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Abstract

Recent advances in genealogical inference now allow the reconstruction of genome-wide
sequences of trees for large sets of samples, providing detailed records of how evolutionary
relationships vary along the genome. Tree sequences encode a vast amount of information, but
new approaches are needed to extract relevant patterns and make inferences. TwisstNtern is
a program for visualizing and analyzing topology weights from four-population tree sequences.
TwisstNtern takes a wide range of tree sequence formats as input, conducts topology weighting
using the Twisst algorithm, and projects the topology weights in a ternary plot. This enables
intuitive visualization of the joint distribution of weights and formal tests for asymmetrical
genealogical discordance caused by processes such as introgression. The package also includes
tools for simulation, significance testing, and comparison between empirical and simulated
datasets.

1 Introduction1

Advances in genealogical inference have transformed the way we study evolutionary processes2

from genomic data. New methods now make it possible to reconstruct the genome-wide tree3

sequence, which is a ‘complete’ set of genealogies describing how a set of genomes has been shaped4

by coalescence and recombination events throughout history ([Kel+19], [DNS24], [Spe+19]).5

Tree sequences are extraordinarily rich in information, and provide access to the branching6

patterns and coalescent times that underlie genetic variation ([RTK20]). However, the scale and7

complexity of these data present new challenges and new tools are needed to efficiently translate8

the vast topological variation into interpretable patterns ([Shi+23]).9

One powerful framework for doing so is topology weighting ([MV17]). Topology weighting10

quantifies the proportion of genealogical support for each of the possible relationships among11

a set of taxa by sampling and classifying subtrees that contain only one sample of each group12

([MV17]). In a tree with four populations, only three unrooted subtree can be observed, and13

their relative frequencies can be visualized and analyzed to detect processes such as incomplete14

lineage sorting (ILS) and introgression. This logic underlies many classical tests, including the15

ABBA–BABA test, which measures asymmetry in site patterns to detect gene flow ([Gre+06]).16

Topology weighting generalizes this idea from individual sites to entire genealogies, allowing17

evolutionary processes to be inferred directly from tree sequences rather than from sequence18

alignments or allele frequencies.19

Here, we present TwisstNtern, a program for visualizing and analyzing topology weights from20

four-population tree sequences. TwisstNtern maps each local genealogy to a point within a21

ternary plot, enabling the joint distribution of weights to be visualized for an entire tree sequence.22

By exploring how evolutionary parameters – such as divergence times, effective population23

sizes, and migration rates – affect the shape and symmetry of this distribution, the program24

provides an intuitive and quantitative framework for visualizing tree-space and detecting signals25

of introgression, divergence, and ILS in tree-sequence data.26

2 Logic and basic operations of TwisstNtern27

We first used TwisstNtern to study the genetic basis of the evolution of reproductive mode in28

Littorina snails ([Sta+24]), and subsequently to study the evolution of flower color in Antirrhinum29

majus ([Pal+]). This version, which can be installed using pip, includes several new features.30

First, it takes a wide range of tree sequence formats as input, automatically performs the31

weighting using the Twisst algorithm, and projects the topology weights onto a ternary plot.32

This enables intuitive visualization of the joint distribution of weights and formal tests for33

asymmetrical genealogical discordance caused by processes such as introgression. The package34
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Figure 1: (A) Overview of TwisstNtern analysis, including the inference of a tree sequence (done
prior to running TwisstNtern), topology weighting in Twisst ([MV17]), and plotting the weights
in the ternary plot. (B) Different representations of the ternary distribution, including the full
distribution of all data points, a contoured heatmap and a ternary histogram

also includes tools for simulation, significance testing, and comparison between empirical and35

simulated datasets. Here we outline the basic operations performed by TwisstNtern, as well36

as some of the logic behind the inference scheme. In doing so, we assume that the reader37

understands what topology weights are and how they are calculated. Readers are advised to38

consult [MV17] for a detailed description of the Twisst algorithm before continuing with this39

manuscript.40

2.1 Plotting the joint distribution of topology weights in a ternary plot41

In a tree with four taxa, a two-dimensional simplex– more commonly known as a ternary plot–42

provides a natural and intuitive framework for analyzing the distribution of these weights. This43

is because it is possible to graphically represent each tree as a single point in an equilateral44

triangle (Figure 1). The three corners of the ternary plot, defined by coordinates [1, 0, 0], [0, 1, 0]45

and [0, 0, 1], correspond to trees where 100% of the sampled subtrees perfectly match one of the46

three alternative topologies, indicating that each of the four groups is monophyletic (Figure 1).47

