1 The ecology of resting behaviour in terrestrial vertebrates,

2 and potential effects of anthropization

- 3 Gustave Fradin*1, Andrew Sih2, Aurélie Coulon1,3, Paul-Antoine Libourel1, Adrian M.
- 4 Shrader⁴, Marion Valeix¹, Simon Chamaillé-Jammes¹
- 5 1. CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919 route de Mende, 34090 Montpellier, France
- 6 2. Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA
- 7 3. Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire
- 8 naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, CP 135, 57 rue Cuvier
- 9 75005 Paris, France
- 4. Department of Zoology & Entomology, University of Pretoria, Private Bag X20, Pretoria, 0028,
- 11 South Africa
- 12 * gustave.fradin@gmail.com

Abstract: Inactive behaviours are a major component of animals' lives, generally representing important proportions of time budgets. The conditions in which they occur are thus likely to have key effects on individual fitness. Yet, relatively little research has focused on the determinants and ecological consequences of inactive behaviours, likely in part because of the inherent difficulties associated with observing inactive animals. In particular, the effects of anthropization as a disruptor of patterns of inactivity are largely unexplored. In this review, we propose to bring quiet wakefulness, sleep, and daily torpor together under the term of "resting", to facilitate the study of inactivity in terrestrial vertebrates, in wild settings. We detail the shared physiological and environmental drivers of resting behaviours, as well as their ecological outcomes. We suggest that the diversity of resting behaviours enables animals to respond flexibly to constraints linked with metabolism, resource availability, predation risk, and thermoregulation. We detail how the location, timing, duration, and social context in which resting occurs shape a resting strategy that may be adjusted in response to variable environmental conditions. Finally, we explore how anthropization may affect the resting strategies of terrestrial vertebrates through direct disturbances, alterations of landscapes and communities, and the effects of climate change.

Keywords: behavioural adjustments, daily torpor, disturbance, human activity, inactivity, perturbation, sleep

I. Introduction

An animal's life is a sequence of behavioural states, whose timing and duration are adjusted in response to physiological and environmental challenges, in a way that is assumed to be shaped by natural selection (Baum, 2013; Gunn *et al.*, 2022). A coarse, yet obvious and striking, classification of these behavioural states can be made between active (e.g., moving, foraging) and inactive ones, ranging from long-lasting dormant states (e.g., hibernation) to daily sleep, and quiet wakefulness. The costs and benefits of active states are usually well understood, and often quantified (Kacelnik & Houston, 1984; Pyke, 2019). By contrast, the costs and benefits associated with the full range of inactive states remain comparatively less well understood (Lesku & Rattenborg, 2022; Lesku & Schmidt, 2022). Yet, inactivity represents important proportions of daily time budgets, often spanning more than half of the 24-h period (Herbers, 1981; Campbell & Tobler, 1984). This prominence in time budgets suggests that the context under which inactive behaviours occur will likely affect individual fitness.

Inactivity may be imposed by both physiological and environmental constraints. For example, terrestrial vertebrates stay inactive to maintain their energetic balance (Walker & Berger, 1980; Korstjens, Lehmann & Dunbar, 2010; Ruf & Geiser, 2015), for thermoregulation (Kearney, Shine & Porter, 2009; Davimes *et al.*, 2018; Briscoe *et al.*, 2022), but also to avoid predators (Lima *et al.*, 2005; Bonnot *et al.*, 2020). More broadly, inactivity helps to avoid stressful conditions, both abiotic and biotic, often in response to multiple stressors. Animals also stay inactive when other behaviours are unprofitable (Korstjens *et al.*, 2010) and some remain inactive in groups to maintain social bonds (Anderson, 2000; Loftus *et al.*, 2024). In addition, all animals need sleep—a very remarkable inactive behaviour—on a regular basis to fulfil various metabolic, restorative, or developmental processes, at both cerebral and whole-body levels (Tononi & Cirelli, 2014). A number of metabolic and neurophysiological functions are specifically performed during sleep, which internally enforces a certain amount of daily sleeping time (Schmidt, 2014; Anafi, Kayser & Raizen, 2019). Yet, sleep patterns vary across species (Siegel, 2009; Ungurean *et al.*, 2020), and are largely influenced

by ecological factors (Roth, Rattenborg & Pravosudov, 2010; Aulsebrook *et al.*, 2016; Ungurean *et al.*, 2020; Mohanty *et al.*, 2022). By alternating over time, several inactive behaviours, such as quiet wakefulness, sleep, and daily torpor form consolidated inactive phases (Campbell & Tobler, 1984; Kräuchi & Deboer, 2011), which can show important variations, across individuals and environmental gradients (Gaynor *et al.*, 2018; Fradin *et al.*, 2025). Traits relative to daily inactive phases—such as their timing, duration, location, and the kinds of inactive behaviours involved—are highly adaptable (Daan, 1981; Reinhardt, 2020), and together define resting strategies, which animals may fine-tune to tackle ecological challenges (Nowack, Stawski & Geiser, 2017; Shukla, Kilpatrick & Beltran, 2021; Mohanty *et al.*, 2022). Disruption of inactivity and alterations of the context under which it occurs are thus likely to result in substantial negative ecological impacts.

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

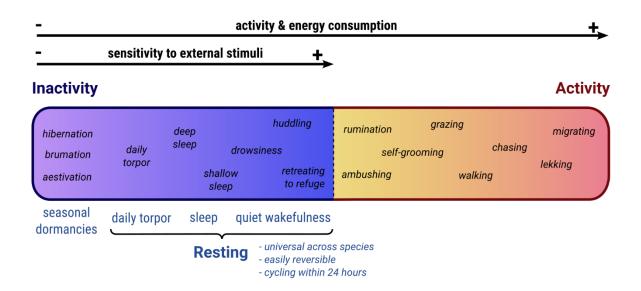
81

82

As the anthropization of ecosystems increases, disruptions of animal behaviour are becoming common and widespread, with significant ecological consequences (Sih, Ferrari & Harris, 2011; Candolin, Fletcher & Stephens, 2023; Gilbert et al., 2023). The impacts of landscape alterations, direct disturbances, climate change, and other anthropic disturbances on animal habitat use and foraging behaviour have been well described, but their effects on inactive behaviours remain poorly studied (Berger-Tal et al., 2011; Tougeron & Abram, 2017; Candolin et al., 2023). Yet, anthropization could affect animals' inactivity in a variety of ways, with potential impacts on individual fitness and species interactions. Animals disturbed while inactive might become exposed to unfavourable conditions or suffer from sleep disruption (deprivation, fragmentation or shift). Reactive behavioural adjustments such as flight (Price, 2008) or increased vigilance (McBlain, Jones & Shannon, 2020) can ultimately lead to long-lasting effects on animal behaviour, landscape use, and fitness (e.g., Ordiz et al., 2013; Kolbe et al., 2021). Indirect effects of anthropization, like climate change, landscape alterations (Bradsworth et al., 2021), light pollution (Aulsebrook, Johnsson & Lesku, 2021), species introduction, and predator depletion are also likely to influence where, when, and how long animals remain inactive. Thus, a better understanding of animals' resting strategies is essential for a comprehensive assessment of anthropic impacts on animal behaviour and activity patterns (Shukla et al., 2021).

In this review, we point out the importance of inactive behaviours from an ecological perspective and explore how human activities may interfere with them. Inactive behaviours, such as sleep, quiet wakefulness, and dormant states, correspond to very distinct physiological states (Blumberg & Rattenborg, 2017). Yet, under natural conditions, they are generally complicated to tell apart in practice (Rattenborg *et al.*, 2017). To overcome this issue, we propose to pool all inactive behaviours with a daily cyclicity under the term "resting", thus excluding seasonal dormancies. This concept offers a straightforward framework to study inactive behaviours in wild animals, thus facilitating the study of the ecological processes at play.

We first provide a detailed behavioural definition of resting, and point out how advances in biologging technologies facilitate the monitoring of this behaviour. We then review previous work on why animals rest, before describing how ecological constraints shape resting strategies. Finally, we explore the current knowledge on how anthropic disturbances might affect resting behaviour, and assess potential consequences. We tried, as much as possible, to broaden our thinking to any form of resting, although much of the available literature focuses specifically on sleep, generating an unavoidable bias. This review focuses on terrestrial vertebrates, and we intended to be as inclusive as possible in terms of taxa. Even though mammals are overrepresented in the literature on resting behaviours, we expect a wide taxonomic range of species to be concerned by the ecological mechanisms described in this review.


II. What is resting?

II.(1) A behavioural definition of resting

II.(1)(a) A behavioural continuum

The dichotomy between active and inactive behavioural states is useful, but behaviours can further be seen as fitting along a gradient ranging from low to high levels of activity (Siegel, 2009; Rial *et al.*, 2010; Lesku & Schmidt, 2022)(*Figure 1*). This continuum reflects energy consumption and awareness of the surrounding environment. It fits traditional behavioural states (e.g., sleep, daily

torpor) as well as their range in activity levels/energy consumption (e.g., deeper to shallower sleep and torpid states), and transition states (e.g., drowsiness). We propose to define 'resting' as any inactive behaviour occurring on a daily basis. This corresponds to a continuous interval on the continuum presented in *Figure 1*, excluding active behaviours and seasonal dormancies. Considering that, resting can be defined behaviourally by i) a low level of general activity, with little motion, ii) a specific relaxed posture, and iii) a duration and cyclicity comprised within the 24-h cycle. This definition fits three main resting states: quiet wakefulness, sleep, and daily torpor.

Figure 1. Our definition of resting behaviour in terrestrial vertebrates, seen on a continuum ranging from energy-saving to energy-consuming behaviours.

II.(1)(b) *Quiet wakefulness*

Quiet wakefulness is associated with a behavioural quiescence and a relaxed posture, but does not correspond to a standard neurological state, with a stereotypic electroencephalographic signature. It is easily distinguished from most active behaviours based on accelerometry. The distinction between active and inactive behaviours, however, is not always clear-cut, as some behaviours functionally related to activity involve motionlessness (e.g., ambushing, rumination). These ambiguous behaviours may sometimes be distinguished from resting as they are not

associated with a relaxed posture (e.g. ambushing), but ultimately whether they should be qualified as resting or not will likely depend on the focus of the study.

Telling quiet wakefulness apart from sleep is particularly difficult with behavioural criteria only (e.g., eyelids can be open or closed: Kortekaas & Kotrschal, 2019), and generally requires measuring brain activity with electroencephalography (EEG) (Bagur *et al.*, 2018). Among all resting states, quiet wakefulness has the lowest arousal threshold—the stimulus required to trigger a reaction—and allows for the most vigilance (Lima *et al.*, 2005; Rattenborg *et al.*, 2017). Animals are generally quietly awake before and after sleep, which leads to long-lasting contiguous resting phases. Despite reaching high proportions of daily time awake in many species (Herbers, 1981; Mohanty *et al.*, 2022), quiet wakefulness has received very little attention from ecologists.

II.(1)(c) Sleep

So far, sleep has received most attention from physiologists and neurologists, but interest from ecologists is growing. While humans and rodents had long been the sole focus (Rattenborg *et al.*, 2017), sleep has now been described in a wide range of vertebrate species (Libourel & Barrillot, 2020; Ungurean *et al.*, 2020). It is a reversible state of low responsiveness and awareness of the environment. Compared to quiet wakefulness, it shows an increased arousal threshold and usually a more specific relaxed posture. Compared to dormant states, it is quickly reversible to wakefulness after arousal (Campbell & Tobler, 1984). Another specificity is its homeostatic regulation: sleep cycles are interlaced with circadian rhythms (Borbély *et al.*, 2016) and sleep deprivation is generally followed by a compensatory increase in sleep behaviour called 'rebound' (Siegel, 2009). A reliable identification of sleep behaviour most often depend on EEG as behavioural criteria (e.g., increased arousal threshold) cannot be tested without disrupting the behaviour (Cirelli & Tononi, 2008).

Sleep comprises deeper and shallower states, associated with a variety of neurophysiological functions (Lima *et al.*, 2005; Mignot, 2008). In mammals, birds, and arguably other taxa (Libourel & Herrel, 2016; Libourel & Barrillot, 2020), EEG enables the distinction of two main sleep states that

alternate throughout sleep phases: slow-wave sleep (SWS) and rapid eye movement (REM) sleep. SWS is characterized by high amplitudes and slow frequencies of the EEG, and occurs in a variety of depths or intensity (Rodriguez et al., 2016). Among terrestrial vertebrates, some birds (Rattenborg, Amlaner & Lima, 2000) and possibly crocodiles (Kelly et al., 2015) are also able to perform unihemispheric SWS, in which one cerebral hemisphere is awake while the other sleeps. REM sleep is associated with a wake-like EEG profile, the inhibition of the thermoregulation mechanisms, and—excepting muscular twitches and eye movements—the loss of muscle tone (Blumberg et al., 2020). This last criterion sometimes implies a postural change compared to SWS, possibly making REM sleep recognizable behaviourally (e.g., in giraffes: Burger et al., 2020). In most cases however, EEG is required to differentiate REM sleep and SWS with certainty (Rattenborg et al., 2017). In reptiles, two cerebral sleep states can also generally be identified, showing some similarities with mammalian SWS and REM (Libourel & Barrillot, 2020). In endotherms, sleep is accompanied by a slight decrease in body temperature (Walker & Berger, 1980; Harding, Franks & Wisden, 2019). Sleep patterns differ greatly between species—with daily duration ranging from a few hours to more than half of the 24-h period (Campbell & Tobler, 1984)—and could also be highly flexible within species, although empirical evidence from the wild is limited (Capellini et al., 2010; Ungurean et al., 2020).

II.(1)(d) Daily torpor

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

Daily torpor is a deep behavioural quiescence similar to hibernation, but with a 24-h cyclicity. It is displayed by many small mammals and in some birds, called daily heterotherms, when exposed to acute energetic stress (Walker & Berger, 1980; Geiser, 2013). Under such conditions, daily heterotherms are able to alternate daily between normothermic phases—with high body temperature—and heterothermic torpid phases—with drastically reduced body temperature and metabolic rate (Ruf & Geiser, 2015). Reduction of body temperature and metabolic rate is less substantial during daily torpor than during seasonal hibernation, but is largely greater than that during sleep (Walker & Berger, 1980). Although it is entered through sleep, daily torpor does not

fulfil the neurophysiological functions of sleep, and thus may not replace sleep altogether (Kräuchi & Deboer, 2011; Blumberg & Rattenborg, 2017).

