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Emerging Applications of Large Language Models in Ecology and Conservation Science 1 

 2 

Abstract 3 

The emergence of large language models (LLMs) marks a major development in artificial 4 

intelligence, with potentially transformative implications for ecology and conservation science. 5 

Built on advanced deep-learning architectures, these models can support a wide range of tasks, 6 

from analysing unstructured texts to enhancing biodiversity monitoring and generating policy-7 

relevant insights. This article synthesises emerging applications of LLMs across ecology and 8 

conservation, drawing on the wider literature and practical use cases. We highlight the potential 9 

of LLMs to streamline ecological workflows and accelerate evidence-based conservation, 10 

while also discussing key technical and ethical challenges, such as inaccurate and biased 11 

outputs, and unequal access. We offer recommendations for addressing these challenges to 12 

support the reliable and responsible use of LLMs, including strategies for improving output 13 

accuracy and ensuring proper validation. When implemented thoughtfully, LLMs can serve as 14 

a valuable addition to the ecologists’ toolkit, enhancing scientific capacity and supporting 15 

broader efforts towards achieving biodiversity goals. 16 

 17 
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 20 

1. Introduction 21 

Large Language Models (LLMs; see Box 1) represent an exciting breakthrough in Artificial 22 

Intelligence (AI) and are receiving growing attention due to their transformative potential 23 

(White et al. 2023a; Lam et al. 2024). Initially developed for natural language processing tasks, 24 

they are now being applied across a range of domains to support complex workflows, including 25 

summarising clinical trial reports (White et al. 2023b), analysing interview transcripts (Tai et 26 

al. 2024), and delivering localised climate insights to non-specialists (Koldunov & Jung 2024). 27 

LLMs are advanced deep-learning systems built on transformer neural network architectures 28 

and trained through self-supervised learning on vast and diverse text datasets (Lam et al. 2024; 29 

Morera 2024). Foundation models, such as GPT-4o, LLaMa 2, and DeepSeek-V2, are capable 30 

of capturing complex linguistic patterns and semantic relationships, enabling advanced 31 
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language understanding and generation (Morera 2024). Chat-based LLMs, such as ChatGPT 32 

and LLaMA-Chat, which are further refined through supervised learning and reinforcement 33 

techniques, are able to support sophisticated conversational applications. LLMs, used in this 34 

article to refer broadly to foundation models and their chat-based counterparts, have recently 35 

demonstrated remarkable capabilities across a range of tasks (Lam et al. 2024), including 36 

extracting and synthesising large volumes of information and generating computer code 37 

(Cooper et al. 2024; Jhonnerie et al. 2024).  38 

Given their strong performance and rapid development, LLMs are increasingly being 39 

integrated into the workflows of researchers and practitioners (Charness et al. 2025), including 40 

those in ecology and conservation science. However, their increased adoption also raises 41 

concerns, including the risk of generating inaccurate information and the underrepresentation 42 

of minority voices due to biases in training data (Reynolds et al. 2024; Urzedo et al. 2024). 43 

These issues are especially relevant in ecology and conservation science, which require not 44 

only sound ecological knowledge but also a deep understanding of the social and cultural 45 

contexts (Sandbrook 2024). Addressing these challenges will be essential to ensure that the use 46 

of LLMs is both effective and equitable. Yet, despite the growing interest in LLMs, practical 47 

guidance on their potential uses, strengths, and limitations remains scattered, and often in 48 

resources beyond those typically consulted by ecologists and conservation practitioners. 49 

Moreover, while much of the current attention on LLMs focuses on their chat-optimised 50 

interfaces, emerging evidence suggests that some of the most impactful and innovative uses 51 

will likely come from embedding LLMs into backend systems supporting specialised 52 

workflows. Collectively, these knowledge gaps highlight the need for a timely synthesis.   53 

In this article, we provide an overview of emerging applications of LLMs in ecology and 54 

conservation science, highlighting key opportunities, current challenges, and offering practical 55 

recommendations to support their effective adoption. Our analysis draws primarily from use 56 

cases in the wider academic literature and examples from our own experience, including 57 

training. To identify relevant literature, we searched Web of Science, Scopus, and Google 58 

Scholar using the terms: [“LLMs” OR “Large Language Model*”] AND [“Ecology” OR 59 

“Biodiversity” OR “Conservation”]. We also reviewed the reference lists of all retrieved 60 

articles to record additional sources (see Supplementary Materials). After initial screening for 61 

relevance and removing duplicates, we identified 123 documents relevant to our topic (Figure 62 

1). Recognising the fast-evolving nature of this field, in addition to peer-reviewed journal 63 
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articles (n = 83), we also considered preprints (n = 34) and conference proceedings (n = 6). In 64 

the sections that follow, we review promising and fast-developing applications of LLMs in 65 

ecology and conservation science (Section 2), examine key technical and ethical challenges 66 

(Section 3), and conclude with practical solutions and recommended best practices (Section 4). 67 

2. Emerging Applications of LLMs 68 

LLMs can support a variety of tasks, from automating labour-intensive processes such as data 69 

extraction to assisting with data analysis, improving communication and outreach, and 70 

informing policy. They hold the potential to streamline workflows, expand access to 71 

information, and accelerate evidence-based conservation.  72 

2.1 Extracting Ecological Data  73 

A major bottleneck in ecological research lies in extracting key insights from unstructured 74 

sources (Marcos et al. 2025), such as scientific publications and reports. While these sources 75 

hold valuable information, accessing and synthesising it is often laborious and time-76 

consuming. Recent applications suggest that LLMs may offer a promising solution (Farrell et 77 

al. 2024; Gurr et al. 2024; Castro et al. 2024; Elliott & Fortes 2024), stemming from their ability 78 

to rapidly process large volumes of unstructured text and identify relevant content using 79 

patterns learned from modelling complex linguistic structures (Castro et al. 2024).  80 

Gougherty and Clipp (2024) used text-bison-001, a publicly available LLM part of Google’s 81 

PaLM 2 family of models, to extract data on plant pathogens and their host plants from the 82 

academic literature, achieving faster extraction speeds than those of human reviewers while 83 

maintaining high accuracy. Similarly, Keck et al. (2025) used OpenAI’s GPT-4o to extract 84 

species interactions from over 80,000 scientific articles, and Marcos et al. (2025) developed an 85 

LLM-based workflow to extract species traits, with both studies reporting encouraging levels 86 

of accuracy. Fu et al. (2025) employed DeepSeek-R1 to analyse 247 Chinese court cases, 87 

successfully identifying hotspots of wildlife crime involving sea turtles. Scheepens et al. (2024) 88 

evaluated GPT-4’s ability to extract taxonomic information from article abstracts. Despite 89 

some inaccuracies due to hallucinations, the preliminary results were promising, 90 

demonstrating the potential of LLMs for large-scale data extraction from unstructured sources. 91 

It should be noted, however, that accuracy can vary depending on the model used and the 92 

specific task, underscoring the need for careful model selection (Castro et al. 2024). Moreover, 93 
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effective information extraction will oftentimes require sophisticated workflows that go 94 

beyond the use of standalone foundation models, incorporating robust error-mitigation 95 

mechanisms (Section 4) and reliable retrieval strategies (Iyer et al. 2025). 96 

Nonetheless, LLMs can also assist in extracting information from structured sources, such as 97 

online databases. In a recent example, researchers used OpenAI’s GPT-4 model to develop a 98 

chatbot enabling users to query the Integrated Digitized Biocollections (iDigBIO) database 99 

using natural language (Elliott et al. 2024). The ability to interact with databases through 100 

natural language is an active area of research beyond ecology and conservation (Miao et al. 101 