In contrast, the very center of the ternary plot–the point whose coordinates are [0.33, 0.33, 0, 33]–48

corresponds to a genomic window in which all three topologies were sampled with equal frequency.49

Any other location in the ternary plot indicates a bias towards one of the topologies (Figure 1).50

By representing every tree in the sequence as a single point in the ternary plot, we can view the51

joint distribution of topology weights for a tree sequence with a length of L trees (Figure 1).52

This may ultimately become difficult to visualize for long tree sequences, so it is convenient to53

show the distribution of topology weights as a density function or divide the ternary space into54

small bins that can be colored according to the local density of trees (Figure 1).55

2.2 Factors that influence the ternary distribution of weights56

Ternary analysis exploits the fact that different evolutionary processes and factors impact the57

ternary distribution of topology weights for many loci. The effects we describe are predicted58

by coalescent theory ([Wak16]), but we also illustrate them by simulating gene histories under59
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Figure 2: Simulations show how the degree of lineage sorting and gene flow affect the
ternary distribution of weights. (A) A greater opportunity for lineage sorting biases the
distribution toward the topology that matches the demographic history of the populations (i.e.,
Tα). Note that the distribution is always symmetrical between the left and right half-triangles.
(B) Gene flow between non-sister lineages creates bias toward one of the discordant topologies,
breaking the left-right symmetry. (C) A mix of both processes mimics a scenario where a small
fraction of the genome experiences introgression (here 10%)

a four-population model using the coalescent simulator MSprime ([Bau+22] (Figure 2). Note60

that other factors aside from the ones we describe, such as selection, may affect the distribution61

of weights. A more detailed simulation study can be found in the supplementary information62

of [Sta+24] In all of our simulations, the four populations O, P3, P2, P1 have the relationship63

(O (P3 (P2, P1))). These populations arise from three population splits going backwards in time:64

at time t1, the ancestral population P12 splits to form the descendant populations P1 and P2; at65

time t2, P12 and P3 diverge; and at time t3, the common ancestor of all descendant populations66

splits, giving rise to the lineages O and P123. For each scenario, we simulated 10, 000 independent67

coalescent trees representing independent loci, performed topology weighting, and projected68

the weights in a ternary plot. We modified this base model by varying the parameters to69

illustrate their individual and combined effects. We first varied the split times scaled relative to70

the effective population size (i.e. time in Ne generations) in a four-population model without71

migration. As a general expectation, any bias in the distribution of weights should always72

be towards the subtree topology that matches the branching history of the four populations73

(i.e. Tα, oriented at the top of the triangle). This is because population structure makes it74

more likely that gene copies sampled from the same population will coalesce with each other,75

rather than with a gene copy sampled from one of the other three populations. However, the76

probability of coalescence is determined by two parameters: the effective population size, Ne,77

which determines the rate of coalescence (i.e., the probability that two gene copies coalesce in78

the previous generation is 1
2Ne

in a diploid population), and the time since the population split79

in generations, t, which determines how that rate accumulates into a meaningful probability80

that coalescence will occur.81

As expected, time has a strong influence on the distribution of topology weights (Fig. ??). When82

t is small (i.e., t ≪ 2Ne generations), coalescent events occur largely in deeper parts of the tree,83

making concordant and discordant topologies equally likely. This results in similar weights for84
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all three subtrees (∼ 0.33 each), and the mass of the distribution is in the center of the ternary85

plot. As t increases, more lineages will coalesce before reaching deeper ancestral populations,86

causing the weight of Tα to exceed those of Tβ and Tγ . This shifts the distribution of loci to the87

apex of the triangle that corresponds to Tα. As t becomes very large (i.e., t ≫ 4Ne generations),88

all loci will inevitably show perfectly concordant trees, with weights for Tβ and Tγ dropping to89

zero and all points falling precisely at the apex.90

When t < 4Ne generations, a substantial fraction of coalescent events will be discordant, resulting91

in non-zero weights for Tβ and Tγ . In the standard four-population model without migration,92

these two discordant topologies occur with equal probability, so the distribution of loci is93

symmetrically weighted toward both corners. This symmetry reflects the fact that, for any given94

locus, there is an equal chance that it will resemble either of the discordant topologies. As a95

result, the ternary plot is vaguely mirrored across the median axis that runs from the base to96