II.(2) Currently available tools and methods for the study of resting

Most animal species are difficult to observe in the wild, and ecologists increasingly rely on biologgers (animal-borne sensors) to collect behavioural data, a trend facilitated by progress in electronics and embedded systems (Whitford & Klimley, 2019). The use of biologgers is particularly adapted to the study of resting, which lasts long periods, and often happens in hidden places. Various sensors can be relevant for this purpose, each with pros and cons, as summarized in *Table*1. We briefly highlight below some key points.

For years, only location data—often collected using GPS loggers—were available to ecologists, but these data alone are not sufficient to study resting properly. When acquired at a reasonably high frequency, location data can be segmented across 'behavioural modes' (Edelhoff, Signer & Balkenhol, 2016) and classified using hidden Markov models (McClintock & Michelot, 2018), for instance. Even so, they are affected by GPS errors and most importantly, they are insufficient to discriminate inactive versus active behaviours occurring within a limited space (R. Dejeante, S. Chamaillé-Jammes, A. Mosser, A.R. Rodgers & J.M. Fryxell, in preparation). As a result, any 'resting' behavioural mode detected is generally a mixture of active and inactive behaviours. Although this approach can be useful to quickly gain a coarse view of when and where resting occurs, a proper study of resting requires different sensors.

Most GPS loggers used for tracking animals now include an activity logger or an accelerometer. These can reveal whether an animal has been mostly immobile during an interval of a few minutes (activity loggers) or less than a second (accelerometers) (Brown *et al.*, 2013; Whitford & Klimley, 2019). The accelerometric signature of resting usually differs greatly from that of active behaviours, and it is therefore generally easy to segment time budgets between active and inactive behaviours based on the data obtained from activity loggers or accelerometers (e.g., Fradin & Chamaillé-Jammes, 2023; Mortlock *et al.*, 2024). Because these sensors require little energy,

they can record high-resolution data for months or even years, allowing the study of temporal patterns of resting from daily to seasonal timescales.

Table 1. Brief description of various animal-borne loggers that can be relevant when studying

resting in wild animals.

206

207

Logger	Data	Pros	Cons	Example of case study
Location loggers (e.g., GPS)	- Geographic coordinates - 2D spatial data - Custom acquisition frequency	- Commercial products available for many species - Easy deployment - Can sometimes transmit data remotely - Efficient to detect resting sites when resting times are known and last long	- Subject to noise due to location errors - Insufficient to discriminate immobility and spatially restricted activity	(Markham, Alberts & Altmann, 2016)
Activity loggers	- Either continuous 'activity level' or binary 'active or inactive' data - 1D signal - Collected every few minutes	Often sufficient to detect immobility Easy deployment Very long monitoring (months to years) Can sometimes transmit data remotely	Not usable for fine-scale behavioural classification Cannot be used to infer posture	(Fradin & Chamaillé- Jammes, 2023)
Accelerometers	- Acceleration data - Usually 3D signal - Temporal resolution higher than 1 Hz	- Easy deployment - Very long monitoring (months, years) - Sometimes provides information on posture - Allow precise timing of inactivity vs activity	- Huge data files - Only short bursts can usually be transmitted remotely - Complex data analysis compared to activity data	(Mortlock et al., 2024)
Brain activity loggers	- Electrical activity measured from an electrode - 1D signal, although several electrodes are generally used, at several locations in or above the brain - Temporal resolution higher than 100 Hz	- Allow the detection of sleep - Allow the identification of sleep states	- Trade-off between invasiveness and performance (stability and constraints on deployment) Usually short monitoring imposed by power consumption - Huge data files that cannot be transmitted remotely	(Libourel <i>et al.</i> , 2025)
Heart rate loggers	- Heart beats per minute - 1D signal	- Long monitoring (months) - Effective to monitor torpor	- Invasive (internal logger)- Insufficient to detect immobility - Noisy during activity	(O'Mara et al., 2017)
Body temperature loggers	- Body temperature (cutaneous, subcutaneous, or internal) - 1D signal	- Long monitoring (months) - Effective to monitor torpor	- Trade-off between invasiveness (internal logger) and precision (cutaneous logger) - Insufficient to detect immobility - Subject to temporal inertia	(McGuire et al., 2014)
Video loggers	- Video files - Often collected in	- Allow detecting immobility (during bursts	- Short monitoring imposed by great power consumption	(Dejeante <i>et al.</i> , 2025)

bursts of a few seconds following a custom schedule

- May sometimes provide information on posture - May allow the study of social aspects of resting

- Huge data files that cannot be transmitted remotely - Video analysis is complex and cumbersome

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

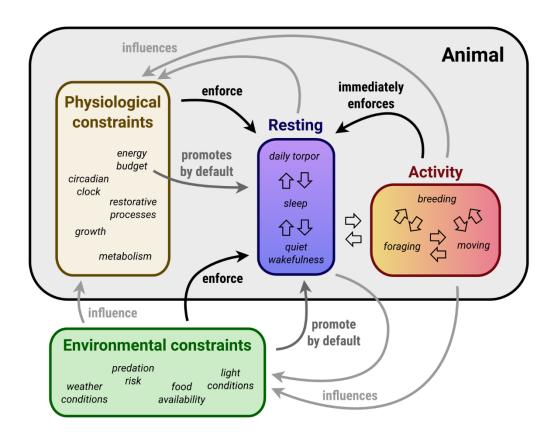
230

231

Specifying the neurophysiological state of a resting animal is challenging. In particular, for a robust assessment of whether an animal is quietly awake or asleep, it is necessary to record its brain activity with a neurologger (Rattenborg et al., 2017). Indeed, sleep cannot be directly observed: even in an apparently obvious sleep posture, an animal might be awake. Conversely, many animals can sleep standing with open eyes, which makes them look awake (Rattenborg et al., 2017). Recording brain waves clarifies these situations, and allows distinguishing SWS and REM sleep, which likely serve different functions (Libourel et al., 2025). However, it requires surgery, with varying degrees of invasiveness depending on the device. Some require drilling through the skull to reach the brain (Malungo et al., 2021), while others only involve a subcutaneous electrode right above the skull (Libourel et al., 2025). Besides, the duration of data collection is limited to a few days or weeks for most species, as the position of the logger—directly on the head—strongly constrains battery size. Therefore, the study of sleep in the wild, although highly needed, still remains limited to specific settings and short durations (Rattenborg et al., 2017). Some recent papers argue that sleep in wild animals can be derived from posture and accelerometry (e.g., Burger et al., 2020; Mortlock et al., 2024), but validations with neurologgers are rare, and when conducted, suggest a low to moderate correlation between accelerometry and sleep (Libourel et al., 2018; Malungo et al., 2021; van Hasselt, Piersma & Meerlo, 2022).

A few other loggers may be useful to study resting animals. Heart rate and body temperature loggers are effective to detect torpor (McGuire, Jonasson & Guglielmo, 2014; Ruf & Geiser, 2015), and may help identifying sleep (Kreeger *et al.*, 1989), although they are never self-sufficient for that purpose. While these loggers have improved greatly in quality in recent years, there still remains a trade-off between performance and invasiveness (Williams *et al.*, 2021). Finally, video loggers may be used to detect resting through direct observation of behaviour and posture (Dejeante,

Valeix & Chamaillé-Jammes, 2025). Although this approach is highly battery-consuming, it can provide rare information on the social context in which resting happens.


To sum-up, although studying the various resting states independently would bring much insight to ecologists (Rattenborg *et al.*, 2017), this is still complex in the wild, and only possible over short periods. In the current context of tools and methods available to ecologists, studying resting viewed as a concatenation of quiet wakefulness, sleep, and daily torpor is therefore relevant, if interpreted based on commonalities between resting states (e.g., energy savings, space use restrictions, predation risk management, thermoregulation benefits).

III. Why rest?

As proposed by Dunbar et al. (2009), the time allocated to resting can be seen as a mixture of two functionally distinct categories. Rest can be "enforced", when it is a functional response to intrinsic or extrinsic constraints, or "uncommitted" when it can be seen as a 'by default' behaviour, when other behaviours are not required or would not bring a net benefit. When more time is required every day for any given activity (e.g., when distance between foraging and resting sites increases, thus imposing additional travel time), animals adjust their time budget by drawing on uncommitted resting time. As such, uncommitted rest corresponds to spare time, which may be allocated to any other activity as required. On the contrary, enforced rest cannot be forgone as easily. It is displayed not because no other activity is required, but as a functional response to a variety of constraints. When all uncommitted resting time has been reallocated to activity, animals in need of additional time (for more travelling in the example above) must reduce other activities (e.g., social time), because enforced resting time is incompressible (Dunbar et al., 2009; Korstjens et al., 2010).

Obviously, rest—just as any behaviour—is highly plastic. A behavioural response to intrinsic or extrinsic constraints results more often of a compromise than of a life-or-death necessity. Consequently, animals will sometimes be able to forgo even enforced rest in case of emergency

(just as they will generally be able to skip feeding for one day). However, to reduce or bypass enforced rest is not sustainable in the long term, which contrasts with uncommitted rest. It is therefore essential to distinguish between these functional categories of resting to understand how animals manage their time budgets. Here, we list the major drivers of enforced and uncommitted rest to describe i) what compels animals to spend time at rest, and ii) what drives animals to remain at rest when no other activity is required (*Figure 2*).

Figure 2. Physiological and environmental drivers of resting. Empty arrows indicate shifts between behavioural states.

III.(1) Enforced rest

III.(1)(a) Immediate recovery resting

Resting may be displayed as a homeostatic reaction closely following specific active behaviours. Muscle fatigue, for instance, may call for immediate compensatory resting (Rozier-Delgado *et al.*, 2025). Such need for post-effort recovery is particularly important for ectotherms,

due to their low aerobic capacity (Wagner & Gleeson, 1997). Similarly, both ectotherms and endotherms may need resting for thermal recovery after being active significantly outside their thermoneutral zone (St Juliana & Mitchell, 2016; Parlin, Schaeffer & Jezkova, 2020; Taylor *et al.*, 2021). Because it immediately follows activity, this kind of state-dependent resting is highly constrained in time and space. However, it is usually short-term and generally accounts for small proportions of total resting time.

III.(1)(b) *Physiological constraints*

Because it allows energy savings, resting may be enforced by energetic constraints (Dunbar *et al.*, 2009). For example, animals with low-digestibility diets generally need to rest for extended periods of time every day, to both aid digestion, and to comply with their tight energy budgets (Korstjens *et al.*, 2010; Ryan *et al.*, 2013). Likewise, adjustments of resting behaviour to compensate for temporarily increased energetic needs have been described in many contexts including reproduction (Willisch & Ingold, 2007; Geiser, 2013), migration (McGuire *et al.*, 2014; Ferretti *et al.*, 2019), and illness (Hart, 1988; Imeri & Opp, 2009; Duriez *et al.*, 2023). Such adjustments include both the augmentation of resting time and the specific use of energy-saving resting states. For instance, daily torpor is extremely effective at saving energy and may be used preferentially under energetic stress (Ruf & Geiser, 2015).

In addition to the above, all animals need to sleep regularly to maintain the homeostatic balance of their physiological processes (Ungurean *et al.*, 2020; but see Lesku & Rattenborg, 2022). Although it is observed universally across vertebrate taxa, suggesting an ancestral and vital shared function (Schmidt, 2014), whether sleep has one fundamental underlying function remains unclear (Freiberg, 2020; Libourel & Barrillot, 2020). Sleep has been linked to a diversity of essential restorative processes, ranging from energy homeostasis to synaptic plasticity, memory consolidation, and maintenance of the immune function (Mignot, 2008; Imeri & Opp, 2009; Roth *et al.*, 2010; Tononi & Cirelli, 2014; Schmidt *et al.*, 2017). Schmidt's energy allocation theory (2014) states that some necessary physiological functions (involved in repair, maintenance, cognitive, and

growth processes) are downregulated during wake and upregulated during sleep, to optimize overall daily energy consumption across the sleep-wake cycle. This suggests that sleep enables animals to perform energy-consuming physiological processes linked with body maintenance at a specific time of the day (sleeping time), so that performance in other activities is enhanced at other times of the day (when awake). As a result, all terrestrial vertebrates must sleep on a regular basis, with their sleep-wake cycle being most often interlaced with circadian rhythms (Borbély *et al.*, 2016). In fact, sleep deprivation is usually followed by adverse effects on cognition and behavioural performance (Lesku *et al.*, 2012; Lesku & Rattenborg, 2022), and by a sleep rebound—although examples from the wild are scarce (Raap, Pinxten & Eens, 2016; Reinhardt, 2020).

The amount of sleep that is needed for the homeostatic balance of physiological processes depends on individual characteristics, with potentially important, yet rarely investigated, interindividual and intra-individual variability (Ungurean *et al.*, 2020; Mortlock *et al.*, 2024). In particular, it strongly depends on life stage, as sleep is involved in developmental processes (Jouvet-Mounier, Astic & Lacote, 1969; Frank, 2020). REM sleep is especially predominant during development compared to adult life (Blumberg *et al.*, 2020). How much time is needed for an animal to fulfil its physiological need for sleep is also influenced by ecological factors (e.g., trophic position, reproductive status: Schmidt, 2014; Blumberg & Rattenborg, 2017; Siegel, 2022) in ways that are not yet fully understood (Lesku *et al.*, 2009; Lesku & Rattenborg, 2022).

III.(1)(c) Environmental constraints

For many terrestrial vertebrate species, the daily fluctuations of abiotic (e.g., temperature) and biotic factors (e.g., activity patterns of predators) impose resting for a significant proportion of the 24-h cycle (Dunbar *et al.*, 2009).

