1	Proportion of native plants is a key predictor of pollinator richness in urban greenspaces
2	
3	Thomas Lilkendey ¹ , Brittany M. Mason ¹ , Nadja Pernat ^{2,3} , Marina Marquis ¹ , Jacob S. Francis ⁴ ,
4	Corey T. Callaghan ^{1*}
5	
6	¹ Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education
7	Center, Institute of Food and Agricultural Sciences, University of Florida
8	² Institute of Landscape Ecology, University of Münster, Münster, Germany
9	³ Centre for Integrative Biodiversity Research and Applied Ecology (CIBRA), University of
10	Münster, Münster, Germany
11	⁴ Department of Biological Sciences, Florida Atlantic University, Davie, FL
12	
13	*Corresponding author: <u>c.callaghan@ufl.edu</u>
14	
15	*** Note that this is a pre-print version. The final accepted and formatted version is
16	available here, published in Urban Ecosystems: https://doi.org/10.1007/s11252-025-01854-9
17	<mark>***</mark>
18	
19	
20	

Abstract

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Pollinator declines are caused by a multitude of factors including pollution, global warming, disease, urbanization, deforestation, and habitat loss. Given the global increase in urbanization, identifying ways to support pollinators in cities has become an important conservation priority. Here, we investigate the effect of urbanization on pollinator richness. Using >100,000 iNaturalist observations collected between 2014 and 2024 across 129 urban greenspaces in Florida, U.S.A., we investigate how native and non-native angiosperm richness, along with greenspace-level characteristics, influence pollinator richness. Pollinator richness was positively associated with overall angiosperm richness, regardless of origin. However, a higher proportion of native angiosperm species was associated with increased pollinator richness, whereas a higher proportion of non-native species was associated with decreased pollinator richness. Among greenspace-level landscape characteristics, pollinator species richness had a significant positive relationship with percent of impervious surface cover ($\beta = 0.0044$, p = 0.010), percent tree cover $(\beta = 0.0047, p = 0.001)$, and greenspace size $(\beta = 0.0282, p = 0.037)$, but was not significantly associated with grass cover ($\beta = 0.0020$, p = 0.391) or percent water cover ($\beta = -0.00005$, p = 0.000050.985). Our results suggest that greenspace managers should prioritize enhancing floral richness —especially of native species—to support greater pollinator richness. Increasing tree cover and maintaining large greenspaces within cities may also contribute positively to pollinator richness. Leveraging broad-scale participatory citizen science data provides an avenue to further monitor pollinator richness within urban greenspaces.

41

- Keywords: Citizen Science, Community Science, iNaturalist, Pollination, Pollinators Urban
- 43 Ecology, Angiosperms

Introduction

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

Pollinating insects are essential for ecosystem stability and agricultural productivity (Rader et al. 2016) but are declining in abundance (Wagner et al. 2021; Cornelisse et al. 2025). Such declines can disrupt plant communities, leading to broader ecological instability and reduced resilience in both natural and human-modified landscapes (Ramos-Jiliberto et al. 2020; Kawahara et al. 2021; Murphy et al. 2022). Pollinator declines are often linked to anthropogenic disturbances, such as habitat loss and fragmentation (Vanbergen 2013; Harrison and Winfree 2015), making urbanization a potential threat to pollinator richness. Urbanization tends to reduce both species richness and abundance of pollinators (Liang et al. 2023). But the varied nature of urban environments allows for a diverse range of native and non-native plants to grow, potentially increasing the range of pollinator species and community compositions that can be supported in urban ecosystems (Lowe and Foltz-Sweat 2017). Despite the potential negative impacts of urbanization, urban greenspaces (e.g., parks, nature reserves) can offer a sanctuary for native plants and pollinators in an otherwise hostile environment (Mata et al. 2021; Lepczyk et al. 2017). Urban greenspaces present unique conservation challenges (Aronson et al. 2017), as they need to balance the needs of public use and conservation (Miguez et al. 2025). For example, unmanaged or private urban and suburban natural areas can facilitate the introduction of non-native plants into urban greenspaces, either unintentionally through natural spread or intentionally through the planting of ornamental plants. However, pollinators do not always exhibit strong preferences for native plants compared to nonnative plants (Harrison and Winfree 2015). Where native plants provide limited floral resources such as nectar and pollen later in the growing season, late-flowering exotic species can help

sustain native pollinator populations (Staab et al. 2020). Additionally, greenspace size has been documented be tied with species richness in some pollinator species due to increased habitat heterogeneity and resource availability (Hennig and Ghazoul, Zaninotto et al. 2023). However, other pollinator groups, such as bumble bees (Hymenoptera), which are considered more urbantolerant, show no association between their abundance or diversity and greenspace size (Ulrich and Sargent 2025). Because of discrepancies in pollinator response to the outcome of management decisions such as plant community richness (e.g., Blaauw and Isaacs 2014; Dylewski et al. 2020) or greenspace size (e.g., Ulrich and Sargent 2025), understanding the ecological drivers of pollinator richness across broad spatial scales remains an important knowledge gap.

Due to their relatively high biodiversity and proximity to populated areas, urban greenspaces provide the public with ample opportunities to engage in citizen science (also referred to as community science or participatory science). Since it is often expensive and time-consuming to gather broad-scale pollinator richness data in the field, citizen science data provides a potential alternative to estimate pollinator richness among many urban greenspaces. Such citizen science data have been used for studies of pollinator-friendly gardens (Anderson et al. 2020), monitoring of pollinator services (Birkin and Goulson 2015), and citizen science project methods and participant motivations themselves (Bloom and Crowder 2020). Data from one of the most successful citizen science platforms—iNaturalist—are increasingly used in biodiversity research (Mason et al. 2025) and provide an opportunity to further understand pollinator richness among urban greenspaces. While iNaturalist data relies on opportunistic data collection and is less

structured than field data, it can provide a larger spatial scope to study ecological trends (Díaz-Calafat et al. 2024).

Our primary aim was to test how native and non-native angiosperm richness and greenspace-level landscape characteristics impact pollinator richness in urban greenspaces (Figure 1). First, we tested the hypothesis that angiosperm richness in urban greenspaces increases pollinator richness and that this impact depends on plant origin (native vs. non-native). Second, we examined how attributes of urban greenspaces (i.e., grass cover, impervious surface cover, tree cover, water cover, and greenspace size) relate to pollinator richness. Our work aims to provide evidence supporting the usefulness of participatory citizen science data for management of pollinator richness in urban ecosystems.

Methods

iNaturalist data and pollinators

iNaturalist is a citizen science platform accessible through a website (inaturalist.org) or application (iNaturalist) that allows users across the globe to upload visual or auditory observations of organisms. Observations are submitted for community review, where other users help identify recorded organisms. Observations are deemed "Research Grade", when it contains complete metadata (e.g., date, location, media evidence) following the Data Quality Assessment (iNatHelp 2024) and have more than two-thirds agreement on identification at the species level. We obtained iNaturalist data using the iNaturalist API on June 27th, 2025. We used the iNaturalist API because it provides detailed taxonomic resolution for each species, allowing us to filter observations by Superfamily and Subfamily. The original dataset was made up of

1,772,634 Research Grade iNaturalist observations of pollinators and angiosperms in Florida, U.S.A. Each observation in our dataset had an associated scientific name, date of observation, and location (latitude and longitude). Pollinators were defined as bees and apoid wasps (Superfamily Apoidea), bee flies (Family Bombyliidae), fruit and flower chafers (Subfamily Cetoniinae), butterflies and moths (Order Lepidoptera), and flower longhorn beetles (Subfamily Lepturinae). Angiosperms were defined as flowering plants from the subphylum Angiospermae. In addition, we obtained a list of non-native angiosperm species from iNaturalist by downloading species information via the API and filtering for "introduced" establishment means (iNatHelp 2025). We joined this list to our main dataset by scientific name to assign native and non-native status to each angiosperm species. We used iNaturalist observations from January 1, 2014, when the iNaturalist data is most reliable (Jacobs and Zipf 2017), to June 26, 2025, when the API was accessed.

Study area and site selection

Florida, located in the southeastern United States, is a coastal, humid-subtropical state with a population of over 21.5 million people (United States Census Bureau 2020). It is one of the nation's fastest growing states, with large urban developments along its coastlines and interior (U.S. Census Bureau 2024). Our study areas are "urban greenspaces", defined as nature preserves, multipurpose greenspaces, nature trails, and other natural areas used by people within the urban system. We obtained greenspace boundaries from ParkServe (Trust for Public Land 2025), a nationwide dataset of parks and natural areas in the U.S. To isolate urban greenspaces, we filtered the ParkServe data to include only those located within urban areas as defined by the U.S. Census Bureau (2023) for Florida. This filtering resulted in a final dataset of 3,072 urban

greenspaces. We restricted our original iNaturalist dataset to only observations in greenspaces (N = 182,718). We then removed all greenspaces which had less than 50 observations of either pollinators or angiosperms, leaving a final dataset of 106,171 observations within 129 urban greenspaces (Figure 1). Qualitative exploration of observation cutoffs showed that 50 observations for both pollinators and angiosperms remove the high variability in species richness values in parks with fewer observations while maintaining a meaningful sample size (Table A2 – A3).

Park-level variables

We used remote sensing data from Google Earth Engine (Gorelick et al. 2017) to derive habitat characteristics within each urban greenspace. To represent land use and human influence, we calculated impervious surface cover, grass, trees, and water using the Dynamic World land use and cover datasets (10-meter resolution; Brown et al. 2022). While the Dynamic World data set contains nine landcover types (other habitats include: flooded vegetation, snow and ice, bare, crops, and scrub and shrub), we selected these four as we expected them to have the greatest influence on pollinator richness and because other habitat categories were rare in urban greenspaces, defined occurring in less than half of the urban greenspaces examined (see Table A4). Within each greenspace polygon, we used a pixel-based histogram reducer to count the number of 100 m² landcover pixels belonging to each habitat type and calculated the percentage of each type relative to the total pixels in that polygon.