2024), and holds significant promise for expanding access to information by reducing reliance 102 

on specialised technical skills. 103 

2.2 Accelerating Literature Reviews and Evidence Synthesis 104 

LLMs could also streamline how researchers and practitioners conduct literature reviews, 105 

synthesise evidence (Berger-Tal et al. 2024; Reynolds et al. 2024), and even identify emerging 106 

topics (Gurr et al. 2024; Ji et al. 2025), without being constrained by siloed disciplinary 107 

thinking. With the volume of scientific publications growing exponentially, identifying and 108 

reviewing relevant documents is becoming increasingly challenging. Yet, comprehensive 109 

reviews are critical for advancing science and guiding evidence-based conservation (Berger-110 

Tal et al. 2024; Iyer et al. 2025). In a recent study, Chang et al. (2024) developed a machine 111 

learning pipeline that incorporates LLMs to process over two million scientific articles and 112 

assess how nature-based solutions promote human well-being and biodiversity conservation. 113 

Krishna Moorthy et al. (2025) implemented a GPT-based workflow to process large volumes 114 

of scientific literature to synthesise information on study locations, biome types, and 115 

quantitative metrics. By combining iterative prompting (Table 2; Section 4.2) with manual 116 

validation, they demonstrated how LLMs can support efficient and scalable ecological 117 

literature reviews while reducing errors. 118 

Although these early applications tend to require complex workflows and high technical 119 

expertise, they nevertheless demonstrate the potential of LLMs to accelerate synthesis 120 

(Reynolds et al. 2024), particularly when paired with mechanisms to mitigate inaccuracies. As 121 

these tools become more accessible and reliable, their role in synthesising information will 122 

likely grow. One especially promising application is their potential to support living evidence 123 

syntheses, i.e., continuously updated reviews that integrate new findings as they emerge 124 
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(Mitchell et al. 2025). Moreover, commercial AI-powered research assistants, such as Elicit 125 

and Consensus, can further support literature reviews through their LLM-based, user-friendly 126 

interfaces. However, issues around affordability and access, especially for researchers with 127 

limited resources, raise concerns about digital inequalities (Section 3.5). 128 

2.3 Leveraging Publicly Available Data for Ecological Insights 129 

In addition to information syntheses, LLMs show promise in supporting a range of other 130 

analytical tasks (Frazier & Song 2025). For instance, they can help analyse ecologically 131 

relevant information from publicly available sources such as social media (Giebink et al. 2024), 132 

including performing sentiment analysis to better understand human–nature interactions and 133 

inform conservation planning (Wei & Hou 2023). In a recent study, researchers used GPT-3.5 134 

to analyse social media posts and study public perceptions of urban green spaces in Singapore, 135 

finding generally positive sentiments and identifying the factors shaping those perceptions 136 

(Zhang & Su 2024). In China, researchers used LLMs to analyse 1,849 online travelogues 137 

posted by visitors to National Forest Parks, providing insights into forest experiences that can 138 

inform park management and design (Wei & Hou 2023). Similarly, in Brazil, researchers used 139 

ChatGPT to analyse Tripadvisor reviews of two protected areas, finding high overall 140 

satisfaction, but also identifying concerns regarding outdated information and sanitation, 141 

offering actionable insights for park management (de Souza et al. 2024). Together, these 142 

examples demonstrate the potential of LLMs for scalable analysis of people’s experiences with 143 

nature, offering valuable insights for landscape planning and management (Frazier & Song 144 

2025). 145 

 146 

Another promising application of LLMs is their use in monitoring media to provide real-time, 147 

relevant ecological insights. NewsPanda and NewsSerow are two such examples that support 148 

conservation efforts by automating the detection of environmentally relevant media articles. 149 

NewsPanda uses a fine-tuned BERT-based model with active learning to classify articles and 150 

extract key information, and has been deployed by WWF in multiple countries to monitor 151 

thousands of conservation sites (Keh et al. 2023). NewsSerow focuses on low-resource 152 

languages, using summarisation, few-shot classification, and self-reflection with LLMs to 153 

identify conservation-relevant content with minimal training data (Jain et al. 2024).  154 

 155 
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LLMs can also contribute to combating illegal trade by enabling the monitoring of online 156 

advertisements. In a novel use case, researchers developed a cost-effective approach to detect 157 

wildlife trafficking on e-commerce platforms by using LLMs to generate pseudo-labels for a 158 

small subset of ads (Barbosa et al. 2025). These labels were then used to train specialised 159 

classifiers that accurately identify wildlife-related ads. This approach can potentially enable 160 

scalable monitoring of illicit wildlife trade and support real-world enforcement and research 161 

efforts. Importantly, the use of LLMs to generate pseudo-labels for training classifiers holds 162 

promise for a broader range of applications beyond online information monitoring. 163 

 164 

2.4 Supporting Code Generation and Programming in Ecology 165 

 166 

Ecological research often involves complex analyses requiring advanced statistical and 167 

programming skills. Yet many training programs worldwide offer limited, if any, formal 168 

training in these areas (Mammides and Papadopoulos, 2024). With appropriate oversight, 169 

LLMs can support researchers in conducting analyses, including generating the necessary code 170 

(Campbell et al. 2024; Cooper et al. 2024; Jhonnerie et al. 2024). Specialised tools, such as 171 

GitHub Copilot, DeepSeek-Coder, and the “ellmer” package in the R Programming Language, 172 

are already helping facilitate this process (Guo et al. 2024). LLMs can also be effective in 173 

troubleshooting and explaining existing code (Merow et al. 2023), thereby supporting the 174 

learning process. They can also help tidy and comment code, making it easier for researchers 175 

to potentially share their code in publications (Mammides & Papadopoulos 2024), a practice 176 

which remains uncommon despite its importance for reproducible research.  177 

 178 

LLMs have proven useful for translating code between programming languages. This can be 179 

especially helpful for ecologists, who are often more familiar with the R Programming 180 

Language, while many cutting-edge applications, such as machine learning tools, are 181 

developed in Python. By easing this transition, LLMs can expand access to a wider range of 182 

analytical tools. More broadly, they can help bridge disciplinary divides by offering 183 

personalised, around-the-clock guidance on unfamiliar concepts and methods (Mammides & 184 

Papadopoulos 2024). 185 

 186 

 187 

 188 

 189 
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2.5 Experimental Applications and Multimodal Innovations 190 

 191 

Recent studies have also begun exploring more experimental applications of LLMs, with 192 

potentially transformative implications. Sastry et al. (2023) succesfully integrated LLaMa 2 193 

into a species distribution modelling (SDM) framework to improve predictions of species 194 

ranges. Leblanc et al. (2025) used Pl@ntBERT, a transformer-based LLM developed 195 

specifically for ecological applications, to classify and map habitats across Europe at very high 196 

resolution, leveraging species distribution maps generated using deep-SDMs. 197 

 198 

As language models evolve into multimodal tools capable of processing and generating formats 199 

beyond text, such as images and audio, their potential for novel ecological applications will 200 

further grow (Miao et al. 2024). Currently, there is strong interest in integrating multimodal 201 

