Emerging Applications of Large Language Models in Ecology and Conservation Science

Christos Mammides !>, Hao Gu'?3, Thilina Nimalrathna*, Naufal Rahman Avicena'-*3,

Harris Papadopoulos’, Ahimsa Campos-Arceiz!>3*

1. Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for
Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of
Sciences, Mengla, Yunnan, 666303, China.

2. Yunnan International Joint Laboratory of Southeast Asia Biodiversity Conservation &
Yunnan Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants,
Menglun, Mengla, Yunnan, 666303, China.

3. Yunnan International Joint Laboratory for the Conservation and Utilization of Tropical
Timber Tree Species, Xishuangbanna Tropical Botanical Garden, Chinese Academy of
Sciences, Mengla, Yunnan, 666303, China

4. School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China

5. Department of Electrical Engineering, Computer, Engineering and Informatics, Frederick

University, Nicosia, 1036, Cyprus

* Corresponding authors: Christos Mammides; cmammides(@outlook.com / Ahimsa Campos-

Arceiz; ahimsa@xtbg.ac.cn

Acknowledgements:

We acknowledge the use of ChatGPT-40 for brainstorming ideas and editing the manuscript,
including identifying areas for improvement and enhancing overall readability. We also used
Gemini 2.5 Pro to generate the glossary and the descriptions of the prompting strategies, as
detailed in the text. CM is thankful to the Marie Curie Alumni Association for providing access
to Coursera, which enabled him to complete courses on generative Al, prompt engineering,
and fine-tuning of large language models. This work was financially supported by the
Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (CAS-SEABRI:
#Y4ZK111B05). CM was supported by The Wisdom Yunnan Project (202503AM140014),
ACA by the High-End Foreign Experts Program of the Yunnan Revitalization Talents Support
Plan, and TN and NRA by the CAS-ANSO Scholarship for Young Talents.


mailto:cmammides@outlook.com
mailto:ahimsa@xtbg.ac.cn

18
19

20

21

22
23
24
25
26
27
28
29
30
31

Emerging Applications of Large Language Models in Ecology and Conservation Science

Abstract

The emergence of large language models (LLMs) marks a major development in artificial
intelligence, with potentially transformative implications for ecology and conservation science.
Built on advanced deep-learning architectures, these models can support a wide range of tasks,
from analysing unstructured texts to enhancing biodiversity monitoring and generating policy-
relevant insights. This article synthesises emerging applications of LLMs across ecology and
conservation, drawing on the wider literature and practical use cases. We highlight the potential
of LLMs to streamline ecological workflows and accelerate evidence-based conservation,
while also discussing key technical and ethical challenges, such as inaccurate and biased
outputs, and unequal access. We offer recommendations for addressing these challenges to
support the reliable and responsible use of LLMs, including strategies for improving output
accuracy and ensuring proper validation. When implemented thoughtfully, LLMs can serve as
a valuable addition to the ecologists’ toolkit, enhancing scientific capacity and supporting

broader efforts towards achieving biodiversity goals.

Keywords: BERT; ChatGPT; DeepSeek; Foundation Models; Generative Al; LLaMa; LLMs;

Prompt Engineering

1. Introduction

Large Language Models (LLMs; see Box 1) represent an exciting breakthrough in Artificial
Intelligence (Al) and are receiving growing attention due to their transformative potential
(White et al. 2023a; Lam et al. 2024). Initially developed for natural language processing tasks,
they are now being applied across a range of domains to support complex workflows, including
summarising clinical trial reports (White et al. 2023b), analysing interview transcripts (Tai et
al. 2024), and delivering localised climate insights to non-specialists (Koldunov & Jung 2024).
LLMs are advanced deep-learning systems built on transformer neural network architectures
and trained through self-supervised learning on vast and diverse text datasets (Lam et al. 2024;
Morera 2024). Foundation models, such as GPT-40, LLaMa 2, and DeepSeek-V2, are capable

of capturing complex linguistic patterns and semantic relationships, enabling advanced
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language understanding and generation (Morera 2024). Chat-based LLMs, such as ChatGPT
and LLaMA-Chat, which are further refined through supervised learning and reinforcement
techniques, are able to support sophisticated conversational applications. LLMs, used in this
article to refer broadly to foundation models and their chat-based counterparts, have recently
demonstrated remarkable capabilities across a range of tasks (Lam et al. 2024), including
extracting and synthesising large volumes of information and generating computer code

(Cooper et al. 2024; Jhonnerie et al. 2024).

