutionary processes in isolated
environments and to fill critical gaps in the biogeography of subterranean arthropods (Oromi
et al.,, 1991; Oromi, 2004; Borges et al., 2012). Research on subterranean spiders in
Macaronesia gained momentum in the late 20th century. In the Canary Islands, interest in
cave spiders increased notably in the early 1980s with the establishment of the Group of
Speleological Researchers of Tenerife (GIET - Grupo de Investigaciones Espeleoldgicas de
Tenerife, Spain), which focused on biological analyses of caves and species descriptions
(Oromi & Martin, 1990). Initial investigations in the Azores began in 1987 through
expeditions funded by the National Geographic Society and led by researchers from La
Laguna University (Tenerife) and the University of Edinburgh (Scotland, UK), exploring
caves on Terceira, Pico, and Sao Jorge islands. These efforts led to the discovery of the first
troglobiont species in the archipelago, the spider Rugathodes pico (Merrett & Ashmole,
1989) (Merrett & Ashmole, 1989; Oromi et al., 1990).

In the early 1990s, J6org Wunderlich conducted an extensive study on Macaronesian
spiders. He described numerous species from Madeira, including Centromerus sexoculatus
(Wunderlich, 1992) and Centromerus anoculus (Wunderlich, 1995)—the only two troglobiont
spiders currently reported from the archipelago—and as many as 19 cave-dwelling species
from the Canary Islands (Wunderlich, 1992, 1999, 2011). In Cape Verde, extensive cave
exploration was carried out between 1997 and 1999 by the Speleo Club of Torres Vedras
(ECTV- Espeleo Clube de Torres Vedras, Portugal) and the GIET team, during which two
still-undescribed troglobitic spiders belonging to the families Hahniidae and Theridiidae were
discovered (Hoch et al., 1999). This pioneering fieldwork paved the way for further research
into the high diversity and endemism of subterranean spiders in Macaronesia, providing
valuable insights into evolutionary processes such as speciation and adaptive radiation on
oceanic islands (e.g., Arnedo et al., 2007; Dimitrov & Ribera, 2007; Macias-Hernandez et al.,
2024).
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Building on this legacy, we present an updated checklist of subterranean spiders in
Macaronesia, complementing the existing checklist and trait database of subterranean
spiders in continental Europe (Mammola et al., 2018, 2022), and release a new ftrait
database for all species included in the checklist. For the latter, we followed the recently
proposed template of 64 morphological and ecological traits for European cave spiders
(Mammola et al., 2022). Additionally, we take this opportunity to update the European
database by including missing species—5 species described since 2023, 3 species
previously overlooked, and 58 species from the Dinaric karst currently under description.

To illustrate the dataset, we constructed a functional space (following Mammola et
al., 2021a) for subterranean spiders in Macaronesia, mapping the position of species and
families within this multidimensional space. We also explore the extent of functional
convergence between subterranean spider communities in Macaronesia and continental
Europe. Our objectives are to quantify the extent of this convergence and to highlight unique
adaptations and diversity patterns specific to Macaronesian faunas. Despite limited similarity
in their taxonomic composition, we hypothesize that strong environmental filtering—
especially darkness, spatial constraints, and food scarcity—should drive convergence in
functional traits between species in Macaronesia and continental Europe.

Materials & Methods
Study area — Macaronesian subterranean habitats

The Macaronesian biogeographical region is located in the northeastern Atlantic Ocean and
comprises the Azores, Madeira, Selvagens, Canary Islands, and Cape Verde (Fernandez-
Palacios et al., 2024). These archipelagos share common geological characteristics, having
all formed from the accumulation of primarily volcanic materials that emerged between the
Tertiary and Quaternary periods. As a result, they lack developed karstic landscapes and,
consequently, true caves (Oromi, 2004). In this context, lava tubes represent the majority of
macro-caverns and are predominantly found in geologically young areas with recent volcanic
activity, such as many of the Azores and Canary Islands (Oromi et al., 2021).

