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Abstract 21 

Pollinator declines are caused by a multitude of factors including pollution, global warming, 22 

disease, urbanization, deforestation, and habitat loss. Given the global increase in urbanization, 23 

identifying ways to support pollinators in cities has become an important conservation priority. 24 

Here, we investigate the effect of urbanization on pollinator richness. Using >100,000 iNaturalist 25 

observations collected between 2014 and 2024 across 129 urban greenspaces in Florida, U.S.A., 26 

we investigate how native and non-native angiosperm richness, along with greenspace-level 27 

characteristics, influence pollinator richness. Pollinator richness was positively associated with 28 

overall angiosperm richness, regardless of origin. However, a higher proportion of native 29 

angiosperm species was associated with increased pollinator richness, whereas a higher 30 

proportion of non-native species was associated with decreased pollinator richness. Among 31 

greenspace-level landscape characteristics, pollinator species richness had a significant positive 32 

relationship with percent of impervious surface cover (β = 0.0044, p = 0.010), percent tree cover 33 

(β = 0.0047, p = 0.001), and greenspace size (β = 0.0282, p = 0.037), but was not significantly 34 

associated with grass cover (β = 0.0020, p = 0.391) or percent water cover (β = -0.00005, p = 35 

0.985). Our results suggest that greenspace managers should prioritize enhancing floral richness 36 

—especially of native species—to support greater pollinator richness. Increasing tree cover and 37 

maintaining large greenspaces within cities may also contribute positively to pollinator richness. 38 

Leveraging broad-scale participatory citizen science data provides an avenue to further monitor 39 

pollinator richness within urban greenspaces. 40 
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Introduction 44 

Pollinating insects are essential for ecosystem stability and agricultural productivity (Rader et al. 45 

2016) but are declining in abundance (Wagner et al. 2021; Cornelisse et al. 2025). Such declines 46 

can disrupt plant communities, leading to broader ecological instability and reduced resilience in 47 

both natural and human-modified landscapes (Ramos-Jiliberto et al. 2020; Kawahara et al. 2021; 48 

Murphy et al. 2022). Pollinator declines are often linked to anthropogenic disturbances, such as 49 

habitat loss and fragmentation (Vanbergen 2013; Harrison and Winfree 2015), making 50 

urbanization a potential threat to pollinator richness. Urbanization tends to reduce both species 51 

richness and abundance of pollinators (Liang et al. 2023). But the varied nature of urban 52 

environments allows for a diverse range of native and non-native plants to grow, potentially 53 

increasing the range of pollinator species and community compositions that can be supported in 54 

urban ecosystems (Lowe and Foltz-Sweat 2017).  55 

 56 

Despite the potential negative impacts of urbanization, urban greenspaces (e.g., parks, nature 57 

reserves) can offer a sanctuary for native plants and pollinators in an otherwise hostile 58 

environment (Mata et al. 2021; Lepczyk et al. 2017). Urban greenspaces present unique 59 

conservation challenges (Aronson et al. 2017), as they need to balance the needs of public use 60 

and conservation (Miguez et al. 2025). For example, unmanaged or private urban and suburban 61 

natural areas can facilitate the introduction of non-native plants into urban greenspaces, either 62 

unintentionally through natural spread or intentionally through the planting of ornamental plants. 63 

However, pollinators do not always exhibit strong preferences for native plants compared to non-64 

native plants (Harrison and Winfree 2015). Where native plants provide limited floral resources 65 

such as nectar and pollen later in the growing season, late-flowering exotic species can help 66 



sustain native pollinator populations (Staab et al. 2020). Additionally, greenspace size has been 67 

documented be tied with species richness in some pollinator species due to increased habitat 68 

heterogeneity and resource availability (Hennig and Ghazoul, Zaninotto et al. 2023). However, 69 

other pollinator groups, such as bumble bees (Hymenoptera), which are considered more urban-70 

tolerant, show no association between their abundance or diversity and greenspace size (Ulrich 71 

and Sargent 2025). Because of discrepancies in pollinator response to the outcome of 72 

management decisions such as plant community richness (e.g., Blaauw and Isaacs 2014; 73 

Dylewski et al. 2020) or greenspace size (e.g., Ulrich and Sargent 2025), understanding the 74 

ecological drivers of pollinator richness across broad spatial scales remains an important 75 

knowledge gap.  76 

 77 

Due to their relatively high biodiversity and proximity to populated areas, urban greenspaces 78 

provide the public with ample opportunities to engage in citizen science (also referred to as 79 

community science or participatory science). Since it is often expensive and time-consuming to 80 

gather broad-scale pollinator richness data in the field, citizen science data provides a potential 81 

alternative to estimate pollinator richness among many urban greenspaces. Such citizen science 82 

data have been used for studies of pollinator-friendly gardens (Anderson et al. 2020), monitoring 83 

of pollinator services (Birkin and Goulson 2015), and citizen science project methods and 84 

participant motivations themselves (Bloom and Crowder 2020). Data from one of the most 85 

successful citizen science platforms—iNaturalist—are increasingly used in biodiversity research 86 

(Mason et al. 2025) and provide an opportunity to further understand pollinator richness among 87 

urban greenspaces. While iNaturalist data relies on opportunistic data collection and is less 88 



structured than field data, it can provide a larger spatial scope to study ecological trends (Díaz-89 

Calafat et al. 2024). 90 

 91 

Our primary aim was to test how native and non-native angiosperm richness and greenspace-92 

level landscape characteristics impact pollinator richness in urban greenspaces (Figure 1). First, 93 

we tested the hypothesis that angiosperm richness in urban greenspaces increases pollinator 94 

richness and that this impact depends on plant origin (native vs. non-native). Second, we 95 

examined how attributes of urban greenspaces (i.e., grass cover, impervious surface cover, tree 96 

cover, water cover, and greenspace size) relate to pollinator richness. Our work aims to provide 97 

evidence supporting the usefulness of participatory citizen science data for management of 98 

pollinator richness in urban ecosystems. 99 

 100 

Methods 101 

iNaturalist data and pollinators 102 

iNaturalist is a citizen science platform accessible through a website (inaturalist.org) or 103 

application (iNaturalist) that allows users across the globe to upload visual or auditory 104 

observations of organisms. Observations are submitted for community review, where other users 105 

help identify recorded organisms. Observations are deemed “Research Grade”, when it contains 106 

complete metadata (e.g., date, location, media evidence) following the Data Quality Assessment 107 