Given their strong performance and rapid development, LLMs are increasingly being
integrated into the workflows of researchers and practitioners (Charness et al. 2025), including
those in ecology and conservation science. However, their increased adoption also raises
concerns, including the risk of generating inaccurate information and the underrepresentation
of minority voices due to biases in training data (Reynolds et al. 2024; Urzedo et al. 2024).
These issues are especially relevant in ecology and conservation science, which require not
only sound ecological knowledge but also a deep understanding of the social and cultural
contexts (Sandbrook 2024). Addressing these challenges will be essential to ensure that the use
of LLMs is both effective and equitable. Yet, despite the growing interest in LLMs, practical
guidance on their potential uses, strengths, and limitations remains scattered, and often in
resources beyond those typically consulted by ecologists and conservation practitioners.
Moreover, while much of the current attention on LLMs focuses on their chat-optimised
interfaces, emerging evidence suggests that some of the most impactful and innovative uses
will likely come from embedding LLMs into backend systems supporting specialised

workflows. Collectively, these knowledge gaps highlight the need for a timely synthesis.

In this article, we provide an overview of emerging applications of LLMs in ecology and
conservation science, highlighting key opportunities, current challenges, and offering practical
recommendations to support their effective adoption. Our analysis draws primarily from use
cases in the wider academic literature and examples from our own experience, including
training. To identify relevant literature, we searched Web of Science, Scopus, and Google
Scholar using the terms: [“LLMs” OR “Large Language Model*”] AND [“Ecology” OR
“Biodiversity” OR “Conservation”]. We also reviewed the reference lists of all retrieved
articles to record additional sources (see Supplementary Materials). After initial screening for
relevance and removing duplicates, we identified 123 documents relevant to our topic (Figure

1). Recognising the fast-evolving nature of this field, in addition to peer-reviewed journal
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articles (n = 83), we also considered preprints (n = 34) and conference proceedings (n = 6). In
the sections that follow, we review promising and fast-developing applications of LLMs in
ecology and conservation science (Section 2), examine key technical and ethical challenges

(Section 3), and conclude with practical solutions and recommended best practices (Section 4).

2. Emerging Applications of LLMs

LLMs can support a variety of tasks, from automating labour-intensive processes such as data
extraction to assisting with data analysis, improving communication and outreach, and
informing policy. They hold the potential to streamline workflows, expand access to

information, and accelerate evidence-based conservation.

2.1 Extracting Ecological Data

A major bottleneck in ecological research lies in extracting key insights from unstructured
sources (Marcos et al. 2025), such as scientific publications and reports. While these sources
hold valuable information, accessing and synthesising it is often laborious and time-
consuming. Recent applications suggest that LLMs may offer a promising solution (Farrell et
al. 2024; Gurr et al. 2024; Castro et al. 2024; Elliott & Fortes 2024), stemming from their ability
to rapidly process large volumes of unstructured text and identify relevant content using

patterns learned from modelling complex linguistic structures (Castro et al. 2024).