the apex (Fig. 2).97

Migration between non-sister populations breaks the symmetry of the ternary distribution by98

making one of the discordant topologies more common than the other. For example, gene flow99

from population P2 into P3 increases the probability that gene copies from these populations will100

coalesce, leading to an excess of loci supporting the discordant topology where P2 and P3 are101

sister to one another. This results in a skewed distribution, with a higher density of points on102

one side of the ternary plot (Fig. 2). The degree of asymmetry depends on both the proportion103

of the genome affected by introgression and the rate of migration m (i.e., the number of migrants104

per generation). However, when t ≪ 2Ne, coalescence is largely random and the signal of gene105

flow is masked, making migration difficult to detect.106

2.3 Partitioning the ternary space107

When analyzing the distribution of weights to quantify the patterns outlined above, it is useful108

to subdivide the ternary plot into smaller areas. For a genome-wide test for asymmetrical109

discordance, we divide the ternary plot into two equal halves by bisecting it with a median line110

from the apex that corresponds to the topology Tα. In practice, counting the number of genomic111

regions that fall on each side, nLeft and nRight, can be done by finding the number of cases where112

the weights of one of the two alternative topologies (i.e. Tβ and Tγ) are greater than the other:113

points where Tβ > Tγ are on the left side, and points where Tγ > Tβ correspond to points on114

the right side (Fig. 3).115

For other applications, we divide the ternary plot into a fine grid of smaller triangular bins to116

analyze local regions of the distribution (Fig. 3). This is done by selecting a grid size α (e.g. 0.25,117

0.1, or 0.05). Using this α, we define sub-triangles by choosing ternary coordinates (x1, x2, x3)118

from the sequence {0, α, 2α, . . . , 1 − α}. Each coordinate set defines a region as a half-open119

interval: (x1, x1 + α] × (x2, x2 + α] × (x3, x3 + α] corresponding to a subtriangle in our space.120

Only coordinate combinations within the simplex are valid (i.e., those whose coordinates sum to121

1). At the triangle’s edges, intervals starting at zero are closed to ensure full coverage. Once the122

grid is defined, we systematically scan each valid sub-triangle, excluding those that cross the123

central horizontal line (to maintain left/right consistency); while coarse grids may leave larger124

gaps along the center line, finer grids minimize these and provide more precise local analysis.125

We give more advice on choosing an appropriate grid granularity based on the characteristics of126

a given dataset further below.127

2.4 Quantifying symmetry with DLR and significance testing128

The results of the simulations outlined above show that divergence under an idealized four-129

population model without migration produces a symmetrical distribution of topology weights.130

5



Figure 3: Symmetry analysis at different scales. (A) A genome-wide test for asymmetry
is conducted by tesfting for an inequality of trees between the left and right half-triangles,
quantified by the statistic DLR. (B) The significance of the DLR estimate can be determined
using a G-test. (C) Left-right asymmetry can be evaluated for each sub-triangle in a grid.

This occurs because, under incomplete lineage sorting (ILS), there is an equal chance that any131

given gene tree will resemble either of the alternative topologies.132

Deviations from a simple four-population model (including gene flow and selection) can lead to a133

bias in the probability towards one alternative topology, leading to an asymmetrical distribution134

of topology weights. This asymmetry can be quantified using the statistic DLR (Fig. 3). DLR,135

which is similar to Patterson’s statistic D [Gre+06], can range from −1 to +1 and gives an136

indication of the strength of the bias towards an alternative topology compared to the expectation137

of equality (DLR = 0). A genome-wide estimate of DLR can be calculated directly from the138

topology weights as:139

DLR = nright − 0.5nT

0.5nT
(1)

where nright is the number of trees on the right side of the plot and nT (T for total) is the sum of140

the windows on the left and right sides (see Section 2.3 for how we obtain these counts). Under141

ILS, the expected number of windows in each half of the plot is simply half of the total number142

of windows (i.e., 0.5nT ).143

The deviation of DLR from equality can be assessed using a G-test, although this approach144

assumes independence between trees. In practice, this assumption is rarely met in tree sequences,145

as adjacent trees tend to be correlated in structure owing to the gradual breakdown of genealogical146

relationships by recombination. A simple way to mitigate this non-independence is to thin the147

tree sequence by retaining every ith tree. We provide some practical advice on choosing an148

appropriate down-sampling interval in Section 3.2.149

In addition to a genome-wide estimate, symmetry can also be quantified for any arbitrary area of150

the distribution, provided that analogous sections (mirrored across the main median) from both151

sides of the ternary plot are compared. This allows the user to examine whether the asymmetry152

varies as a function of the overall value of the topology weights. This is achieved using the153

lattice of sub-triangles and calculating DLR based on the counts of trees in the analogous left-154

and right-sided sub-triangles. This makes it possible to understand how the degree of symmetry155

varies as a function of the strength of the discordance.156
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3 Running TwisstNtern157