Resting is an efficient strategy for thermal stress mitigation (Kearney *et al.*, 2009; Terrien, Perret & Aujard, 2011), as well as to maintain hydric balance (Moore, Stow & Kearney, 2018), as it allows to retreat to buffered sites (e.g., burrows, crevices, shelters). In addition, many postures associated with proactive thermoregulation (e.g., basking, huddling solitarily or in groups) are only

compatible with resting (Dasilva, 1993; Gilbert et al., 2010; Terrien et al., 2011). Therefore, rest is frequently displayed as an adaptive behavioural response to periods of the 24-h with ambient temperature and hygrometry significantly away from animals' neutral zone (Dunbar et al., 2009; Moore et al., 2018). For many small endotherms, daily torpor is required to survive repeated and intense thermal stresses, as it keeps energy expenditure at the lowest when extreme environmental conditions make the maintenance of body temperature too costly (Geiser, 2013; Hetem et al., 2016). The other resting states (sleep, quiet wakefulness) vary in terms of thermoregulatory performance, and animals use them alternatively to maintain their thermal equilibrium under adverse weather conditions, while dealing with other constraints at the same time (e.g., Davimes et al., 2018; Mortlock et al., 2024). While most resting states improve thermoregulation capacity compared to active states, REM sleep is a notable exception, as it suspends temperature regulation in mammals and birds (Schmidt, 2014; Blumberg et al., 2020), and seems to be maximized at thermoneutral temperature (Davimes et al., 2018; Komagata et al., 2019; but see van Hasselt et al., 2024). In many ectotherms, the fluctuations of ambient temperatures enforce long bouts of resting every day, either because too cold conditions reduces metabolic activity, or too hot conditions forces them to retreat to a refuge to avoid overheating (Taylor et al., 2021).

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

Resting is also an efficient and widespread anti-predator strategy, as it allows to retreat to safe areas, and promotes motionlessness and camouflage (Lima *et al.*, 2005). Some animals rely on this strategy to survive periods of high predation risk, suggesting that predators' patterns of activity can impose a portion of daily resting time (Halle, 2000). Animals resting under the risk of predation must balance their energy consumption with their ability to assess predation risk and react to imminent danger. Resting states range from energy-saving, low-vigilance states to less energy-saving vigilant states. Torpid animals are most vulnerable, as they are unable to react to external stimuli. However, they may remain inactive for longer periods. Daily heterotherms may even trade foraging efficiency for more safety, by reducing overall energetic needs using more daily torpor (Turbill & Stojanovski, 2018). Quiet wakefulness allows for efficient responses to predator

encounters but is more energy consuming. Although sleep is often viewed as a vulnerable state, it is a compromise between those two extremes (Lesku & Schmidt, 2022). It permits some energy savings but remains quickly reversible and allows some processing of sensory information (Lima *et al.*, 2005; Siegel, 2009), particularly with unihemispheric SWS (Rattenborg *et al.*, 2000). Therefore, animals often alternate between quiet wakefulness and sleep when predation risk is high (Lesku *et al.*, 2008; Burger *et al.*, 2020).

In conclusion, a significant proportion of daily resting time may be enforced by environmental factors such as adverse weather conditions and predation risk. When facing such constraints, animals may display different resting states to adjust their level of awareness of the environment, their thermoregulation capacity, and thus enhance survival and energy conservation. The physiologically enforced resting time (e.g., the time needed for sleep) is generally allocated specifically at times when environmental conditions also enforce (or at least promote) rest. As a result, many animals undergo a daily rest-activity cycle, that encompasses the homeostatically regulated sleep-wake cycle (Riede, van der Vinne & Hut, 2017).

III.(2) Uncommitted rest

Resting is not always a functional response to intrinsic or extrinsic constraints. A portion of daily resting time displayed by animals is uncommitted, which means that it can be reallocated to other activities if necessary.

Environmental conditions sometimes make activity unprofitable and promote rest by default. For instance, species that rely on vision for foraging most often rest throughout the night (Daan, 1981), and coastal foragers rest during high tide when feeding grounds are inaccessible (Dominguez, 2003). In these examples, not being able to forage does not compel these animals to rest. Part of the time they spend resting (the uncommitted part) could be reallocated to travel or social activities if required. Physiologically enforced rest (e.g., through the need for sleep) may be specifically allocated to times when activity is least beneficial, but such unprofitable conditions may last longer than needed to fulfil these physiological requirements, which makes room for

uncommitted resting time. In these conditions, resting may be preferred over other behaviours, for safety and energetic benefits. For example, insectivorous bats such as *Molossus molossus* tune their activity with the daily peaks of insect catchability (which may last less than an hour), and spend much of the remaining time at roosting sites, to reduce energy consumption and predation risk (O'Mara *et al.*, 2017).

Even when environmental conditions could be compatible with activity, animals tend to keep resting when they have met their daily energetic requirements, in accordance with the satisficing theory of foraging (Ward, 1992). Such uncommitted rest, sometimes referred to as 'laziness' (Herbers, 1981) has been evidenced in primates (Korstjens *et al.*, 2010) and is commonly observed in animals kept captive with consistent food supply (Fureix & Meagher, 2015). The allocation to resting of any spare time left after the achievement of obligate daily tasks may allow energetic savings. However, as time is a precious and limited resource, uncommitted rest most importantly constitutes a time capital, available to be allocated to other behaviours whenever needed (Dunbar *et al.*, 2009). Because an important part of daily rest is enforced by physiological and environmental constraints, it is generally complicated to assess how much resting time is uncommitted, in a given individual. Yet, this would provide an interesting insight into how tight an individual's time budget is, and thus how much time it could reallocate to activity, in the case of a change in environmental conditions (Dunbar *et al.*, 2009).

IV. How to rest?

Given the variety of drivers of resting behaviour, it is not surprising that resting strategies are extremely diversified. The range of available resting states provides a way to adjust several potentially conflicting parameters, such as energy conservation, awareness of the environment, and ability to answer external stimuli (Ferretti *et al.*, 2019). The integration of those distinct inactive states in a global resting strategy offers flexibility in animals' behavioural responses to environmental conditions. The temporal organization of resting and the spatial and social

contexts in which it occurs are key to understanding how animals respond to physiological and environmental pressures to rest (Shukla *et al.*, 2021).

IV.(1) How long to rest?

Resting accounts for important proportions of all animals' time budgets. Even species that are famous for sleeping little, like large ungulates and elephants, spend at least 20% of their time resting (Owen-Smith & Goodall, 2014; Gravett *et al.*, 2017). Total resting time depends on how much of the 24-h cycle is available and profitable for activity, and how much rest is needed to fulfil physiological demands (through sleep and energy savings). This is influenced by numerous interacting ecological traits, such as habitat or trophic level, physiological traits, such as diet or basal metabolic rate (Dunbar *et al.*, 2009; Capellini *et al.*, 2010), and individual characteristics, such as age (Frank, 2020) or health condition (Imeri & Opp, 2009). This great diversity of interacting drivers means that establishing correlations between daily resting time and ecological traits is rarely simple (Lesku *et al.*, 2009). This has almost exclusively been attempted for sleep duration (rather than rest), and in mammals, with limited results (Lesku *et al.*, 2009; Siegel, 2022). A few rare studies focused on resting rather than sleep, showing for instance that frugivorous primates, which need time to travel between fruiting trees, rest less than folivorous ones, which need more time for digestion (Dunbar *et al.*, 2009; Masi, Cipolletta & Robbins, 2009). Reports on the drivers of rest duration in non-mammals are even rarer (e.g., in reptiles Mohanty *et al.*, 2022).

Individuals may further adjust resting time in response to environmental changes. When increased foraging time is required (e.g., when increased predation risk reduces foraging efficiency), animals may adjust by reducing uncommitted rest (McFarland *et al.*, 2014). They may also compensate a reduction of resting time with more energy-saving resting states (Turbill & Stojanovski, 2018). Studies of animals facing demanding situations in which sustained activity is strongly selected for (e.g., migration: Rattenborg *et al.*, 2004; sexual competition: Lesku *et al.*, 2012; see Lesku & Rattenborg, 2022 for a review) have shown that in some species, sleep can also be drastically reduced, or even suppressed altogether without subsequent rebound. In conclusion, although

ecological and physiological traits are expected to shape resting durations across species, modelling these effects could be particularly challenging, given the lack of available data, the diversity of resting drivers, and the potential intra-individual variability of resting duration.

IV.(2) When to rest?

When immediately enforced for post-activity recovery (for example after a high-speed chase), resting is temporally very constrained. This kind of resting typically consists of quiet wakefulness and produces short bouts of resting embedded within longer bouts of activity. However, most of the resting displayed by animals occurs within consolidated bouts, usually several hours long, alternating cyclically with similarly long phases of activity. This is because physiologically enforced rest (through the need for sleep and energetic balance) is less constrained in time and can be tuned to occur at the time of day when environmental conditions also promote resting. This tuning is achieved by following endogenous rhythms (e.g., the circadian clock) and is regulated by exogenous rhythms called zeitgebers (e.g., solar cycle, tides)(Hazlerigg & Tyler, 2019; Aulsebrook *et al.*, 2021).

Since most terrestrial habitats undergo strong daily fluctuations of temperature, relative humidity, and luminosity across the day-night cycle, many animals, called monophasic, rest in one single consolidated bout, either diurnally or nocturnally (Riede *et al.*, 2017). Diel activity patterns are often governed by the need to rest when thermal conditions are least favourable. Nocturnal resting allows to buffer colder temperatures at night, a strategy widespread among lizards (Vidan *et al.*, 2017), and cold-adapted endotherms (Levy *et al.*, 2019). Conversely, most desert dwellers and many ectotherms in tropical regions rest diurnally to evade the heat (Vidan *et al.*, 2017; Moore *et al.*, 2018; Davimes *et al.*, 2018). Similarly, diurnal resting as a strategy to minimize water loss is observed in arid habitats, during dry seasons (Riede *et al.*, 2017), and in most amphibians (Anderson & Wiens, 2017). Diel activity patterns may also be driven by activity. For instance, many species that rely heavily on vision, like the vast majority of birds, have to be active under daylight, and thus rest at night (Daan, 1981; Anderson & Wiens, 2017). Finally, some monophasic species tune

their activity pattern to that of other species (Vallejo-Vargas *et al.*, 2022). Many small mammals rest diurnally to avoid generalist predators (Riede *et al.*, 2017; Shukla *et al.*, 2021), while insectivorous bats tune their activity to match their prey's peak of activity (O'Mara *et al.*, 2017).

Resting in one consolidated bout per day, however, is not the only strategy (Halle, 2006). Many species are rather crepuscular (Vallejo-Vargas *et al.*, 2022), and thus spend most of both day and night at rest. Others, called polyphasic, switch between shorter bouts of resting and activity throughout day and night (Bloch *et al.*, 2013; Hazlerigg & Tyler, 2019). Polyphasic rhythms are observed in polar environments, where abiotic diel rhythms disappear altogether for most of the year, and in species constrained by metabolism (Bloch *et al.*, 2013). Small herbivores using microbial fermentation (voles and some ruminants) and tiny endotherms (like shrews) have metabolic requirements that would not allow them to interrupt foraging for more than a few hours. Thus, they spread short bouts of resting throughout the day and night (Hazlerigg & Tyler, 2019).

IV.(3) Where to rest?

Short moments of immediate compensatory resting following active behaviours sometimes happen directly at the sites used for activity. For longer bouts of rest, however, animals usually select specific resting sites. Animals choose their resting sites according to their location in space and physical properties. For example, a few often-favoured resting sites qualities include: difficulty of access (e.g., in marmosets: Duarte & Young, 2011; in pigeons: Tisdale *et al.*, 2018), dense structural cover (e.g., in otters: Weinberger *et al.*, 2019; in lynx: Hočevar, Oliveira & Krofel, 2021), possibility to sense approaching predators (e.g., in uakaris: Barnett *et al.*, 2012; in anoles: Mohanty *et al.*, 2022), thermal insulation (e.g., in martens: Larroque *et al.*, 2015; in squamates: Mohanty *et al.*, 2022), and a low density of predators (e.g., in zebras: Courbin *et al.*, 2019) or parasites (e.g., in baboons: Hausfater & Meade, 1982). Trade-offs may emerge from the diversity of qualities expected from resting sites. For example, wolverines (*Gulo gulo*) are willing to rest in riskier sites, to gain

thermal benefits (Glass *et al.*, 2021), contrarily to velvet geckos (*Oedura lesueurii*), which rather trade thermal efficiency for safety at resting sites (Downes & Shine, 1998).

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

Species differ in how selective they are about resting sites. Large-bodied species, with no option to retreat underground or up trees, are unavoidably less specific in their choices. Yet, even for them, parameters like vegetation cover, visibility or predator and parasite density drive resting site selection (e.g., in bison: Schneider, Kowalczyk & Köhler, 2013; in zebras: Courbin et al., 2019; in giraffes: Burger et al., 2020), and resting sites are sometimes used repeatedly (e.g., in elephants: Wittemyer et al., 2017). Many smaller species depend on specific structures for resting (e.g., tall trees, burrows, fissures, cavities). For them—and especially those unable to craft the required structures themselves, or only able to craft one or a few—resting sites may easily be a limiting resource (e.g., in feral cats: Briscoe et al., 2022), and repeated use of the same resting sites over time is common (e.g., in mouse lemurs: Lutermann, Verburgt & Rendigs, 2010; in geckos: Taylor, Daniels & Johnston, 2016; in gibbons: Fei et al., 2022). Such resting site fidelity is expected when resting sites are rare, scattered, and when their quality is stable over time (Gerber et al., 2019; Kaiser & Kaiser, 2021). Fidelity to resting sites may enhance predation risk through increased predictability (Smith et al., 2007; Markham et al., 2016; Fei et al., 2022). Resting site availability and quality may also vary seasonally (Lutermann et al., 2010). When availability is low, competition may arise over high quality sites (e.g., in geckos: Kondo & Downes, 2007; in baboons: Markham et al., 2016), potentially increasing parasite transmission (e.g., in sleepy lizards: Payne et al., 2025).

Selectivity over resting sites is also affected by the rhythmicity of resting. Monophasic species must choose a single resting site each day and remain at this location for several hours. For them, resting site selection has implications that last many hours, which implies an anticipation of how environmental conditions (e.g., weather conditions, predation risk) might change. Polyphasic species select resting sites several times a day. Each of these choices should be less critical than in monophasic species, because less time is spent at each resting site. However, resting site

selection should be spatially more constrained for them, as travel time between resting sites is reduced (Halle, 2006).

