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Abstract

Recent advances in genealogical inference now allow the reconstruction of genome-wide
sequences of trees for large sets of samples, providing detailed records of how evolutionary
relationships vary along the genome. Tree sequences encode a vast amount of information, but
new approaches are needed to extract relevant patterns and make inferences. TwisstNtern is
a program for visualizing and analyzing topology weights from four-population tree sequences.
TwisstNtern takes a wide range of tree sequence formats as input, conducts topology weighting
using the Twisst algorithm, and projects the topology weights in a ternary plot. This enables
intuitive visualization of the joint distribution of weights and formal tests for asymmetrical
genealogical discordance caused by processes such as introgression. The package also includes
tools for simulation, significance testing, and comparison between empirical and simulated
datasets.

1 Introduction

Advances in genealogical inference have transformed the way we study evolutionary processes
from genomic data. New methods now make it possible to reconstruct the genome-wide tree
sequence, which is a ‘complete’ set of genealogies describing how a set of genomes has been shaped
by coalescence and recombination events throughout history ([Kel419], [DNS24], [Spe+19]).
Tree sequences are extraordinarily rich in information, and provide access to the branching
patterns and coalescent times that underlie genetic variation ([RTK20]). However, the scale and
complexity of these data present new challenges and new tools are needed to efficiently translate
the vast topological variation into interpretable patterns ([Shi423]).

One powerful framework for doing so is topology weighting ([MV17]). Topology weighting
quantifies the proportion of genealogical support for each of the possible relationships among
a set of taxa by sampling and classifying subtrees that contain only one sample of each group
(IMV17]). In a tree with four populations, only three unrooted subtree can be observed, and
their relative frequencies can be visualized and analyzed to detect processes such as incomplete
lineage sorting (ILS) and introgression. This logic underlies many classical tests, including the
ABBA-BABA test, which measures asymmetry in site patterns to detect gene flow ([Gre+06]).
Topology weighting generalizes this idea from individual sites to entire genealogies, allowing
evolutionary processes to be inferred directly from tree sequences rather than from sequence
alignments or allele frequencies.

Here, we present TwisstNtern, a program for visualizing and analyzing topology weights from
four-population tree sequences. TwisstNtern maps each local genealogy to a point within a
ternary plot, enabling the joint distribution of weights to be visualized for an entire tree sequence.
By exploring how evolutionary parameters — such as divergence times, effective population
sizes, and migration rates — affect the shape and symmetry of this distribution, the program
provides an intuitive and quantitative framework for visualizing tree-space and detecting signals
of introgression, divergence, and ILS in tree-sequence data.

2 Logic and basic operations of TwisstNtern

We first used TwisstNtern to study the genetic basis of the evolution of reproductive mode in
Littorina snails ([Sta+24]), and subsequently to study the evolution of flower color in Antirrhinum
majus ([Pal+]). This version, which can be installed using pip, includes several new features.
First, it takes a wide range of tree sequence formats as input, automatically performs the
weighting using the Twisst algorithm, and projects the topology weights onto a ternary plot.
This enables intuitive visualization of the joint distribution of weights and formal tests for
asymmetrical genealogical discordance caused by processes such as introgression. The package
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Figure 1: (A) Overview of TwisstNtern analysis, including the inference of a tree sequence (done
prior to running TwisstNtern), topology weighting in Twisst ([MV17]), and plotting the weights
in the ternary plot. (B) Different representations of the ternary distribution, including the full
distribution of all data points, a contoured heatmap and a ternary histogram

also includes tools for simulation, significance testing, and comparison between empirical and
simulated datasets. Here we outline the basic operations performed by TwisstNtern, as well
as some of the logic behind the inference scheme. In doing so, we assume that the reader
understands what topology weights are and how they are calculated. Readers are advised to
consult [MV17] for a detailed description of the Twisst algorithm before continuing with this
manuscript.