Other widespread volcanic shallow subterranean habitats include networks of small
to medium-sized interconnected voids and spaces within the shallow underground—
commonly referred to as the milieu souterrain superficiel (MSS; Mammola et al., 2016). The
MSS is an important habitat in the Canary Islands due to its extensive distribution across the
archipelago (Macias-Hernandez et al.,, 2024). Numerous troglobiont species have been
described from this environment since its discovery by the GIET team in the 1980s (Oromi et
al., 1986), especially following the improvement of Juberthie’s MSS pitfall trap by Lopez &
Oromi (2010).

Pyroclastic deposits are also known to harbor subterranean taxa due to their capacity
to retain humidity, even at high altitudes (Macias-Hernandez et al., 2024; Oromi et al.,
2018). In contrast, deep subterranean habitats such as volcanic pits are less common but
tend to reach greater depths and persist longer over geological timescales compared to lava
tubes. These habitats are more typical of mature islands (Macias-Hernandez et al., 2024).

Checklist compilation
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We compiled a checklist of subterranean spiders in Macaronesia based on knowledge
accumulated over more than 40 years of field surveys in caves and other subterranean
habitats, complemented with a thorough bibliographic survey. In the checklist, we included
species that are described, or under description, focusing exclusively on those that carry out
at least part of their life cycle in subterranean ecosystems. Conversely, we excluded
“accidental species” (Trajano & de Carvalho, 2017), namely surface-dwelling spiders
accidentally occurring underground. We classified each species listed in the checklist into
two ecological categories:

i) Troglophiles, namely species able to maintain stable subterranean populations or prone to
inhabit subterranean habitats, being, however, associated with surface habitats for some
biological functions or able to maintain surface populations too; and

i) Troglobionts, for species strictly bound to subterranean habitats.

We are aware this is a somewhat artificial ecological classification that oversimplifies real
cases (see Ashby & Maddox, 2005). The ultimate product is an artificial categorization,
which will work well for clear-cut cases but may fall short when the association of a species
with the subterranean domain is less strict. Still, we provided it to offer a rough indication of
the affinity of species for the subterranean medium and consistency with previous checklists
on subterranean spiders (Mammola et al., 2018; 2022).

We also took the opportunity to update the checklist and trait database for species in
continental Europe, updating taxonomy and incorporating newly described species,
previously overlooked species, and those currently under description (the latter are identified
up to the genus level [morphospecies] and will have their names updated in future database
revisions).

Trait compilation

We here use the definition of “trait” as in the World Spider Trait database (Lowe et al., 2020;
Pekar et al., 2021), whereby a trait is considered any phenotypic characteristic measured at
the individual or species level, including morphological, anatomical, ecological, and
behavioral attributes. We gathered 64 morphological and ecological traits for every species
and morphospecies included in the checklist. These traits are the same ones used to
describe the functional space of European subterranean spiders. A detailed description of
each trait and its functional significance can be found in Mammola et al. (2022). In brief, we
collected morphological traits related to body size and subterranean adaptation, as well as
ecological traits such as functional guild, foraging strategy, prey range, and type of habitats
occupied within the cave. For each species, we collected traits through both direct
measurements and literature data (primarily taxonomic descriptions), using individuals of
both sexes when available. All measured specimens are stored at the Department of
Zoology of the University of La Laguna DZUL collection (species from the Canary Islands),
at the DTP — Dalberto Teixeira Pombo arthropod collection (University of the Azores, Angra
do Heroismo, Portugal) (species from the Azores), and at the Croatian Biospeleological
Society Collection in Zagreb (undescribed species from the Dinaric karst). We obtained
literature through species-specific online searches in the World Spider Catalog (2025) and
Google Scholar.
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Data Analysis

We conducted all analyses using R version 4.1.0 (R Core Team, 2024). Following the same
approach as in Mammola et al. (2022), we generated a visual representation of the trait
space for subterranean spiders, mapping the position of each species and family from
Macaronesia and continental Europe. First, we selected a subset of traits from the complete
trait matrix, representing: i) Species body size and overall morphology (Average body size,
Sexual size dimorphism, and Prosoma shape); ii) Morphological adaptation to the
subterranean conditions, including binary (Presence/absence of Eyes, Eye regression),
continuous (Femur elongation, Profile reduction, Anterior median eyes [AME], Anterior
lateral eyes [ALE], Posterior median eyes [PME], and Posterior lateral eyes [PLE]), ordinal
(Pigment), and categorical (AME type) traits; and iii) Hunting strategy (all binary variables
referring to diet, hunting strategy, and food specialization). Then, we carried out data
exploration on this trait matrix following Palacio et al. (2022). As a result of data exploration,
we log-transformed all continuous traits to homogenize their distributions. We also
standardized all traits to mean = 0 and standard deviation = 1 to ensure comparable ranges
among traits.