Statistical analysis

Our primary response variable was species richness, either pollinator richness or angiosperm richness measured as the number of unique species observed within each urban greenspace. While we acknowledge that iNaturalist data will not represent the true species richness values (i.e., absolute value), we assume that the data capture relative differences in species richness among urban greenspaces allowing us to infer true patterns. The ability of presence-only citizen science data to capture species richness patterns has been previously shown (Callaghan et al. 2020; Roberts et al. 2022). We additionally account for sampling effort differences in our model structure to ensure sampling differences among urban greenspaces are accounted for (see below).

To model the relationship between pollinator and angiosperm richness, we used generalized additive models (GAMs) using the mgcv package in R (Wood 2017), which allowed us to include a thin-plate regression spline for latitude and longitude to control for spatial structure (Wood 2003) and account for varying patterns throughout the state of Florida that may be due to items not of interest (e.g., known species richness trends with latitude). To do this, we fit two GAMs. The first GAM included angiosperm richness as the response variable, and the log-transformed number of angiosperm observations, to address skewness and to account for uneven sampling effort, and spatial smooth (latitude and longitude) as predictors. We used this model to predict angiosperm richness after controlling for number of observations and spatial variation, using the predict gam function from the mgcv package (Wood 2017). The second GAM included pollinator richness as the response variable with the predicted angiosperm richness from the first model, the log-transformed number of pollinator observations, and a spatial smooth as predictor variables. Both models used a negative binomial error distribution to account for overdispersion and were fit using the REML method (Wood 2011). Log-transformed sampling effort and

predicted angiosperm richness were included as linear terms, while latitude and longitude were modeled as a thin-plate spline with a basis dimension (k) set to 50; selected to balance flexibility and reduce model complexity. Prior to modeling, we assessed multicollinearity and found no concerning correlations among predictors. We also evaluated model fit using the gam.check() function from the mgcv package to examine residual distributions and the relationship between response versus fitted values. To assess how much angiosperm richness improved model fit, we used Akaike Information Criterion (AIC) values to compare the resulting model to the null model. To evaluate whether native versus non-native angiosperm richness differentially influenced pollinator richness, we repeated the analysis separately for native and non-native angiosperm richness. In each case, we restricted the dataset to greenspaces with more than 50 angiosperm observations from the relevant group to ensure sufficient sampling coverage. We found that this threshold provided the best balance between sample size and statistical inference. This resulted in a sample size of 123 greenspaces for the native angiosperm models, and 104 greenspaces for the non-native angiosperm models. We repeated the analysis with proportion of native angiosperm richness and number of pollinator observations as predictor variables with pollinator richness as the response variable (N = 123). Further, to assess the importance of individual pollinator groups (defined as Superfamily Apoidea, Family Bombyliidae, Subfamily Cetoniinae, Order Lepidoptera, Subfamily Lepturinae, butterfly species [family Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae], and moth species [Lepidoptera and not family Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae]) on the observed trends, we repeated the described analyses using species richness calculated for each group that had at least 50 observations in multiple greenspaces.

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

To examine the influence of greenspace-level covariates on pollinator richness, we fit GAMs with a negative binomial family. We modeled pollinator richness as the response variable and percent grass cover, percent impervious surface cover, percent tree cover, percent water cover, and greenspace size for each greenspace as linear predictor variables, along with the logtransformed number of pollinator observations to control for sampling effort. We additionally modeled latitude and longitude using a thin-plate spline with a basis dimension (k) set to 50 to control for geographical variation in pollinator richness. Greenspace size was log-transformed due to its highly skewed distribution. We first ran a full model including all predictor variables, sampling effort, and geographic location. We then fit a null model including only the sampling effort and geographic location, followed by a set of five models, each including one of the parklevel covariates, sampling effort, and geographic location. For all models, we evaluated model fit using the gam.check() function from the mgcv package to examine residual distributions and the relationship between response versus fitted values and found good model fit. We visualized the predicted relationship from each single-variable model and compared them using AIC values. To determine pollinator group-level responses to environmental covariates, we repeated the described analyses using species richness calculated for each group. For group-level analyses, the basis dimension for latitude and longitude was adjusted to sample size -1 for groups with a sample size of less than 50.

221

222

220

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

- Data analysis and availability
- All data analysis was conducted in R (R Core Team 2025). All data and code to reproduce our
- analyses are available here: https://doi.org/10.5281/zenodo.17517393.

226 Results

247

248

227	Dataset Summary
228	Our dataset spans over 10 years, from January 1, 2014, to June 26, 2024. Due to the exponential
229	increase in user uploaded iNaturalist observations, most observations came from recent years
230	(median = September 25, 2022; SD = 751 days). Of the 106,171 observations, 82,453 (77.7%)
231	were angiosperms and 23,718 (22.3%) were pollinators. These included 773 unique pollinator
232	species and 2,008 unique angiosperm species. Pollinator richness per greenspace ranged from 13
233	to 220 species (mean = 48.5 ± 29.0 SD), while angiosperm richness ranged from 5 to 448 species
234	per greenspace (mean = 68.9 ± 58.1 SD). Of the angiosperms, $63,882$ were native (77.5%) and
235	18,571 were non-native (22.5%). Of the pollinators, most were in the order Lepidoptera
236	(observations = 20,619, species = 648), followed by superfamily Apoidea (observations = 2,635,
237	species = 87), family Bombyliidae (observations = 248, species = 25), subfamily Cetoniinae
238	(observations = 182, species = 7), and subfamily Lepturinae (observations = 34, species = 6) (see
239	Table A1 for subfamily-level composition of dataset). In Lepidoptera, most observations were
240	from butterflies ($N = 15,515$ vs. $5,104$ for moths), whereas most species belonged to moths ($N = 15,515$ vs. 100 for moths).
241	528 vs. 120 for butterflies). There were 129 urban greenspaces that met our filtering criteria,
242	which encompass approximately 100,641 ha (389 mi²). Our study area represents 0.44% of
243	Florida urban regions (87,958 mi²). For the group-level analysis, we found that only Lepidoptera
244	and Apoidea had enough data to calculate species richness in parks, with sample sizes of 113 and
245	13 parks, respectively. For the subgroups, we had a sample size of 80 parks for butterflies and 28
246	parks for moths.

Relationship Between Angiosperm and Pollinator Species Richness

Angiosperm richness was positively associated with pollinator richness and models including it fit well (adjusted $R^2 = 0.826$; deviance explained = 81.6%), though much of this fit was due to sampling effort and spatial structure alone (adjusted $R^2 = 0.782$; deviance explained = 79.1%). Nonetheless, including angiosperm richness improved model performance (Δ AIC = 7.84), and this variable was a significant predictor of pollinator richness (Estimate = 0.001 ± 0.0003 SE, P < 0.001; Figure 2). Sampling effort also had a strong positive effect on both angiosperm richness (Estimate = 0.52 ± 0.02 SE, P < 0.001) and pollinator richness (Estimate = 0.48 ± 0.03 SE, P < 0.001; Figure S1).

The proportion of native angiosperm species in a greenspace was positively related to pollinator richness with models indicating that a 10-percentage-point increase in the proportion of native plant species within a park is associated with an approximate 20% increase in expected pollinator richness. (Estimate = 1.83 ± 0.48 SE, P < 0.001; Figure 2B). This model fit the data well (adjusted $R^2 = 0.826$; deviance explained = 82.1%), but much of this fit was attributable to sampling effort and spatial structure (adjusted $R^2 = 0.782$; deviance explained = 79.1%); however, the model including the proportion of native angiosperms outperformed the null model $(\Delta AIC = 9.53)$, indicating that the proportion of native plants in a park adds explanatory power over spatial effects and sampling alone.

We additionally found a positive relationship between the native angiosperm richness and pollinator richness (Estimate = 0.001 ± 0.0004 SE, P = 0.002; Figure S2). This model also fit the data well (adjusted $R^2 = 0.822$; deviance explained = 80.7%), although much of the variation was explained by sampling effort and spatial structure alone (adjusted $R^2 = 0.790$; deviance explained

272 = 79.1%). Nevertheless, including native angiosperm richness improved model performance

 $(\Delta AIC = 7.20)$, and it was a significant predictor of pollinator richness. Sampling effort remained

a strong positive predictor of both native angiosperm richness (Estimate = 0.52 ± 0.02 SE, P <

The proportion of non-native angiosperm species had a significant, negative relationship with

0.001) and pollinator richness (Estimate = 0.50 ± 0.03 SE, P < 0.001).

276

277

278

279

280

281

283

273

274

275

pollinator richness with models indicating that a 10-percentage-point increase in the proportion of non-native plant species within a park is associated with an expected 16% decrease in pollinator richness (Estimate = -1.73 \pm 0.48 SE, P < 0.001; Figure 2C), and the model fit the data well (adjusted $R^2 = 0.815$; deviance explained = 81.8%). Much of this fit was attributable to sampling effort and spatial structure (adjusted $R^2 = 0.782$; deviance explained = 79.1%);

282

however, the model including the proportion of non-native angiosperms outperformed the null

284 model (\triangle AIC = 8.00), indicating additional explanatory power.