LLMs with edge devices, such as camera traps, drones, and acoustic sensors, to advance 202 

biodiversity monitoring applications (Robinson et al. 2024; Zhao et al. 2024). Dussert et al. 203 

(2025) tested whether pre-trained multimodal LLMs could identify animal behaviour patterns 204 

from images obtained through camera traps, a widely used tool for monitoring biodiversity. 205 

They found that LLMs could potentially automate this typically laborious task, notably without 206 

model training or labelled datasets, which are often costly to produce but required by 207 

conventional machine learning classification techniques (Dussert et al. 2025).  208 

In another novel use case involving camera trap images, Fergus et al. (2024) showed that 209 

integrating multimodal LLMs, in this case Microsoft’s Phi-3.5, with retrieval-augmented 210 

generation (RAG) techniques (Section 4.4), can improve species identification and even 211 

provide contextually rich information about the species detected, going beyond what the 212 

camera alone can capture. For example, their LLM-integrated workflow could be potentially 213 

used to generate reports detailing the species in an area, as well as relevant information about 214 

their ecology and conservation status (Fergus et al. 2024). Similarly, NatureLM-audio, an 215 

LLM-based model designed for bioacoustic applications, can be used to detect, classify, and 216 

interpret animal vocalisations using natural language prompts (Robinson et al. 2024). While 217 

the long-term value of these applications and the extent to which they can be scaled up remain 218 

to be seen, the potential of LLMs is already evident.  219 

 220 

 221 
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2.6 Enhancing Science Communication and Outreach 222 

LLMs are already supporting science communication (Richards et al. 2024), including by 223 

reducing language barriers and promoting the democratisation of science. While English is the 224 

dominant language in scientific publishing, most researchers globally are non-native speakers. 225 

Studies have shown that language proficiency can affect citation rates and overall career 226 

advancement (Hannah et al. 2025). LLMs have proven effective in improving, for example,  227 

scientific writing by refining grammar and enhancing clarity, tasks that often require costly 228 

editing services or reliance on personal networks (Zenni & Andrew 2023).  229 

LLMs could further reduce language barriers by making research published in foreign 230 

languages accessible to the global scientific community (Valdez et al. 2024). While not yet 231 

perfect, LLM-based translation tools generally outperform earlier technologies, enabling 232 

researchers to engage with relevant studies. This is especially valuable in conservation, where 233 

important ecological insights are often published in local journals. As LLMs continue to 234 

advance, they are likely to transform also other aspects of science communication, including 235 

conference presentations.  236 

Beyond reducing language barriers, LLMs can support science communication more broadly 237 

by facilitating, for example, the dissemination of targeted information (Richards et al. 2024). 238 

Lewers (2024) demonstrated that LLM-powered chatbots can simplify complex biodiversity 239 

informatics standards, easing their adoption by researchers. Similarly, Wang et al., (2024) 240 

developed ChatBBNJ, a customised question-answering system built using a prompt-based 241 

configuration to focus on topics related to biodiversity beyond national jurisdiction. The 242 

dissemination of specialised information can also be supported by domain-specific LLMs, 243 

which are fine-tuned through further training. For example, OceanGPT is a LLaMA-based 244 

model retrained on more than 67,000 ocean science documents to answer oceanographic 245 

questions and serve as a virtual expert (Bi et al. 2023). Another example is MarineGPT, which 246 

was fine-tuned on a marine-specific dataset to provide contextual and accurate information on 247 

marine environments (Zheng et al. 2023). Because these models are refined or adapted using 248 

domain-specific information, they can deliver more accurate results for specialised tasks 249 

compared to general-purpose models such as ChatGPT, Gemini, and Qwen, provided, though, 250 

that key issues, including biases associated with the training data, are adequately addressed 251 

(see Ziegler et al. 2024; Section 3). 252 
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LLMs also show potential for engaging broader audiences with ecological topics (Richards et 253 

al. 2024), an important yet often overlooked dimension of science communication. Ecologists 254 

are typically trained to communicate in technical language that may not resonate with non-255 

experts. LLMs can help adapt messages for diverse audiences and platforms, making research 256 

more accessible (D’Souza et al. 2025). Moreover, specialised models, such as those mentioned 257 

above, can deliver tailored ecological information to the public, stakeholders, and 258 

policymakers. Much like business chatbots designed for customer support, these models can 259 

be adapted to deliver region- or topic-specific ecological insights.  260 

General-purpose pre-trained foundation models can also contribute to the dissemination of 261 

broader scientific knowledge with careful use (Rodas-Trejo & Ocampo-González 2024). In an 262 

interesting use case, researchers found that widely used LLMs, such as ChatGPT, can counter 263 

sensationalised media reports about wildlife risks to humans and livestock by providing more 264 

accurate assessments, potentially reducing human-wildlife conflict (Santangeli et al. 2024). 265 

Similarly, researchers in Mexico evaluated ChatGPT as a source of natural history information 266 

on wild mammals, finding it useful, though its outputs required validation (Rodas-Trejo & 267 

Ocampo-González 2024), which should be a standard practice when using foundation models 268 

to generate specialised knowledge (Section 4.3).  269 

2.7 Informing Policy and Decision-Making Processes  270 

There is often a disconnect between academic research and policymaking, shaped not only by 271 

differing priorities but also by contrasting norms in how information is communicated. LLMs 272 

can help bridge this gap by translating scientific findings into policy-relevant insights and 273 

synthesising information in ways that align with the needs of decision-makers (Reynolds et al. 274 

2024). In a novel application, DeSantis et al. (2024) used OpenAI’s GPT-3.5 model to analyse 275 

the national biodiversity targets of individual countries and assess how well they align with the 276 

adopted global biodiversity targets, finding crucial gaps and specific areas for improvement.  277 

While policy applications of LLMs in ecology and conservation science are still in the very 278 

early stages, their use in fields such as law and environmental science is more advanced and 279 

offers useful examples (Larosa et al. 2025). Many of these applications involve adapting the 280 

core capabilities of LLMs highlighted above, such as summarisation, information retrieval, and 281 

natural language interaction, for policy-focused tasks (Larosa et al. 2025). Examples include 282 

distilling complex scientific documents into actionable insights, deploying chatbots to 283 
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communicate policy guidance to stakeholders, and enhancing public engagement through 284 

clearer, more accessible communication (Larosa et al. 2025). 285 

A particularly innovative and promising application is the integration of LLMs into multi-agent 286 

systems for policy simulation (Kalyuzhnaya et al. 2025; Sreedhar et al. 2025). Socioecological 287 

systems are characterised by complex interactions, feedback loops, and diverse stakeholder 288 

perspectives, all of which can be difficult to map and incorporate into policy decisions. LLM-289 

powered agents, each representing the views and behaviours of different actors, such as 290 

policymakers, land users, or conservation advocates, can simulate these interactions and help 291 

decision-makers anticipate how policies may unfold in practice (Kalyuzhnaya et al. 2025; 292 