(iNatHelp 2024) and have more than two-thirds agreement on identification at the species level. 108 

We obtained iNaturalist data using the iNaturalist API on June 27th, 2025. We used the 109 

iNaturalist API because it provides detailed taxonomic resolution for each species, allowing us to 110 

filter observations by Superfamily and Subfamily. The original dataset was made up of 111 



1,772,634 Research Grade iNaturalist observations of pollinators and angiosperms in Florida, 112 

U.S.A. Each observation in our dataset had an associated scientific name, date of observation, 113 

and location (latitude and longitude). Pollinators were defined as bees and apoid wasps 114 

(Superfamily Apoidea), bee flies (Family Bombyliidae), fruit and flower chafers (Subfamily 115 

Cetoniinae), butterflies and moths (Order Lepidoptera), and flower longhorn beetles (Subfamily 116 

Lepturinae). Angiosperms were defined as flowering plants from the subphylum Angiospermae. 117 

In addition, we obtained a list of non-native angiosperm species from iNaturalist by downloading 118 

species information via the API and filtering for “introduced” establishment means (iNatHelp 119 

2025). We joined this list to our main dataset by scientific name to assign native and non‑native 120 

status to each angiosperm species. We used iNaturalist observations from January 1, 2014, when 121 

the iNaturalist data is most reliable (Jacobs and Zipf 2017), to June 26, 2025, when the API was 122 

accessed. 123 

 124 

Study area and site selection 125 

Florida, located in the southeastern United States, is a coastal, humid-subtropical state with a 126 

population of over 21.5 million people (United States Census Bureau 2020). It is one of the 127 

nation’s fastest growing states, with large urban developments along its coastlines and interior 128 

(U.S. Census Bureau 2024). Our study areas are “urban greenspaces”, defined as nature 129 

preserves, multipurpose greenspaces, nature trails, and other natural areas used by people within 130 

the urban system. We obtained greenspace boundaries from ParkServe (Trust for Public Land 131 

2025), a nationwide dataset of parks and natural areas in the U.S. To isolate urban greenspaces, 132 

we filtered the ParkServe data to include only those located within urban areas as defined by the 133 

U.S. Census Bureau (2023) for Florida. This filtering resulted in a final dataset of 3,072 urban 134 



greenspaces. We restricted our original iNaturalist dataset to only observations in greenspaces (N 135 

= 182,718). We then removed all greenspaces which had less than 50 observations of either 136 

pollinators or angiosperms, leaving a final dataset of 106,171 observations within 129 urban 137 

greenspaces (Figure 1). Qualitative exploration of observation cutoffs showed that 50 138 

observations for both pollinators and angiosperms remove the high variability in species richness 139 

values in parks with fewer observations while maintaining a meaningful sample size (Table A2 – 140 

A3). 141 

 142 

Park-level variables 143 

We used remote sensing data from Google Earth Engine (Gorelick et al. 2017) to derive habitat 144 

characteristics within each urban greenspace. To represent land use and human influence, we 145 

calculated impervious surface cover, grass, trees, and water using the Dynamic World land use 146 

and cover datasets (10-meter resolution; Brown et al. 2022). While the Dynamic World data set 147 

contains nine landcover types (other habitats include: flooded vegetation, snow and ice, bare, 148 

crops, and scrub and shrub), we selected these four as we expected them to have the greatest 149 

influence on pollinator richness and because other habitat categories were rare in urban 150 

greenspaces, defined occurring in less than half of the urban greenspaces examined (see Table 151 

A4). Within each greenspace polygon, we used a pixel-based histogram reducer to count the 152 

number of 100 m² landcover pixels belonging to each habitat type and calculated the percentage 153 

of each type relative to the total pixels in that polygon. 154 

 155 

Statistical analysis 156 



Our primary response variable was species richness, either pollinator richness or angiosperm 157 

richness measured as the number of unique species observed within each urban greenspace. 158 

While we acknowledge that iNaturalist data will not represent the true species richness values 159 

(i.e., absolute value), we assume that the data capture relative differences in species richness 160 

among urban greenspaces allowing us to infer true patterns. The ability of presence-only citizen 161 

science data to capture species richness patterns has been previously shown (Callaghan et al. 162 

2020; Roberts et al. 2022). We additionally account for sampling effort differences in our model 163 

structure to ensure sampling differences among urban greenspaces are accounted for (see below).  164 

 165 

To model the relationship between pollinator and angiosperm richness, we used generalized 166 

additive models (GAMs) using the mgcv package in R (Wood 2017), which allowed us to 167 

include a thin-plate regression spline for latitude and longitude to control for spatial structure 168 

(Wood 2003) and account for varying patterns throughout the state of Florida that may be due to 169 

items not of interest (e.g., known species richness trends with latitude). To do this, we fit two 170 

GAMs. The first GAM included angiosperm richness as the response variable, and the log-171 

transformed number of angiosperm observations, to address skewness and to account for uneven 172 

sampling effort, and spatial smooth (latitude and longitude) as predictors. We used this model to 173 

predict angiosperm richness after controlling for number of observations and spatial variation, 174 

using the predict.gam function from the mgcv package (Wood 2017). The second GAM included 175 

pollinator richness as the response variable with the predicted angiosperm richness from the first 176 

model, the log-transformed number of pollinator observations, and a spatial smooth as predictor 177 

variables. Both models used a negative binomial error distribution to account for overdispersion 178 

and were fit using the REML method (Wood 2011). Log-transformed sampling effort and 179 



predicted angiosperm richness were included as linear terms, while latitude and longitude were 180 

modeled as a thin-plate spline with a basis dimension (k) set to 50; selected to balance flexibility 181 

and reduce model complexity. Prior to modeling, we assessed multicollinearity and found no 182 

concerning correlations among predictors. We also evaluated model fit using the gam.check() 183 

function from the mgcv package to examine residual distributions and the relationship between 184 

response versus fitted values. To assess how much angiosperm richness improved model fit, we 185 

used Akaike Information Criterion (AIC) values to compare the resulting model to the null 186 

model. To evaluate whether native versus non-native angiosperm richness differentially 187 

influenced pollinator richness, we repeated the analysis separately for native and non-native 188 

angiosperm richness. In each case, we restricted the dataset to greenspaces with more than 50 189 

angiosperm observations from the relevant group to ensure sufficient sampling coverage. We 190 

found that this threshold provided the best balance between sample size and statistical inference. 191 