285

286

287

288

289

290

291

292

293

294

While a higher proportion of non-native species was associated with decreased pollinator richness, the opposite was true for raw non-native richness which had a weak positive association with pollinator richness. Non-native angiosperm richness also demonstrated good fit (adjusted $R^2 = 0.791$; deviance explained = 81.0%), though much of this fit was also explained by sampling effort and spatial structure alone (adjusted $R^2 = 0.775$; deviance explained = 80.3%). The model including non-native angiosperm richness showed only slight improvement compared to the null model ($\triangle AIC = 1.87$), with a model weight of 0.69. Non-native angiosperm richness showed moderate evidence of a significant positive association with pollinator richness (Estimate $= 0.003 \pm 0.001$ SE, P = 0.045; standardized estimate = 0.11; Figure S2). Sampling effort

continued to be a strong predictor of non-native angiosperm richness (Estimate = 0.53 ± 0.03 SE,

296 P < 0.001) and pollinator richness (Estimate = 0.50 ± 0.03 SE, P < 0.001).

297

When we repeated this analysis for taxonomic groups (Figure S3 – S6, we found a significant positive trend between Lepidoptera species richness and angiosperm species richness (Estimate = 0.001 ± 0.0004 SE, P = 0.004) and proportion of native angiosperm species (Estimate = 1.90 ± 0.59 SE, P = 0.001). We found a significant negative trend between Lepidoptera species richness and proportion of non-native species (Estimate = -1.87 ± 0.50 SE, P = 0.001). However, within the butterfly and moth subgroups, none of the angiosperm metrics were significantly related to

305

306

308

309

310

311

304

Greenspace-level Covariates and Pollinator Species Richness

307 In the full model which contained all predictor variables, we found a significant positive

species richness. Similarly, no significant relationships were found for Apoidea species.

relationship between pollinator richness and percent impervious surface cover (Estimate = 0.004

 ± 0.002 SE, P = 0.010), percent tree cover (Estimate = 0.005 ± 0.001 SE, P = 0.001), and

greenspace size (Estimate = 0.028 ± 0.013 SE, P = 0.037; Figure 3). We found no significant

relationship between pollinator richness and percent grass cover (Estimate = 0.002 ± 0.002 SE, P

312 = 0.391) or percent water cover (Estimate = -0.00005 ± 0.002 SE, P = 0.985).

313

314

315

316

317

The AIC comparisons indicated that the full model, which included all predictor variables,

performed best (AIC = 980.28), compared to the second-best model, which included only percent

tree cover (AIC = 982.30). The full model showed high explanatory power (adjusted $R^2 = 0.797$;

deviance explained = 81.6%). However, much of this was attributable to sampling effort and

spatial distribution, as the null model—including only these factors—also explained a large portion of the variance (adjusted $R^2 = 0.770$; deviance explained = 77.7%). Nevertheless, the full model significantly improved fit compared to the null model ($\Delta AIC = 13.29$).

When we repeated this analysis taxonomic groups (Figure S7 – S10), we found a similarly positive relationship in Lepidoptera species richness and impervious surface cover (Estimate = 0.006 ± 0.002 SE, P = 0.003), tree cover (Estimate = 0.005 ± 0.002 SE, P = 0.002), and greenspace size (Estimate = 0.035 ± 0.032 , P = 0.023), and a non-significant relationship with grass cover (Estimate = 0.002 ± 0.003 SE, P = 0.561) and water cover (Estimate = 0.0009 ± 0.003 SE, P = 0.729). However, no significant trends were observed for the butterfly and moth subgroups, nor for Apoidea, across any land cover variables.

Discussion

Our analysis of 129 urban greenspaces across Florida demonstrates that plant richness, and particularly native plant richness, is a key predictor of pollinator richness in urban environments. While pollinators in our study are mostly represented by butterflies and moths, models indicated that angiosperm richness, regardless of plant location of origin (i.e., native or non-native) increased pollinator richness, but there was clear evidence that parks with proportionally more non-native species have lower pollinator diversities. This is illustrated by looking at our "most native" and "most non-native" parks in the data set which models predicted should have ~100 pollinator species vs <50 species (Figure 2). Among environmental factors, tree cover was most strongly associated with pollinator richness, while greenspace size showed modest positive effects. Impervious surface cover also showed a positive relationship with pollinator richness,

likely reflecting the benefits of moderate disturbance or a greater richness of habitats being sampled by iNaturalist users. Taken together, our results support existing conservation goals for pollinators which prioritize planting flowering plants (Morales and Traveset 2009; Kral-O'Brien et al. 2021) and support the important goal of maintaining large urban greenspaces with a high proportion of tree cover (Ulrich and Sargent 2025).

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

341

342

343

344

345

Non-native angiosperm richness was a weak but positive predictor of pollinator richness. This suggests that removing non-native species without concurrent increases in native plant richness could harm pollinator communities, at least in the short term. For example, some non-native perennials and even weedy species have been shown to support a wide range of pollinators, including during seasonal gaps in native floral availability (Lowenstein et al. 2018; Koyama et al. 2018; Frankie et al. 2019; Seitz et al. 2020). Non-native plant species may also support more generalist species interactions and network nestedness (Zaninotto et al. 2023). This suggests that management strategies should emphasize replacement rather than simple removal with a focus on maintaining richness while shifting communities toward native-dominated floras. Our results suggest that restoration should focus on parks that have relatively low plant richness where targeted plantings of native species could have outsized impacts on pollinators, because those additions represent a large proportional increase in native plants. This adds to an increasing body of evidence that native plants support pollinator richness (Morales and Traveset 2009; Fukase and Simons 2016; Kral-O'Brien et al. 2021) and that managing for diverse plant communities is paramount (Daniels et al. 2020; Watson et al. 2022). Together, these results highlight that managing pollinator richness requires balancing native versus non-native plantings. Diverse plant communities with a variety of foraging and pollination niches support a greater number of

pollinator species (Frankie et al. 2019), and non-native gardens can increase those niches (e.g., Staab et al. 2020) albeit not as effectively as native plants.

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

364

365

Aside from plant richness, we found localized, within-greenspace characteristics were associated with increased pollinator richness, including tree cover, impervious surface cover, and greenspace size. The strong effect of tree cover aligns with prior work showing that forested areas provide resources such as nesting sites and floral availability for bees and other pollinators (Ulyshen et al. 2023, Mola et al 2021a, Mola et al 2021b). In urban ecosystems where surrounding forests are often limited, tree cover within greenspaces may be especially important for supporting pollinator communities. We further speculate that forested parts of greenspaces may also provide bare ground nesting habitat (e.g., for bees) and larval habitat, particularly in larger greenspaces, leading to the positive effect size we found in our analysis (Fortuin and Gandhi 2021; Habel et al. 2022). The positive effect of impervious surface cover was surprising, given that many studies report negative associations with pollinator richness (Gerner, 2020; Kaiser & Resasco 2024). However, urban pavements with their cracks, interstices and break lines, were reported to provide novel habitats to many ground-dwelling insects, including wild bees and wasps (Weber et al. 2024). In addition, some pollinators, such as large-bodied bees, can be positively associated with impervious surfaces (Bennett & Lovell 2019). It is also possible that impervious surface cover reflects habitat heterogeneity, encompassing residential yards, gardens, or other mixed spaces that support pollinators (Larson et al. 2022; Liang et al. 2023; Kostro-Ambroziak et al. 2025). Pollinators may be able to benefit more from this habitat heterogeneity in larger parks where their remain sufficient patches of forested or natural vegetation. Further, parks with higher impervious surface cover may be less prone to pesticide

use. Despite its limitations in capturing real-world heterogeneity, impervious surface cover measures are correlated with pollinator richness when compared to lower-impervious-coverage areas such as intensive agriculture (Wenzel et al 2020) and shifts in pollinator functional richness favors some pollinator life histories (Ayers and Rehan 2021). This result, however, may also reflect sampling bias in citizen science data, as the amount of impervious surface cover in urban greenspaces may influence where observers can access and record pollinators within an urban greenspace. Finally, the positive effect of greenspace size is consistent with ecological theory and empirical evidence, likely reflecting greater habitat heterogeneity and foraging resources in larger parks (Zaninotto et al. 2023; Hennig & Ghazoul 2011).

In contrast to the above variables, we found no significant relationship between pollinator richness and water or grass cover. Water features may provide localized benefits for individual pollinators, but they were not a key predictor of pollinator richness across our dataset. This may be partially due to pesticide use, where higher water cover in certain parks could result in more pesticide applications to control mosquitos (Florida Department of Agriculture and Consumer Services 2025). Additionally, grassland cover—derived from the Dynamic World dataset—likely includes a mix of natural meadows and manicured lawns, with the latter dominating urban greenspaces. Because lawn management (e.g., mowing frequency, pesticide use, vegetation richness) strongly shapes ecological value to pollinators (Brittain et al. 2010; Lerman et al. 2023; Morrison & Bright 2025), and these attributes were not captured in our analysis, we speculate that this may be why we did not detect a significant association between grassland cover and pollinator richness.

Our pollinator dataset mainly consisted of Lepidoptera (83.8% of species and 86.9% of observations), and we were unable to find significant trends outside of this group, which is likely due to the small sample size. Such bias towards Lepidoptera has been documented previously (Di Cecco et al. 2021; Díaz-Calafat et al. 2024) and can be attributed to their relative ease of observation and photography, as well as their charismatic appeal (Fischer et al. 2021). Bias is also evident in which insect observations reach Research Grade on iNaturalist. Small insects are less frequently identified to species, likely due to poor photograph quality, the need for diagnostic characteristics such as genitalia, or the requirement of dissection or DNA analysis (Di Cecco et al. 2021; Díaz-Calafat et al. 2024). Although previous research by Segre et al. (2023) has shown that Lepidoptera richness is a poor proxy for overall pollinator richness, they found that pollinator groups exhibited similar correlations with flower richness. Thus, while our observed relationship between pollinator and angiosperm richness may be generalizable across less-represented pollinator groups, the specific environmental covariates driving these patterns may vary depending on the present taxa. Given the bias towards Lepidoptera and their reliance on host plants, future work could examine the relationship between Lepidoptera richness and host plant richness. Citizen scientists could focus efforts on additionally documenting host plants to make this research possible. Our study is geographically (i.e., the entire state of Florida) and taxonomically broad, providing

427

428

429

430

431

432

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

Our study is geographically (i.e., the entire state of Florida) and taxonomically broad, providing generalizable patterns by encompassing over 106,000 observations across 129 urban greenspaces throughout Florida. This was possible by leveraging broad-scale citizen science data from iNaturalist. However, there are biases and data limitations. Given our study's focus on urban greenspaces, where observation density is likely driven by accessibility and infrastructure, there

(Geldmann et al. 2016). Although we did account for sampling effort in our analysis, we could not account for bias towards recording certain species of pollinators or angiosperms, but we expect such biases to be consistent across the urban greenspaces (i.e., participant-level biases would be consistent across Florida). To reduce structural biases in the data, and increase the usability of such citizen science data, park managers can include signage or posters at the entrance to greenspaces encouraging users of citizen science platforms such as iNaturalist to use dedicated citizen science projects when possible (Deacon et al. 2023). Increasing the availability and visibility of citizen science initiatives within parks can improve the quality and utility of biodiversity data (Meeus et al. 2023), allowing for a growing dataset to be collected over time, and potentially allowing for the monitoring of restoration success in the future by tracking changes in pollinator and floral richness. Future work could build on our broad-scale approach by incorporating trait-based plant characteristics—such as nectar production or floral morphology—that more directly link floral resources to pollinator foraging preferences (e.g., Zeng et al. 2023). Such fine-scale data would complement our richness-based analysis by providing insight into the functional relationships that structure urban pollinator communities. Additionally, we did not explore landscape-level factors that affect pollinator richness. One such factor could be human population density, which has been shown to affect pollinator behavior (Persson et al. 2022). Another is pesticide application or drift, given that pesticides have been

may be some biases in which urban greenspaces, and to what extent, they are sampled

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

documented in pollen samples within Florida urban parks (Démares et al. 2022). Further, habitat connectivity has been described to be positively correlated with pollinator richness and abundance (Graffigna et al. 2024). Future research could explore how landscape-level factors,

such as human population density, pesticide drift, or habitat connectivity, influence the relationship between pollinator and angiosperm richness.