Sreedhar et al. 2025). This approach enables a more nuanced assessment of policy 293 

effectiveness, including potential unintended consequences, supporting the development of 294 

policies that are both robust and context-appropriate. 295 

2.8 Evolving Roles and Broader Applications 296 

The use cases and opportunities outlined above, ranging from data extraction and information 297 

synthesis to habitat mapping and biodiversity monitoring, illustrate only part of the wide-298 

ranging and rapidly evolving potential of LLMs and how these models are beginning to reshape 299 

ecological workflows. Broader applications discussed in the wider academic literature, such as 300 

the use of LLMs in education (Tupper et al. 2024), law,  and social sciences, can further amplify 301 

their relevance and value in ecology and conservation science. Moreover, the emergence of 302 

agentic LLM systems (Plaat et al. 2025), such as AutoGPT (built on top of OpenAI’s GPT-303 

4), which are designed to perform complex tasks with minimal human input (Plaat et al. 2025), 304 

may further accelerate the automation of ecological workflows, although concerns arise about 305 

oversight, reliability, and equity. 306 

3. Current Challenges 307 

While LLMs show clear promise, their use also brings a range of practical, technical, and 308 

ethical challenges, many of which remain underexamined amid rapid development and must 309 

be addressed to ensure Trustworthy AI (Liu et al. 2023). Key concerns include inaccurate or 310 

even fabricated content, limited transparency and reproducibility, and high technical and 311 

computational demands, especially for more advanced applications. Ethical considerations 312 
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include digital inequalities, environmental impact, and the risk of eroding foundational skills 313 

as reliance on these tools grows. 314 

3.1 Hallucinations and Fabricated Content 315 

A major concern that emerged with the public release of LLMs is their tendency to hallucinate, 316 

i.e., to generate plausible but factually incorrect information. A typical example in research 317 

contexts is fabricated references that appear credible but are entirely fictitious, often combining 318 

unrelated author names and article titles. This issue was especially pronounced when popular 319 

models like ChatGPT were first released in 2022 without internet access, but it persists even 320 

today with web-enabled LLMs, especially for queries on less common or out-of-distribution 321 

topics not covered in the models’ training data. Because hallucinations can go undetected 322 

without manual verification, they present a barrier to the effective use of LLMs. 323 

3.2 Inaccurate and Biased Information 324 

Inaccuracies in LLM outputs are not solely due to hallucinations; they can also result from 325 

conflicting, incomplete, or outdated training data or from a model’s inability to apply 326 

contextual or domain-specific reasoning (Berger-Tal et al. 2024). For example, earlier versions 327 

of ChatGPT were trained only on data up to 2021, excluding more recent information. Even 328 

with current models, many of which have access to more up-to-date data and real-time retrieval 329 

capabilities, inaccurate information remains common, underscoring the need for cautious use 330 

and robust validation mechanisms (Section 4.3).  331 

More broadly, LLMs can produce inaccurate or contextually inappropriate content also when 332 

they fail to account for geographic or temporal relevance, an issue of particular concern in 333 

fields such as conservation science, where context is crucial for effective decision-making. 334 

LLM outputs have also been shown to reflect biases in their training data (Berger-Tal et al. 335 

2024; Urzedo et al. 2024). For example, when queried on ecological restoration topics, 336 

ChatGPT’s responses were found to prioritise the dominant perspectives from researchers in 337 

high-income countries, while underrepresenting voices from lower-income regions and 338 

Indigenous communities (Urzedo et al. 2024). Similarly, specialised LLM-based chatbots, 339 

designed to deliver targeted information on a specific topic, can instead propagate biases 340 

(Ziegler et al. 2024), depending on the data used to refine the models and the design choices 341 

made during their development.  342 
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Inaccurate output can also result from technical limitations. For instance, model parameters, 343 

such as the context window and maximum output length, can influence the quality, accuracy, 344 

and completeness of a response. Generally, the longer the user prompt or the more extensive 345 

the requested output, the higher the likelihood of erroneous responses. That said, these 346 

limitations are becoming less prominent with long-context LLMs, which are designed to 347 

process large amounts of text in a single input, and memory-augmented LLMs, which can 348 

store, retrieve, and update information as needed beyond the fixed-size input context window. 349 

Nonetheless, users should be mindful of these constraints and how they influence the 350 

performance of the different models used, and apply effective strategies, such as prompt 351 

engineering (Section 4.2), to mitigate errors, ensure content accuracy, and reduce the risk of 352 

flawed outputs influencing future model training.   353 

3.3 Lack of Transparency and Reproducibility 354 

Improving the reproducibility of scientific research has become a major focus in recent years. 355 

However,  the spread of LLMs introduces new challenges. Three key issues contribute to this 356 

concern. Firstly, LLMs and deep learning models more broadly often operate as black boxes, 357 

making it difficult to trace how outputs are generated. Although ongoing efforts towards 358 

Explainable AI (Liu et al. 2023) could reduce this issue in the future, it is currently a major 359 

concern. Secondly, LLM responses are non-deterministic, meaning that the same prompt can 360 

yield different outputs. While this variability can be partially controlled by adjusting the 361 

model’s hyperparameters (e.g., by setting the temperature to zero to increase consistency; 362 

Iyer et al. 2025), doing so may limit the nuance in the model’s responses. Thirdly, LLMs evolve 363 

rapidly, with frequent releases. Outputs may differ across versions, and even if the model used 364 

is documented, it may later become inaccessible or unsupported. 365 

3.4. Technical Complexity and Computational Demands 366 

Another major challenge associated with the use of LLMs is the technical complexity and 367 

computational resources needed for many applications. While simpler tasks, such as scientific 368 

writing improvements, can be handled through the available user-friendly chat-optimised 369 

interfaces (Mammides & Papadopoulos 2024; Santangeli et al. 2024), more advanced and 370 

potentially impactful applications necessitate access to models via application programming 371 

interfaces (APIs) and their integration into sophisticated workflows (e.g., Chang et al., 2024). 372 

These workflows typically demand advanced programming skills and computational resources 373 



 14 

that many researchers and practitioners lack. While such barriers are not unique to LLMs, they 374 

are amplified by the models’ transformative potential and the skills required to fully leverage 375 

them. These issues highlight the importance of accessible training as well as interdisciplinary 376 

collaboration between ecologists, who can offer domain-specific insight, and machine learning 377 

experts who can provide the technical expertise (Murray et al. 2025) (Section 4.6). 378 

3.5 Ethical Concerns 379 

The technical complexities and computational demands also raise ethical concerns. While these 380 

models can support the democratisation of research, e.g., by helping to overcome language 381 

barriers (Valdez et al. 2024), they may also exacerbate digital inequalities if access becomes 382 

unequal through premium pricing, limited infrastructure, or lack of technical skills (Murray et 383 

al. 2025). There is already evidence suggesting that resource limitations in biodiverse but 384 

economically disadvantaged regions contribute to scientific inequities (Mammides et al. 2016; 385 

Campos-Arceiz et al. 2018); unequal access to powerful LLMs risks deepening this divide 386 

(Reynolds et al. 2024). 387 

Another major ethical concern relates to how these models are trained and the sources used in 388 

the process (Liu et al. 2023). Beyond the widely discussed issues, such as copyright 389 

infringement, where content may be used without the creators’ consent, there is a broader 390 

problem of representativeness (Sandbrook 2024; Urzedo et al. 2024). Training data often draws 391 

from readily available sources that do not necessarily reflect all perspectives (Sandbrook 2024). 392 