Resting site selection is always constrained by connectivity with sites where activity is profitable, like foraging sites. Animals with a strong dependency on specific foraging sites must select resting sites close-by (Chapman, Chapman & McLaughlin, 1989; Hočevar *et al.*, 2021) or commute between distant resting and foraging sites (Janmaat *et al.*, 2014; Courbin *et al.*, 2019). Their selection of resting sites is thus influenced by landscape patchiness and resource distribution. Conversely, when resting sites are a limited resource, they may determine the range of animal movements (Barnett *et al.*, 2012; Fradin *et al.*, 2025) and species distribution (Anderson, 2000; Larroque *et al.*, 2015; Briscoe *et al.*, 2022). Considering resting and foraging in a framework of landscape complementation could help to understand how resting strategies affect landscape utilization and species distribution (Dunning, Danielson & Pulliam, 1992). Finally, territoriality influences where animals rest within their home ranges. Resting on the edge of the defended area can improve territorial defence and early access to contested sites (Day & Elwood, 1999; Singhal, Johnson & Ladner, 2007; Génin, 2010), while resting near its core helps securing the exclusive use of aggregated resources (Smith *et al.*, 2007).

IV.(4) With whom to rest?

Coordinating when and where they rest allows gregarious animals to benefit from resting together. Social resting has thermoregulatory benefits, as huddling reduces heat loss (Gilbert *et al.*, 2010; Mohanty *et al.*, 2022). Resting in groups also helps to reduce predation risk through the dilution effect (e.g., in baboons: Bidner, Matsumoto-Oda & Isbell, 2018) and increased vigilance (e.g., in teals: Gauthier-Clerc, Tamisier & Cezilly, 1998). When resting animals are numerous, asynchronous vigilance enables less individual vigilance (e.g., in skinks: Lanham & Bull, 2004; in giraffes: Burger *et al.*, 2020; in oystercatchers: McBlain *et al.*, 2020), which could benefit mixed-species groups too. As a result, resting in groups can increase both the quantity of resting time, and its quality, through enhanced thermoregulation, and reduced need for vigilance. The outcome of resting in groups,

however, might yield unequal benefits to individuals, depending on their position within the resting aggregation. For example, in ducks and shorebirds resting in dense groups, peripheral individuals often show more vigilance behaviours (like peaking and unihemisherical SWS) than central individuals (Rattenborg *et al.*, 2000; Dominguez, 2003; Lima *et al.*, 2005). Finally, although resting in groups generally increases the risk of parasite transmission (Smeltzer *et al.*, 2022; Respicio *et al.*, 2024), it can also help to dilute the exposure to others, such as blood-sucking insects (e.g., in chimpanzees: Samson *et al.*, 2019).

The dynamics of social relationships also continue during resting, and influence how animals rest (Smeltzer *et al.*, 2022). The time spent resting with different partners often reflects social relationships and hierarchical situation (Anderson, 2000). In mammals, sociality also influences the time animals spend in quiet wakefulness, SWS, and REM sleep, suggesting that social species face a trade-off between socializing and sleeping (Capellini *et al.*, 2010). The position within a resting aggregation, influenced by social relationships, can affect safety, thermal conditions, and the risk of being disturbed while at rest, which in turn affect the quantity and quality of resting (Anderson, 1998; Loftus *et al.*, 2022). The social dynamics during resting times are recently getting more attention from ecologists, as it is now possible to track several individuals from a social group at the same time (Loftus *et al.*, 2022). However, their great complexity would require a specific focus to be treated properly, which is why they are not discussed further in this review (see Smeltzer *et al.*, 2022; Chakravarty *et al.*, 2024).

V. Potential effects of anthropization on resting

The globally increasing pressure humans put on ecosystems affects animal behaviour through a variety of pathways (Sih *et al.*, 2011; Gunn *et al.*, 2022). Animals respond to habitat destruction, landscape fragmentation, direct disturbances, alteration of communities' compositions, light and noise pollution, and increased temperature by modifying their behaviour (Candolin *et al.*, 2023). Obviously, resting is also affected. In general, however, very little is known about how anthropic pressures affect resting, and what consequences this may have on individual fitness, species

abundance and distribution. The effects of anthropization on resting behaviour are likely to interact both with one another and with its effects on other behaviours (Lopez *et al.*, 2023). As a result, making predictions on the consequences of the anthropic disruptions of resting is certainly challenging. Nevertheless, here, we explore some of the possible pathways through which human activity, at local or global scales, may interfere with resting behaviour.

V.(1) Landscape alterations

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

The landscape alterations caused by anthropization, including habitat destruction and fragmentation, affect animal resting behaviour by redefining the availability, quality and distribution of resting sites.

In many landscapes, anthropization has resulted in the replacement of many natural structures that animals use for resting with anthropogenic structures. For example, while deforestation, forest management, and urbanization have led to a global decline in hollow trees (Le Roux et al., 2014; Terry & Goldingay, 2025), urbanized environments provide countless artificial shelters that can be used for resting (Lowry, Lill & Wong, 2013; Sarkar & Bhadra, 2022). For any given species, this can mean either an increased or a decreased overall availability of resting sites. If they can make use of anthropogenic structures, even animals with specialized needs in terms of resting sites may thrive in these altered landscapes (e.g., in blue-tongued lizards: Koenig, Shine & Shea, 2001; in small carnivores: Bateman & Fleming, 2012), sometimes reaching higher densities than in natural landscapes (e.g., in lava lizards: de Andrade, 2020). However, if anthropogenic structures are too few to compensate the loss of natural shelters (e.g., in semi-anthropized landscapes such as managed forests), or do not match their specific requirements, other species may suffer from resting site shortage (e.g., in marbled geckos: Taylor et al., 2016; in otters: Weinberger et al., 2019; in hollow-dependent species: Terry & Goldingay, 2025). In such cases, the scarcity of resting sites may contribute to reshape landscape utilization (e.g., in possums: Martin & Martin, 2007) and species distribution (Anderson, 2000; Terry & Goldingay, 2025).

When resting site availability is reduced in altered landscapes, the overall quality of the few remaining sites may also be reduced. Scarce resting sites may be over-utilized by several individuals, enhancing aggression, and parasite and disease transmission (Respicio *et al.*, 2024). In addition, intense utilization of the same resting sites can increase predictability, and thus predation risk (Markham *et al.*, 2016). Finally, competition can arise from a limited availability of resting sites (Markham *et al.*, 2016), thus increasing the risk of being evicted while at rest. Animals may also use alternative sites of lower quality, with additional costs in terms of predation risk (e.g., in an agamid lizard: Bors, Mohanty & Gowri Shankar, 2020) and thermoregulation (e.g., in hollow dependent species: Griffiths *et al.*, 2018).

In addition to the availability and quality of resting sites, anthropic alterations of the landscape may modify their spatial distribution, in relation to each other, and to the sites used during activity (e.g., foraging grounds). In fragmented anthropized landscapes, the patches used for resting and for activity may be separated, and animals may be forced to travel greater distances, possibly through more hostile environment, to commute between these sites (e.g., in wild boars: Podgórski *et al.*, 2013; in wolves: Torretta *et al.*, 2023). Such landscape complementation (Dunning *et al.*, 1992) involves energetic costs and risks linked with transit (e.g., predation, vehicle collisions), and should also imply a reduction of resting time (Dunbar *et al.*, 2009), with potential drawbacks that remain poorly understood. In fragmented landscapes with scarce resting sites, landscape utilization patterns should strongly depend on the location of available resting sites (Torretta *et al.*, 2023; Fradin *et al.*, 2025). Conversely, human-altered habitats can also offer opportunities to rest and be active in the same patches, for example through food provisioning, thus relaxing time budgets by reducing the time needed for transit (e.g., in macaques: Koirala *et al.*, 2017). This should be particularly important for animals that tolerate human presence, and are released from predation pressure by the 'human shield' effect (Berger, 2007; Gaynor *et al.*, 2025).

V.(2) Risk of direct disturbances

As human presence increases in all landscapes, animals are ever more likely to encounter and be disturbed by people, in particular during daytime. The risk of direct disturbances leads to both proactive and reactive adjustments related to resting behaviour.

In response to human presence in their habitat, many diurnal or crepuscular species shift to nocturnality, a proactive adjustment frequently documented in mammals, in particular in apex predators (Shukla *et al.*, 2021) and large species (Gaynor *et al.*, 2018). For this shift to be beneficial, the risk mitigation allowed by resting diurnally must compensate the additional costs of being active at night, for species that are normally diurnal or crepuscular (Riede *et al.*, 2017; Hazlerigg & Tyler, 2019). Besides, it also has important consequences on the context in which resting occurs. Shifting to daytime resting may have important physiological consequences—that remain largely unexplored—related to the alteration of the circadian regulation of sleep, and to the increased temperatures experienced during resting (e.g., in wild boars: Mortlock *et al.*, 2024). Animals that shift to rest during daytime could become more dependent on cool resting sites, which could be scarce for large species that rest out in the open. These effects, however, remain largely unexplored.

Whether or not they shift to nocturnality to reduce the risk of anthropic disturbances, animals can also proactively adjust to the risk of being disturbed while resting by modifying where they rest. The fear of humans as an apex predator leads to spatial avoidance in general (Corradini *et al.*, 2021; Doherty, Hays & Driscoll, 2021), which commonly impacts resting site selection, even in species that fear no other predator (e.g., in elephants: Wittemyer *et al.*, 2017; in lynx: Belotti *et al.*, 2018; in wolves: Rio-Maior *et al.*, 2025). The reshaping of the landscape of fear by human presence in animals' habitats may affect resting sites availability, quality, and distribution, just like any alteration of the landscape, with the same consequences as discussed above. As a result, the pressure on resting site selection is augmented for animals that shift to nocturnality to avoid human encounters, and large species that rest out in the open are particularly affected. If areas free of disturbances become rare, the lack of quiet and safe resting sites could drive population

decline, even in landscapes where food is available, and movements are unrestricted (Anderson, 2000; Beale, 2007).

In spite of any proactive adjustment, some animals get exposed to actual disturbances while they rest, which compels them to increase vigilance. High-awareness resting behaviours—such as quiet wakefulness—are then favoured at the expense of sleep, thus potentially initiating sleep deprivation, fragmentation, or shift (e.g., in oystercatchers: McBlain *et al.*, 2020; in wild boars: Olejarz *et al.*, 2023). If disturbances are repeated, this might have important drawbacks on performance during subsequent activity (e.g., in anoles: Kolbe *et al.*, 2021), as animals may not be able to compensate with delayed resting (e.g., in macaques: Kaburu *et al.*, 2019). Anthropic disturbances during resting can also have lasting effects on the subsequent temporal pattern of activity (e.g., in bears: Ordiz *et al.*, 2013), use of resting sites (e.g., in wolves: Wam, Eldegard & Hjeljord, 2012), and more generally on landscape utilization. Finally, some animals decide to leave their resting site upon getting disturbed, either because of the perceived threat, or because prolonged high vigilance would be too costly (Gauthier-Clerc *et al.*, 1998; Price, 2008; Ferretti *et al.*, 2019). The costs of such an immediate reaction include increased energy expenditure, exposure to predators, thermal stress, and increased need for subsequent travel time during subsequent activity (Price, 2008).

V.(3) Alterations of communities

Altered communities in anthropic landscapes may imply increased or decreased predation pressure to resting animals. Exotic predators (wild and domestic) have been introduced in many areas, sometimes in high densities, thus affecting anti-predator resting strategies. When exposed to an exotic predator, some species effectively adjust resting site selection, thus successfully mitigating the risk of predation while at rest (e.g., in marmosets: Duarte & Young, 2011). Conversely, others may fail to select appropriate anti-predator resting sites, with potentially severe consequences for survival (e.g., in Australian native fauna: Short, Kinnear & Robley, 2002). This may happen either because such sites are not available, or because of inaccurate risk assessment, reflecting an evolutionary mismatch—or ecological trap—where prey make decisions based on

cues that previously put them in high-quality resting sites but now exposes them to exotic predators (Pollack *et al.*, 2022). On the other hand, human-dominated landscapes are often characterized by the lack of large predators, producing a 'human shield' effect for some prey species (Berger, 2007; Gaynor *et al.*, 2025). The release from predation pressure could allow these to select resting sites that would otherwise be riskier, potentially compensating for the lack of available resting sites in some anthropized landscapes. It could also allow them to shift when they rest to other times, if resting was previously timed to avoid predation (e.g., in mesopredators: Shores *et al.*, 2019).

Besides predator-prey dynamics, the alterations of animal communities linked with anthropization may affect competition and cooperation at resting sites. Exotic species may generate intense competition over resting sites (e.g., in geckos: Cole, Jones & Harris, 2005; in parakeets: Giuntini *et al.*, 2022), which contributes to reducing resting site availability for the native species. In socially resting species, population declines can reduce the benefits of resting in groups, such as social thermoregulation, potentially forcing some species to compensate through increased resting site selectivity, or by using more energy-saving resting states (e.g., in little brown bats: Dzal & Brigham, 2013).

V.(4) Light and noise pollution

Artificial lights at night (ALAN) are an important characteristic of anthropization in populated areas and along roads, and their effects may extend well away from light sources, through skyglow (Gaston & Sánchez de Miguel, 2022). ALAN may decrease the anti-predator quality of resting sites, thus pushing animals to avoid resting in artificially lit areas. Although empirical evidence is scarce (Kolbe *et al.*, 2021), this could affect the spatial distribution of suitable resting sites, especially if anthropogenic structures have replaced natural resting sites. Avoiding ALAN exposure during resting might simply be impossible for some animals, due to the wide spread of anthropic lighting. Besides, some animals might prefer artificially lit roosts—for example for increased foraging opportunities at night—despite physiological costs and exposure to predators

(e.g., in great tits: Ulgezen *et al.*, 2019). Exposure to ALAN has been linked with sleep disruption in diurnal birds (Aulsebrook *et al.*, 2021) and reptiles (Mohanty *et al.*, 2022), sometimes leading to altered activity patterns (e.g., in blackbirds: Dominoni *et al.*, 2014), impaired performances during activity (e.g., in crows: Taufique & Kumar, 2016; in anoles: Kolbe *et al.*, 2021), and even to sleep rebounds (e.g., in great tits: Raap *et al.*, 2016).