Gougherty and Clipp (2024) used text-bison-001, a publicly available LLM part of Google’s
PalLM 2 family of models, to extract data on plant pathogens and their host plants from the
academic literature, achieving faster extraction speeds than those of human reviewers while
maintaining high accuracy. Similarly, Keck et al. (2025) used OpenAl’s GPT-4o0 to extract
species interactions from over 80,000 scientific articles, and Marcos et al. (2025) developed an
LLM-based workflow to extract species traits, with both studies reporting encouraging levels
of accuracy. Fu et al. (2025) employed DeepSeek-R1 to analyse 247 Chinese court cases,
successfully identifying hotspots of wildlife crime involving sea turtles. Scheepens et al. (2024)
evaluated GPT-4’s ability to extract taxonomic information from article abstracts. Despite
some inaccuracies due to hallucinations, the preliminary results were promising,
demonstrating the potential of LLMs for large-scale data extraction from unstructured sources.
It should be noted, however, that accuracy can vary depending on the model used and the

specific task, underscoring the need for careful model selection (Castro et al. 2024). Moreover,



94
95
96

97
98
99
100
101
102
103

104

105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123
124

effective information extraction will oftentimes require sophisticated workflows that go
beyond the use of standalone foundation models, incorporating robust error-mitigation

mechanisms (Section 4) and reliable retrieval strategies (Iyer et al. 2025).

Nonetheless, LLMs can also assist in extracting information from structured sources, such as
online databases. In a recent example, researchers used OpenAl’s GPT-4 model to develop a
chatbot enabling users to query the Integrated Digitized Biocollections (iDigBIO) database
using natural language (Elliott et al. 2024). The ability to interact with databases through
natural language is an active area of research beyond ecology and conservation (Miao et al.
2024), and holds significant promise for expanding access to information by reducing reliance

on specialised technical skills.

2.2 Accelerating Literature Reviews and Evidence Synthesis

LLMs could also streamline how researchers and practitioners conduct literature reviews,
synthesise evidence (Berger-Tal et al. 2024; Reynolds et al. 2024), and even identify emerging
topics (Gurr et al. 2024; Ji et al. 2025), without being constrained by siloed disciplinary
thinking. With the volume of scientific publications growing exponentially, identifying and
reviewing relevant documents is becoming increasingly challenging. Yet, comprehensive
reviews are critical for advancing science and guiding evidence-based conservation (Berger-
Tal et al. 2024; Iyer et al. 2025). In a recent study, Chang et al. (2024) developed a machine
learning pipeline that incorporates LLMs to process over two million scientific articles and
assess how nature-based solutions promote human well-being and biodiversity conservation.
Krishna Moorthy et al. (2025) implemented a GPT-based workflow to process large volumes
of scientific literature to synthesise information on study locations, biome types, and
quantitative metrics. By combining iterative prompting (Table 2; Section 4.2) with manual
validation, they demonstrated how LLMs can support efficient and scalable ecological

literature reviews while reducing errors.

Although these early applications tend to require complex workflows and high technical
expertise, they nevertheless demonstrate the potential of LLMs to accelerate synthesis
(Reynolds et al. 2024), particularly when paired with mechanisms to mitigate inaccuracies. As
these tools become more accessible and reliable, their role in synthesising information will
likely grow. One especially promising application is their potential to support living evidence

syntheses, i.e., continuously updated reviews that integrate new findings as they emerge
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(Mitchell et al. 2025). Moreover, commercial Al-powered research assistants, such as Elicit
and Consensus, can further support literature reviews through their LLM-based, user-friendly
interfaces. However, issues around affordability and access, especially for researchers with

limited resources, raise concerns about digital inequalities (Section 3.5).

2.3 Leveraging Publicly Available Data for Ecological Insights

In addition to information syntheses, LLMs show promise in supporting a range of other
analytical tasks (Frazier & Song 2025). For instance, they can help analyse ecologically
relevant information from publicly available sources such as social media (Giebink et al. 2024),
including performing sentiment analysis to better understand human—nature interactions and
inform conservation planning (Wei & Hou 2023). In a recent study, researchers used GPT-3.5
to analyse social media posts and study public perceptions of urban green spaces in Singapore,
finding generally positive sentiments and identifying the factors shaping those perceptions
(Zhang & Su 2024). In China, researchers used LLMs to analyse 1,849 online travelogues
posted by visitors to National Forest Parks, providing insights into forest experiences that can
inform park management and design (Wei & Hou 2023). Similarly, in Brazil, researchers used
ChatGPT to analyse Tripadvisor reviews of two protected areas, finding high overall
satisfaction, but also identifying concerns regarding outdated information and sanitation,
offering actionable insights for park management (de Souza et al. 2024). Together, these
examples demonstrate the potential of LLMs for scalable analysis of people’s experiences with
nature, offering valuable insights for landscape planning and management (Frazier & Song

2025).