For example, viewpoints expressed in low-resource languages or by Indigenous communities 393 

are frequently underrepresented (Urzedo et al. 2024), which means LLM outputs may overlook 394 

these critical voices, potentially biasing decision-making (Gewin 2025). Addressing this issue 395 

while respecting data sovereignty (Section 4.4) is essential for the trustworthy and equitable 396 

application of LLMs (Gewin 2025). 397 

There is also valid concern that the current hype around LLMs, and AI more broadly, may 398 

divert resources from essential, conventional practices in ecology and conservation (Reynolds 399 

et al. 2024). Field-based studies already represent a declining proportion of the literature, and 400 

ecology students are spending less time in the field, potentially leading to a disconnect with 401 

nature and its processes (Soga & Gaston 2025). If the rise of LLMs further shifts attention and 402 

resources away from the collection of primary field observations, which represent the backbone 403 

of ecological knowledge, it could represent a negative development. 404 



 15 

A further concern is the risk of deskilling (Reynolds et al. 2024), for example, in tasks related 405 

to computer coding. Learning to code involves hands-on engagement (e.g., writing, debugging, 406 

and refining code), which fosters deeper understanding. If ecologists and conservation 407 

scientists increasingly rely on LLMs to perform these tasks, they may miss essential 408 

opportunities to develop the skills needed to critically evaluate and troubleshoot code on their 409 

own. This concern extends beyond coding and applies to other key tasks, such as scientific 410 

writing and statistical analyses.  411 

Finally, there is growing concern regarding the environmental impact of training, deploying, 412 

and using LLMs (Rillig et al. 2023; Sandbrook 2024). Training large models requires 413 

significant energy and generates substantial emissions, while data centres consume vast 414 

volumes of water for cooling (Sandbrook 2024). Although training is typically more resource-415 

intensive than usage (inference), the impact varies with model size and efficiency. Mitigation 416 

efforts include using renewable energy, optimising deployment, and adopting energy-efficient 417 

architectures like DeepSeek’s Mixture of the Experts, which activates only a subset of model 418 

parameters during inference. However, these issues underscore the need to use LLMs 419 

thoughtfully, reserving them for tasks that truly require their capabilities. Otherwise, 420 

applications intended to support conservation may ironically end up harming the environment.  421 

4. Recommendations for more effective and responsible use of LLMs 422 

Effective use of LLMs requires recognising their risks and addressing them through both 423 

technical solutions and thoughtful use. While model advances may reduce challenges like 424 

hallucinations, many issues depend on how users interact with these tools. Techniques such as 425 

prompt engineering, retrieval-augmented generation (RAG), and human-in-the-loop 426 

oversight, described below, can improve reliability and inclusivity (Reynolds et al. 2024). 427 

Sharing prompts, workflows, and best practices supports transparency, reproducibility, and 428 

impact. In this section, we offer practical guidance to help maximise benefits and mitigate risks 429 

in ecological and conservation applications. 430 

4.1 Detecting Inaccuracies and Measuring Uncertainty 431 

As noted in Section 3, a key limitation of LLMs is their tendency to generate inaccurate 432 

information, including hallucinations (Kumar et al. 2025; Iyer et al. 2025). Although ongoing 433 

research on detecting and mitigating such errors may reduce their frequency, they are unlikely 434 
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to be fully eliminated (Mora-Cross & Calderon-Ramirez 2024). To address this issue, various 435 

strategies can be employed to improve model reliability. These include post-hoc fact-checking 436 

(e.g., cross-referencing output with authoritative sources), self-verification (prompting the 437 

model to assess or justify its own responses), and confidence estimation (assessing the model’s 438 

uncertainty through internal metrics or response patterns) (Mora-Cross & Calderon-Ramirez 439 

2024; Kumar et al. 2025). Importantly, output accuracy will vary depending on the model used 440 

and the specific task, making careful model selection crucial for optimal results. Tools such as 441 

LMArena (https://lmarena.ai), which allow users to compare different LLMs across multiple 442 

benchmarks and performance metrics, support more informed task-specific decisions. 443 

In practice, users can also adopt simpler techniques that serve as practical forms of confidence 444 

estimation. For example, submitting the same query multiple times and comparing the 445 

variability of outputs can help flag potentially hallucinated content, which tends to lack 446 

consistency. Another approach involves using a second LLM to fact-check the first, though 447 

this can be computationally expensive and increases the environmental footprint of LLM usage. 448 

More broadly, effective prompt engineering, discussed in the next section, can also help reduce 449 

inaccuracies by providing clearer instructions and more targeted context. 450 

4.2 Prompt Engineering 451 

Prompt engineering involves crafting input prompts to guide LLMs toward relevant and 452 

reliable outputs (White et al. 2023a). Well-designed prompts improve clarity, reduce 453 

ambiguity, and better align responses with the user’s intent and domain-specific needs (Sahoo 454 

et al. 2024). For instance, explicitly asking the model to respond with “NA” when information 455 

is not clearly available can reduce hallucinations (Marcos et al. 2025), which often arise from 456 

the assumption that an answer must always be provided. Other best practices include: (a) using 457 

clear, specific language to define the task (e.g., in instruction-based prompting; Table 1); (b) 458 

breaking down complex tasks into manageable steps (prompt chaining); and (c) providing 459 

examples of the desired output and format (Sahoo et al. 2024), a highly effective approach 460 

known as few-shot prompting (White et al. 2023a; Table 1). 461 

Two particularly effective strategies to improve accuracy are role prompting and contextual 462 

prompting (White et al. 2023a; Sahoo et al. 2024) (Table 1). Role prompting involves 463 

instructing the model to adopt a specific identity or perspective (e.g., “Assume you are an 464 

ecologist designing an experiment…”), which can improve both the relevance and factual 465 

https://lmarena.ai/
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correctness of the response (Sahoo et al. 2024). Contextual prompting entails providing 466 

detailed background information or situational context within the prompt, enabling the model 467 

to generate more targeted, nuanced, and reliable responses. Context may include domain-468 

specific details, constraints, or examples that anchor the model’s reasoning process (Sahoo et 469 

al. 2024). 470 

Another widely recommended technique is Chain-of-Thought (CoT) prompting (Table 1), 471 

which requires the model to generate a step-by-step explanation of its reasoning (Farrell et al. 472 

2024). This method enhances interpretability by making the model’s logic explicit, thereby 473 

facilitating evaluation of the correctness and coherence of its conclusions. CoT prompting is 474 

particularly effective for complex reasoning tasks and helps reduce the risk of shallow or 475 

unsupported answers (Sahoo et al. 2024). Additional techniques include iterative prompting, 476 

where prompts are refined step-by-step based on previous outputs to improve accuracy and 477 

depth, and prompt ensembling, which involves using multiple prompts to generate varied 478 

responses for the same task and combining them to produce a more robust and consistent result 479 

(Table 1).  480 

Curated prompt catalogues are becoming increasingly common (White et al. 2023a; Sahoo et 481 

al. 2024), especially outside the fields of ecology and conservation science. As LLM use 482 

expands, researchers are encouraged to share their prompt techniques, for instance, in the 483 

supplementary materials of their publications. This practice can promote transparency, 484 

reproducibility, and collective innovation, much like the open sharing of computer code. 485 

Additionally, emerging frameworks such as DSPy provide a programmatic approach to prompt 486 

engineering by structuring prompts as modular, reusable components (Barbosa et al. 2025), 487 

allowing for systematic tuning, better scalability and more maintainable LLM workflows.  488 