Since the trait matrix is a mixture of continuous, binary, ordinal, and categorical traits,
we estimated functional dissimilarity among species with a Gower distance (Gower, 1971).
In calculating Gower distance, we attributed equal weight to traits encompassing similar
functions within the three groups of traits defined above. This approach resulted in a high-
quality hyperspace, with limited distortion of original functional distances among species
[quality of 0.99 based on the approach by Maire et al. (2015)]. We visualized the trait space
as the first two axes of a Principal Coordinate Analysis using the trait dissimilarity matrix as
input data. For graphical visualization, we estimated the density of species on the ordination
diagram with a kernel density.

Finally, we tested for convergence in the functional space of subterranean spiders in
Macaronesia versus continental Europe. For this, we used the three axes of the Principal
Coordinate Analysis to construct n-dimensional hypervolumes (sensu Blonder et al. 2014)
for the two pools of species. We computed hypervolumes using a Gaussian kernel density
estimator and a default bandwidth for each axis (Blonder et al. 2018), as implemented in the
function hypervolume_gaussian in the package ‘hypervolume’ version 3.0.1 (Blonder 2022).
We characterized the estimated hypervolumes with functions from the R package ‘BAT’
version 2.7.1 (Cardoso et al. 2015, 2021), calculating their dispersion and regularity
(Mammola & Cardoso 2020). We measured the dissimilarity between the two hypervolumes
using the kernel.beta function (Mammola & Cardoso 2020). This estimation decomposes the
two processes underlying overall dissimilarity (B_total) among hypervolumes (Carvalho &
Cardoso 2020): the replacement of trait space between hypervolumes (B_replacement), and
the net differences between the amount of trait space enclosed by the two communities
(B_richness).

Results & Discussion

Subterranean spiders in Macaronesia by numbers
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The checklist of Macaronesian subterranean spiders includes 61 species—of which three
are currently under description—belonging to 14 families (Figure 1). The most species-rich
family is Linyphiidae, with 15 species shared among different genera, especially
Lepthyphantes (four spp.), Centromerus (three spp.), and Troglohyphantes (three spp.).
Note, however, that preliminary genetic data place the Canarian Troglohyphantes in an
unrelated Linyphiidae lineage, indicating they probably belong to a separate, still
undescribed genus. In second place, Dysderidae is represented by 14 species, all within the
genus Dysdera, which underwent a large adaptive radiation, especially in the Canary Islands
(Arnedo et al. 2007; Macias-Hernandez et al. 2016). Pholcidae is the third most species-rich
family (13 species, 3 genera), with the majority of species belonging to the genus
Spermophorides (6 spp.) and Pholcus (6 spp.), and a single species from the monospecific
genus Ossinissa. All other families consist of fewer than three species. Linyphiidae and
Dysderidae comprise, for the most part, specialised species only found in subterranean
habitats and showing traits such as the loss of eyes, appendage elongation, and
depigmentation (Arnedo et al. 2007), whereas many Pholcidae are generalist species
exhibiting a low degree of morphological specialisation to subterranean life (Huber 2018).
Concerning the distribution by island, subterranean Dysderidae species seem to occur
exclusively in the Canary Islands, whereas other species-rich families such as Pholcidae and
Linyphiidae are represented to different extents in almost all archipelagos.

The Selvagens Islands and Cape Verde exhibit much lower family and species
richness of subterranean spiders—there are still no records of cave spiders in Cape Verde—
compared to other islands (Figure 1B), which may be partly due to research bias, as both
archipelagos remain poorly studied. In the case of the Selvagens Islands, another
contributing factor could be their small geographic area and the resulting limited availability
of subterranean habitats. The islands experience high erosion and have unfavorable
conditions for supporting troglobitic fauna, with only one cave known on Selvagem Grande
(Oromi, 2004), and two known troglophile spiders. In contrast, Cape Verde is the second-
largest archipelago in terms of surface area (4,033 km?) and contains multiple caves, but in
general is poorly explored.