Anthropized landscapes are also characterized by noise pollution, which has been shown to alter activity patterns in some urban animals (e.g., in robins: Fuller, Warren & Gaston, 2007; in great tits: Dominoni *et al.*, 2020), and are thus expected to influence resting behaviour. Exposure to artificial noise impairs sleep quality, with potential physiological drawbacks (Kight & Swaddle, 2011; Grunst *et al.*, 2023). Animals are expected to exhibit increased vigilance when exposed to anthropogenic noise, especially if it is threatening (e.g., dog barks), sudden, and unexpected (Beale, 2007). Animals may habituate to constant noise pollution (e.g., in wild boar: Fradin & Chamaillé-Jammes, 2023), but even background noise may decrease their chances to hear an approaching predator (e.g., in nuthatches: Chou *et al.*, 2023). As a consequence, animals could account for the anthropogenic soundscape to select quiet resting sites (e.g., in wolves: Bojarska *et al.*, 2021).

In general, light and noise pollution are likely to interact with each other, and with the risk of direct disturbances by people, to reduce resting sites availability and quality, and to disrupt resting animals (Dominoni *et al.*, 2020; Grunst *et al.*, 2023). The impact of these effects on individual behaviour and fitness, however, are largely unknown. Species that manage to find alternative resting sites or habituate to these anthropogenic constraints are likely to be favoured in highly anthropized landscapes (Lowry *et al.*, 2013).

V.(5) Increased temperature

Air temperature affects how long, when, and where animals rest (Korstjens *et al.*, 2010; Rattenborg *et al.*, 2017; Mohanty *et al.*, 2022), as well as the form of resting that is displayed (Harding *et al.*, 2019; Mortlock *et al.*, 2024). Consequently, global warming is expected to strongly affect

animals' resting strategies. Because resting is often an efficient response to adverse thermal conditions, some diurnal animals might adjust to climate warming by shifting to nocturnality to avoid extreme daytime temperatures (Levy *et al.*, 2019). Whether or not they do so, most species will have to be resting under warmer conditions, as nighttime temperatures also increase. Increased temperatures experienced during resting should lead to various metabolic costs, including sleep deprivation, with important drawbacks on subsequent activity (e.g., in fruit bats: Downs *et al.*, 2015; in squamates: Rutschmann *et al.*, 2024). Increased dependency on cool resting sites should be observed in a number of species (e.g., in desert lizards: Flesch, Rosen & Holm, 2017; in reindeers: Williamsen *et al.*, 2019), potentially causing competition over resting sites, especially where they are already rare. This could be particularly true in urban environments because of the urban heat island effect (Battles & Kolbe, 2019).

As temperatures keep increasing, animals' ability to cope with change through behavioural adjustments will decrease. Extreme weather events should become the most important pathways through which temperatures could affect resting behaviour (Downs *et al.*, 2015). During heatwaves, animals should increase resting time at the expense of other activities, thus tightening time budgets (Korstjens *et al.*, 2010). Animals capable of using daily torpor flexibly in response to unpredictable and severe weather events are predicted to stand better chances of survival during extreme events (Geiser & Turbill, 2009; Nowack *et al.*, 2017). In general, however, the effects of climate change on animal resting behaviour remain largely unknown.

VI. Conclusions

- (1) Resting often represents substantial proportions of animals' time budgets and yet has received little attention from ecologists.
- (2) Resting strategies are shaped by a diversity of constraints, are highly variable between species, and often show great plasticity within species and individuals. A future direction for

research could be the relationship between individual differences in sleep patterns and consistent individual differences in personality.

- (3) Decision making related to resting behaviour has crucial implications for energy balance, thermoregulation, predator avoidance, and landscape utilization. As such, a future direction for research can involve the use of state-dependent or dynamic energy budget models to provide a theoretical basis for understanding how sleep patterns reflect the balance of multiple conflicting demands.
- (4) Although the states that compose resting (quiet wakefulness, sleep and daily torpor) do not have the exact same drivers and functions, studying them together has the potential to facilitate large-scale monitoring, while allowing interpretations on their shared consequences (e.g., energy savings, space use restrictions, predation risk reduction, thermoregulatory benefits).
- (5) Anthropization may greatly influence where, when, and how animals rest, with potentially important consequences for individual fitness, and species abundance and distribution. A future direction for research can involve the study of how resting patterns are influenced by multiple interacting stressors associated with human-induced environmental change, with effects mediated by multi-species interactions.
- (6) To date, the effects of anthropization on resting behaviour seem to have been overlooked by ecologists.
- (7) We call ecologists to recognize resting as more than just the flip-side of active behaviours and treat it as a valuable research topic of its own, with both empirical studies (given the wide availability of relevant biologging tools) and theoretical approaches (for example through dynamic state-dependent modelling).

754 VII. References

- ANAFI, R.C., KAYSER, M.S. & RAIZEN, D.M. (2019) Exploring phylogeny to find the function of sleep.

 Nature Reviews Neuroscience **20**, 109–116.
- ANDERSON, J.R. (1998) Sleep, sleeping sites, and sleep-related activities: Awakening to their significance. *American Journal of Primatology* **46**, 63–75.
- ANDERSON, J.R. (2000) Sleep-related behavioural adaptations in free-ranging anthropoid primates.

 Sleep Medicine Reviews 4, 355–373.
- ANDERSON, S.R. & WIENS, J.J. (2017) Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. *Evolution* **71**, 1944–1959.
- DE Andrade, A.C. (2020) Metropolitan lizards? Urbanization gradient and the density of lagartixas (Tropidurus hispidus) in a tropical city. *Ecology and Evolution* **10**, 1740–1750.
- AULSEBROOK, A.E., JOHNSSON, R.D. & LESKU, J.A. (2021) Light, Sleep and Performance in Diurnal Birds. *Clocks & Sleep* 3, 115–131.
- AULSEBROOK, A.E., JONES, T.M., RATTENBORG, N.C., ROTH, T.C. & LESKU, J.A. (2016) Sleep Ecophysiology: Integrating Neuroscience and Ecology. *Trends in Ecology & Evolution* **31**, 590–599.
- 770 BAGUR, S., LACROIX, M.M., LAVILLÉON, G. DE, LEFORT, J.M., GEOFFROY, H. & BENCHENANE, K. (2018)
 771 Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and
 772 real-time monitoring of anaesthesia depth. *PLOS Biology* **16**, e2005458.
- BARNETT, A.A., SHAW, P., SPIRONELLO, W.R., MACLARNON, A. & ROSS, C. (2012) Sleeping site selection by golden-backed uacaris, Cacajao melanocephalus ouakary (Pitheciidae), in Amazonian flooded forests. *Primates* **53**, 273–285.
- BATEMAN, P.W. & FLEMING, P.A. (2012) Big city life: carnivores in urban environments. *Journal of Zoology* **287**, 1–23.
- BATTLES, A.C. & KOLBE, J.J. (2019) Miami heat: Urban heat islands influence the thermal suitability of habitats for ectotherms. *Global Change Biology* **25**, 562–576.
- 780 BAUM, W.M. (2013) What counts as behavior? The molar multiscale view. *The Behavior Analyst* 36, 283–293.
- BEALE, C.M. (2007) The Behavioral Ecology of Disturbance Responses. *International Journal of Comparative Psychology* **20**, 111–120.
- BELOTTI, E., MAYER, K., KREISINGER, J., HEURICH, M. & BUFKA, L. (2018) Recreational activities affect resting site selection and foraging time of Eurasian lynx (Lynx lynx). *Hystrix, the Italian Journal of Mammalogy* **29**, 181–189.
- BERGER, J. (2007) Fear, human shields and the redistribution of prey and predators in protected areas. *Biology Letters* **3**, 620–623.

- BERGER-TAL, O., POLAK, T., ORON, A., LUBIN, Y., KOTLER, B.P. & SALTZ, D. (2011) Integrating animal behavior and conservation biology: a conceptual framework. *Behavioral Ecology* **22**, 236–239.
- BIDNER, L.R., MATSUMOTO-ODA, A. & ISBELL, L.A. (2018) The role of sleeping sites in the predatorprey dynamics of leopards and olive baboons. *American Journal of Primatology* **80**, e22932.
- BLOCH, G., BARNES, B.M., GERKEMA, M.P. & HELM, B. (2013) Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value. *Proceedings. Biological Sciences* **280**, 20130019.
- BLUMBERG, M. & RATTENBORG, N. (2017) Decomposing the Evolution of Sleep: Comparative and Developmental Approaches. In *Evolution of Nervous Systems (Second Edition)* (ed J.H. KAAS), pp. 523–545. Academic Press.
- BLUMBERG, M.S., LESKU, J.A., LIBOUREL, P.-A., SCHMIDT, M.H. & RATTENBORG, N.C. (2020) What Is REM Sleep? *Current Biology* **30**, R38–R49.
- BOJARSKA, K., MAUGERI, L., KUEHN, R., KRÓL, W., THEUERKAUF, J., OKARMA, H. & GULA, R. (2021) Wolves under cover: The importance of human-related factors in resting site selection in a commercial forest. *Forest Ecology and Management* **497**, 119511.
- 806 BONNOT, N.C., COURIOT, O., BERGER, A., CAGNACCI, F., CIUTI, S., DE GROEVE, J.E., GEHR, B., HEURICH, M., 807 KJELLANDER, P., KRÖSCHEL, M., MORELLET, N., SÖNNICHSEN, L. & HEWISON, A.J.M. (2020) Fear of the dark? Contrasting impacts of humans versus lynx on diel activity of roe deer across 809 Europe. *Journal of Animal Ecology* **89**, 132–145.
- BORBÉLY, A.A., DAAN, S., WIRZ-JUSTICE, A. & DEBOER, T. (2016) The two-process model of sleep regulation: a reappraisal. *Journal of Sleep Research* **25**, 131–143.
- BORS, M., MOHANTY, N.P. & GOWRI SHANKAR, P. (2020) Anti-predatory sleep strategies are conserved in the agamid lizard Monilesaurus rouxii. *Behavioral Ecology and Sociobiology* **74**, 121.
- BRADSWORTH, N., WHITE, J.G., RENDALL, A.R., CARTER, N. & COOKE, R. (2021) Where to sleep in the city? How urbanisation impacts roosting habitat availability for an apex predator. *Global Ecology and Conservation* **26**, e01494.
- BRISCOE, N.J., McGregor, H., Roshier, D., Carter, A., Wintle, B.A. & Kearney, M.R. (2022) Too hot to hunt: Mechanistic predictions of thermal refuge from cat predation risk. *Conservation Letters* **15**, e12906.
- BROWN, D.D., KAYS, R., WIKELSKI, M., WILSON, R. & KLIMLEY, A.P. (2013) Observing the unwatchable through acceleration logging of animal behavior. *Animal Biotelemetry* **1**, 20.
- BURGER, A.L., FENNESSY, J., FENNESSY, S. & DIERKES, P.W. (2020) Nightly selection of resting sites and group behavior reveal antipredator strategies in giraffe. *Ecology and Evolution* **10**, 2917–2927.
- CAMPBELL, S.S. & TOBLER, I. (1984) Animal sleep: A review of sleep duration across phylogeny.

 Neuroscience & Biobehavioral Reviews 8, 269–300.
- CANDOLIN, U., FLETCHER, R.J. & STEPHENS, A.E.A. (2023) Animal behaviour in a changing world.

 Trends in Ecology & Evolution 38, 313–315.

- CAPELLINI, I., BARTON, R., MCNAMARA, P., PRESTON, B. & NUNN, C.L. (2010) Ecological constraints on mammalian sleep architecture. In *Evolution of Sleep: Phylogenetic and Functional Perspectives* (eds P. McNamara, R.A. Barton & C.L. Nunn), pp. 12–33. Cambridge University Press, Cambridge, UK.
- CHAKRAVARTY, P., ASHBURY, A.M., STRANDBURG-PESHKIN, A., IFFELSBERGER, J., GOLDSHTEIN, A., SCHUPPLI,
 C., SNELL, K.R.S., CHARPENTIER, M.J.E., NÚÑEZ, C.L., GAGGIONI, G., GEIGER, N., RÖßLER, D.C., GALL,
 G., YANG, P.-P., FRUTH, B., ET AL. (2024) The sociality of sleep in animal groups. *Trends in Ecology & Evolution* **39**, 1090–1101.
- CHAPMAN, C.A., CHAPMAN, L.J. & MCLAUGHLIN, R.L. (1989) Multiple central place foraging by spider monkeys: travel consequences of using many sleeping sites. *Oecologia* **79**, 506–511.
- CHOU, T.L., KRISHNA, A., FOSSESCA, M., DESAI, A., GOLDBERG, J., JONES, S., STEPHENS, M., BASILE, B.M. & GALL, M.D. (2023) Interspecific differences in the effects of masking and distraction on anti-predator behavior in suburban anthropogenic noise. *PLOS ONE* **18**, e0290330.
- CIRELLI, C. & TONONI, G. (2008) Is Sleep Essential? *PLOS Biology* **6**, e216.
- COLE, N.C., JONES, C.G. & HARRIS, S. (2005) The need for enemy-free space: The impact of an invasive gecko on island endemics. *Biological Conservation* **125**, 467–474.
- CORRADINI, A., RANDLES, M., PEDROTTI, L., VAN LOON, E., PASSONI, G., OBEROSLER, V., ROVERO, F., TATTONI, C., CIOLLI, M. & CAGNACCI, F. (2021) Effects of cumulated outdoor activity on wildlife habitat use. *Biological Conservation* **253**, 108818.
- COURBIN, N., LOVERIDGE, A.J., FRITZ, H., MACDONALD, D.W., PATIN, R., VALEIX, M. & CHAMAILLÉ-JAMMES,
 S. (2019) Zebra diel migrations reduce encounter risk with lions at night. *Journal of Animal Ecology* **88**, 92–101.
- DAAN, S. (1981) Adaptive Daily Strategies in Behavior. In *Biological Rhythms* (ed J. ASCHOFF), pp. 275–298. Springer US, Boston, MA.
- DASILVA, G.L. (1993) Postural changes and behavioural thermoregulation in Colobus polykomos: the effect of climate and diet. *African Journal of Ecology* **31**, 226–241.
- DAVIMES, J.G., ALAGAILI, A.N., BHAGWANDIN, A., BERTELSEN, M.F., MOHAMMED, O.B., BENNETT, N.C., MANGER, P.R. & GRAVETT, N. (2018) Seasonal variations in sleep of free-ranging Arabian oryx (Oryx leucoryx) under natural hyperarid conditions. *Sleep* **41**, zsy038.
- DAY, R.T. & ELWOOD, R.W. (1999) Sleeping Site Selection by the Golden-handed Tamarin Saguinus midas midas: The Role of Predation Risk, Proximity to Feeding Sites, and Territorial Defence. *Ethology* **105**, 1035–1051.
- DEJEANTE, R., VALEIX, M. & CHAMAILLÉ-JAMMES, S. (2025) Do Mixed-Species Groups Travel as One?
 An Investigation on Large African Herbivores Monitored Using Animal-Borne Video
 Collars. *The American Naturalist* **205**, 451–458.
- DOHERTY, T.S., HAYS, G.C. & DRISCOLL, D.A. (2021) Human disturbance causes widespread disruption of animal movement. *Nature Ecology & Evolution* **5**, 513–519.
- B66 DOMINGUEZ, J. (2003) Sleeping and vigilance in Black-tailed Godwit. *Journal of Ethology* **21**, 57–60.