4.3 Validation 489 

To use LLMs reliably, users must integrate validation measures into their workflows (Reynolds 490 

et al. 2025). One practical technique, known as citation prompting, is to instruct models to 491 

include footnotes or citations with their responses that can be manually verified. Another 492 

effective validation technique involves cross-checking LLM outputs against established 493 

datasets (Vaghefi et al. 2023). In more formal evaluations, users could employ benchmarking 494 

to assess a model’s performance against task-specific, curated datasets, allowing for the 495 

calculation of accuracy and other relevant performance metrics (Bi et al. 2023). More advanced 496 
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applications may also link models to external databases (Kumar et al. 2025), a form of retrieval-497 

augmented generation (see Section 4.4). For example, if a model is asked to recommend 498 

strategies for addressing threats to a particular species, its output can be validated through 499 

authoritative sources, either manually or using automated methods. Self-consistency testing is 500 

also a useful method for validating the reliability of LLM outputs (Kumar et al. 2025). It 501 

involves generating multiple responses using the same or slightly varied prompts and assessing 502 

the extent to which the answers converge on a consistent response.  503 

Crucially, these technical approaches should be complemented by human-in-the-loop (HITL) 504 

validation, in which domain experts review (Berger-Tal et al. 2024), interpret and correct LLM 505 

outputs as needed before they are used in research or policy (Reynolds et al. 2024). This layer 506 

of oversight helps ensure that the outputs are not only technically accurate but also ecologically 507 

relevant and ethically sound, which is especially important in conservation applications where 508 

decisions can affect multiple stakeholders. 509 

4.4. Retrieval-Augmented Generation (RAG) 510 

RAG can improve the output of LLMs by dynamically incorporating external documents at 511 

inference time, addressing the limitations of foundation models that rely solely on pre-trained 512 

knowledge (Pichai 2023; Kumar et al. 2025). Real-time access to up-to-date and specialised 513 

information can enhance the accuracy and relevance of the responses (Shelby & da Silva 2024; 514 

Kumar et al. 2025). This is especially important in fields like conservation science, where up-515 

to-date, context-specific knowledge is critical for effective interventions.  516 

RAG frameworks can also help address some of the ethical concerns mentioned above, such 517 

as the underrepresentation of minority groups and Indigenous perspectives. By incorporating 518 

curated, diverse, and context-specific knowledge bases, such as Indigenous ecological 519 

knowledge, they can enable more inclusive and contextually accurate outputs (Pichai 2023). 520 

When proprietary data is involved, RAG can be implemented using locally run, offline 521 

language models to respect data sovereignty. An added advantage is that these smaller models, 522 

which may be equally effective depending on the task, tend to have a lower environmental 523 

impact.  524 

 525 
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4.5 Fine-tuning and Specialised Models 526 

While powerful, pre-trained foundation models such as GPT and Qwen often lack the 527 

specialised knowledge required for ecological applications. Fine-tuning these models using 528 

domain-specific datasets can significantly improve the accuracy, relevance, and contextual 529 

appropriateness of their outputs (Abdelmageed 2023; Bi et al. 2023). An example is OceanGPT, 530 

a LLaMa-based model fine-tuned on over 67,000 documents related to ocean science (Bi et al. 531 

2023). However, not all foundation models are available for fine-tuning, and in some cases, 532 

retraining can lead to “catastrophic forgetting”, where the model loses some of its previously 533 

acquired knowledge when updated with new data. Perhaps more importantly, retraining a 534 

model is resource-intensive and computationally demanding,  making it impractical in many 535 

cases.  536 

Alternatively, customised models, such as ChatBBNJ (Wang et al. 2024), can be developed for 537 

targeted purposes without retraining. A common approach involves appending predefined 538 

instructions or contextual information to each prompt, which is essentially what custom GPTs 539 

represent. These lightweight adaptations can support domain-specific applications, such as 540 

public awareness campaigns, educational outreach, or policy support, offering more accessible 541 

and effective tools. 542 

4.6 Capacity Building 543 

While the strategies outlined above can largely enhance the reliability and effectiveness of 544 

LLM applications, it is crucial that users are provided with training that builds capacity (Murray 545 

et al. 2025) and disseminates evolving best practices. Without adequate training, researchers 546 

may use these transformative tools without fully recognising their limitations or how to address 547 

them. Formal training can also help unlock the full potential of LLMs, enabling more 548 

innovative and impactful applications (Mammides & Papadopoulos 2024). Such training could 549 

take various forms, including integration into university curricula or shorter workshops offered 550 

at conferences, for example. Equally important is fostering a culture of transparency around 551 

how LLMs are used and evaluated, as well as inclusivity in how they are developed (Murray 552 

et al. 2025). 553 

 554 

 555 
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5. Conclusion 556 

LLMs will play an increasingly integral role in how ecological and conservation science is 557 

conducted, communicated, and applied. From automating labour-intensive tasks, such as data 558 

extraction and evidence synthesis, to enhancing biodiversity monitoring and improving 559 

communication across languages and disciplines, LLMs have the potential to increase the 560 

efficiency, accessibility, and impact of research. However, these opportunities come with 561 

significant challenges, ranging from technical limitations associated, such us inaccuracies and 562 

difficulties in scaling up applications, to broader concerns about equity, reproducibility, and 563 

environmental sustainability. Addressing these issues will require technological advances and 564 

a strong commitment to best practices, ethical and regulated standards, and inclusive design. 565 

Moving forward, the integration of LLMs into ecological and conservation research should be 566 

guided by trustworthy use and transparent reporting, interdisciplinary collaboration, and 567 

ongoing critical evaluation of their strengths and limitations. Training and support for 568 

researchers, especially those in under-resourced settings, will be essential to ensure equitable 569 

access and meaningful participation in this technological shift. With thoughtful usage, LLMs 570 

can accelerate scientific discovery and help democratise knowledge production and application 571 

in support of global biodiversity goals. 572 
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Figure 1. Countries contributing to research on LLM applications in ecology and conservation 

science, based on the distribution of author affiliations in the reviewed articles, preprints, and 

conference proceedings. The USA, China, the UK, Australia, and Germany were the top five 

contributors (see Fig. S1 for more details).  

 

 

 

 

 

  



 27 

Box 1. Glossary of key technical terms related to large language models (LLMs), highlighted 

in bold in the text. The glossary was created using Gemini 2.5 Pro through role prompting and 

a human-in-the-loop approach to ensure accuracy and brevity. The following prompt was 

used: “You are an AI expert tasked with creating a glossary for a manuscript. Your goal is to 

make complex AI concepts intuitive for ecologists, field researchers, and conservation 

policymakers who are experts in their own fields but novices in AI”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Artificial Intelligence: The broad field of creating computer systems that can perform tasks that 

typically require human intelligence, such as natural language understanding. 

Agentic LLMs: Large Language Models (LLMs) that can perform multi-step tasks autonomously to 

achieve a goal. 

Context Window: The amount of text (the "context") an LLM can "remember" or consider at one 

time when generating a response. 

Explainable AI: A set of tools and techniques that aim to make AI decisions understandable to 

humans, opening the "black box." 

Fine-tuning: Taking a large, pre-trained "foundation model" and providing additional, specialised 

training on a smaller, domain-specific dataset. 

Foundation Models: Very large, powerful AI models (like GPT-4) that are pre-trained on a 

massive, general dataset (e.g., a large portion of the internet). They can be adapted to a wide 

range of tasks through fine-tuning. 