This resulted in a sample size of 123 greenspaces for the native angiosperm models, and 104 192 

greenspaces for the non-native angiosperm models. We repeated the analysis with proportion of 193 

native angiosperm richness and number of pollinator observations as predictor variables with 194 

pollinator richness as the response variable (N = 123). Further, to assess the importance of 195 

individual pollinator groups (defined as Superfamily Apoidea, Family Bombyliidae, Subfamily 196 

Cetoniinae, Order Lepidoptera, Subfamily Lepturinae, butterfly species [family Hesperiidae, 197 

Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae], and moth species 198 

[Lepidoptera and not family Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Riodinidae, and 199 

Nymphalidae]) on the observed trends, we repeated the described analyses using species richness 200 

calculated for each group that had at least 50 observations in multiple greenspaces.  201 

 202 



To examine the influence of greenspace-level covariates on pollinator richness, we fit GAMs 203 

with a negative binomial family. We modeled pollinator richness as the response variable and 204 

percent grass cover, percent impervious surface cover, percent tree cover, percent water cover, 205 

and greenspace size for each greenspace as linear predictor variables, along with the log-206 

transformed number of pollinator observations to control for sampling effort. We additionally 207 

modeled latitude and longitude using a thin-plate spline with a basis dimension (k) set to 50 to 208 

control for geographical variation in pollinator richness. Greenspace size was log-transformed 209 

due to its highly skewed distribution. We first ran a full model including all predictor variables, 210 

sampling effort, and geographic location. We then fit a null model including only the sampling 211 

effort and geographic location, followed by a set of five models, each including one of the park-212 

level covariates, sampling effort, and geographic location. For all models, we evaluated model fit 213 

using the gam.check() function from the mgcv package to examine residual distributions and the 214 

relationship between response versus fitted values and found good model fit. We visualized the 215 

predicted relationship from each single-variable model and compared them using AIC values. To 216 

determine pollinator group-level responses to environmental covariates, we repeated the 217 

described analyses using species richness calculated for each group. For group-level analyses, 218 

the basis dimension for latitude and longitude was adjusted to sample size – 1 for groups with a 219 

sample size of less than 50. 220 

 221 

Data analysis and availability 222 

All data analysis was conducted in R (R Core Team 2025). All data and code to reproduce our 223 

analyses are available here: https://doi.org/10.5281/zenodo.17517393.  224 

 225 

https://doi.org/10.5281/zenodo.17517393


Results 226 

Dataset Summary 227 

Our dataset spans over 10 years, from January 1, 2014, to June 26, 2024. Due to the exponential 228 

increase in user uploaded iNaturalist observations, most observations came from recent years 229 

(median = September 25, 2022; SD = 751 days). Of the 106,171 observations, 82,453 (77.7%) 230 

were angiosperms and 23,718 (22.3%) were pollinators. These included 773 unique pollinator 231 

species and 2,008 unique angiosperm species. Pollinator richness per greenspace ranged from 13 232 

to 220 species (mean = 48.5 ± 29.0 SD), while angiosperm richness ranged from 5 to 448 species 233 

per greenspace (mean = 68.9 ± 58.1 SD). Of the angiosperms, 63,882 were native (77.5%) and 234 

18,571 were non-native (22.5%). Of the pollinators, most were in the order Lepidoptera 235 

(observations = 20,619, species = 648), followed by superfamily Apoidea (observations = 2,635, 236 

species = 87), family Bombyliidae (observations = 248, species = 25), subfamily Cetoniinae 237 

(observations = 182, species = 7), and subfamily Lepturinae (observations = 34, species = 6) (see 238 

Table A1 for subfamily-level composition of dataset). In Lepidoptera, most observations were 239 

from butterflies (N = 15,515 vs. 5,104 for moths), whereas most species belonged to moths (N = 240 

528 vs. 120 for butterflies). There were 129 urban greenspaces that met our filtering criteria, 241 

which encompass approximately 100,641 ha (389 mi²). Our study area represents 0.44% of 242 

Florida urban regions (87,958 mi²). For the group-level analysis, we found that only Lepidoptera 243 

and Apoidea had enough data to calculate species richness in parks, with sample sizes of 113 and 244 

13 parks, respectively. For the subgroups, we had a sample size of 80 parks for butterflies and 28 245 

parks for moths.   246 

 247 

Relationship Between Angiosperm and Pollinator Species Richness 248 



Angiosperm richness was positively associated with pollinator richness and models including it 249 

fit well (adjusted R² = 0.826; deviance explained = 81.6%), though much of this fit was due to 250 

sampling effort and spatial structure alone (adjusted R² = 0.782; deviance explained = 79.1%). 251 

Nonetheless, including angiosperm richness improved model performance (ΔAIC = 7.84), and 252 

this variable was a significant predictor of pollinator richness (Estimate = 0.001 ± 0.0003 SE, P 253 

< 0.001; Figure 2). Sampling effort also had a strong positive effect on both angiosperm richness 254 

(Estimate = 0.52 ± 0.02 SE, P < 0.001) and pollinator richness (Estimate = 0.48 ± 0.03 SE, P < 255 

0.001; Figure S1). 256 

 257 

The proportion of native angiosperm species in a greenspace was positively related to pollinator 258 

richness with models indicating that a 10-percentage-point increase in the proportion of native 259 

plant species within a park is associated with an approximate 20% increase in expected pollinator 260 

richness. (Estimate = 1.83 ± 0.48 SE, P < 0.001; Figure 2B). This model fit the data well 261 

(adjusted R² = 0.826; deviance explained = 82.1%), but much of this fit was attributable to 262 

sampling effort and spatial structure (adjusted R² = 0.782; deviance explained = 79.1%); 263 

however, the model including the proportion of native angiosperms outperformed the null model 264 