- DOMINONI, D., SMIT, J.A.H., VISSER, M.E. & HALFWERK, W. (2020) Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (*Parus major*). *Environmental Pollution* **256**, 113314.
- DOMINONI, D.M., CARMONA-WAGNER, E.O., HOFMANN, M., KRANSTAUBER, B. & PARTECKE, J. (2014)
 Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds. *Journal of Animal Ecology* **83**, 681–692.
- DOWNES, S. & SHINE, R. (1998) Heat, safety or solitude? Using habitat selection experiments to identify a lizard's priorities. *Animal Behaviour* **55**, 1387–1396.
- DOWNS, C.T., AWUAH, A., JORDAAN, M., MAGAGULA, L., MKHIZE, T., PAINE, C., RAYMOND-BOURRET, E. & HART, L.A. (2015) Too Hot to Sleep? Sleep Behaviour and Surface Body Temperature of Wahlberg's Epauletted Fruit Bat. *PLOS ONE* **10**, e0119419.
- DUARTE, M.H.L. & YOUNG, R.J. (2011) Sleeping Site Selection by Urban Marmosets (Callithrix penicillata) Under Conditions of Exceptionally High Predator Density. *International Journal of Primatology* **32**, 329–334.
- DUNBAR, R.I.M., KORSTJENS, A.H., LEHMANN, J. & PROJECT, B.A.C.R. (2009) Time as an ecological constraint. *Biological Reviews* **84**, 413–429.
- DUNNING, J.B., DANIELSON, B.J. & PULLIAM, H.R. (1992) Ecological Processes That Affect Populations in Complex Landscapes. *Oikos* **65**, 169–175.
- DURIEZ, O., SASSI, Y., GALL-LADEVÈZE, C.L., GIRAUD, L., STRAUGHAN, R., DAUVERNÉ, L., TERRAS, A., BOULINIER, T., CHOQUET, R., WIELE, A.V.D., HIRSCHINGER, J., GUÉRIN, J.-L. & LOC'H, G.L. (2023) Highly pathogenic avian influenza affects vultures' movements and breeding output. *Current Biology* **33**, 3766-3774.e3.
- DZAL, Y.A. & BRIGHAM, R.M. (2013) The tradeoff between torpor use and reproduction in little brown bats (Myotis lucifugus). *Journal of Comparative Physiology B* **183**, 279–288.
- EDELHOFF, H., SIGNER, J. & BALKENHOL, N. (2016) Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. *Movement Ecology* **4**, 21.
- FEI, H., DE GUINEA, M., YANG, L., CHAPMAN, C.A. & FAN, P. (2022) Where to sleep next? Evidence for spatial memory associated with sleeping sites in Skywalker gibbons (Hoolock tianxing).

 Animal Cognition 25, 891–903.
- FERRETTI, A., RATTENBORG, N.C., RUF, T., McWilliams, S.R., Cardinale, M. & Fusani, L. (2019) Sleeping
 Unsafely Tucked in to Conserve Energy in a Nocturnal Migratory Songbird. *Current*Biology **29**, 2766-2772.e4.
- FLESCH, A.D., ROSEN, P.C. & HOLM, P. (2017) Long-term changes in abundances of Sonoran Desert lizards reveal complex responses to climatic variation. *Global Change Biology* **23**, 5492–5508.
- 904 FRADIN, G., ALEXANDROV, T., APOLLONIO, M., ARNOLD, J., BAŚ, G., BAUBET, E., BRIVIO, F., BROGI, R., CASAER,
 905 J., FARKAS, A., FISCHER, C., FODOR, J.-T., GRIGNOLIO, S., GÜLDENPFENNIG, J., HEURICH, M., ET AL.
 906 (2025) Anthropization impacts the selection of resting sites and their centrality in
 907 movement networks: wild boar across Europe as an example. *Oikos* **2025**, e11295.

- FRADIN, G. & CHAMAILLÉ-JAMMES, S. (2023) Hogs sleep like logs: Wild boars reduce the risk of anthropic disturbance by adjusting where they rest. *Ecology and Evolution* **13**, e10336.
- 910 FRANK, M.G. (2020) The Ontogenesis of Mammalian Sleep: Form and Function. *Current Sleep* 911 *Medicine Reports* **6**, 267–279.
- FREIBERG, A.S. (2020) Why We Sleep: A Hypothesis for an Ultimate or Evolutionary Origin for Sleep and Other Physiological Rhythms. *Journal of Circadian Rhythms* **18**, 2.
- FULLER, R.A., WARREN, P.H. & GASTON, K.J. (2007) Daytime noise predicts nocturnal singing in urban robins. *Biology Letters* **3**, 368–370.
- FUREIX, C. & MEAGHER, R.K. (2015) What can inactivity (in its various forms) reveal about affective states in non-human animals? A review. *Applied Animal Behaviour Science* **171**, 8–24.
- 918 GASTON, K.J. & SÁNCHEZ DE MIGUEL, A. (2022) Environmental Impacts of Artificial Light at Night.

 919 Annual Review of Environment and Resources 47, 373–398.
- 920 GAUTHIER-CLERC, M., TAMISIER, A. & CEZILLY, F. (1998) Sleep-vigilance trade-off in Green-winged 921 Teals (Anas crecca crecca). *Canadian Journal of Zoology* **76**, 2214–2218.
- GAYNOR, K.M., HOJNOWSKI, C.E., CARTER, N.H. & BRASHARES, J.S. (2018) The influence of human disturbance on wildlife nocturnality. *Science* **360**, 1232–1235.
- GAYNOR, K.M., WOOSTER, E.I.F., MARTINIG, A.R., GREEN, J.R., CHHEN, A., CUADROS, S., GILL, R., KHANAL, G.,
 LOVE, N., MARCUS, R., MILLS, C.L., WRENSFORD, K., WRIGHT, N.S., MEZZINI, S., MARLEY, J., ET AL.
 (2025) The Human Shield Hypothesis: Does Predator Avoidance of Humans Create
 Refuges for Prey? *Ecology Letters* 28, e70138.
- 928 GEISER, F. (2013) Hibernation. *Current Biology* **23**, R188–R193.
- 929 GEISER, F. & TURBILL, C. (2009) Hibernation and daily torpor minimize mammalian extinctions. 930 *Naturwissenschaften* **96**, 1235–1240.
- 931 GÉNIN, F. (2010) Who sleeps with whom? Sleeping association and socio-territoriality in Microcebus griseorufus. *Journal of Mammalogy* **91**, 942–951.
- GERBER, B.D., HOOTEN, M.B., PECK, C.P., RICE, M.B., GAMMONLEY, J.H., APA, A.D. & DAVIS, A.J. (2019)
 Extreme site fidelity as an optimal strategy in an unpredictable and homogeneous environment. *Functional Ecology* **33**, 1695–1707.
- 936 GILBERT, C., MCCAFFERTY, D., LE MAHO, Y., MARTRETTE, J.-M., GIROUD, S., BLANC, S. & ANCEL, A. (2010)
 937 One for all and all for one: the energetic benefits of huddling in endotherms. *Biological Reviews* **85**, 545–569.
- 939 GILBERT, N.A., McGinn, K.A., Nunes, L.A., Shipley, A.A., Bernath-Plaisted, J., Clare, J.D.J., Murphy, 940 P.W., Keyser, S.R., Thompson, K.L., Nelson, S.B.M., Cohen, J.M., Widick, I.V., Bartel, S.L., 941 Orrock, J.L. & Zuckerberg, B. (2023) Daily activity timing in the Anthropocene. *Trends in* 942 *Ecology & Evolution* 38, 324–336.
- 943 GIUNTINI, S., ANCILLOTTO, L., FALASCHI, M., VIVIANO, A., PALAGI, E. & MORI, E. (2022) Alien parakeets as 944 a potential threat to the common noctule Nyctalus noctula. *Biodiversity and Conservation* 945 **31**, 3075–3092.

- 946 GLASS, T.W., BREED, G.A., ROBARDS, M.D., WILLIAMS, C.T. & KIELLAND, K. (2021) Trade-off between 947 predation risk and behavioural thermoregulation drives resting behaviour in a cold-948 adapted mesocarnivore. *Animal Behaviour* **175**, 163–174.
- 949 GRAVETT, N., BHAGWANDIN, A., SUTCLIFFE, R., LANDEN, K., CHASE, M.J., LYAMIN, O.I., SIEGEL, J.M. & 950 MANGER, P.R. (2017) Inactivity/sleep in two wild free-roaming African elephant matriarchs Does large body size make elephants the shortest mammalian sleepers? 952 PLOS ONE 12, e0171903.
- 953 GRIFFITHS, S.R., LENTINI, P.E., SEMMENS, K., WATSON, S.J., LUMSDEN, L.F. & ROBERT, K.A. (2018)
 954 Chainsaw-Carved Cavities Better Mimic the Thermal Properties of Natural Tree Hollows
 955 than Nest Boxes and Log Hollows. *Forests* **9**, 235.
- 956 GRUNST, A.S., GRUNST, M.L., RAAP, T., PINXTEN, R. & EENS, M. (2023) Anthropogenic noise and light 957 pollution additively affect sleep behaviour in free-living birds in sex- and season-958 dependent fashions. *Environmental Pollution* **316**, 120426.
- GUNN, R.L., HARTLEY, I.R., ALGAR, A.C., NIEMELÄ, P.T. & KEITH, S.A. (2022) Understanding behavioural responses to human-induced rapid environmental change: a meta-analysis. *Oikos* **2022**, e08366.
- HALLE, S. (2000) Ecological Relevance of Daily Activity Patterns. In Activity Patterns in Small
 Mammals (eds S. HALLE & N.C. STENSETH), pp. 67–90. Springer Berlin Heidelberg, Berlin,
 Heidelberg.
- 965 HALLE, S. (2006) Polyphasic Activity Patterns in Small Mammals. *Folia Primatologica* **77**, 15–26.
- HARDING, E.C., FRANKS, N.P. & WISDEN, W. (2019) The Temperature Dependence of Sleep. *Frontiers* in Neuroscience 13. 336.
- 968 HART, B.L. (1988) Biological basis of the behavior of sick animals. *Neuroscience & Biobehavioral* 869 *Reviews* **12**, 123–137.
- 970 VAN HASSELT, S.J., COSCIA, M., ALLOCCA, G., VYSSOTSKI, A.L. & MEERLO, P. (2024) Sleep and
 971 Thermoregulation in Birds: Cold Exposure Reduces Brain Temperature but Has Little
 972 Influence on Sleep Time and Sleep Architecture in Jackdaws (Coloeus monedula). *Biology*973 **13**, 229.
- 974 VAN HASSELT, S.J., PIERSMA, T. & MEERLO, P. (2022) Seasonal variation in rest-activity patterns in 975 barnacle geese: are measurements of activity a good indicator of sleep-wake patterns? 976 *Journal of Experimental Biology* **225**, jeb244177.
- HAUSFATER, G. & MEADE, B.J. (1982) Alternation of sleeping groves by yellow baboons (Papio cynocephalus) as a strategy for parasite avoidance. *Primates* **23**, 287–297.
- 979 HAZLERIGG, D.G. & TYLER, N.J.C. (2019) Activity patterns in mammals: Circadian dominance challenged. *PLOS Biology* **17**, e3000360.
- 981 HERBERS, J.M. (1981) Time resources and laziness in animals. *Oecologia* **49**, 252–262.
- HETEM, R.S., MALONEY, S.K., FULLER, A. & MITCHELL, D. (2016) Heterothermy in large mammals: inevitable or implemented? *Biological Reviews* **91**, 187–205.

- HOČEVAR, L., OLIVEIRA, T. & KROFEL, M. (2021) Felid bedrooms with a panoramic view: selection of
 resting sites by Eurasian lynx (Lynx lynx) in a karstic landscape. *Behavioral Ecology and Sociobiology* 75, 34.
- 987 IMERI, L. & OPP, M.R. (2009) How (and why) the immune system makes us sleep. *Nature Reviews* 988 *Neuroscience* **10**, 199–210.
- JANMAAT, K.R.L., POLANSKY, L., BAN, S.D. & BOESCH, C. (2014) Wild chimpanzees plan their breakfast time, type, and location. *Proceedings of the National Academy of Sciences* **111**, 16343– 16348.
- JOUVET-MOUNIER, D., ASTIC, L. & LACOTE, D. (1969) Ontogenesis of the states of sleep in rat, cat, and guinea pig during the first postnatal month. *Developmental Psychobiology* **2**, 216–239.
- KABURU, S.S.K., BEISNER, B., BALASUBRAMANIAM, K.N., MARTY, P.R., BLISS-MOREAU, E., MOHAN, L.,
 RATTAN, S.K., ARLET, M.E., ATWILL, E.R. & McCowan, B. (2019) Interactions with humans
 impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta).
 Behaviour 156, 1255–1282.
- 998 KACELNIK, A. & HOUSTON, A.I. (1984) Some effects of energy costs on foraging strategies. *Animal Behaviour* **32**, 609–614.
- 1000 KAISER, C. & KAISER, H. (2021) Coming home to roost: comments on individual sleep-site fidelity, 1001 sleep-site choice, and sleeping positions in Anolis (Norops) leditzigorum in Costa Rica 1002 (Squamata: Dactyloidae). *Herpetology Notes* **14**, 375–378.
- KEARNEY, M., SHINE, R. & PORTER, W.P. (2009) The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming. *Proceedings of the National Academy of Sciences* **106**, 3835–3840.
- 1006 KELLY, M.L., PETERS, R.A., TISDALE, R.K. & LESKU, J.A. (2015) Unihemispheric sleep in crocodilians?