Another factor driving cave spider diversity in Macaronesia could be the degree of
island nature preservation and habitat intactness. For instance, family and species richness
is slightly higher in Madeira compared to the Azores (Figure 1B), even though the surface
area of the latter is almost three times larger, and the Azores has a greater number of caves
(Pereira et al., 2015) and therefore more habitat availability (Oromi et al., 2021), which can
be positively correlated with cave arthropod diversity (Borges et al., 2012). However, many
of these cavities in the Azores are located in areas heavily impacted by human activity and
land-use change. Although a new legal framework for the conservation of Azorean caves
has recently been established (Regional Legislative Decree No. 10/2019/A of 22 May;
Resolution of the Regional Government Council No. 163/2024 of 4 November 2024), these
subterranean habitats have historically received limited attention in conservation strategies,
and ongoing efforts are needed to ensure their effective protection (Borges et al., 2012).

Additions to the subterranean spider species in continental Europe

We update the list of species (and trait information) for spiders in continental Europe, adding
77 new species to the list, of which 61 are undescribed species from the Dinaric karst—one
of the largest karst landscapes in the world and the largest hotspot of subterranean
biodiversity globally (Culver et al. 2021). We also made several taxonomic changes and
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removed some doubtful species. The new checklist (including Macaronesian species) now
lists 637 species, of which 278 are considered troglobionts.

Trait database

We collected traits for all species for which adult specimens were available to us. The trait
database is available in Figshare (https://doi.org/10.6084/m9.figshare.16574255.v3) as a
tab-delimited file (.csv) and in Excel format (.xIsx). We refer to Mammola et al. (2022) for a
lengthy description of each trait and its functional meaning.

Comparison between subterranean spiders in Macaronesia and continental Europe

Using a selection of mostly complete traits from the trait matrix, we mapped the position of
each species and family in the trait space (Figure 2), obtaining a quantification of the
functional spread of this trait space and its redundancy (e.g., if multiple species fall within
highly sampled areas of the trait space). The overall organization of the trait space is similar
to that of the trait space for European cave spiders (cfr. Mammola et al., 2022: Fig. 4).
Several families are isolated in specific regions of the trait space, suggesting the expression
of unique combinations of functions and ecological strategies.

Hypervolume analysis revealed that the functional space of continental European
and Macaronesian subterranean spiders moderately overlapped in a multidimensional space
(B_total = 0.47; Figure 3). This degree of overlap suggests an effect of environmental
filtering in shaping subterranean ecosystems, leading to some general convergence in the
functionality of spider communities in these environments (Cardoso 2012; Mammola et al.,
2024). Differences between the two functional spaces were primarily driven by net
differences in the amount of trait space enclosed by the two hypervolumes (B_richness =
0.30), rather than by functional replacement (B_replacement = 0.17). This dominance of
B_richness in shaping the pattern indicates that, although trait profiles are similar between
Macaronesia and continental Europe, the frequency of the most abundant traits differs
substantially.

The functional space of subterranean spiders in Macaronesia was more even than
that of continental Europe (regularity: 0.28 vs. 0.14), possibly due to lower redundancy in
species functions and greater filling of functional niches (Martinez et al., 2022) in the former.
Both trait spaces, however, were similarly dispersed (dispersion: 0.34 vs. 0.31), suggesting
that the broader space of functionalities has been similarly explored in both regions.

The specific drivers underlying these patterns are likely multifaceted and may relate
to taxonomic similarities and differences between the two species pools, as well as other
factors. First, 9 of the 61 species listed in the checklist for the Macaronesian region are also
found in continental European subterranean habitats, contributing to some of the observed
overlap in functional space (Figure 1A). These species occur in circum-Mediterranean
countries and typically inhabit the twilight zones of caves (e.g., Loxosceles rufescens,
Metellina merianae, Steatoda grossa, and two species of Tegenaria), as well as the alien
species Eidmannella pallida, which can likely exploit caves opportunistically across different
climatic regions (Nicolosi et al., 2023).
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Second, it appears that the two regions have undergone somewhat different
evolutionary radiations. In continental European caves, the most significant radiation
involves Linyphiidae—especially the highly speciose genus Troglohyphantes (Deeleman-
Reinhold et al., 1978; Isaia et al., 2017)—along with Nesticidae and Leptonetidae (Mammola
et al., 2018, 2022). In contrast, although Linyphiidae are also speciose in the Canary Islands,
there has been a major radiation of Dysdera in this archipelago, which contributes unique
functionalities that are scarcely present in continental Europe—with the notable exception of
the Dinaric karst, where other genera of Dysderidae are highly diversified (Platania et al.
2020; Adrian-Serrano et al. 2024).