2.1 Plotting the joint distribution of topology weights in a ternary plot

In a tree with four taxa, a two-dimensional simplex— more commonly known as a ternary plot—
provides a natural and intuitive framework for analyzing the distribution of these weights. This
is because it is possible to graphically represent each tree as a single point in an equilateral
triangle (Figure 1). The three corners of the ternary plot, defined by coordinates [1,0, 0], [0, 1, 0]
and [0, 0, 1], correspond to trees where 100% of the sampled subtrees perfectly match one of the
three alternative topologies, indicating that each of the four groups is monophyletic (Figure 1).
In contrast, the very center of the ternary plot—the point whose coordinates are [0.33,0.33, 0, 33]—
corresponds to a genomic window in which all three topologies were sampled with equal frequency.
Any other location in the ternary plot indicates a bias towards one of the topologies (Figure 1).
By representing every tree in the sequence as a single point in the ternary plot, we can view the
joint distribution of topology weights for a tree sequence with a length of L trees (Figure 1).
This may ultimately become difficult to visualize for long tree sequences, so it is convenient to
show the distribution of topology weights as a density function or divide the ternary space into
small bins that can be colored according to the local density of trees (Figure 1).

2.2 Factors that influence the ternary distribution of weights

Ternary analysis exploits the fact that different evolutionary processes and factors impact the
ternary distribution of topology weights for many loci. The effects we describe are predicted
by coalescent theory ([Wak16]), but we also illustrate them by simulating gene histories under
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Figure 2: Simulations show how the degree of lineage sorting and gene flow affect the
ternary distribution of weights. (A) A greater opportunity for lineage sorting biases the
distribution toward the topology that matches the demographic history of the populations (i.e.,
T,). Note that the distribution is always symmetrical between the left and right half-triangles.
(B) Gene flow between non-sister lineages creates bias toward one of the discordant topologies,
breaking the left-right symmetry. (C) A mix of both processes mimics a scenario where a small
fraction of the genome experiences introgression (here 10%)

a four-population model using the coalescent simulator MSprime ([Bau+22] (Figure 2). Note
that other factors aside from the ones we describe, such as selection, may affect the distribution
of weights. A more detailed simulation study can be found in the supplementary information
of [Sta+24] In all of our simulations, the four populations O, P, P>, P; have the relationship
(O (P3 (Py, P1))). These populations arise from three population splits going backwards in time:
at time tq1, the ancestral population P;s splits to form the descendant populations P; and Ps; at
time to, P19 and Pj3 diverge; and at time 3, the common ancestor of all descendant populations
splits, giving rise to the lineages O and Pjo3. For each scenario, we simulated 10, 000 independent
coalescent trees representing independent loci, performed topology weighting, and projected
the weights in a ternary plot. We modified this base model by varying the parameters to
illustrate their individual and combined effects. We first varied the split times scaled relative to
the effective population size (i.e. time in N, generations) in a four-population model without
migration. As a general expectation, any bias in the distribution of weights should always
be towards the subtree topology that matches the branching history of the four populations
(i.e. Ty, oriented at the top of the triangle). This is because population structure makes it
more likely that gene copies sampled from the same population will coalesce with each other,
rather than with a gene copy sampled from one of the other three populations. However, the
probability of coalescence is determined by two parameters: the effective population size, N,
which determines the rate of coalescence (i.e., the probability that two gene copies coalesce in
the previous generation is ﬁ in a diploid population), and the time since the population split
in generations, t, which determines how that rate accumulates into a meaningful probability
that coalescence will occur.

As expected, time has a strong influence on the distribution of topology weights (Fig. ??). When
t is small (i.e., t < 2N, generations), coalescent events occur largely in deeper parts of the tree,
making concordant and discordant topologies equally likely. This results in similar weights for



85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

104

105

106

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

all three subtrees (~ 0.33 each), and the mass of the distribution is in the center of the ternary
plot. As t increases, more lineages will coalesce before reaching deeper ancestral populations,
causing the weight of T, to exceed those of Tz and 7. This shifts the distribution of loci to the
apex of the triangle that corresponds to T,. As t becomes very large (i.e., t > 4N, generations),
all loci will inevitably show perfectly concordant trees, with weights for T3 and T, dropping to
zero and all points falling precisely at the apex.

When t < 4N, generations, a substantial fraction of coalescent events will be discordant, resulting
in non-zero weights for T3 and 7. In the standard four-population model without migration,
these two discordant topologies occur with equal probability, so the distribution of loci is
symmetrically weighted toward both corners. This symmetry reflects the fact that, for any given
locus, there is an equal chance that it will resemble either of the discordant topologies. As a
result, the ternary plot is vaguely mirrored across the median axis that runs from the base to
the apex (Fig. 2).