Hallucinations: When an LLM generates text that is factually incorrect, nonsensical but presents it 

confidently as fact. 

Human-in-the-loop (HITL): A system design where humans are intentionally included in the AI 

decision-making process, typically to review, correct, or validate the AI's outputs. 

Hyperparameters: The settings and knobs of a machine learning model that are set by the 

researcher before the training process begins. 

Large Language Models: Advanced deep learning models, typically utilising transformer 

architectures, pre-trained on extensive text and code datasets to comprehend and generate 

human-like language for diverse natural language processing applications. 

Long-context LLMs: A new generation of Large Multimodal Models with a very large Context 

Window, allowing them to process and "remember" entire books, long videos, or hours of audio at 

once. 

Memory-augmented LLMs: Models augmented with external memory that persists across 

sessions, allowing them to store and retrieve information beyond the limits of their fixed context 

window. 

Prompt Engineering: The technique of crafting effective inputs ("prompts") to get the desired 

output from an LLM. 

Retrieval-Augmented Generation (RAG): A technique that allows an LLM to access and pull 

information from a specific, trusted database before answering a question. 

Self-consistency: A technique to improve an AI's reasoning by generating multiple different 

answers to the same complex question and then choosing the most common or logically consistent 

answer. 

Trustworthy AI: An umbrella term for AI that is lawful, ethical, and technically robust. Key pillars 

include fairness (unbiased), explainability, reliability, and accountability. 
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Table 1. Overview of key prompting strategies that can be used to enhance the accuracy, 

reliability and relevance of the outputs generated by LLMs. Hypothetical examples of how they 

could be used in the context of ecology and conservation science are provided in the 

supplementary materials. The descriptions and examples were generated using Gemini 2.5 Pro 

through role prompting and a human-in-the-loop approach to ensure accuracy and clarity. 

The following prompt was used: “You are an AI expert writing a section for a manuscript on 

AI applications in ecology and conservation science. The target audience is ecologists, field 

researchers, and policymakers—experts in their domain but novices in AI. Your task is to define 

and illustrate eight key prompt engineering strategies. The tone must be formal, clear, and 

respectful of the reader's expertise. Please provide the following: strategy name, definition, 

and example use relevant to ecology and conservation science.” 

Prompting 

Strategy 
Description 

Chain-of-

Thought (CoT) 

Prompting 

Instructs the model to break down its process into a series of 

intermediate, sequential steps. By asking the model to "think step-by-

step," the user can encourage a more rigorous and transparent 

reasoning process, which often leads to more accurate final answers. 

Citation 

Prompting 

Instructs the model to provide sources, references, or citations for the 

information it generates. Crucially, this strategy must be paired with 

independent verification, as models can "hallucinate"—i.e., generate 

plausible but non-existent citations. 

Few-shot 

Prompting 

Provides the model with several examples (the "shots") of the desired 

input-output pattern before presenting the actual task. This is highly 

effective for tasks requiring a specific format, structure, or style, as the 

model learns from the provided exemplars. 

Instruction-

based prompting 

Involves a clear and concise command that states the desired task. It 

forms the basis of all prompting and is most effective for 

straightforward, well-defined objectives. 

Iterative 

Prompting 

A conversational approach where the initial prompt is a starting point 

for a dialogue. The user refines, corrects, or expands upon the model's 

output through a series of follow-up prompts. This dynamic process 

allows for the progressive shaping of the final output, making it highly 

effective for nuanced and complex writing tasks. 

Prompt 

Chaining 
 

Involves breaking a large, multifaceted task into a series of smaller, 

discrete sub-tasks. The output from one prompt is used as the direct 

input for the next, creating a workflow or "chain." This modular 

approach improves control and the quality of the final product. 

Prompt 

Ensembling 

Involves querying the model with multiple, distinct prompts that all 

address the same core task. The different prompts might use different 

phrasing, roles, or constraints. The resulting outputs are then 

synthesized by the user to produce a more comprehensive, robust, and 

less biased final answer. 
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Role Prompting 

Instructs the models to assume a specific persona, expertise, or role 

before posing the query. This primes the model to adopt a particular 

tone, vocabulary, and conceptual framework, leading to more 

contextually relevant and nuanced outputs. 
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Emerging Applications of Large Language Models in Ecology and Conservation Science 

 

Supplementary Materials 

 

Method used to identify and review relevant research: 

To identify relevant documents, we searched Web of Science, Scopus, and Google Scholar in 

January 2025 using the following search terms: (“LLMs” OR “Large Language Model*” OR 

“ChatGPT”) AND (“Ecology” OR “Biodiversity” OR “Conservation”). Given that Google 

Scholar returns a large number of results, some only tangentially related to the search terms, 

we limited this search to the first 100 results. This approach is common practice and was 

justified by confirming that articles beyond the first 100 were not relevant to our purposes. 

As noted in the main text, we did not restrict our review to peer-reviewed literature but also 

included preprints and conference proceedings, provided they were indexed in at least one of 

the three databases searched. Our search initially returned 338 documents: 133 from Web of 

Science, 105 from Scopus, and 100 from Google Scholar. After removing duplicates, 267 

unique documents remained, which were screened for relevance by the lead author. Articles 

were excluded if they were unrelated to ecology or conservation, or if they did not specifically 

refer to large language models (e.g., papers using the acronym “LLM” for other meanings). 

This screening process resulted in 92 articles. To ensure completeness, the lead author also 

queried Consensus, ScholarGPT, and ChatGPT for additional references, identifying 8 more 

relevant articles. The final list of 100 articles was then divided among the first four authors, 

who each reviewed 25 documents and extracted key information using a shared template 

developed and agreed upon by all authors. 

For each article, we extracted key information such as the authorship, title, and dates of 

submission and publication. We recorded the article type (e.g., Preprint, Primary Research, 

Review, Conference Proceedings), the countries in which the authors are based, and the 

categories of their affiliated institutions (e.g., Academia, NGOs). Each article was classified 

according to whether it described a specific application of LLMs or offered general 

commentary or review. We noted the study’s objective, the described use(s) of LLMs (e.g., 

species distribution modelling, sentiment analysis, etc.), the intended user groups (e.g., 

researchers, practitioners), and whether the application was demonstrated or merely proposed. 
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We also documented the ecological and geographical focus of each study, the specific LLM(s) 

mentioned, and the methods used. Additionally, we summarised the main conclusions and 

reported benefits of LLM use, along with any technical or non-technical limitations identified 

by the authors. Where applicable, we recorded proposed solutions, assessed the accessibility 

of the described workflow, and evaluated their usability based on ease of implementation. We 

also noted any additional relevant references. Finally, prior to submission, the lead author 

conducted an updated scan of the literature to identify any new documents published between 

January and June 2025, and reviewed reference lists for additional relevant but previously 

unlisted documents. This brought the final number of documents reviewed to 123. 
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Figure S1. Number of times each country appeared across the 123 reviewed articles, preprints, 

and conference proceedings, based on author affiliations. If multiple authors from the same 

country were listed in a single publication, the country was counted only once for that 

document. 
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Box S1. A glossary of additional technical terms related to LLMs, which are also mentioned in 

the text. As with Box 1, the definitions were generated using Gemini 2.5 Pro through role 

prompting and a human-in-the-loop approach to ensure accuracy and brevity. The following 

prompt was used: “You are an AI expert tasked with creating a glossary for a manuscript. Your 

goal is to make complex AI concepts intuitive for ecologists, field researchers, and 

conservation policymakers who are experts in their own fields but novices in AI” 

 

  
Artificial Neural Network: A computational model inspired by the structure of the human brain, 

the core building block of Deep Learning. 