(ΔAIC = 9.53), indicating  that the proportion of native plants in a park adds explanatory power 265 

over spatial effects and sampling alone.  266 

 267 

We additionally found a positive relationship between the native angiosperm richness and 268 

pollinator richness (Estimate = 0.001 ± 0.0004 SE, P = 0.002; Figure S2). This model also fit the 269 

data well (adjusted R² = 0.822; deviance explained = 80.7%), although much of the variation was 270 

explained by sampling effort and spatial structure alone (adjusted R² = 0.790; deviance explained 271 



= 79.1%). Nevertheless, including native angiosperm richness improved model performance 272 

(ΔAIC = 7.20), and it was a significant predictor of pollinator richness. Sampling effort remained 273 

a strong positive predictor of both native angiosperm richness (Estimate = 0.52 ± 0.02 SE, P < 274 

0.001) and pollinator richness (Estimate = 0.50 ± 0.03 SE, P < 0.001).  275 

 276 

The proportion of non-native angiosperm species had a significant, negative relationship with 277 

pollinator richness with models indicating that a 10-percentage-point increase in the proportion 278 

of non-native plant species within a park is associated with an expected 16% decrease in 279 

pollinator richness  (Estimate = -1.73 ± 0.48 SE, P < 0.001; Figure 2C), and the model fit the 280 

data well (adjusted R² = 0.815; deviance explained = 81.8%). Much of this fit was attributable to 281 

sampling effort and spatial structure (adjusted R² = 0.782; deviance explained = 79.1%); 282 

however, the model including the proportion of non-native angiosperms outperformed the null 283 

model (ΔAIC = 8.00), indicating additional explanatory power.  284 

 285 

While a higher proportion of non-native species was associated with decreased pollinator 286 

richness, the opposite was true for raw non-native richness which had a weak positive 287 

association with pollinator richness. Non-native angiosperm richness also demonstrated good fit 288 

(adjusted R² = 0.791; deviance explained = 81.0%), though much of this fit was also explained 289 

by sampling effort and spatial structure alone (adjusted R² = 0.775; deviance explained = 80.3%). 290 

The model including non-native angiosperm richness showed only slight improvement compared 291 

to the null model (ΔAIC = 1.87), with a model weight of 0.69. Non-native angiosperm richness 292 

showed moderate evidence of a significant positive association with pollinator richness (Estimate 293 

= 0.003 ± 0.001 SE, P = 0.045; standardized estimate = 0.11; Figure S2). Sampling effort 294 



continued to be a strong predictor of non-native angiosperm richness (Estimate = 0.53 ± 0.03 SE, 295 

P < 0.001) and pollinator richness (Estimate = 0.50 ± 0.03 SE, P < 0.001). 296 

 297 

When we repeated this analysis for taxonomic groups (Figure S3 – S6, we found a significant 298 

positive trend between Lepidoptera species richness and angiosperm species richness (Estimate = 299 

0.001 ± 0.0004 SE, P = 0.004) and proportion of native angiosperm species (Estimate = 1.90 ± 300 

0.59 SE, P = 0.001). We found a significant negative trend between Lepidoptera species richness 301 

and proportion of non-native species (Estimate = -1.87 ± 0.50 SE, P = 0.001). However, within 302 

the butterfly and moth subgroups, none of the angiosperm metrics were significantly related to 303 

species richness. Similarly, no significant relationships were found for Apoidea species. 304 

 305 

Greenspace-level Covariates and Pollinator Species Richness 306 

In the full model which contained all predictor variables, we found a significant positive 307 

relationship between pollinator richness and percent impervious surface cover (Estimate = 0.004 308 

± 0.002 SE, P = 0.010), percent tree cover (Estimate = 0.005 ± 0.001 SE, P = 0.001), and 309 

greenspace size (Estimate = 0.028 ± 0.013 SE, P = 0.037; Figure 3). We found no significant 310 

relationship between pollinator richness and percent grass cover (Estimate = 0.002 ± 0.002 SE, P 311 

= 0.391) or percent water cover (Estimate = –0.00005 ± 0.002 SE, P = 0.985). 312 

 313 

The AIC comparisons indicated that the full model, which included all predictor variables, 314 

performed best (AIC = 980.28), compared to the second-best model, which included only percent 315 

tree cover (AIC = 982.30). The full model showed high explanatory power (adjusted R² = 0.797; 316 

deviance explained = 81.6%). However, much of this was attributable to sampling effort and 317 



spatial distribution, as the null model—including only these factors—also explained a large 318 

portion of the variance (adjusted R² = 0.770; deviance explained = 77.7%). Nevertheless, the full 319 

model significantly improved fit compared to the null model (ΔAIC = 13.29). 320 

 321 

When we repeated this analysis taxonomic groups (Figure S7 – S10), we found a similarly 322 

positive relationship in Lepidoptera species richness and impervious surface cover (Estimate = 323 

0.006 ± 0.002 SE, P = 0.003), tree cover (Estimate = 0.005 ± 0.002 SE, P = 0.002), and 324 

greenspace size (Estimate = 0.035 ± 0.032, P = 0.023), and a non-significant relationship with 325 

grass cover (Estimate = 0.002 ± 0.003 SE, P = 0.561) and water cover (Estimate = 0.0009 ± 326 

0.003 SE, P = 0.729). However, no significant trends were observed for the butterfly and moth 327 

subgroups, nor for Apoidea, across any land cover variables. 328 

 329 

Discussion 330 

Our analysis of 129 urban greenspaces across Florida demonstrates that plant richness, and 331 

particularly native plant richness, is a key predictor of pollinator richness in urban environments. 332 