Migration between non-sister populations breaks the symmetry of the ternary distribution by
making one of the discordant topologies more common than the other. For example, gene flow
from population P» into Pj increases the probability that gene copies from these populations will
coalesce, leading to an excess of loci supporting the discordant topology where P, and P3 are
sister to one another. This results in a skewed distribution, with a higher density of points on
one side of the ternary plot (Fig. 2). The degree of asymmetry depends on both the proportion
of the genome affected by introgression and the rate of migration m (i.e., the number of migrants
per generation). However, when ¢t < 2N, coalescence is largely random and the signal of gene
flow is masked, making migration difficult to detect.

2.3 Partitioning the ternary space

When analyzing the distribution of weights to quantify the patterns outlined above, it is useful
to subdivide the ternary plot into smaller areas. For a genome-wide test for asymmetrical
discordance, we divide the ternary plot into two equal halves by bisecting it with a median line
from the apex that corresponds to the topology T,. In practice, counting the number of genomic
regions that fall on each side, nye; and nRignt, can be done by finding the number of cases where
the weights of one of the two alternative topologies (i.e. T and T ) are greater than the other:
points where Tz > T’, are on the left side, and points where T, > T correspond to points on
the right side (Fig. 3).

For other applications, we divide the ternary plot into a fine grid of smaller triangular bins to
analyze local regions of the distribution (Fig. 3). This is done by selecting a grid size « (e.g. 0.25,
0.1, or 0.05). Using this «, we define sub-triangles by choosing ternary coordinates (1, z2, z3)
from the sequence {0, ,2q,...,1 — a}. Each coordinate set defines a region as a half-open
interval: (z1,z1 + a] X (x2, 2 + a] X (z3,x3 + a corresponding to a subtriangle in our space.
Only coordinate combinations within the simplex are valid (i.e., those whose coordinates sum to
1). At the triangle’s edges, intervals starting at zero are closed to ensure full coverage. Once the
grid is defined, we systematically scan each valid sub-triangle, excluding those that cross the
central horizontal line (to maintain left/right consistency); while coarse grids may leave larger
gaps along the center line, finer grids minimize these and provide more precise local analysis.
We give more advice on choosing an appropriate grid granularity based on the characteristics of
a given dataset further below.

2.4 Quantifying symmetry with D,z and significance testing

The results of the simulations outlined above show that divergence under an idealized four-
population model without migration produces a symmetrical distribution of topology weights.
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Symmetry analysis of topology weights
A | Left and right halves of the distribution B | Left-right asymmetry measred with D,z C | Left-right asymmetry in sub-traingles
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Figure 3: Symmetry analysis at different scales. (A) A genome-wide test for asymmetry
is conducted by tesfting for an inequality of trees between the left and right half-triangles,
quantified by the statistic Dpr. (B) The significance of the DLR estimate can be determined
using a G-test. (C) Left-right asymmetry can be evaluated for each sub-triangle in a grid.

This occurs because, under incomplete lineage sorting (ILS), there is an equal chance that any
given gene tree will resemble either of the alternative topologies.

Deviations from a simple four-population model (including gene flow and selection) can lead to a
bias in the probability towards one alternative topology, leading to an asymmetrical distribution
of topology weights. This asymmetry can be quantified using the statistic Dpr (Fig. 3). Drg,
which is similar to Patterson’s statistic D [Gre+06], can range from —1 to +1 and gives an
indication of the strength of the bias towards an alternative topology compared to the expectation
of equality (Drr = 0). A genome-wide estimate of Dyr can be calculated directly from the
topology weights as:

Tright — 0. 5TLT

Drp—
LR 0.5n7

(1)

where nyight is the number of trees on the right side of the plot and ny (T for total) is the sum of
the windows on the left and right sides (see Section 2.3 for how we obtain these counts). Under
ILS, the expected number of windows in each half of the plot is simply half of the total number
of windows (i.e., 0.5n7).

The deviation of Dyr from equality can be assessed using a G-test, although this approach
assumes independence between trees. In practice, this assumption is rarely met in tree sequences,
as adjacent trees tend to be correlated in structure owing to the gradual breakdown of genealogical
relationships by recombination. A simple way to mitigate this non-independence is to thin the
tree sequence by retaining every ith tree. We provide some practical advice on choosing an
appropriate down-sampling interval in Section 3.2.