Conclusion

Using a large, spatially explicit citizen science dataset, we found that angiosperm richness, greenspace size, and landscape management were key drivers of pollinator richness. Our results offer a clear takeaway for urban greenspace managers, suggesting they should consider (1) planting more flowers, preferably native species which will have a more reliable impact on increasing pollinator richness, and (2) maintaining a richness of habitats, including forested, grassland, and mixed-use areas that help maximize pollinator richness. Our results also illustrate how citizen science can help understand and track pollinators in urban greenspaces.

46/	References
468	Anderson HB, Robinson A, Siddharthan A, et al (2020) Citizen science data reveals the need for
469	keeping garden plant recommendations up-to-date to help pollinators. Sci Rep 10:20483.
470	https://doi.org/10.1038/s41598-020-77537-6
471	
472	Aronson MF, Lepczyk CA, Evans KL, Goddard MA, Lerman SB, MacIvor JS, Nilon CH, Vargo
473	T (2017) Biodiversity in the city: key challenges for urban green space management.
474	Front Ecol Environ 15:189–196. http://www.jstor.org/stable/44216219
475	
476	Ayers, A.C. and Rehan, S.M., 2021. Supporting bees in cities: how bees are influenced by local
477	and landscape features. Insects, 12(2), p.128.
478	
479	Bennett AB, Lovell S (2019) Landscape and local site variables differentially influence
480	pollinators and pollination services in urban agricultural sites. PLoS One 14:e0212034.
481	https://doi.org/10.1371/journal.pone.0212034
482	
483	Birkin L, Goulson D (2015) Using citizen science to monitor pollination services. Ecol Entomol
484	40:3-11. https://doi.org/10.1111/een.12227
485	
486	Blaauw BR, Isaacs R (2014) Larger patches of diverse floral resources increase insect pollinator
487	density, diversity, and their pollination of native wildflowers. Basic Appl Ecol 15:701-
488	711. https://doi.org/10.1016/j.baae.2014.10.001
489	

490	Black SH, Shepherd M, Vaughan M (2011) Rangeland management for pollinators. Rangelands
491	33:9–13. http://www.jstor.org/stable/23013297
492	
493	Bloom EH, Crowder DW (2020) Promoting data collection in pollinator citizen science projects.
494	Citizen Sci Theory Pract 5:3. https://doi.org/10.5334/cstp.217
495	
496	Bowler DE, Callaghan CT, Felappi JF, et al (2025) Evidence-base for urban green-blue
497	infrastructure to support insect diversity. Urban Ecosyst 28:1-14.
498	https://doi.org/10.1007/s11252-024-01649-4
499	
500	Brittain CA, Vighi M, Bommarco R, Settele J, Potts SG (2010) Impacts of a pesticide on
501	pollinator species richness at different spatial scales. Basic Appl Ecol 11:106-115.
502	https://doi.org/10.1016/j.baae.2009.11.013
503	
504	Brown CF, Brumby SP, Guzder-Williams B, et al (2022) Dynamic World, near real-time global
505	10 m land use land cover mapping. Sci Data 9:251. https://doi.org/10.1038/s41597-022-
506	<u>01307-4</u>
507	
508	Burr A, Schaeg N, Muñiz P, Camilo GR, Hall DM (2016) Wild bees in the city: Reimagining
509	urban spaces for native bee health. Consilience 16:106–131.
510	http://www.jstor.org/stable/26188777
511	

512	Callaghan CT, Poore AGB, Mesaglio T, et al (2021) Three frontiers for the future of biodiversity
513	research using citizen science data. BioScience 71:55-63.
514	https://doi.org/10.1093/biosci/biaa131
515	
516	Callaghan, C. T., Roberts, J. D., Poore, A. G., Alford, R. A., Cogger, H., & Rowley, J. J. (2020).
517	Citizen science data accurately predicts expert-derived species richness at a continental
518	scale when sampling thresholds are met. Biodiversity and Conservation, 29(4), 1323-
519	1337.
520	
521	Cornelisse, T., Inouye, D. W., Irwin, R. E., Jepsen, S., Mawdsley, J. R., Ormes, M., & Young,
522	B. E. (2025). Elevated extinction risk in over one-fifth of native North American
523	pollinators. Proceedings of the National Academy of Sciences, 122(14), e2418742122.
524	
525	Daniels B, Jedamski J, Ottermanns R, Ross-Nickoll M (2020) A "plan bee" for cities: Pollinator
526	diversity and plant-pollinator interactions in urban green spaces. PLoS One 15:e0235492.
527	https://doi.org/10.1371/journal.pone.0235492
528	
529	Démares, F. J., Schmehl, D., Bloomquist, J. R., Cabrera, A. R., Huang, Z. Y., Lau, P., & Ellis,
530	J. D. (2022). Honey bee (Apis mellifera) exposure to pesticide residues in nectar and
531	pollen in urban and suburban environments from four regions of the United
532	States. Environmental Toxicology and Chemistry, 41(4), 991-1003.
533	

534	Díaz-Calafat, J., Jaume-Ramis, S., Soacha, K., Álvarez, A., & Piera, J. (2024). Revealing biases
535	in insect observations: A comparative analysis between academic and citizen science
536	data. Plos one, 19(7), e0305757.
537	
538	Di Cecco GJ, Barve V, Belitz MW, Stucky BJ, Guralnick RP, Hurlbert AH (2021) Observing the
539	observers: How participants contribute data to iNaturalist and implications for
540	biodiversity science. BioScience 71:1179–1188. https://doi.org/10.1093/biosci/biab085
541	
542	Dylewski Ł, Maćkowiak Ł, Banaszak-Cibicka W (2020) Linking pollinators and city flora: How
543	vegetation composition and environmental features shape pollinator composition in urban
544	environments. Urban For Urban Green 56:126795.
545	https://doi.org/10.1016/j.ufug.2020.126795
546	
547	Florida Department of Agriculture and Consumer Services (2025) Mosquito control programs.
548	Accessed on 10 October 2025 at https://www.fdacs.gov/Business-Services/Mosquito-
549	Control/Mosquito-Control-Programs
550	
551	Fortuin, C. C., & Gandhi, K. J. (2021). Functional traits and nesting habitats distinguish the
552	structure of bee communities in clearcut and managed hardwood & pine forests in
553	Southeastern USA. Forest Ecology and Management, 496, 119351.
554	

555	Frankie G, Feng I, Thorp R, Pawelek J, Chase MH, Jadallah CC, Rizzardi M (2019) Native and
556	non-native plants attract diverse bees to urban gardens in California. J Pollinat Ecol 25:1-
557	13.
558	
559	Fukase J, Simons, AM (2016). Increased pollinator activity in urban gardens with more native
560	flora. Appl Ecol and Environ Research 14(1):297-310.
561	
562	Garibaldi LA, Carvalheiro LG, Leonhardt SD, et al (2014) From research to action: Enhancing
563	crop yield through wild pollinators. Front Ecol Environ 12:439-447.
564	http://www.jstor.org/stable/43187857
565	
566	Geldmann J, Heilmann-Clausen J, Holm TE, et al (2016) What determines spatial bias in citizen
567	science? Exploring four recording schemes with different proficiency requirements.
568	Divers Distrib 22:1139–1149. https://doi.org/10.1111/ddi.12477
569	
570	Gerner E (2020) The effects of impervious surface area, tree canopy cover, and floral richness on
571	bee abundance, richness, and diversity across an urban landscape. Doctoral dissertation,
572	Université d'Ottawa/University of Ottawa.
573	
574	Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google Earth
575	Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18-
576	27. https://doi.org/10.1016/j.rse.2017.06.031
577	

578	Graffigna, S., González-Vaquero, R. A., Torretta, J. P., & Marrero, H. J. (2024). Importance of
579	urban green areas' connectivity for the conservation of pollinators. Urban Ecosystems,
580	27(2), 417-426.
581	
582	Habel, J. C., Teucher, M., Gros, P., Gfrerer, V., & Eberle, J. (2022). The importance of dynamic
583	open-canopy woodlands for the conservation of a specialist butterfly species. Landscape
584	Ecology, 37(8), 2121-2129.
585	
586	Harrison T, Winfree R (2015) Urban drivers of plant–pollinator interactions. Funct Ecol 29:879–
587	888. https://doi.org/10.1111/1365-2435.12486
588	
589	Hennig EI, Ghazoul J (2011) Plant-pollinator interactions within the urban environment.
590	Perspect Plant Ecol Evol Syst 13:137–150. https://doi.org/10.1016/j.ppees.2011.03.003
591	
592	iNatHelp (2024) What is the Data Quality Assessment and how do observations qualify to
593	become "Research Grade"? Accessed 24 June 2025.
594	https://help.inaturalist.org/en/support/solutions/articles/151000169936-what-is-the-data-
595	quality-assessment-and-how-do-observations-qualify-to-become-research-grade-
596	
597	iNatHelp (2025) How to add or edit establishment means in iNaturalist. Accessed 15 October
598	2025. https://help.inaturalist.org/en/support/solutions/articles/151000176171-how-to-add-
599	or-edit-establishment-means-in-inaturalist
600	