While pollinators in our study are mostly represented by butterflies and moths, models indicated 333 

that angiosperm richness, regardless of plant location of origin (i.e., native or non-native) 334 

increased pollinator richness, but there was clear evidence that parks with proportionally more 335 

non-native species have lower pollinator diversities. This is illustrated by looking at our “most 336 

native” and “most non-native” parks in the data set which models predicted should have ~100 337 

pollinator species vs <50 species (Figure 2). Among environmental factors, tree cover was most 338 

strongly associated with pollinator richness, while greenspace size showed modest positive 339 

effects. Impervious surface cover also showed a positive relationship with pollinator richness, 340 



likely reflecting the benefits of moderate disturbance or a greater richness of habitats being 341 

sampled by iNaturalist users. Taken together, our results support existing conservation goals for 342 

pollinators which prioritize planting flowering plants (Morales and Traveset 2009; Kral-O’Brien 343 

et al. 2021) and support the important goal of maintaining large urban greenspaces with a high 344 

proportion of tree cover (Ulrich and Sargent 2025).  345 

 346 

Non-native angiosperm richness was a weak but positive predictor of pollinator richness. This 347 

suggests that removing non-native species without concurrent increases in native plant richness 348 

could harm pollinator communities, at least in the short term. For example, some non-native 349 

perennials and even weedy species have been shown to support a wide range of pollinators, 350 

including during seasonal gaps in native floral availability (Lowenstein et al. 2018; Koyama et 351 

al. 2018; Frankie et al. 2019; Seitz et al. 2020). Non-native plant species may also support more 352 

generalist species interactions and network nestedness (Zaninotto et al. 2023). This suggests that 353 

management strategies should emphasize replacement rather than simple removal with a focus 354 

on maintaining richness while shifting communities toward native-dominated floras. Our results 355 

suggest that restoration should focus on parks that have relatively low plant richness where 356 

targeted plantings of native species could have outsized impacts on pollinators, because those 357 

additions represent a large proportional increase in native plants. This adds to an increasing body 358 

of evidence that native plants support pollinator richness (Morales and Traveset 2009; Fukase 359 

and Simons 2016; Kral-O’Brien et al. 2021) and that managing for diverse plant communities is 360 

paramount (Daniels et al. 2020; Watson et al. 2022). Together, these results highlight that 361 

managing pollinator richness requires balancing native versus non-native plantings. Diverse 362 

plant communities with a variety of foraging and pollination niches support a greater number of 363 



pollinator species (Frankie et al. 2019), and non-native gardens can increase those niches (e.g., 364 

Staab et al. 2020) albeit not as effectively as native plants.  365 

 366 

Aside from plant richness, we found localized, within-greenspace characteristics were associated 367 

with increased pollinator richness, including tree cover, impervious surface cover, and 368 

greenspace size. The strong effect of tree cover aligns with prior work showing that forested 369 

areas provide resources such as nesting sites and floral availability for bees and other pollinators 370 

(Ulyshen et al. 2023, Mola et al 2021a, Mola et al 2021b). In urban ecosystems where 371 

surrounding forests are often limited, tree cover within greenspaces may be especially important 372 

for supporting pollinator communities. We further speculate that forested parts of greenspaces 373 

may also provide bare ground nesting habitat (e.g., for bees) and larval habitat, particularly in 374 

larger greenspaces, leading to the positive effect size we found in our analysis (Fortuin and 375 

Gandhi 2021; Habel et al. 2022). The positive effect of impervious surface cover was surprising, 376 

given that many studies report negative associations with pollinator richness (Gerner, 2020; 377 

Kaiser & Resasco 2024). However, urban pavements with their cracks, interstices and break 378 

lines, were reported to provide novel habitats to many ground-dwelling insects, including wild 379 

bees and wasps (Weber et al. 2024). In addition, some pollinators, such as large-bodied bees, can 380 

be positively associated with impervious surfaces (Bennett & Lovell 2019). It is also possible 381 

that impervious surface cover reflects habitat heterogeneity, encompassing residential yards, 382 

gardens, or other mixed spaces that support pollinators (Larson et al. 2022; Liang et al. 2023; 383 

Kostro-Ambroziak et al. 2025). Pollinators may be able to benefit more from this habitat 384 

heterogeneity in larger parks where their remain sufficient patches of forested or natural 385 

vegetation. Further, parks with higher impervious surface cover may be less prone to pesticide 386 

https://doi.org/10.1007/s11252-024-01569-3


use. Despite its limitations in capturing real-world heterogeneity, impervious surface cover 387 

measures are correlated with pollinator richness when compared to lower-impervious-coverage 388 

areas such as intensive agriculture (Wenzel et al 2020) and shifts in pollinator functional richness 389 

favors some pollinator life histories (Ayers and Rehan 2021). This result, however, may also 390 

reflect sampling bias in citizen science data, as the amount of impervious surface cover in urban 391 

greenspaces may influence where observers can access and record pollinators within an urban 392 

greenspace. Finally, the positive effect of greenspace size is consistent with ecological theory 393 

and empirical evidence, likely reflecting greater habitat heterogeneity and foraging resources in 394 

larger parks (Zaninotto et al. 2023; Hennig & Ghazoul 2011).  395 

 396 

In contrast to the above variables, we found no significant relationship between pollinator 397 

richness and water or grass cover. Water features may provide localized benefits for individual 398 

pollinators, but they were not a key predictor of pollinator richness across our dataset. This may 399 

be partially due to pesticide use, where higher water cover in certain parks could result in more 400 

pesticide applications to control mosquitos (Florida Department of Agriculture and Consumer 401 

Services 2025). Additionally, grassland cover—derived from the Dynamic World dataset—likely 402 

includes a mix of natural meadows and manicured lawns, with the latter dominating urban 403 

greenspaces. Because lawn management (e.g., mowing frequency, pesticide use, vegetation 404 

richness) strongly shapes ecological value to pollinators (Brittain et al. 2010; Lerman et al. 2023; 405 

Morrison & Bright 2025), and these attributes were not captured in our analysis, we speculate 406 

that this may be why we did not detect a significant association between grassland cover and 407 

pollinator richness.  408 

 409 



Our pollinator dataset mainly consisted of Lepidoptera (83.8% of species and 86.9% of 410 

observations), and we were unable to find significant trends outside of this group, which is likely 411 

due to the small sample size. Such bias towards Lepidoptera has been documented previously 412 

(Di Cecco et al. 2021; Díaz-Calafat et al. 2024) and can be attributed to their relative ease of 413 

observation and photography, as well as their charismatic appeal (Fischer et al. 2021). Bias is 414 

also evident in which insect observations reach Research Grade on iNaturalist. Small insects are 415 

less frequently identified to species, likely due to poor photograph quality, the need for 416 

diagnostic characteristics such as genitalia, or the requirement of dissection or DNA analysis (Di 417 