 1007 *Journal of Experimental Biology* **218**, 3175–3178.
- KIGHT, C.R. & SWADDLE, J.P. (2011) How and why environmental noise impacts animals: an integrative, mechanistic review. *Ecology Letters* **14**, 1052–1061.
- KOENIG, J., SHINE, R. & SHEA, G. (2001) The ecology of an Australian reptile icon: how do bluetongued lizards (Tiliqua scincoides) survive in suburbia? *Wildlife Research* **28**, 214–227.
- KOIRALA, S., CHALISE, M.K., KATUWAL, H.B., GAIRE, R., PANDEY, B. & OGAWA, H. (2017) Diet and Activity
 of Macaca assamensis in Wild and Semi-Provisioned Groups in Shivapuri Nagarjun
 National Park, Nepal. Folia Primatologica 88, 57–74.
- KOLBE, J.J., MONIZ, H.A., LAPIEDRA, O. & THAWLEY, C.J. (2021) Bright lights, big city: an experimental assessment of short-term behavioral and performance effects of artificial light at night on Anolis lizards. *Urban Ecosystems* **24**, 1035–1045.
- 1018 KOMAGATA, N., LATIFI, B., RUSTERHOLZ, T., BASSETTI, C.L.A., ADAMANTIDIS, A. & SCHMIDT, M.H. (2019)
 1019 Dynamic REM Sleep Modulation by Ambient Temperature and the Critical Role of the
 1020 Melanin-Concentrating Hormone System. *Current Biology* **29**, 1976-1987.e4.
- KONDO, J. & DOWNES, S.J. (2007) Does social behaviour reliably reflect temperature-dependent physiological capacity in geckos? *Animal Behaviour* **74**, 873–880.

- KORSTJENS, A.H., LEHMANN, J. & DUNBAR, R.I.M. (2010) Resting time as an ecological constraint on primate biogeography. *Animal Behaviour* **79**, 361–374.
- KORTEKAAS, K. & KOTRSCHAL, K. (2019) Does socio-ecology drive differences in alertness between wolves and dogs when resting? *Behavioural Processes* **166**, 103877.
- 1027 KRÄUCHI, K. & DEBOER, T. (2011) Body temperatures, sleep, and hibernation. In *Principles and*1028 *Practice of Sleep Medicine* (eds M.H. KRYGER, T. ROTH & W.C. DEMENT), pp. 323–334.
 1029 Elsevier Health Sciences, Philadelphia.
- 1030 KREEGER, T.J., MONSON, D., KUECHLE, V.B., SEAL, U.S. & TESTER, J.R. (1989) Monitoring heart rate and body temperature in red foxes (Vulpes vulpes). *Canadian Journal of Zoology* **67**, 2455–1032 2458.
- LANHAM, E.J. & BULL, C.M. (2004) Enhanced vigilance in groups in Egernia stokesii, a lizard with stable social aggregations. *Journal of Zoology* **263**, 95–99.
- LARROQUE, J., RUETTE, S., VANDEL, J.-M. & DEVILLARD, S. (2015) Where to sleep in a rural landscape?

 A comparative study of resting sites pattern in two syntopic Martes species. *Ecography*38, 1129–1140.
- LE ROUX, D.S., IKIN, K., LINDENMAYER, D.B., BLANCHARD, W., MANNING, A.D. & GIBBONS, P. (2014)
 Reduced availability of habitat structures in urban landscapes: Implications for policy and practice. *Landscape and Urban Planning* **125**, 57–64.
- Lesku, J.A., Bark, R.J., Martinez-Gonzalez, D., Rattenborg, N.C., Amlaner, C.J. & Lima, S.L. (2008)
 Predator-induced plasticity in sleep architecture in wild-caught Norway rats (*Rattus norvegicus*). *Behavioural Brain Research* **189**, 298–305.
- Lesku, J.A. & Rattenborg, N.C. (2022) The missing cost of ecological sleep loss. *SLEEP Advances* **3**, 2pac036.
- Lesku, J.A., Rattenborg, N.C., Valcu, M., Vyssotski, A.L., Kuhn, S., Kuemmeth, F., Heidrich, W. & Kempenaers, B. (2012) Adaptive Sleep Loss in Polygynous Pectoral Sandpipers. *Science* 337, 1654–1658.
- LESKU, J.A., ROTH, T.C., RATTENBORG, N.C., AMLANER, C.J. & LIMA, S.L. (2009) History and future of comparative analyses in sleep research. *Neuroscience and Biobehavioral Reviews* **33**, 1051 1024–1036.
- LESKU, J.A. & SCHMIDT, M.H. (2022) Energetic costs and benefits of sleep. *Current Biology* **32**, R656– R661.
- LEVY, O., DAYAN, T., PORTER, W.P. & KRONFELD-SCHOR, N. (2019) Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? *Ecological Monographs* **89**, e01334.
- LIBOUREL, P.-A., ARTHAUD, S., BERGEL, A., BRESCIA, F., DIB, A., MASSOT, B., VIDAL, E. & WEISS, W. (2025)
 Bridging the gap between lab and field sleep studies: a proof-of-concept for studying wild
 rats in semi-captive environments. *SLEEP Advances* **6**, zpaf036.
- LIBOUREL, P.-A. & BARRILLOT, B. (2020) Is there REM sleep in reptiles? A key question, but still unanswered. *Current Opinion in Physiology* **15**, 134–142.

- LIBOUREL, P.-A., BARRILLOT, B., ARTHAUD, S., MASSOT, B., MOREL, A.-L., BEUF, O., HERREL, A. & LUPPI, P.-H. (2018) Partial homologies between sleep states in lizards, mammals, and birds suggest a complex evolution of sleep states in amniotes. *PLOS Biology* **16**, e2005982.
- LIBOUREL, P.-A. & HERREL, A. (2016) Sleep in amphibians and reptiles: a review and a preliminary analysis of evolutionary patterns. *Biological Reviews* **91**, 833–866.
- LIMA, S.L., RATTENBORG, N.C., LESKU, J.A. & AMLANER, C.J. (2005) Sleeping under the risk of predation.

 Animal Behaviour 70, 723–736.
- LOFTUS, J.C., HAREL, R., ASHBURY, A.M., NÚÑEZ, C.L., OMONDI, G.P., MUTTINDA, M., MATSUMOTO-ODA, A., ISBELL, L.A. & CROFOOT, M.C. (2024) Sharing sleeping sites disrupts sleep but catalyses social tolerance and coordination between groups. *Proceedings of the Royal Society B: Biological Sciences* **291**, 20241330.
- LOFTUS, J.C., HAREL, R., NÚÑEZ, C.L. & CROFOOT, M.C. (2022) Ecological and social pressures interfere with homeostatic sleep regulation in the wild. *eLife* **11**, e73695.
- LOPEZ, L.K., GIL, M.A., CROWLEY, P.H., TRIMMER, P.C., MUNSON, A., LIGOCKI, I.Y., MICHELANGELI, M. & SIH,
 A. (2023) Integrating animal behaviour into research on multiple environmental
 stressors: a conceptual framework. *Biological Reviews* **98**, 1345–1364.
- LOWRY, H., LILL, A. & WONG, B.B.M. (2013) Behavioural responses of wildlife to urban environments. *Biological Reviews* **88**, 537–549.
- LUTERMANN, H., VERBURGT, L. & RENDIGS, A. (2010) Resting and nesting in a small mammal: sleeping sites as a limiting resource for female grey mouse lemurs. *Animal Behaviour* **79**, 1211–1082 1219.
- MALUNGO, I.B., GRAVETT, N., BHAGWANDIN, A., DAVIMES, J.G. & MANGER, P.R. (2021) Sleep in two freeroaming blue wildebeest (*Connochaetes taurinus*), with observations on the agreement of polysomnographic and actigraphic techniques. *IBRO Neuroscience Reports* **10**, 142–152.
- MARKHAM, A.C., ALBERTS, S.C. & ALTMANN, J. (2016) Haven for the night: sleeping site selection in a wild primate. *Behavioral Ecology* **27**, 29–35.
- MARTIN, J.K. & MARTIN, A.A. (2007) Resource distribution influences mating system in the bobuck (Trichosurus cunninghami: Marsupialia). *Oecologia* **154**, 227–236.
- MASI, S., CIPOLLETTA, C. & ROBBINS, M.M. (2009) Western lowland gorillas (Gorilla gorilla) change their activity patterns in response to frugivory. *American Journal of Primatology* **71**, 91–100.
- MCBLAIN, M., JONES, K.A. & SHANNON, G. (2020) Sleeping Eurasian oystercatchers adjust their vigilance in response to the behaviour of neighbours, human disturbance and environmental conditions. *Journal of Zoology* **312**, 75–84.
- MCCLINTOCK, B.T. & MICHELOT, T. (2018) momentuHMM: R package for generalized hidden Markov models of animal movement. *Methods in Ecology and Evolution* **9**, 1518–1530.
- MCFARLAND, R., BARRETT, L., BONER, R., FREEMAN, N.J. & HENZI, S.P. (2014) Behavioral flexibility of vervet monkeys in response to climatic and social variability. *American Journal of Physical Anthropology* **154**, 357–364.

- MCGUIRE, L.P., JONASSON, K.A. & GUGLIELMO, C.G. (2014) Bats on a Budget: Torpor-Assisted Migration Saves Time and Energy. *PLOS ONE* **9**, e115724.
- MIGNOT, E. (2008) Why We Sleep: The Temporal Organization of Recovery. *PLOS Biology* 6, e106.
 Public Library of Science.
- MOHANTY, N.P., WAGENER, C., HERREL, A. & THAKER, M. (2022) The ecology of sleep in non-avian reptiles. *Biological Reviews* **97**, 505–526.
- MOORE, D., STOW, A. & KEARNEY, M.R. (2018) Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. *Journal of Animal Ecology* **87**, 660–671.
- MORTLOCK, E., SILOVSKÝ, V., GÜLDENPFENNIG, J., FALTUSOVÁ, M., OLEJARZ, A., BÖRGER, L., JEŽEK, M.,
 JENNINGS, D.J. & CAPELLINI, I. (2024) Sleep in the wild: the importance of individual effects
 and environmental conditions on sleep behaviour in wild boar. *Proceedings of the Royal* Society B: Biological Sciences 291, 20232115.
- NOWACK, J., STAWSKI, C. & GEISER, F. (2017) More functions of torpor and their roles in a changing world. *Journal of Comparative Physiology B* **187**, 889–897.
- OLEJARZ, A., FALTUSOVÁ, M., BÖRGER, L., GÜLDENPFENNIG, J., JARSKÝ, V., JEŽEK, M., MORTLOCK, E., SILOVSKÝ,
 V. & PODGÓRSKI, T. (2023) Worse sleep and increased energy expenditure yet no
 movement changes in sub-urban wild boar experiencing an influx of human visitors
 (anthropulse) during the COVID-19 pandemic. *Science of The Total Environment* 879,
 163106.
- O'Mara, M.T., Rikker, S., Wikelski, M., Ter Maat, A., Pollock, H.S. & Dechmann, D.K.N. (2017) Heart rate reveals torpor at high body temperatures in lowland tropical free-tailed bats. *Royal Society Open Science* **4**, 171359.
- ORDIZ, A., STØEN, O.-G., SÆBØ, S., SAHLÉN, V., PEDERSEN, B.E., KINDBERG, J. & SWENSON, J.E. (2013)
 Lasting behavioural responses of brown bears to experimental encounters with humans. *Journal of Applied Ecology* **50**, 306–314.
- OWEN-SMITH, N. & GOODALL, V. (2014) Coping with savanna seasonality: comparative daily activity patterns of African ungulates as revealed by GPS telemetry. *Journal of Zoology* **293**, 181–191.
- PARLIN, A.F., SCHAEFFER, P.J. & JEZKOVA, T. (2020) Modelling the effect of environmental temperatures, microhabitat and behavioural thermoregulation on predicted activity patterns in a desert lizard across its thermally diverse distribution. *Journal of Biogeography* **47**, 2315–2327.
- PAYNE, E., SINN, D.L., SPIEGEL, O., LEU, S.T., WOHLFEIL, C.K., GODFREY, S.S., GARDNER, M.G. & SIH, A. (2025) Personality, space use, and networks directly and indirectly explain tick infestation in a wild population of lizards. *Ecological Monographs* **95**, e70000.
- PODGÓRSKI, T., BAŚ, G., JĘDRZEJEWSKA, B., SÖNNICHSEN, L., ŚNIEŻKO, S., JĘDRZEJEWSKI, W. & OKARMA, H. (2013) Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. *Journal of Mammalogy* **94**, 109–119.