Third, it is also important to note that our analysis compares the pool of species of
Macaronesia and continental Europe, which may be somewhat artificial from a
biogeographic standpoint. While continental Europe (and in particular the Iberian Peninsula)
is likely the most appropriate reference pool for the Azores and Madeira—the
biogeographical context is more complex for the Canary Islands (see, e.g., Martinez et al.,
2022). Although the Iberian Peninsula seems to be the most likely source of forest fauna,
both due to patterns of wind dispersal colonization (Juan et al., 2000) and the presence of
paleo-islands until the end of the last glacial maximum (Fernandez-Palacios et al., 2011),
alternative routes of colonization cannot be ruled out for lowland dry areas. Some species
from the Canary Islands may, in fact, be more closely related to North African fauna,
particularly that of Morocco (e.g., Emerson et al., 2000; Carranza et al., 2002; Bidegaray-
Batista et al., 2007; Opatova & Arnedo, 2014). However, the current scarcity of data on
subterranean spiders from this region limits further analysis—an issue that could be
addressed as soon as new data becomes available.

Outlook

We provide an updated account of spider species diversity in subterranean ecosystems
across Europe, with a particular emphasis on expanding knowledge from major oceanic
islands. In addition, we present species-level trait data for all recorded species—an
important resource for advancing research in ecology, evolution, and conservation. Despite
these advances, our current understanding remains incomplete, especially in Macaronesia.
Several species are still under description or have not been discovered yet, especially for the
islands/archipelagos where less sampling has been performed. In the future, both cryptic
and conspicuous diversity are likely to be uncovered—especially in poorly studied habitats
such as the MSS. Importantly, subterranean habitats on the Macaronesian archipelagos face
similar threats to those on the mainland, including forest conversion to pasture in the Azores,
damage from tourism and uncontrolled cave visits in Madeira, and sewage pollution in caves
of the Canary Islands (O romi, 2004; Borges et al., 2012; Macias-Hernandez et al., 2024).
Additionally, broader drivers such as climate change, urban expansion, infrastructure
development, agricultural runoff, and non-native species introductions further exacerbate the
pressures on these subterranean ecosystems, highlighting the urgent need for effective
management, long-term monitoring, and enforcement of conservation regulations (Borges et
al., 2012). Improved knowledge of species distributions is essential to guide extinction risk
assessments and to prioritize conservation efforts. These efforts are further strengthened by
the availability of comprehensive species trait datasets (Gallagher et al., 2021).
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Figure 1. Macaronesian subterranean spiders by numbers. a) Network diagram showing
the number of shared species among Macaronesian islands and between the islands and
continental Europe. The number inside each dot represents the total number of species on
each island and in continental Europe. b) Breakdown of species numbers by archipelago
and spider family.
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Figure 2. Trait space representation for Macaronesian subterranean spiders. The plot
is based on the first two axes of a principal coordinate analysis (PCoA 1 & 2) describing the
trait similarity among species. Small black and white dots are individual species, and large
orange dots are the centroids for each family. Colour gradient reflects the density of species

(higher density in darker areas) and, in turn, highly represented trait combinations.
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738
739 Figure 3. A comparison of the functional space of subterranean spiders in continental

740 Europe versus Macaronesia. For each pair plot, 6000 random points sampled from the
741 estimated 3-dimensional kernel density hypervolumes are shown, and represent the real
742 boundaries of the two hypervolumes. Contour lines are drawn only for visual presentation,
743 using the “alphahull” method. Larger dots represent hypervolume centroids. PCoA refers to
744  the axes extracted from the principal coordinate analysis (Figure 2).