Cecco et al. 2021; Díaz-Calafat et al. 2024). Although previous research by Segre et al. (2023) 418 

has shown that Lepidoptera richness is a poor proxy for overall pollinator richness, they found 419 

that pollinator groups exhibited similar correlations with flower richness. Thus, while our 420 

observed relationship between pollinator and angiosperm richness may be generalizable across 421 

less-represented pollinator groups, the specific environmental covariates driving these patterns 422 

may vary depending on the present taxa. Given the bias towards Lepidoptera and their reliance 423 

on host plants, future work could examine the relationship between Lepidoptera richness and 424 

host plant richness. Citizen scientists could focus efforts on additionally documenting host plants 425 

to make this research possible. 426 

 427 

Our study is geographically (i.e., the entire state of Florida) and taxonomically broad, providing 428 

generalizable patterns by encompassing over 106,000 observations across 129 urban greenspaces 429 

throughout Florida. This was possible by leveraging broad-scale citizen science data from 430 

iNaturalist. However, there are biases and data limitations. Given our study’s focus on urban 431 

greenspaces, where observation density is likely driven by accessibility and infrastructure, there 432 



may be some biases in which urban greenspaces, and to what extent, they are sampled 433 

(Geldmann et al. 2016). Although we did account for sampling effort in our analysis, we could 434 

not account for bias towards recording certain species of pollinators or angiosperms, but we 435 

expect such biases to be consistent across the urban greenspaces (i.e., participant-level biases 436 

would be consistent across Florida). To reduce structural biases in the data, and increase the 437 

usability of such citizen science data, park managers can include signage or posters at the 438 

entrance to greenspaces encouraging users of citizen science platforms such as iNaturalist to use 439 

dedicated citizen science projects when possible (Deacon et al. 2023). Increasing the availability 440 

and visibility of citizen science initiatives within parks can improve the quality and utility of 441 

biodiversity data (Meeus et al. 2023), allowing for a growing dataset to be collected over time, 442 

and potentially allowing for the monitoring of restoration success in the future by tracking 443 

changes in pollinator and floral richness. Future work could build on our broad-scale approach 444 

by incorporating trait-based plant characteristics—such as nectar production or floral 445 

morphology—that more directly link floral resources to pollinator foraging preferences (e.g., 446 

Zeng et al. 2023). Such fine-scale data would complement our richness-based analysis by 447 

providing insight into the functional relationships that structure urban pollinator communities.  448 

 449 

Additionally, we did not explore landscape-level factors that affect pollinator richness. One such 450 

factor could be human population density, which has been shown to affect pollinator behavior 451 

(Persson et al. 2022). Another is pesticide application or drift, given that pesticides have been 452 

documented in pollen samples within Florida urban parks (Démares et al. 2022). Further, habitat 453 

connectivity has been described to be positively correlated with pollinator richness and 454 

abundance (Graffigna et al. 2024). Future research could explore how landscape-level factors, 455 



such as human population density, pesticide drift, or habitat connectivity, influence the 456 

relationship between pollinator and angiosperm richness. 457 

 458 

Conclusion 459 

Using a large, spatially explicit citizen science dataset, we found that angiosperm richness, 460 

greenspace size, and landscape management were key drivers of pollinator richness. Our results 461 

offer a clear takeaway for urban greenspace managers, suggesting they should consider (1) 462 

planting more flowers, preferably native species which will have a more reliable impact on 463 

increasing pollinator richness, and (2) maintaining a richness of habitats, including forested, 464 

grassland, and mixed-use areas that help maximize pollinator richness. Our results also illustrate 465 

how citizen science can help understand and track pollinators in urban greenspaces. 466 
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Figures 

 

Figure 1. Diagram illustrating the study area and citizen science data availability. The map of 

urban areas in Florida includes only those regions containing at least one greenspace that met our 

filtering criteria (≥ 50 pollinator and angiosperm observations). The example map of greenspaces 

in South Florida highlights a subset of the data to demonstrate the spatial resolution and structure 

of the data.



 

Figure 2.  Scatterplots comparing pollinator species richness with the richness of (A) all 

angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-

native angiosperms across greenspaces. Each point represents an individual greenspace. Both 

pollinator and angiosperm species richness values are adjusted for sampling effort and spatial 

variation using Generalized Additive Models (GAM). The blue line shows the modeled 

relationship from the GAM model with 95% confidence interval. The estimated pollinator 

richness coefficient, standard error (SE), and associated p-value are reported for each model. 

Outliers were removed for display purposes; the full plot including all points is shown in Figure 

S2. 



 

Figure 3. Scatterplots illustrating the relationship between pollinator species richness in each 

greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), 

tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species 

richness values have been adjusted to account for variation in sampling effort. The blue line 

shows the modeled relationship between each environmental variable and adjusted pollinator 

richness, calculated using a Generalized Additive Model with a thin-plate regression spline for 

latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the 

predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-

value are reported for each model. 



Table A1. Subfamily composition of species used in analysis by number of unique species and 

number of observations.  