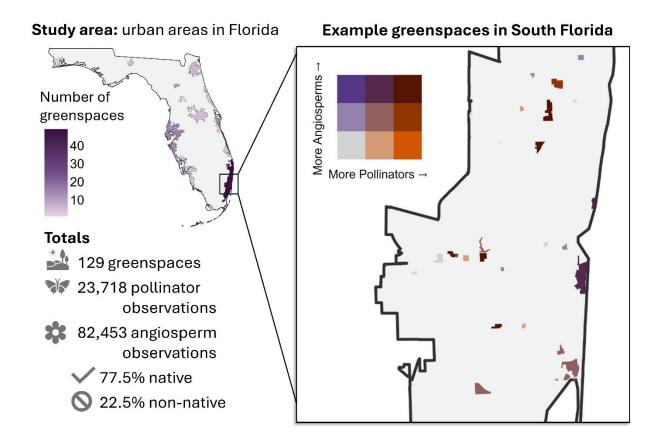
601	Jacobs C, Zipf A (2017) Completeness of citizen science biodiversity data from a volunteered
602	geographic information perspective. Geo-spat Inf Sci 20:3-13.
603	https://doi.org/10.1080/10095020.2017.1288424
604	
605	Johnson AL, Fetters AM, Ashman T-L (2017) Considering the unintentional consequences of
606	pollinator gardens for urban native plants: Is the road to extinction paved with good
607	intentions? New Phytol 215:1298–1305. https://doi.org/10.1111/nph.14656
608	
609	Kaiser A, Resasco J (2024) The impact of impervious surface and neighborhood wealth on
610	arthropod biodiversity and ecosystem services in community gardens. Urban Ecosyst
611	27:1863–1875. https://doi.org/10.1007/s11252-024-01569-3
612	
613	Kawahara AY, Reeves LE, Barber JR, Black SH (2021) Eight simple actions that individuals can
614	take to save insects from global declines. Proc Natl Acad Sci U S A 118:e2002547117.
615	https://doi.org/10.1073/pnas.2002547117
616	
617	Kostro-Ambroziak A, Sobieraj-Betlińska A, Szefer P, Suprunowicz U, Ulaszewski B, Pliszko A,
618	Burzyńska J, Charubin B, Wróbel K, Mierzyńska K, Kozikowski D, Jermakowicz E
619	(2025) Where and What Kind—A Better Understanding of Local and Landscape Features
620	in Planning the Urban Flower Meadows for Supporting Bee Communities. Ecol Evol 15:
621	e71376. https://doi.org/10.1002/ece3.71376
622	

623	Kral-O'Brien KC, O'Brien PL, Hovick TJ, Harmon JP (2021) Higher plant richness supports
624	higher pollinator richness across many land use types: A meta-analysis. Ann Entomol
625	Soc Am 114:267–275. https://doi.org/10.1093/aesa/saaa058
626	
627	Larson, K. L., Lerman, S. B., Nelson, K. C., Narango, D. L., Wheeler, M. M., Groffman, P. M.,
628	& Grove, J. M. (2022). Examining the potential to expand wildlife-supporting
629	residential yards and gardens. Landscape and Urban Planning, 222, 104396.
630	
631	Lepczyk CA, Aronson MF, Evans KL, Goddard MA, Lerman SB, MacIvor JS (2017)
632	Biodiversity in the city: Fundamental questions for understanding the ecology of urban
633	green spaces for biodiversity conservation. BioScience 67:799-807.
634	https://doi.org/10.1093/biosci/bix079
635	
636	Lerman, S. B., Larson, K. L., Narango, D. L., Goddard, M. A., & Marra, P. P. (2023). Humanity
637	for habitat: Residential yards as an opportunity for biodiversity
638	conservation. BioScience, 73(9), 671-689.
639	
640	Liang H, He YD, Theodorou P, Yang CF (2023) The effects of urbanization on pollinators and
641	pollination: A meta-analysis. Ecol Lett 26:1629–1642. https://doi.org/10.1111/ele.14233
642	
643	Lowe AD, Foltz-Sweat JL (2017) Effect of floral diversity and urbanization on bee species
644	community composition in Phoenix, Arizona. J Ariz-Nev Acad Sci 47:6–18.
645	http://www.jstor.org/stable/90001930

646	
647	Mason BM, Mesaglio T, Barratt Heitmann J, Chandler M, Chowdhury S, Gorta SBZ,
648	Callaghan CT (2025) iNaturalist accelerates biodiversity research. BioScience biaf104.
649	https://doi.org/10.1093/biosci/biaf104
650	
651	Mata L, Andersen AN, Morán-Ordóñez A, et al (2021) Indigenous plants promote insect
652	biodiversity in urban greenspaces. Ecol Appl 31:e02368.
653	https://doi.org/10.1002/eap.2368
654	
655	Meeus S, Silva-Rocha I, Adriaens T, Brown PM, Chartosia N, Claramunt-López B, Martinou
656	AF, Pocock MJ, Preda C, Roy HE, Tricarico E. More than a bit of fun: the multiple
657	outcomes of a bioblitz. BioScience. 2023 Mar;73(3):168-81.
658	
659	Miguez NG, Mason BM, Qiu J, Cao H, Callaghan CT (2025) Urban greenspaces benefit both
660	human utility and biodiversity. Urban For Urban Green 107:128791.
661	https://doi.org/10.1016/j.ufug.2025.128791
662	
663	Mola, J.M., Hemberger, J., Kochanski, J., Richardson, L.L. and Pearse, I.S., 2021. The
664	importance of forests in bumble bee biology and conservation. BioScience, 71(12),
665	pp.1234-1248.
666	

667	Mola, J.M., Richardson, L.L., Spyreas, G., Zaya, D.N. and Pearse, I.S., 2021. Long-term surveys
668	support declines in early season forest plants used by bumblebees. Journal of Applied
669	Ecology, 58(7), pp.1431-1441.
670	
671	Morales CL, Traveset A (2009) A meta-analysis of impacts of alien vs. native plants on
672	pollinator visitation and reproductive success of co-flowering native plants. Ecol Lett
673	12:716–728. https://doi.org/10.1111/j.1461-0248.2009.01319.x
674	
675	Morrison MA, Bright A (2025) Reduced mowing frequencies increase pollinator abundance in
676	urban lawns in the UK. Conserv Evid 22:1-6.
677	
678	Mumaw L, Mata L (2022) Wildlife gardening: An urban nexus of social and ecological
679	relationships. Front Ecol Environ 20:379–385. https://doi.org/10.1002/fee.2386
680	
681	Murphy JT, Breeze TD, Willcox B, Kavanagh S, Stout JC (2022) Globalisation and pollinators:
682	Pollinator declines are an economic threat to global food systems. People Nat 4:773-785.
683	https://doi.org/10.1002/pan3.10321
684	
685	Pernat N, Canavan S, Golivets M, et al (2024) Overcoming biodiversity blindness: Secondary
686	data in primary citizen science observations. Ecol Solut Evid 5:e12295.
687	https://doi.org/10.1002/2688-8319.12295
688	

689	Persson, A. S., Westman, A., Smith, T. J., Mayfield, M. M., Olsson, P., Smith, H. G., & Fuller,
690	R. (2022). Backyard buzz: human population density modifies the value of vegetation
691	cover for insect pollinators in a subtropical city. Urban Ecosystems, 25(6), 1875-1890.
692	https://doi.org/10.1007/s11252-022-01277-w
693	
694	Rader R, Bartomeus I, Garibaldi LA, et al (2016) Non-bee insects are important contributors to
695	global crop pollination. Proc Natl Acad Sci U S A 113:146-151.
696	https://doi.org/10.1073/pnas.1517092112
697	
698	R Core Team (2025). R: A Language and Environment for Statistical Computing. R Foundation
699	for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
700	
701	Reilly JR, Artz DR, Biddinger D, et al (2020) Crop production in the USA is frequently limited
702	by a lack of pollinators. Proc R Soc B 287:20200922.
703	https://doi.org/10.1098/rspb.2020.0922
704	
705	Roberts, J. M., Harvey, S. M., Lamont, P. A., Gage, J. D., & Humphery, J. D. (2000). Seabed
706	photography, environmental assessment and evidence for deep-water trawling on the
707	continental margin west of the Hebrides. <i>Hydrobiologia</i> , 441(1), 173-183.
708	
709	Segre, H., Kleijn, D., Bartomeus, I., WallisDeVries, M. F., de Jong, M., van der Schee, M. F.,
710	& Fijen, T. P. (2023). Butterflies are not a robust bioindicator for assessing pollinator


711	communities, but floral resources offer a promising way forward. Ecological
712	Indicators, 154, 110842.
713	
714	Seitz N, Vanengelsdorp D, Leonhardt SD (2020) Are native and non-native pollinator friendly
715	plants equally valuable for native wild bee communities? Ecol Evol 10:12838–12850.
716	https://doi.org/10.1002/ece3.6783
717	
718	Staab M, Pereira-Peixoto MH, Klein A-M (2020) Exotic garden plants partly substitute for
719	native plants as resources for pollinators when native plants become seasonally scarce.
720	Oecologia 194:465–480. https://doi.org/10.1007/s00442-020-04759-3
721	
722	Trust for Public Land (2025) ParkServe [database]. Land and People Lab.
723	https://tpl.org/parkserve
724	
725	Ulrich J, Sargent RD (2025) Urban landscapes with more natural greenspace support higher
726	pollinator diversity. Ecol Appl 35:e70005. https://doi.org/10.1002/eap.70005
727	
728	Ulyshen M, Horn S (2023) Declines of bees and butterflies over 15 years in a forested landscape.
729	Curr Biol 33:1611–1618. https://doi.org/10.1016/j.cub.2023.02.030
730	
731	Ulyshen M, Urban-Mead KR, Dorey JB, Rivers JW (2023) Forests are critically important to
732	global pollinator diversity and enhance pollination in adjacent crops. Biol Rev 98:1118-
733	1141. https://doi.org/10.1111/brv.12961