- POLLACK, L., MUNSON, A., SAVOCA, M.S., TRIMMER, P.C., EHLMAN, S.M., GIL, M.A. & SIH, A. (2022) Enhancing the ecological realism of evolutionary mismatch theory. *Trends in Ecology & Evolution* **37**, 233–245.
- PRICE, M. (2008) The impact of human disturbance on birds: A selective review. In *Too Close for Comfort: Conflicts in Human Wildlife Encounters* (eds D. LUNNEY, A. MUNN & W. MEIKLE).
 Royal Zoological Society, NSW.
- PYKE, G. (2019) Animal Movements An Optimal Foraging Theory Approach. In *Encyclopedia of Animal Behavior (Second Edition)* (ed J.C. CHOE), pp. 149–156. Oxford: Academic Press.
- 1149 RAAP, T., PINXTEN, R. & EENS, M. (2016) Artificial light at night disrupts sleep in female great tits
 1150 (*Parus major*) during the nestling period, and is followed by a sleep rebound.
 1151 *Environmental Pollution* **215**, 125–134.
- 1152 RATTENBORG, N.C., AMLANER, C.J. & LIMA, S.L. (2000) Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. *Neuroscience & Biobehavioral Reviews* **24**, 817–842.
- RATTENBORG, N.C., DE LA IGLESIA, H.O., KEMPENAERS, B., LESKU, J.A., MEERLO, P. & SCRIBA, M.F. (2017)
 Sleep research goes wild: new methods and approaches to investigate the ecology,
 evolution and functions of sleep. *Philosophical Transactions of the Royal Society B:*Biological Sciences 372, 20160251.
- RATTENBORG, N.C., MANDT, B.H., OBERMEYER, W.H., WINSAUER, P.J., HUBER, R., WIKELSKI, M. & BENCA, R.M. (2004) Migratory Sleeplessness in the White-Crowned Sparrow (Zonotrichia leucophrys gambelii). *PLOS Biology* **2**, e212.
- REINHARDT, K.D. (2020) Wild primate sleep: understanding sleep in an ecological context. *Current Opinion in Physiology* **15**, 238–244.
- RESPICIO, J.M.V., DELA CRUZ, K.C., HUGHES, A.C. & TANALGO, K.C. (2024) The behavioural costs of overcrowding for gregarious cave-dwelling bats. *Journal of Animal Ecology* **93**, 619–631.
- 1166 RIAL, R.V., AKAÂRIR, M., GAMUNDÍ, A., NICOLAU, C., GARAU, C., APARICIO, S., TEJADA, S., GENÉ, L., GONZÁLEZ,
 1167 J., DE VERA, L.M., COENEN, A.M.L., BARCELÓ, P. & ESTEBAN, S. (2010) Evolution of wakefulness,
 1168 sleep and hibernation: From reptiles to mammals. *Neuroscience & Biobehavioral Reviews*1169 **34**, 1144–1160.
- RIEDE, S.J., VAN DER VINNE, V. & HUT, R.A. (2017) The flexible clock: predictive and reactive homeostasis, energy balance and the circadian regulation of sleep-wake timing. *Journal of Experimental Biology* **220**, 738–749.
- RIO-MAIOR, H., NAKAMURA, M., ÁLVARES, F. & BEJA, P. (2025) Planning human-dominated landscapes for wolf conservation: the role of resting habitats. *Landscape Ecology* **40**, 178.
- RODRIGUEZ, A.V., FUNK, C.M., VYAZOVSKIY, V.V., NIR, Y., TONONI, G. & CIRELLI, C. (2016) Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep. *Journal of Neuroscience* **36**, 12436–12447.
- ROTH, T.C., RATTENBORG, N.C. & PRAVOSUDOV, V.V. (2010) The ecological relevance of sleep: the trade-off between sleep, memory and energy conservation. *Philosophical Transactions of the Royal Society B: Biological Sciences* **365**, 945–959.

1181	ROZIER-DELGADO, P., GAREL, M., ROUSSET, C., LOISON, A. & MOREL, B. (2025) Modelling endurance in
1182	free-ranging animals using tracking collars: insights from domestic hunting dogs. Journal
1183	of Experimental Biology 228 , jeb250259.

- RUF, T. & GEISER, F. (2015) Daily torpor and hibernation in birds and mammals. *Biological Reviews* **90**, 891–926.
- RUTSCHMANN, A., PERRY, C., LE GALLIARD, J.-F., DUPOUÉ, A., LOURDAIS, O., GUILLON, M., BRUSCH IV, G., COTE, J., RICHARD, M., CLOBERT, J. & MILES, D.B. (2024) Ecological responses of squamate reptiles to nocturnal warming. *Biological Reviews* **99**, 598–621.
- RYAN, M.A., WHISSON, D.A., HOLLAND, G.J. & ARNOULD, J.P.Y. (2013) Activity Patterns of Free-Ranging Koalas (Phascolarctos cinereus) Revealed by Accelerometry. *PLOS ONE* **8**, e80366.
- SAMSON, D.R., LOUDEN, L.A., GERSTNER, K., WYLIE, S., LAKE, B., WHITE, B.J., NUNN, C.L. & HUNT, K.D. (2019) Chimpanzee (Pan troglodytes schweinfurthii) Group Sleep and Pathogen-Vector Avoidance: Experimental Support for the Encounter-Dilution Effect. *International Journal of Primatology* **40**, 647–659.
- SARKAR, R. & BHADRA, A. (2022) How do animals navigate the urban jungle? A review of cognition in urban-adapted animals. *Current Opinion in Behavioral Sciences* **46**, 101177.
- SCHMIDT, M.H. (2014) The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. *Neuroscience & Biobehavioral Reviews* **47**, 122–153.
- SCHMIDT, M.H., SWANG, T.W., HAMILTON, I.M. & BEST, J.A. (2017) State-dependent metabolic partitioning and energy conservation: A theoretical framework for understanding the function of sleep. *PLOS ONE* **12**, e0185746.
- SCHNEIDER, T.C., KOWALCZYK, R. & KÖHLER, M. (2013) Resting site selection by large herbivores –
 The case of European bison (Bison bonasus) in Białowieza Primeval Forest. *Mammalian Biology* 78, 438–445.
- SHORES, C.R., DELLINGER, J.A., NEWKIRK, E.S., KACHEL, S.M. & WIRSING, A.J. (2019) Mesopredators change temporal activity in response to a recolonizing apex predator. *Behavioral Ecology* **30**, 1324–1335.
- SHORT, J., KINNEAR, J.E. & ROBLEY, A. (2002) Surplus killing by introduced predators in Australia evidence for ineffective anti-predator adaptations in native prey species? *Biological Conservation* **103**, 283–301.
- SHUKLA, I., KILPATRICK, A.M. & BELTRAN, R.S. (2021) Variation in resting strategies across trophic levels and habitats in mammals. *Ecology and Evolution* **11**, 14405–14415.
- SIEGEL, J.M. (2009) Sleep viewed as a state of adaptive inactivity. *Nature Reviews Neuroscience* **10**, 1214 747–753.
- SIEGEL, J.M. (2022) Sleep function: an evolutionary perspective. *The Lancet Neurology* **21**, 937– 946.
- SIH, A., FERRARI, M.C.O. & HARRIS, D.J. (2011) Evolution and behavioural responses to humaninduced rapid environmental change. *Evolutionary Applications* **4**, 367–387.
- SINGHAL, S., JOHNSON, M.A. & LADNER, J.T. (2007) The Behavioral Ecology of Sleep: Natural Sleeping Site Choice in Three Anolis Lizard Species. *Behaviour* **144**, 1033–1052.

- 1221 SMELTZER, E.A., STEAD, S.M., LI, M.F., SAMSON, D., KUMPAN, L.T. & TEICHROEB, J.A. (2022) Social 1222 sleepers: The effects of social status on sleep in terrestrial mammals. Hormones and Behavior 143, 105181.
- 1223
- 1224 SMITH, A.C., KNOGGE, C., HUCK, M., LÖTTKER, P., BUCHANAN-SMITH, H.M. & HEYMANN, E.W. (2007) Long-1225 term patterns of sleeping site use in wild saddleback (Saguinus fuscicollis) and mustached
- 1226 tamarins (S. mystax): Effects of foraging, thermoregulation, predation, and resource
- 1227 defense constraints. *American Journal of Physical Anthropology* **134**, 340–353.
- 1228 ST JULIANA, J.R. & MITCHELL, W.A. (2016) Optimal foraging behavior and the thermal neutral zone 1229 of Peromyscus leucopus during winter: A test using natural and controlled ambient
- 1230 temperatures. *Journal of Thermal Biology* **56**, 109–112.
- 1231 TAUFIQUE, S.K.T. & KUMAR, V. (2016) Differential activation and tyrosine hydroxylase distribution
- 1232 in the hippocampal, pallial and midbrain brain regions in response to cognitive
- 1233 performance in Indian house crows exposed to abrupt light environment. Behavioural
- 1234 *Brain Research* **314**, 21–29.
- 1235 TAYLOR, D., DANIELS, C.B. & JOHNSTON, G. (2016) Habitat selection by an arboreal lizard in an urban 1236 parkland: not just any tree will do. *Urban Ecosystems* **19**, 243–255.
- 1237 TAYLOR, E.N., DIELE-VIEGAS, L.M., GANGLOFF, E.J., HALL, J.M., HALPERN, B., MASSEY, M.D., RÖDDER, D.,
- 1238 ROLLINSON, N., SPEARS, S., SUN, B. & TELEMECO, R.S. (2021) The thermal ecology and
- 1239 physiology of reptiles and amphibians: A user's guide. Journal of Experimental Zoology
- *Part A: Ecological and Integrative Physiology* **335**, 13–44. 1240
- 1241 TERRIEN, J., PERRET, M. & AUJARD, F. (2011) Behavioral thermoregulation in mammals: a review. 1242 Frontiers in Bioscience 16, 1428-1444.
- 1243 TERRY, W. & GOLDINGAY, R.L. (2025) Does tree hollow volume influence use by small arboreal 1244 mammals? Australian Mammalogy 47, AM24039.
- TISDALE, R.K., LESKU, J.A., BECKERS, G.J.L., VYSSOTSKI, A.L. & RATTENBORG, N.C. (2018) The low-down 1245
- 1246 on sleeping down low: pigeons shift to lighter forms of sleep when sleeping near the
- 1247 ground. Journal of Experimental Biology 221, jeb182634.
- TONONI, G. & CIRELLI, C. (2014) Sleep and the Price of Plasticity: From Synaptic and Cellular 1248 1249 Homeostasis to Memory Consolidation and Integration. *Neuron* **81**, 12–34.
- TORRETTA, E., CORRADINI, A., PEDROTTI, L., BANI, L., BISI, F. & DONDINA, O. (2023) Hide-and-Seek in a 1250
- 1251 Highly Human-Dominated Landscape: Insights into Movement Patterns and Selection of
- 1252 Resting Sites of Rehabilitated Wolves (Canis lupus) in Northern Italy. Animals 13, 46.
- 1253 TOUGERON, K. & ABRAM, P.K. (2017) An Ecological Perspective on Sleep Disruption. The American 1254 *Naturalist* **190**, E55–E66.
- 1255 TURBILL, C. & STOJANOVSKI, L. (2018) Torpor reduces predation risk by compensating for the
- 1256 energetic cost of antipredator foraging behaviours. Proceedings of the Royal Society B:
- 1257 Biological Sciences 285, 20182370.
- Ulgezen, Z.N., Käpylä, T., Meerlo, P., Spoelstra, K., Visser, M.E. & Dominoni, D.M. (2019) The 1258
- 1259 preference and costs of sleeping under light at night in forest and urban great tits.
- 1260 Proceedings of the Royal Society B: Biological Sciences 286, 20190872.

- UNGUREAN, G., VAN DER MEIJ, J., RATTENBORG, N.C. & LESKU, J.A. (2020) Evolution and plasticity of sleep. *Current Opinion in Physiology* **15**, 111–119.
- VALLEJO-VARGAS, A.F., SHEIL, D., SEMPER-PASCUAL, A., BEAUDROT, L., AHUMADA, J.A., AKAMPURIRA, E.,
 BITARIHO, R., ESPINOSA, S., ESTIENNE, V., JANSEN, P.A., KAYIJAMAHE, C., MARTIN, E.H., LIMA,
 M.G.M., MUGERWA, B., ROVERO, F., ET AL. (2022) Consistent diel activity patterns of forest
 mammals among tropical regions. *Nature Communications* 13, 7102.
- VIDAN, E., ROLL, U., BAUER, A., GRISMER, L., GUO, P., MAZA, E., NOVOSOLOV, M., SINDACO, R., WAGNER, P., BELMAKER, J. & MEIRI, S. (2017) The Eurasian hot nightlife: Environmental forces associated with nocturnality in lizards. *Global Ecology and Biogeography* **26**, 1316–1325.
- WAGNER, E.L. & GLEESON, T.T. (1997) The influence of thermoregulation on behavioural recovery from exercise in a lizard. *Functional Ecology* **11**, 723–728.
- WALKER, J.M. & BERGER, R.J. (1980) Sleep as an Adaptation for Energy Conservation Functionally Related to Hibernation and Shallow Torpor. In *Progress in Brain Research* (eds P.S. McConnell, G.J. Boer, H.J. Romijn, N.E. Van De Poll & M.A. Corner), pp. 255–278. Elsevier.
- WAM, H.K., ELDEGARD, K. & HJELJORD, O. (2012) From overlooking to concealed: predator avoidance in an apex carnivore. *European Journal of Wildlife Research* **58**, 1001–1003.
- WARD, D. (1992) The Role of Satisficing in Foraging Theory. *Oikos* **63**, 312–317.
- Weinberger, I.C., Muff, S., Kranz, A. & Bontadina, F. (2019) Riparian vegetation provides crucial shelter for resting otters in a human-dominated landscape. *Mammalian Biology* **98**, 179–1280 187.
- WHITFORD, M. & KLIMLEY, A.P. (2019) An overview of behavioral, physiological, and environmental sensors used in animal biotelemetry and biologging studies. *Animal Biotelemetry* **7**, 26.
- WILLIAMS, H.J., SHIPLEY, J.R., RUTZ, C., WIKELSKI, M., WILKES, M. & HAWKES, L.A. (2021) Future trends in measuring physiology in free-living animals. *Philosophical Transactions of the Royal* Society B: Biological Sciences **376**, 20200230.
- WILLIAMSEN, L., PIGEON, G., MYSTERUD, A., STIEN, A., FORCHHAMMER, M. & LOE, L.E. (2019) Keeping cool in the warming Arctic: thermoregulatory behaviour by Svalbard reindeer (Rangifer tarandus platyrhynchus). *Canadian Journal of Zoology* **97**, 1177–1185.
- WILLISCH, C.S. & INGOLD, P. (2007) Feeding or Resting? The Strategy of Rutting Male Alpine Chamois. *Ethology* **113**, 97–104.
- WITTEMYER, G., KEATING, L.M., VOLLRATH, F. & DOUGLAS-HAMILTON, I. (2017) Graph theory illustrates spatial and temporal features that structure elephant rest locations and reflect risk perception. *Ecography* **40**, 598–605.