Group Subfamily Number of species Number of observations 

Apoidea Ammophilinae 3 61 

Andreninae 2 4 

Apinae 16 1448 

Bembicinae 8 78 

Colletinae 2 9 

Crabroninae 4 34 

Halictinae 7 449 

Hylaeinae 3 9 

Lithurginae 1 1 

Megachilinae 14 94 

Nomadinae 4 36 

Nomiinae 2 15 

Philanthinae 5 52 

Sceliphrinae 5 88 

Sphecinae 7 58 

Xylocopinae 4 199 

Bombyliidae Anthracinae 15 225 

 Bombyliinae 4 9 

 Lomatiinae 1 2 

 Phthiriinae 2 7 

 Toxophorinae 3 5 

Cetoniinae Cetoniinae 7 182 

Lepidoptera Acentropinae 10 46 

Acontiinae 5 51 

Acrocercopinae 2 22 

Acrolophinae 8 51 

Acronictinae 9 75 

Adelinae 1 1 

Afridinae 1 1 

Agaristinae 4 55 

Amphipyrinae 1 2 

Anacampsinae 2 7 

Anomologinae 1 1 

Antequerinae 1 6 

Apaturinae 2 78 

Arctiinae 36 1531 

Bagisarinae 1 2 

Biblidinae 3 66 

Blastobasinae 1 1 

Boletobiinae 8 36 



Calpinae 2 2 

Cemiostominae 2 3 

Ceratocampinae 6 88 

Cerurinae 1 1 

Charaxinae 1 15 

Chloephorinae 1 4 

Choreutinae 3 15 

Chrysauginae 5 19 

Cicinninae 1 1 

Cobubathinae 1 1 

Coleophorinae 1 1 

Coliadinae 16 1476 

Condicinae 4 8 

Cossinae 1 6 

Crambinae 11 28 

Cyrestinae 1 299 

Danainae 3 1185 

Dichomeridinae 1 1 

Diphtherinae 1 2 

Dyopsinae 1 4 

Ennominae 29 195 

Epipaschiinae 2 2 

Erebinae 30 146 

Eudaminae 9 890 

Eulepidotinae 5 52 

Eustrotiinae 1 4 

Euteliinae 3 7 

Galleriinae 1 1 

Gelechiinae 5 7 

Geometrinae 7 26 

Glaphyriinae 6 9 

Glyphidocerinae 1 7 

Glyphipteriginae 1 2 

Gracillariinae 4 9 

Heliconiinae 4 2642 

Heliothinae 5 20 

Hemileucinae 2 98 

Herminiinae 13 22 

Hesperiinae 24 1955 

Heterocampinae 13 61 

Hypeninae 1 2 

Hypocalinae 1 2 

Hypoptinae 1 2 

Larentiinae 6 10 

Lasiocampinae 1 3 



Libytheinae 1 3 

Limacodinae 11 53 

Limenitidinae 2 186 

Lithocolletinae 1 2 

Lymantriinae 4 343 

Macroglossinae 20 320 

Malacosominae 2 196 

Marmarinae 2 3 

Megalopyginae 3 62 

Metoponiinae 1 32 

Millieriinae 1 1 

Musotiminae 2 2 

Noctuinae 22 123 

Nolinae 1 1 

Notodontinae 2 4 

Nymphalinae 11 2170 

Odontiinae 1 2 

Oecophorinae 1 2 

Oecophyllembiinae 1 2 

Oiketicinae 3 61 

Olethreutinae 17 39 

Pantheinae 2 19 

Papilioninae 10 1218 

Periergosinae 1 1 

Phalerinae 5 20 

Phycitinae 11 25 

Phyllocnistinae 7 31 

Pierinae 4 266 

Plusiinae 3 7 

Poecilocampinae 2 9 

Polyommatinae 4 687 

Procridinae 2 49 

Psychinae 1 5 

Pterophorinae 6 14 

Pyralinae 1 1 

Pyraustinae 10 154 

Pyrginae 8 1144 

Riodininae 1 4 

Rivulinae 1 1 

Saturniinae 3 116 

Satyrinae 4 17 

Schoenobiinae 3 9 

Scolecocampinae 3 18 

Scoliopteryginae 2 2 

Scopariinae 1 3 



Sesiinae 6 11 

Siculodinae 1 4 

Smerinthinae 3 16 

Sphinginae 9 47 

Spilomelinae 34 381 

Stenomatinae 2 2 

Sterrhinae 16 56 

Theclinae 12 1214 

Thiotrichinae 1 1 

Tineidae clade a 1 1 

Tineinae 1 1 

Tortricinae 9 26 

Trosiinae 1 1 

No subfamily 16 66 

Lepturinae Lepturinae 6 34 

 



Table A2. Sensitivity analysis of different minimum observation thresholds (25, 50, and 75) 

used to calculate species richness for examining the relationship between angiosperm and 

pollinator richness. For each threshold, we report the number of parks included in the analysis 

and the coefficient estimates from the model with pollinator richness as the response, including 

angiosperm richness, proportion of native species, or proportion of non-native species as the 

predictors of interest, and controlling for the number of pollinator observations and geographic 

location. Results show broadly similar trends across thresholds. However, a minimum of 25 

observations increased uncertainty likely due to higher variability in species richness values in 

parks with fewer total observations, while a minimum of 75 reduced the number of parks 

included in analysis and limited inference. Based on this balance, we selected 50 observations as 

the minimum cutoff for both pollinators and angiosperms. 

Minimum 

number of 

observations 

Sample 

size Variable Estimate SE P-value 

25 226 Angiosperm species richness 0.0008 0.0003 0.006 

226 Proportion of native species 1.155 0.449 0.01 

226 Proportion of non-native species -0.816 0.443 0.065 

50 129 Angiosperm species richness 0.001 0.0003 <0.001 

129 Proportion of native species 1.827 0.477 <0.001 

129 Proportion of non-native species -1.735 0.485 <0.001 

75 88 Angiosperm species richness 0.001 0.0005 0.003 

88 Proportion of native species 2.765 0.834 <0.001 

88 Proportion of non-native species -2.730 0.840 0.001 



 

  



Table A3. Sensitivity analysis of minimum observation thresholds (25, 50, and 75) used to 

calculate species richness when examining relationships between greenspace-level covariates 

and pollinator richness. For each threshold, we report the number of parks included and the 

coefficient estimates from models with pollinator richness as the response, and impervious 

surface cover, grass cover, tree cover, water cover, log10(greenspace size), log10(number of 

Minimum 

number of 

observations 

Sample 

size Variable Estimate SE P-value 

25 226 Impervious surface cover 0.004 0.001 0.010 

226 Grass cover 0.003 0.002 0.093 

226 Tree cover 0.005 0.001 <0.001 

226 Water cover -0.000009 0.002 0.996 

226 Log10(Greenspace size) 0.032 0.010 0.001 

50 129 Impervious surface cover 0.004 0.002 0.010 

129 Grass cover 0.002 0.002 0.391 

129 Tree cover 0.005 0.001 0.001 

129 Water cover -0.00005 0.002 0.985 

129 Log10(Greenspace size) 0.028 0.013 0.037 

75 88 Impervious surface cover 0.004 0.002 0.010 

88 Grass cover 0.002 0.002 0.391 

88 Tree cover 0.005 0.001 0.001 

88 Water cover -0.00004 0.002 0.985 

88 Log10(Greenspace size) 0.028 0.013 0.04 



pollinator observations), and geographic location as predictors. Results were broadly consistent 

across thresholds, so we chose a minimum number of observations of 50 to balance accuracy of 

species richness calculation with sample size. 