Data Sovereignty: The principle that data is subject to the laws and governance structures of the 

nation or community where it is collected. 

Deep Learning: A subfield of machine learning that uses very large, multi-layered Artificial 

Neural Networks to find extremely complex patterns in vast amounts of data. 

Digital Inequalities: The disparities in access to and use of digital technologies, including AI, 

among different social, economic, or geographic groups. 

Few-Shot Learning: Training a model to perform a new task using only a handful ("a few shots") 

of examples. 

Living Evidence Syntheses: A systematic review or evidence map that is continuously updated 

as new research becomes available, often with the help of AI to automate the search and filtering 

of new studies. 

Low-resource Language: A language for which there is very little digital text data available, 

making it difficult to train AI models like LLMs. 

Maximum Output Length: The limit on how much text an LLM can generate in a single 

response. 

Natural Language Processing (NLP): A field of AI focused on enabling computers to 

understand, interpret, and generate human language. LLMs are the most advanced form of NLP. 

Pseudo-labels: Labels for data that are generated by an AI model itself, not by a human. These 

are then used to train the model further. 

Self-reflection: An advanced AI capability where a model can review, critique, and improve its 

own work. 

Summarisation: The task of generating a shorter version of a text while preserving its essential 

meaning and key information. 

Supervised Learning: The most common type of machine learning, where the model learns 

from data that has been manually labelled with the correct answer. 

Unsupervised Learning: A type of machine learning where the model finds hidden patterns or 

structures in data that has not been labelled. 

Zero-shot Learning: A model's ability to perform a task it was never explicitly trained to do, 

without seeing any examples of that task. 
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Table S1. Hypothetical examples of how the prompting strategies mentioned in the text could 

be used in the context of ecology and conservation science. Examples were generated using 

Gemini 2.5 Pro through role prompting and a human-in-the-loop approach to ensure 

accuracy and clarity. The following prompt was used: “You are an AI expert writing a section 

for a manuscript on AI applications in ecology and conservation science. The target audience 

is ecologists, field researchers, and policymakers—experts in their domain but novices in AI. 

Your task is to define and illustrate eight key prompt engineering strategies. The tone must be 

formal, clear, and respectful of the reader's expertise. Please provide the following: strategy 

name, definition, and example use relevant to ecology and conservation science.” 

Prompting 

Strategy 

Example 

Chain-of-

Thought (CoT) 

Prompting 

A conservation planner is presented with a new dataset and wants to 

generate initial hypotheses. 

Prompt: “A recent camera trap study in a protected Bornean rainforest 

reserve shows a 30% decline in sun bear (Helarctos malayanus) 

sightings over the past five years, while sightings of wild boar (Sus 

scrofa) have increased by 50%. Outline the potential ecological drivers 

for this inverse trend. Please explain your reasoning for each potential 

driver step-by-step.” 

Citation 

Prompting 

A graduate student is writing a literature review. 

Prompt: "Provide a summary of the current scientific consensus on the 

effectiveness of wildlife corridors for connecting fragmented 

populations of large carnivores in North America. Please include 

citations to key peer-reviewed articles published after 2018." 

User Action: The student must then use a scholarly database (e.g., Web 

of Science, Google Scholar) to locate and verify cited articles to 

confirm their existence and relevance. 

Few-shot 

Prompting 

A field researcher has handwritten notes and wants to digitize and 

structure them into a consistent format for a database. 

Prompt: "I will provide unstructured field notes, and you will convert 

them into a structured JSON format. Here are two examples: 

Example 1 Input: 'Oct 5, 2023, transect 4, observed a golden eagle 

soaring overhead, adult.' 

Example 1 Output: {"date": "2023-10-05", "location": "transect 4", 

"species": "Aquila chrysaetos", "count": 1, "notes": "Adult, soaring 

behaviour observed."} 

Example 2 Input: '10/5/23, near the creek bed, saw 2 northern leopard 

frogs by the water’s edge.' 
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Prompting 

Strategy 

Example 

Example 2 Output: {"date": "2023-10-05", "location": "creek bed", 

"species": "Lithobates pipiens", "count": 2, "notes": "Observed at 

water's edge."} 

New Input: 'Spotted a black bear, seemed to be a subadult, crossing 

game trail 2 on Oct 6, 2023.' 

Your Task: Now, please convert the new input into the structured JSON 

format." 
 

Instruction-

based 

prompting 

A researcher needs to quickly understand the core arguments of a dense 

government report before further reading. 

Prompt: "Summarize the key findings and policy recommendations 

concerning biodiversity loss from the 2023 IPBES report on invasive 

alien species. The summary should be approximately 300 words and 

suitable for a non-technical audience." 
 

Iterative 

Prompting 

An ecology student is researching a topic for an essay. 

Prompt 1: "Provide a list of the major benefits of mangrove ecosystems 

for coastal protection." 

LLM Output: (Provides a general overview mentioning wave 

attenuation, shoreline stabilization, and biodiversity conservation) 

User Prompt 2: "That is a good start. Now, please refine this list by 

focusing specifically on their role in mitigating storm surge associated 

with tropical cyclones in the Caribbean. Also, frame your response 

using the concept of 'ecosystem services'." 

LLM Output: (Returns a more targeted response, highlighting 

regulating services such as wave energy dissipation, sediment trapping, 

and flood risk reduction, with references to Caribbean case studies) 

 
Prompt 

Chaining 
 

A conservation practitioner is developing a comprehensive species 

management plan. 

Prompt 1: "Please generate a list of the top five threats to the giant 

panda (Ailuropoda melanoleuca), citing habitat loss, fragmentation, 

and climate change." 

Prompt 2 (using output from 1): "Using the list of threats above, 

outline a set of specific, measurable, achievable, relevant, and time-

bound (SMART) conservation objectives to address the number one 

threat: habitat loss and fragmentation." 
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Prompting 

Strategy 

Example 

Prompt 3 (using output from 2): "Based on the SMART objectives you 

just created, propose three potential stakeholder engagement strategies 

to ensure local community buy-in for the conservation plan." 

Prompt 

Ensembling 

A policymaker needs to understand the multifaceted impacts of a 

proposed dam project. 

Prompt A: "From the perspective of a freshwater ecologist, outline the 

potential negative impacts of constructing a hydroelectric dam on 

riverine biodiversity and fish migration." 

Prompt B: "From the perspective of an energy policy analyst, outline 

the primary benefits of the same hydroelectric dam project in terms of 

renewable energy generation and grid stability." 

Synthesis: The policymaker would then integrate both outputs to draft 

a balanced briefing document that acknowledges the ecological trade-

offs and the energy benefits. 

Role Prompting A forest ecologist wants to draft an outreach document to explain their 

research to the public. 

Prompt: "Act as a science communicator specializing in forest ecology. 

Write a 500-word blog post explaining the concept of 'trophic cascades' 

using the reintroduction of wolves to Yellowstone National Park as the 

primary example. The tone should be engaging, accessible, and avoid 

technical jargon." 
 

 

 