3.1 Tree file format158

TwisstNtern accepts several input formats, including TreeSequence files from tskit (including159

.trees and .ts) [Kel+19], as well as Newick (.newick, .tree) and Nexus format (.nexus) for160

trees built in arbitrary windows. Output from Relate [Spe+19] and Singer [DNS24] can be used,161

but must first be converted using a formatting script that we provide on GitHub. TwisstNtern162

also accepts a CSV input file (.csv) containing pre-computed topology weights from previous163

Twisst analyzes. All file types may also be supplied in gzip-compressed form (.gz) and are164

automatically decompressed during loading.165

3.2 Choosing values for key parameters166

It is important to consider the resolution of the analysis, which refers to the granularity of167

the lattice of sub-triangles that divides the ternary plot. This can be adjusted with the -168

-granularity flag. We provide three preset resolutions that should be sufficient for most users:169

coarse (α = 0.25), fine (α = 0.1), or superfine (α = 0.05). A custom grid size can be used by170

specifying a value of α with 1/α being an even integer.171

The most meaningful granularity will depend on the details of the dataset. Where the genome172

has been sectioned into blocks of arbitrary size (e.g., non-overlapping 5 kb windows) or SNP173

number (e.g., non-overlapping 50 SNP windows), the fine option is a good place to start. Tools174

like Relate [Ras+14], tsinfer [Kel+19], and Singer [DNS24] can produce very large tree sequences175

containing hundreds of thousands or even millions of trees, so the superfine option may be more176

suitable. Studies with reduced representation datasets may have fewer loci than those based177

on whole genome sequencing, so coarse may be a better option. Similarly, in cases where the178

distribution of weights may be restricted to a fairly small section of the ternary plot, superfine179

may be more appropriate. In summary, the fine granularity is a good place to start, but use180

common sense to choose a granularity that gives the best balance between resolution (i.e., good181

subdivision of the occupied part of the ternary plot) and power (i.e., reasonable counts of points182

within the sub-triangles) for your dataset.183

If the user is interested in reporting a p-value for the significance of the DLR statistic, then it is a184

good idea to subsample the tree sequence for this purpose as adjacent trees tend to be correlated185

in structure owing to the gradual breakdown of genealogical relationships by recombination.186

This can be achieved using the --downsample ‘‘N+i’’ flag, which retains only every Nth tree187

starting from the ith tree. The appropriate scale for down-sampling can be roughly estimated188

from the decay of linkage disequilibrium and the average treespan.189

3.3 Other optionality190

Many additional options can be used to control the visualization, axis order, and verbosity of191

the output. The --axis flag defines which topology corresponds to each vertex of the ternary192

plot when using a .csv file containing pre-computed topology weights. To set the topological193

axis when running a tree file, you can specify which axis corresponds to which topology using194

the --topology_mapping flag. For example, over a tree with populations O, p1, p2, and p3,195

one can determine topology_mapping=’T1="(0,(p3,(p1,p2)))"; T2="(0,(p1,(p2,p3)))";196

T3="(0,(p2,(p1,p3)))";. Enabling --verbose provides detailed runtime information and logs197

all parameters used in the analysis, facilitating reproducibility. The --colormap flag customizes198

the color scheme of both the ternary heatmap and the radcount plots, which display the point199

density. For convenience, the flag -o specifies the name of the output directory to be created,200

where all results will be stored. See GitHub for a full description of the optional functions.201
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3.4 Output202

Each run produces a structured output directory containing both tabular and graphical results.203

If no output directory is specified, TwisstNtern automatically generates a timestamped folder204