  



Table A4. Landcover distribution among urban parks that were used to study pollinator richness. 

The landcover variables come from the Dynamic World land use and cover datasets (10-meter 

resolution; Brown et al. 2022). While this dataset found snow and ice landcover types, this was 

likely a misidentification of clouds as this is not an expected landcover type in Florida. For our 

study, we decided to only examine landcover types with a median > 0% (indicated in bold). 

Landcover variable Number of parks with 

this land cover 

Median Mean 

Standard 

deviation 

Trees 126 70.41% 61.95% 31.11% 

Snow and ice 13 0% 0.03% 0.18% 

Water 84 3.20% 7.59% 12.05% 

Shrub and scrub 56 0% 2.52% 8.67% 

Impervious surface 125 9.23% 18.64% 21.81% 

Bare 20 0% 0.12% 0.53% 

Crops 20 0% 0.29% 2.77% 

Grass 73 0.22% 5.52% 12.95% 

Flooded vegetation 37 0% 3.36% 12.43% 

  



 

Figure S1. Scatterplots showing the relationships between species richness and sampling effort 

across greenspaces: (a) pollinator species richness versus number of pollinator observations, and 

(b) angiosperm species richness versus number of angiosperm observations. The blue line 

represents the fitted relationship from a negative binomial model, with shaded ribbons indicating 

95% confidence intervals. 

 



 

Figure S2.  Scatterplots comparing pollinator species richness with the richness of (A) all 

angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-

native angiosperms across greenspaces. Each point represents an individual greenspace. Both 

pollinator and angiosperm species richness values are adjusted for sampling effort and spatial 

variation using Generalized Additive Models (GAM). The blue line shows the modeled 



relationship from the GAM model with 95% confidence interval. The estimated pollinator 

richness coefficient, standard error (SE), and associated p-value are reported for each model.  

 

 

Figure S3.  Scatterplots comparing Lepidoptera species richness with the richness of (A) all 

angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-



native angiosperms across greenspaces. Each point represents an individual greenspace. Both 

pollinator and angiosperm species richness values are adjusted for sampling effort and spatial 

variation using Generalized Additive Models (GAM). The blue line shows the modeled 

relationship from the GAM model with 95% confidence interval. The estimated pollinator 

richness coefficient, standard error (SE), and associated p-value are reported for each model. 

 



Figure S4. Scatterplots comparing butterfly (family Hesperiidae, Papilionidae, Pieridae, 

Lycaenidae, Riodinidae, and Nymphalidae) species richness with the richness of (A) all 

angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-

native angiosperms across greenspaces. Each point represents an individual greenspace. Both 

pollinator and angiosperm species richness values are adjusted for sampling effort and spatial 

variation using Generalized Additive Models (GAM). The blue line shows the modeled 

relationship from the GAM model with 95% confidence interval. The estimated pollinator 

richness coefficient, standard error (SE), and associated p-value are reported for each model. 



 

Figure S5. Scatterplots comparing moth (Lepidoptera and not family Hesperiidae, Papilionidae, 

Pieridae, Lycaenidae, Riodinidae, and Nymphalidae) species richness with the richness of (A) all 

angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-

native angiosperms across greenspaces. Each point represents an individual greenspace. Both 

pollinator and angiosperm species richness values are adjusted for sampling effort and spatial 



variation using Generalized Additive Models (GAM). The blue line shows the modeled 

relationship from the GAM model with 95% confidence interval. The estimated pollinator 

richness coefficient, standard error (SE), and associated p-value are reported for each model. 

  

Figure S6. Scatterplots comparing Apoidea species richness with the richness of (A) all 

angiosperms, (B) the proportion of native angiosperm species, and (C) the proportion of non-



native angiosperms across greenspaces. Each point represents an individual greenspace. Both 

pollinator and angiosperm species richness values are adjusted for sampling effort and spatial 

variation using Generalized Additive Models (GAM). The blue line shows the modeled 

relationship from the GAM model with 95% confidence interval. The estimated pollinator 

richness coefficient, standard error (SE), and associated p-value are reported for each model. 

  



 

Figure S7. Scatterplots illustrating the relationship between Lepidoptera species richness in each 

greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), 

tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species 

richness values have been adjusted to account for variation in sampling effort. The blue line 

shows the modeled relationship between each environmental variable and adjusted pollinator 

richness, calculated using a Generalized Additive Model with a thin-plate regression spline for 



latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the 

predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-

value are reported for each model. 

  



 

Figure S8. Scatterplots illustrating the relationship between butterfly (family Hesperiidae, 

Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae) species richness in each 

greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), 

tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species 

richness values have been adjusted to account for variation in sampling effort. The blue line 

shows the modeled relationship between each environmental variable and adjusted pollinator 



richness, calculated using a Generalized Additive Model with a thin-plate regression spline for 

latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the 

predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-

value are reported for each model. 

 

Figure S9. Scatterplots illustrating the relationship between moth (Lepidoptera and not family 

Hesperiidae, Papilionidae, Pieridae, Lycaenidae, Riodinidae, and Nymphalidae) species richness 



in each greenspace and key environmental covariates: grass cover (%), impervious surface cover 

(%), tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator 

species richness values have been adjusted to account for variation in sampling effort. The blue 

line shows the modeled relationship between each environmental variable and adjusted pollinator 

richness, calculated using a Generalized Additive Model with a thin-plate regression spline for 

latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the 

predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-

value are reported for each model. 

 



 

Figure S10. Scatterplots illustrating the relationship between Apoidea species richness in each 

greenspace and key environmental covariates: grass cover (%), impervious surface cover (%), 

tree cover (%), water cover (%), and log-transformed greenspace size (ha). Pollinator species 

richness values have been adjusted to account for variation in sampling effort. The blue line 

shows the modeled relationship between each environmental variable and adjusted pollinator 

richness, calculated using a Generalized Additive Model with a thin-plate regression spline for 



latitude and longitude. The shaded ribbon depicts 95% confidence intervals around the 

predictions. The estimated pollinator richness coefficient, standard error (SE), and associated p-

value are reported for each model. 

 