734	
735	United States Census Bureau (2020) Florida. Retrieved August 2025.
736	https://data.census.gov/profile/Florida?g=040XX00US12
737	
738	United States Census Bureau (2023) 2020 Census urban area TIGER/Line shapefiles. Retrieved
739	September 2024. https://www.census.gov/geographies/mapping-files/time-
740	series/geo/tiger-line-file.html
741	
742	United States Census Bureau (2024) Annual and cumulative estimates of resident population
743	change for the United States, regions, states, District of Columbia, and Puerto Rico and
744	region and state rankings: April 1, 2020 to July 1, 2024 (NST-EST2024-CHG). U.S.
745	Department of Commerce.
746	
747	Vanbergen AJ, Insect Pollinators Initiative (2013) Threats to an ecosystem service: Pressures on
748	pollinators. Front Ecol Environ 11:251–259. http://www.jstor.org/stable/23470505
749	
750	Vanbergen AJ, Espíndola A, Aizen MA (2018) Risks to pollinators and pollination from invasive
751	alien species. Nat Ecol Evol 2:16–25. https://doi.org/10.1038/s41559-017-0412-3
752	
753	Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the
754	Anthropocene: Death by a thousand cuts. Proc Natl Acad Sci U S A 118:e2023989118.
755	https://doi.org/10.1073/pnas.2023989118
756	

757	Watson TL, Martel C, Arceo-Gómez G (2022) Plant species richness and sunlight exposure
758	increase pollinator attraction to pollinator gardens. Ecosphere 13:e4317.
759	https://doi.org/10.1002/ecs2.4317
760	
761	Weber, C., Noël, G., Sickel, W., Monaghan, M. T., Bonn, A., & Lokatis, S. (2024). Urban
762	pavements as a novel habitat for wild bees and other ground-nesting insects. Urban
763	Ecosystems, 27(6), 2453-2467.
764	
765	Wenzel, A., Grass, I., Belavadi, V.V. and Tscharntke, T., 2020. How urbanization is driving
766	pollinator diversity and pollination-A systematic review. Biological Conservation, 241,
767	p.108321.
768	
769	Wood SN (2003) Thin-plate regression splines. J R Stat Soc Ser B 65:95-114.
770	
771	Wood SN (2017) Generalized additive models: An introduction with R. 2nd ed. Chapman &
772	Hall/CRC, Boca Raton.
773	
774	Zaninotto V, Fauviau A, Dajoz I (2023) Diversity of greenspace design and management impacts
775	pollinator communities in a densely urbanized landscape: The city of Paris, France.
776	Urban Ecosyst 26:503–515.
777	

778	Zeng H, Wang J, Guan M, Lu Y, Liu H, Zhao D (2023) Effects of vegetation structure and
779	environmental characteristics on pollinator diversity in urban green spaces. Urban For
780	Urban Green 84:127928. https://doi.org/10.1016/j.ufug.2023.127928
781	

Figures

Figure 1. Diagram illustrating the study area and citizen science data availability. The map of urban areas in Florida includes only those regions containing at least one greenspace that met our filtering criteria (≥ 50 pollinator and angiosperm observations). The example map of greenspaces in South Florida highlights a subset of the data to demonstrate the spatial resolution and structure of the data.

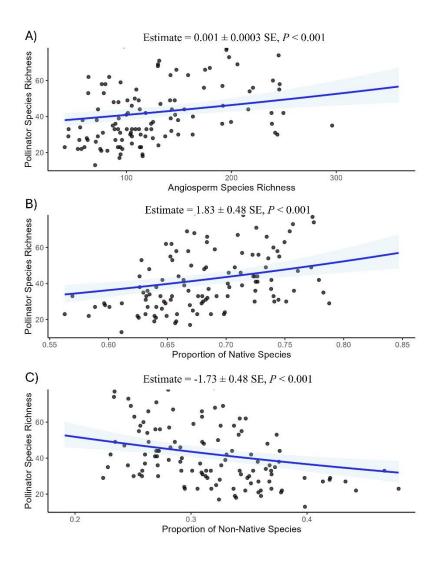


Figure 2. Scatterplots comparing pollinator species richness with the richness of (A) all angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-native angiosperms across greenspaces. Each point represents an individual greenspace. Both pollinator and angiosperm species richness values are adjusted for sampling effort and spatial variation using Generalized Additive Models (GAM). The blue line shows the modeled relationship from the GAM model with 95% confidence interval. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model. Outliers were removed for display purposes; the full plot including all points is shown in Figure S2.

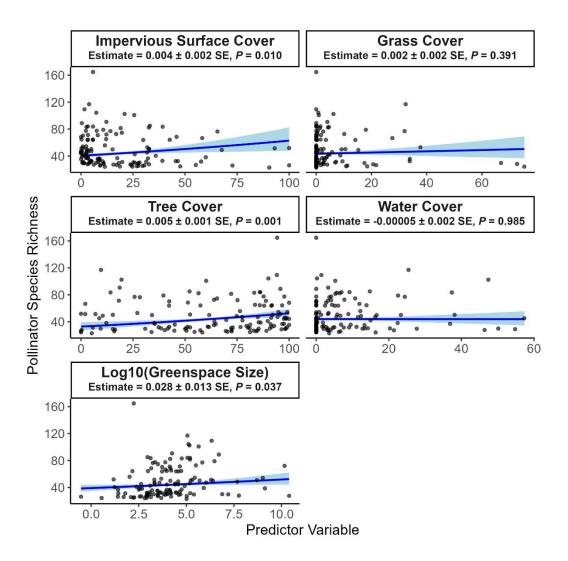


Figure 3. Scatterplots illustrating the relationship between pollinator species richness in each greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species richness values have been adjusted to account for variation in sampling effort. The blue line shows the modeled relationship between each environmental variable and adjusted pollinator richness, calculated using a Generalized Additive Model with a thin-plate regression spline for latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

Table A1. Subfamily composition of species used in analysis by number of unique species and number of observations.

Group	Subfamily	Number of species	Number of observations
Apoidea	Ammophilinae	3	61
	Andreninae	2	4
	Apinae	16	1448
	Bembicinae	8	78
	Colletinae	2	9
	Crabroninae	4	34
	Halictinae	7	449
	Hylaeinae	3	9
	Lithurginae	1	1
	Megachilinae	14	94
	Nomadinae	4	36
	Nomiinae	2	15
	Philanthinae	5	52
	Sceliphrinae	5	88
	Sphecinae	7	58
	Xylocopinae	4	199
Bombyliidae	Anthracinae	15	225
·	Bombyliinae	4	9
	Lomatiinae	1	2
	Phthiriinae	2	7
	Toxophorinae	3	5
Cetoniinae	Cetoniinae	7	182
Lepidoptera	Acentropinae	10	46
	Acontiinae	5	51
	Acrocercopinae	2	22
	Acrolophinae	8	51
	Acronictinae	9	75
	Adelinae	1	1
	Afridinae	1	1
	Agaristinae	4	55
	Amphipyrinae	1	2
	Anacampsinae	2	7
	Anomologinae	1	1
	Antequerinae	1	6
	Apaturinae	2	78
	Arctiinae	36	1531
	Bagisarinae	1	2
	Biblidinae	3	66
	Blastobasinae	1	1
	Boletobiinae	8	36

C-1-:	2	2
Calpinae	2	2
Cemiostominae	2	3
Ceratocampinae	6	88
Cerurinae	1	1
Charaxinae	1	15
Chloephorinae	1	4
Choreutinae	3	15
Chrysauginae	5	19
Cicinninae	1	1
Cobubathinae	1	1
Coleophorinae	1	1
Coliadinae	16	1476
Condicinae	4	8
Cossinae	1	6
Crambinae	11	28
Cyrestinae	1	299
Danainae	3	1185
Dichomeridinae	1	1
Diphtherinae	1	2
Dyopsinae	1	4
Ennominae	29	195
Epipaschiinae	2	2
Erebinae	30	146
Eudaminae	9	890
Eulepidotinae	5	52
Eustrotiinae	1	4
Euteliinae	3	7
Galleriinae	1	1
Gelechiinae	5	7
Geometrinae	7	26
Glaphyriinae	6	9
Glyphidocerinae	1	7
Glyphipteriginae	1	2
Gracillariinae	4	9
Heliconiinae	4	2642
Heliothinae	5	20
Hemileucinae	2	98
Herminiinae	13	22
Hesperiinae	24	1955
Heterocampinae	13	61
Hypeninae	1	2
Hypocalinae	1	2
Hypoptinae	1	2
Larentiinae	6	10
Lasiocampinae	1	3
	1	3

Libytheinae	1	3
Limacodinae	11	53
Limenitidinae	2	186
Lithocolletinae	1	2
Lymantriinae	4	343
Macroglossinae	20	320
Malacosominae	2	196
Marmarinae	2	3
Megalopyginae	3	62
Metoponiinae	1	32
Millieriinae	1	1
Musotiminae	2	2
Noctuinae	22	123
Nolinae	1	1
Notodontinae	2	4
Nymphalinae	11	2170
Odontiinae	1	2
Oecophorinae	1	2
Oecophyllembiinae	1	2
Oiketicinae	3	61
Olethreutinae	17	39
Pantheinae	2	19
Papilioninae	10	1218
Periergosinae	1	1
Phalerinae	5	20
Phycitinae	11	25
Phyllocnistinae	7	31
Pierinae	4	266
Plusiinae	3	7
Poecilocampinae	2	9
Polyommatinae	4	687
Procridinae	2	49
Psychinae	1	5
Pterophorinae	6	14
Pyralinae	1	1
Pyraustinae	10	154
Pyrginae	8	1144
Riodininae	1	4
Rivulinae	1	1
Saturniinae	3	116
Saturninae	4	17
Schoenobiinae	3	9
Scolecocampinae	3	18
Scoliopteryginae	2	2
Sconopiciyginac	4	4