In addition to a genome-wide estimate, symmetry can also be quantified for any arbitrary area of
the distribution, provided that analogous sections (mirrored across the main median) from both
sides of the ternary plot are compared. This allows the user to examine whether the asymmetry
varies as a function of the overall value of the topology weights. This is achieved using the
lattice of sub-triangles and calculating Dy based on the counts of trees in the analogous left-
and right-sided sub-triangles. This makes it possible to understand how the degree of symmetry
varies as a function of the strength of the discordance.
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3 Running TwisstNtern

3.1 Tree file format

TwisstNtern accepts several input formats, including TreeSequence files from tskit (including
.trees and .ts) [Kel+19], as well as Newick (.newick, .tree) and Nexus format (.nexus) for
trees built in arbitrary windows. Output from Relate [Spe+19] and Singer [DNS24] can be used,
but must first be converted using a formatting script that we provide on GitHub. TwisstNtern
also accepts a CSV input file (.csv) containing pre-computed topology weights from previous
Twisst analyzes. All file types may also be supplied in gzip-compressed form (.gz) and are
automatically decompressed during loading.

3.2 Choosing values for key parameters

It is important to consider the resolution of the analysis, which refers to the granularity of
the lattice of sub-triangles that divides the ternary plot. This can be adjusted with the -
-granularity flag. We provide three preset resolutions that should be sufficient for most users:
coarse (a = 0.25), fine (o = 0.1), or superfine (o = 0.05). A custom grid size can be used by
specifying a value of a with 1/« being an even integer.

The most meaningful granularity will depend on the details of the dataset. Where the genome
has been sectioned into blocks of arbitrary size (e.g., non-overlapping 5 kb windows) or SNP
number (e.g., non-overlapping 50 SNP windows), the fine option is a good place to start. Tools
like Relate [Ras+14], tsinfer [Kel+19], and Singer [DNS24] can produce very large tree sequences
containing hundreds of thousands or even millions of trees, so the superfine option may be more
suitable. Studies with reduced representation datasets may have fewer loci than those based
on whole genome sequencing, so coarse may be a better option. Similarly, in cases where the
distribution of weights may be restricted to a fairly small section of the ternary plot, superfine
may be more appropriate. In summary, the fine granularity is a good place to start, but use
common sense to choose a granularity that gives the best balance between resolution (i.e., good
subdivision of the occupied part of the ternary plot) and power (i.e., reasonable counts of points
within the sub-triangles) for your dataset.

If the user is interested in reporting a p-value for the significance of the Dy g statistic, then it is a
good idea to subsample the tree sequence for this purpose as adjacent trees tend to be correlated
in structure owing to the gradual breakdown of genealogical relationships by recombination.
This can be achieved using the ~——~downsample ¢ ‘N+i’’ flag, which retains only every Nth tree
starting from the i*® tree. The appropriate scale for down-sampling can be roughly estimated
from the decay of linkage disequilibrium and the average treespan.

3.3 Other optionality

Many additional options can be used to control the visualization, axis order, and verbosity of
the output. The --axis flag defines which topology corresponds to each vertex of the ternary
plot when using a .csv file containing pre-computed topology weights. To set the topological
axis when running a tree file, you can specify which axis corresponds to which topology using
the —--topology_mapping flag. For example, over a tree with populations O, p1, p2, and p3,
one can determine topology_mapping=’T1="(0, (p3, (p1,p2)))"; T2="(0, (p1, (p2,p3)))";
T3="(0, (p2, (p1,p3)))";. Enabling —-verbose provides detailed runtime information and logs
all parameters used in the analysis, facilitating reproducibility. The --colormap flag customizes
the color scheme of both the ternary heatmap and the radcount plots, which display the point
density. For convenience, the flag —o specifies the name of the output directory to be created,
where all results will be stored. See GitHub for a full description of the optional functions.
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3.4 Output

Each run produces a structured output directory containing both tabular and graphical results.
If no output directory is specified, TwisstNtern automatically generates a timestamped folder
(e.g., Results_2025-07-03_14-30-25/) to ensure organized and reproducible analyses. The
main outputs include:

i. <run_id>_topology_weights.csv: A file that contains the raw topology weights for trees
in the sequence computed using Twisst;

ii. <run_id>_triangle_analysis[granularity].csv: Contains a table listing all Dy val-
ues, their corresponding G-test scores and counts for both the overall data set and each
individual sub-triangle;

iii. <run_id>_fundamental_asymmetry.pdf: A figure that illustrates the strength of the
genome-wide asymmetry between the two main sub-triangles;

iv. <run_id>_analysis_granularity<value>.pdf: A figure displaying the main ternary plot,

which illustrates the distribution of topology weights across the dataset. <run_id>_heatmap.

and <run_id>_radcount.pdf: Two heatmap visualizations of the same dataset of interest.