(e.g., Results_2025-07-03_14-30-25/) to ensure organized and reproducible analyses. The205

main outputs include:206

i. <run_id>_topology_weights.csv: A file that contains the raw topology weights for trees207

in the sequence computed using Twisst;208

ii. <run_id>_triangle_analysis[granularity].csv: Contains a table listing all DLR val-209

ues, their corresponding G-test scores and counts for both the overall data set and each210

individual sub-triangle;211

iii. <run_id>_fundamental_asymmetry.pdf: A figure that illustrates the strength of the212

genome-wide asymmetry between the two main sub-triangles;213

iv. <run_id>_analysis_granularity<value>.pdf: A figure displaying the main ternary plot,214

which illustrates the distribution of topology weights across the dataset. <run_id>_heatmap.pdf215

and <run_id>_radcount.pdf: Two heatmap visualizations of the same dataset of interest.216

4 Other new features217

4.1 Exploring with TwisstNtern simulate218

We have found it helpful to use simulations to help us build an intuition for how different processes219

shape the ternary distribution of weights. TwisstNtern includes the module TwisstNtern-simulate,220

a command-line tool for simulating and analyzing genealogical data under four-population221

demographic models using msprime [Bau+22]. The simulation settings and the values of the222

demographic parameters are managed through a YAML configuration file or by specifying the223

parameters directly on the command line.224

TwisstNtern-simulate supports two simulation modes: chromosome mode and locus mode. In225

chromosome mode, msprime is used to simulate a continuous stretch of sequence along a single226

chromosome with recombination, generating a series of correlated genealogies that reflect linkage.227

In locus mode, msprime simulates many independent, non-recombining loci under a shared228

demographic model, producing unlinked genealogies. The choice between these modes depends229

on the research question, with chromosome mode capturing how genealogies change along real230

genomes, and replicate mode providing statistical replication across independent regions. Once231

tree sequences are simulated, the software automatically computes topology weights, generates232

ternary plots, and conducts tests of asymmetry. It also provides options for downsampling the233

tree sequence (as described in Section 3.2), and color customization of the graphs.234

4.2 Comparing ternary distributions235

It is also possible to compare two different ternary distributions, which is useful for quantifying236

how well simulated distributions fit empirical datasets (Fig. 4). This is accomplished by treating237

our plots as histograms, using the counts of trees across the lattice of sub-triangles, which enables238

direct comparison of analogous regions in two distinct ternary distributions. To obtain an overall239

measure of the two different distributions, we first find the residuals for each sub-triangle by240

computing the difference in the number of trees observed in that defined area between the two241

distributions being compared (Fig. 4). A measure of the distance, L2, is then obtained for each242

sub-triangle as the square of the residuals (Fig. 4). The total distance between two distributions243

can be quantified as the sum of the squared residuals.244
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Figure 4: Comparing ternary distributions using the L2 distance. We compare several
simulated datasets that differ only by the amount of time between population splits (time
scaled in Ne generations). (A) Ternary distribution for our reference dataset, where T = 0.25Ne

generations. (B) Distribution for one of nine candidate datasets, in this case where T = 0.15Ne.
(C) Map and histogram (D) of the residuals of the counts of trees in each sub-triangle, determined
by subtracting the two distributions. (E) Distribution of L2 distances, calculated as the square
of the residuals. (F) The overall L2 distance, calculated as the sum of the squared residuals,
between each of the candidate simulations and the reference simulation. The red line indicates
the value of T used in the reference simulation. Note that the lowest L2 distance was found
between the pair of simulations where T = 0.25Ne.

We demonstrate how this approach might be useful for inferring demographic parameters245

associated with four-population histories. We begin by using TwisstNtern-simulate to generate246

a reference dataset consisting of 10, 000 loci, each evolving under a scenario where three247

demographic splits are evenly separated by 0.25Ne generations. This data set serves as our248

“real” data, with its parameters defining the “true model”. Next, we simulate nine alternate249

datasets following similar demographic histories, but varying only the intervals between the250

splits, from 0.05Ne generations to 0.45Ne generations. For each alternate scenario, we compute251
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the L2 distance from the reference dataset (see Fig. 4). The scenario with the lowest L2 distance252

also features splits in every 0.25Ne generations, demonstrating that the method identifies the253

true simulation parameter used to create the reference data set.254

We provide a standalone Python script for comparing two distributions called TwisstNtern_compare.py,255

and are currently working on a more comprehensive demographic inference scheme (both for256

identifying the most likely model and for parameter estimation) based on large grid searches257

and Approximate Bayesian Computation.258

5 Accessing Program259

TwisstNtern is available on GitHub at https://github.com/HilaLifchitz/twisstntern_v2. Detailed260

instructions for installing and running it are available via the README. If you have any261

suggestions for improving TwisstNtern or discover any issues, please contact the corresponding262

authors.263
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