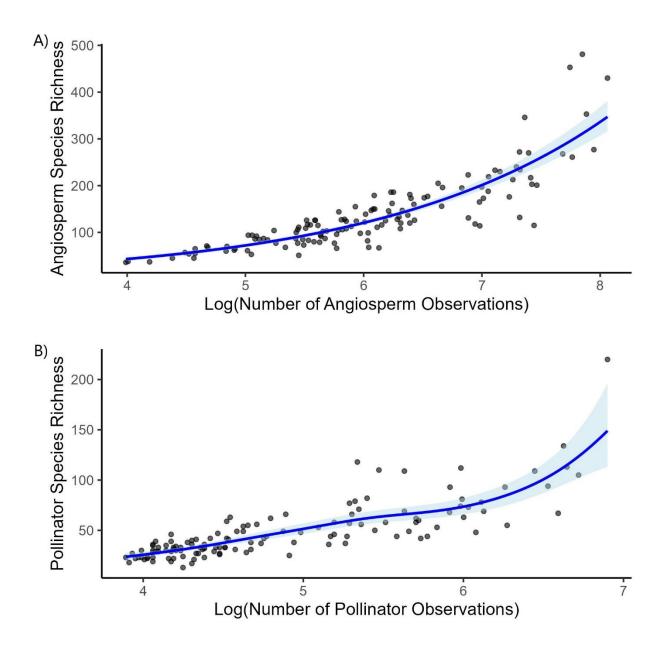
	Sesiinae	6	11
	Siculodinae	1	4
	Smerinthinae	3	16
	Sphinginae	9	47
	Spilomelinae	34	381
	Stenomatinae	2	2
	Sterrhinae	16	56
	Theclinae	12	1214
	Thiotrichinae	1	1
	Tineidae clade a	1	1
	Tineinae	1	1
	Tortricinae	9	26
	Trosiinae	1	1
	No subfamily	16	66
Lepturinae	Lepturinae	6	34

Table A2. Sensitivity analysis of different minimum observation thresholds (25, 50, and 75) used to calculate species richness for examining the relationship between angiosperm and pollinator richness. For each threshold, we report the number of parks included in the analysis and the coefficient estimates from the model with pollinator richness as the response, including angiosperm richness, proportion of native species, or proportion of non-native species as the predictors of interest, and controlling for the number of pollinator observations and geographic location. Results show broadly similar trends across thresholds. However, a minimum of 25 observations increased uncertainty likely due to higher variability in species richness values in parks with fewer total observations, while a minimum of 75 reduced the number of parks included in analysis and limited inference. Based on this balance, we selected 50 observations as the minimum cutoff for both pollinators and angiosperms.

Minimum	
number of	Sample

observations	size	Variable	Estimate	SE	P-value
25	226	Angiosperm species richness	0.0008	0.0003	0.006
	226	Proportion of native species	1.155	0.449	0.01
	226	Proportion of non-native species	-0.816	0.443	0.065
50	129	Angiosperm species richness	0.001	0.0003	<0.001
	129	Proportion of native species	1.827	0.477	< 0.001
	129	Proportion of non-native species	-1.735	0.485	< 0.001
75	88	Angiosperm species richness	0.001	0.0005	0.003
	88	Proportion of native species	2.765	0.834	< 0.001
	88	Proportion of non-native species	-2.730	0.840	0.001

Table A3. Sensitivity analysis of minimum observation thresholds (25, 50, and 75) used to calculate species richness when examining relationships between greenspace-level covariates and pollinator richness. For each threshold, we report the number of parks included and the coefficient estimates from models with pollinator richness as the response, and impervious surface cover, grass cover, tree cover, water cover, log10(greenspace size), log10(number of


Minimum number of Sample

observations	size	Variable	Estimate	SE	P-value
25	226	Impervious surface cover	0.004	0.001	0.010
	226	Grass cover	0.003	0.002	0.093
	226	Tree cover	0.005	0.001	< 0.001
	226	Water cover	-0.000009	0.002	0.996
	226	Log10(Greenspace size)	0.032	0.010	0.001
50	129	Impervious surface cover	0.004	0.002	0.010
	129	Grass cover	0.002	0.002	0.391
	129	Tree cover	0.005	0.001	0.001
	129	Water cover	-0.00005	0.002	0.985
	129	Log10(Greenspace size)	0.028	0.013	0.037
75	88	Impervious surface cover	0.004	0.002	0.010
	88	Grass cover	0.002	0.002	0.391
	88	Tree cover	0.005	0.001	0.001
	88	Water cover	-0.00004	0.002	0.985
	88	Log10(Greenspace size)	0.028	0.013	0.04

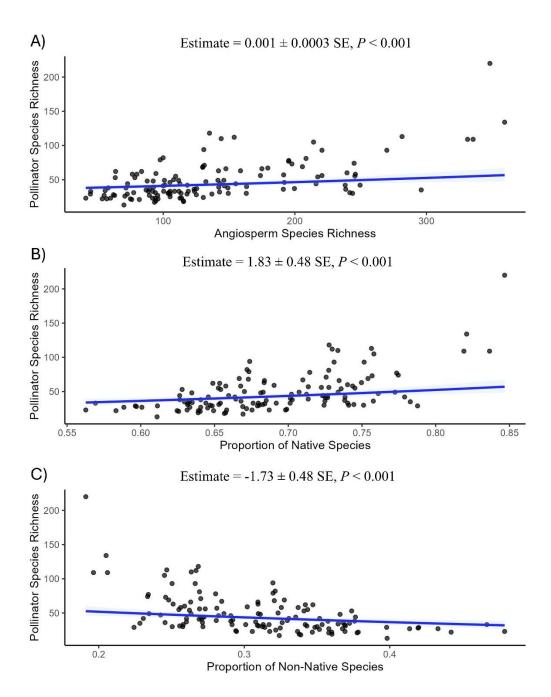

pollinator observations), and geographic location as predictors. Results were broadly consistent across thresholds, so we chose a minimum number of observations of 50 to balance accuracy of species richness calculation with sample size.

Table A4. Landcover distribution among urban parks that were used to study pollinator richness. The landcover variables come from the Dynamic World land use and cover datasets (10-meter resolution; Brown et al. 2022). While this dataset found snow and ice landcover types, this was likely a misidentification of clouds as this is not an expected landcover type in Florida. For our study, we decided to only examine landcover types with a median > 0% (indicated in bold).

Landcover variable Number of parks with		Median	Mean	Standard
	this land cover	Median	Mean	deviation
Trees	126	70.41%	61.95%	31.11%
Snow and ice	13	0%	0.03%	0.18%
Water	84	3.20%	7.59%	12.05%
Shrub and scrub	56	0%	2.52%	8.67%
Impervious surface	125	9.23%	18.64%	21.81%
Bare	20	0%	0.12%	0.53%
Crops	20	0%	0.29%	2.77%
Grass	73	0.22%	5.52%	12.95%
Flooded vegetation	37	0%	3.36%	12.43%



Figure S1. Scatterplots showing the relationships between species richness and sampling effort across greenspaces: (a) pollinator species richness versus number of pollinator observations, and (b) angiosperm species richness versus number of angiosperm observations. The blue line represents the fitted relationship from a negative binomial model, with shaded ribbons indicating 95% confidence intervals.

Figure S2. Scatterplots comparing pollinator species richness with the richness of (A) all angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-native angiosperms across greenspaces. Each point represents an individual greenspace. Both pollinator and angiosperm species richness values are adjusted for sampling effort and spatial variation using Generalized Additive Models (GAM). The blue line shows the modeled

relationship from the GAM model with 95% confidence interval. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

Figure S3. Scatterplots comparing Lepidoptera species richness with the richness of (A) all angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-

native angiosperms across greenspaces. Each point represents an individual greenspace. Both pollinator and angiosperm species richness values are adjusted for sampling effort and spatial variation using Generalized Additive Models (GAM). The blue line shows the modeled relationship from the GAM model with 95% confidence interval. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

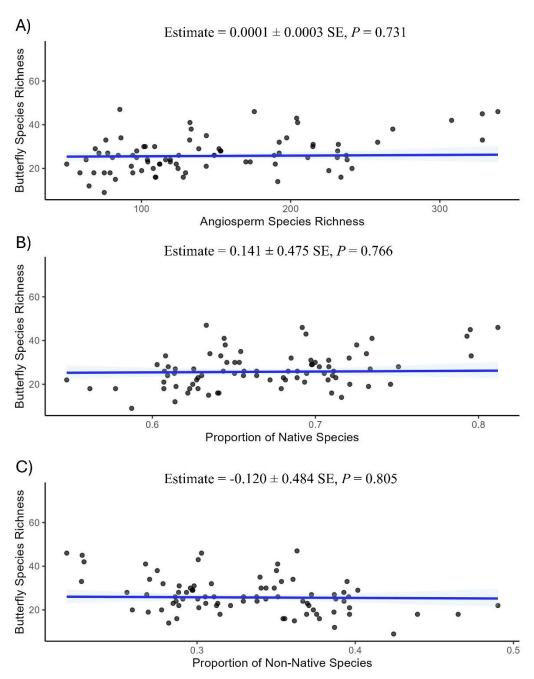
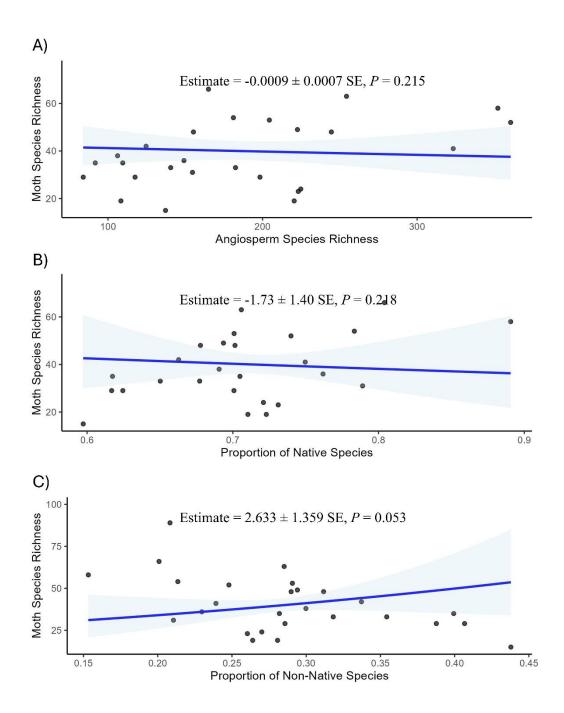
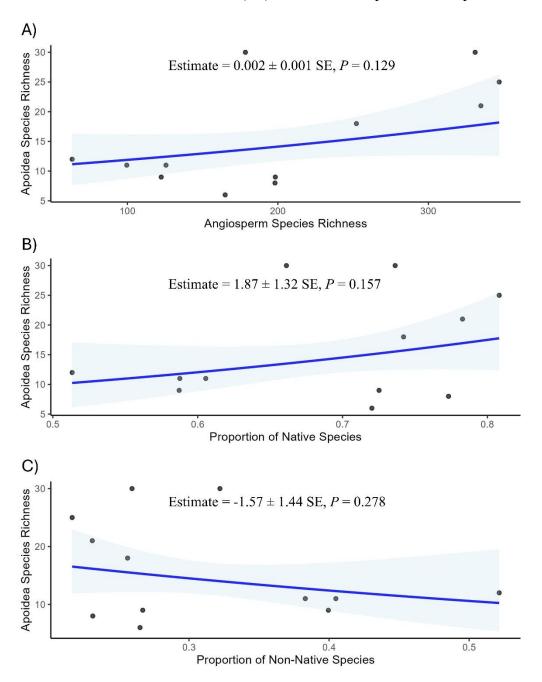