4 Other new features

4.1 Exploring with TwisstNtern simulate

We have found it helpful to use simulations to help us build an intuition for how different processes
shape the ternary distribution of weights. TwisstNtern includes the module TwisstNtern-simulate,
a command-line tool for simulating and analyzing genealogical data under four-population
demographic models using msprime [Bau+22]. The simulation settings and the values of the
demographic parameters are managed through a YAML configuration file or by specifying the
parameters directly on the command line.

TwisstNtern-simulate supports two simulation modes: chromosome mode and locus mode. In
chromosome mode, msprime is used to simulate a continuous stretch of sequence along a single
chromosome with recombination, generating a series of correlated genealogies that reflect linkage.
In locus mode, msprime simulates many independent, non-recombining loci under a shared
demographic model, producing unlinked genealogies. The choice between these modes depends
on the research question, with chromosome mode capturing how genealogies change along real
genomes, and replicate mode providing statistical replication across independent regions. Once
tree sequences are simulated, the software automatically computes topology weights, generates
ternary plots, and conducts tests of asymmetry. It also provides options for downsampling the
tree sequence (as described in Section 3.2), and color customization of the graphs.

4.2 Comparing ternary distributions

It is also possible to compare two different ternary distributions, which is useful for quantifying
how well simulated distributions fit empirical datasets (Fig. 4). This is accomplished by treating
our plots as histograms, using the counts of trees across the lattice of sub-triangles, which enables
direct comparison of analogous regions in two distinct ternary distributions. To obtain an overall
measure of the two different distributions, we first find the residuals for each sub-triangle by
computing the difference in the number of trees observed in that defined area between the two
distributions being compared (Fig. 4). A measure of the distance, Ls, is then obtained for each
sub-triangle as the square of the residuals (Fig. 4). The total distance between two distributions
can be quantified as the sum of the squared residuals.

pdf
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Figure 4: Comparing ternary distributions using the L, distance. We compare several
simulated datasets that differ only by the amount of time between population splits (time
scaled in N, generations). (A) Ternary distribution for our reference dataset, where 7' = 0.25N,
generations. (B) Distribution for one of nine candidate datasets, in this case where T'= 0.15N,.
(C) Map and histogram (D) of the residuals of the counts of trees in each sub-triangle, determined
by subtracting the two distributions. (E) Distribution of Ly distances, calculated as the square
of the residuals. (F) The overall Lq distance, calculated as the sum of the squared residuals,
between each of the candidate simulations and the reference simulation. The red line indicates
the value of T used in the reference simulation. Note that the lowest Lo distance was found
between the pair of simulations where T' = 0.25N..

We demonstrate how this approach might be useful for inferring demographic parameters
associated with four-population histories. We begin by using TwisstNtern-simulate to generate
a reference dataset consisting of 10,000 loci, each evolving under a scenario where three
demographic splits are evenly separated by 0.25N, generations. This data set serves as our
“real” data, with its parameters defining the “true model”. Next, we simulate nine alternate
datasets following similar demographic histories, but varying only the intervals between the
splits, from 0.05N, generations to 0.45N, generations. For each alternate scenario, we compute
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the Ly distance from the reference dataset (see Fig. 4). The scenario with the lowest Lo distance
also features splits in every 0.25N, generations, demonstrating that the method identifies the
true simulation parameter used to create the reference data set.

We provide a standalone Python script for comparing two distributions called TwisstNtern_compare.py,
and are currently working on a more comprehensive demographic inference scheme (both for
identifying the most likely model and for parameter estimation) based on large grid searches

and Approximate Bayesian Computation.

5 Accessing Program

TwisstNtern is available on GitHub at https://github.com/HilaLifchitz/twisstntern_v2. Detailed
instructions for installing and running it are available via the README. If you have any
suggestions for improving TwisstNtern or discover any issues, please contact the corresponding
authors.
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