Figure S4. Scatterplots comparing butterfly (family Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae) species richness with the richness of (A) all angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of nonnative angiosperms across greenspaces. Each point represents an individual greenspace. Both pollinator and angiosperm species richness values are adjusted for sampling effort and spatial variation using Generalized Additive Models (GAM). The blue line shows the modeled relationship from the GAM model with 95% confidence interval. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

Figure S5. Scatterplots comparing moth (Lepidoptera and not family Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae) species richness with the richness of (A) all angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of nonnative angiosperms across greenspaces. Each point represents an individual greenspace. Both pollinator and angiosperm species richness values are adjusted for sampling effort and spatial

variation using Generalized Additive Models (GAM). The blue line shows the modeled relationship from the GAM model with 95% confidence interval. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

Figure S6. Scatterplots comparing Apoidea species richness with the richness of (A) all angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-

native angiosperms across greenspaces. Each point represents an individual greenspace. Both pollinator and angiosperm species richness values are adjusted for sampling effort and spatial variation using Generalized Additive Models (GAM). The blue line shows the modeled relationship from the GAM model with 95% confidence interval. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

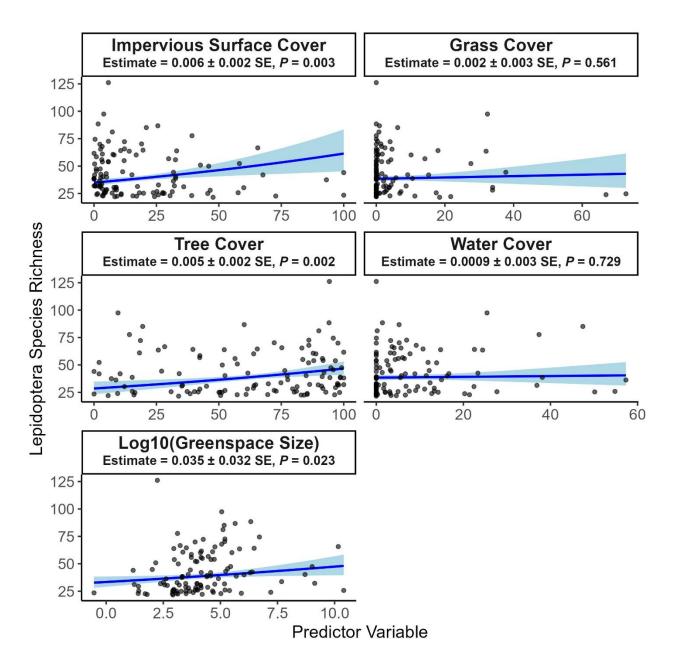


Figure S7. Scatterplots illustrating the relationship between Lepidoptera species richness in each greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species richness values have been adjusted to account for variation in sampling effort. The blue line shows the modeled relationship between each environmental variable and adjusted pollinator richness, calculated using a Generalized Additive Model with a thin-plate regression spline for

latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

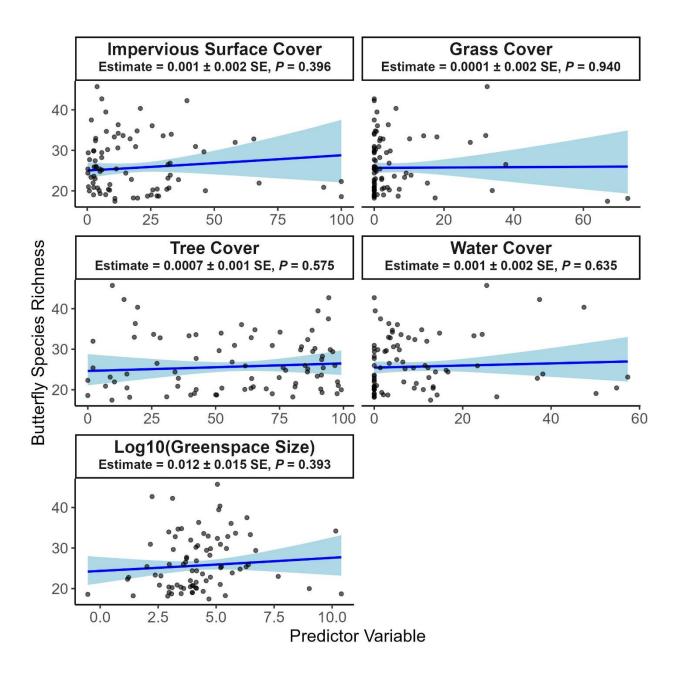
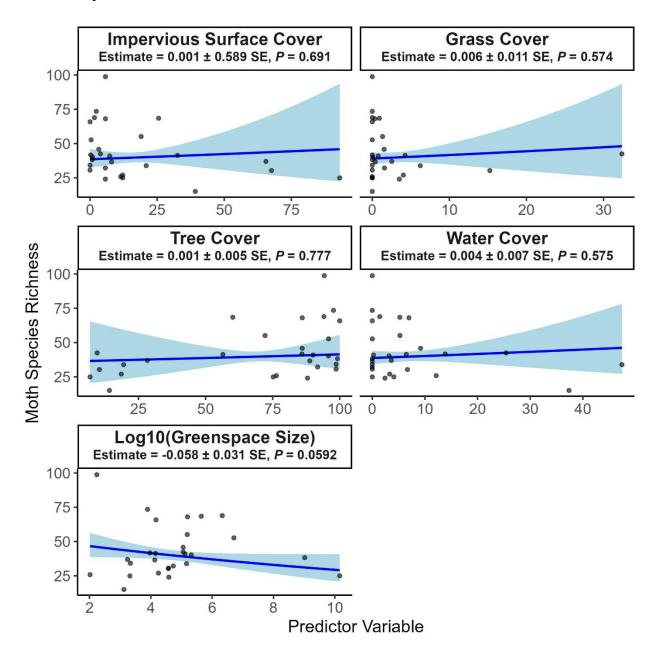



Figure S8. Scatterplots illustrating the relationship between butterfly (family Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae) species richness in each greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species richness values have been adjusted to account for variation in sampling effort. The blue line shows the modeled relationship between each environmental variable and adjusted pollinator

richness, calculated using a Generalized Additive Model with a thin-plate regression spline for latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

Figure S9. Scatterplots illustrating the relationship between moth (Lepidoptera and not family Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae) species richness

in each greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species richness values have been adjusted to account for variation in sampling effort. The blue line shows the modeled relationship between each environmental variable and adjusted pollinator richness, calculated using a Generalized Additive Model with a thin-plate regression spline for latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.

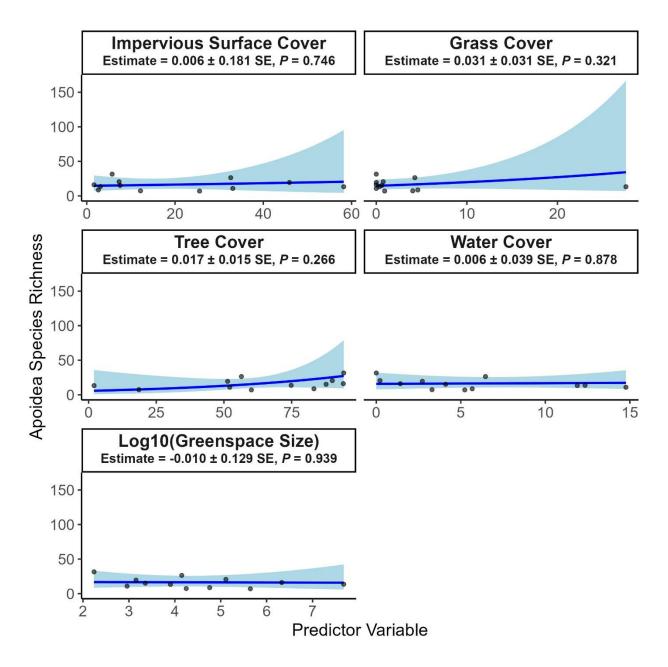


Figure S10. Scatterplots illustrating the relationship between Apoidea species richness in each greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species richness values have been adjusted to account for variation in sampling effort. The blue line shows the modeled relationship between each environmental variable and adjusted pollinator richness, calculated using a Generalized Additive Model with a thin-plate regression spline for

latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-value are reported for each model.