Another promising application of LLMs is their use in monitoring media to provide real-time,
relevant ecological insights. NewsPanda and NewsSerow are two such examples that support
conservation efforts by automating the detection of environmentally relevant media articles.
NewsPanda uses a fine-tuned BERT-based model with active learning to classify articles and
extract key information, and has been deployed by WWF in multiple countries to monitor
thousands of conservation sites (Keh et al. 2023). NewsSerow focuses on low-resource
languages, using summarisation, few-shot classification, and self-reflection with LLMs to

identify conservation-relevant content with minimal training data (Jain et al. 2024).
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LLMs can also contribute to combating illegal trade by enabling the monitoring of online
advertisements. In a novel use case, researchers developed a cost-effective approach to detect
wildlife trafficking on e-commerce platforms by using LLMs to generate pseudo-labels for a
small subset of ads (Barbosa et al. 2025). These labels were then used to train specialised
classifiers that accurately identify wildlife-related ads. This approach can potentially enable
scalable monitoring of illicit wildlife trade and support real-world enforcement and research
efforts. Importantly, the use of LLMs to generate pseudo-labels for training classifiers holds

promise for a broader range of applications beyond online information monitoring.

2.4 Supporting Code Generation and Programming in Ecology

Ecological research often involves complex analyses requiring advanced statistical and
programming skills. Yet many training programs worldwide offer limited, if any, formal
training in these areas (Mammides and Papadopoulos, 2024). With appropriate oversight,
LLMs can support researchers in conducting analyses, including generating the necessary code
(Campbell et al. 2024; Cooper et al. 2024; Jhonnerie et al. 2024). Specialised tools, such as
GitHub Copilot, DeepSeek-Coder, and the “ellmer” package in the R Programming Language,
are already helping facilitate this process (Guo et al. 2024). LLMs can also be effective in
troubleshooting and explaining existing code (Merow et al. 2023), thereby supporting the
learning process. They can also help tidy and comment code, making it easier for researchers
to potentially share their code in publications (Mammides & Papadopoulos 2024), a practice

which remains uncommon despite its importance for reproducible research.

LLMs have proven useful for translating code between programming languages. This can be
especially helpful for ecologists, who are often more familiar with the R Programming
Language, while many cutting-edge applications, such as machine learning tools, are
developed in Python. By easing this transition, LLMs can expand access to a wider range of
analytical tools. More broadly, they can help bridge disciplinary divides by offering
personalised, around-the-clock guidance on unfamiliar concepts and methods (Mammides &

Papadopoulos 2024).
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2.5 Experimental Applications and Multimodal Innovations

Recent studies have also begun exploring more experimental applications of LLMs, with
potentially transformative implications. Sastry et al. (2023) succesfully integrated LLaMa 2
into a species distribution modelling (SDM) framework to improve predictions of species
ranges. Leblanc et al. (2025) used Pl@ntBERT, a transformer-based LLM developed
specifically for ecological applications, to classify and map habitats across Europe at very high

resolution, leveraging species distribution maps generated using deep-SDMs.

As language models evolve into multimodal tools capable of processing and generating formats
beyond text, such as images and audio, their potential for novel ecological applications will
further grow (Miao et al. 2024). Currently, there is strong interest in integrating multimodal
LLMs with edge devices, such as camera traps, drones, and acoustic sensors, to advance
biodiversity monitoring applications (Robinson et al. 2024; Zhao et al. 2024). Dussert et al.
(2025) tested whether pre-trained multimodal LLMs could identify animal behaviour patterns
from images obtained through camera traps, a widely used tool for monitoring biodiversity.
They found that LLMs could potentially automate this typically laborious task, notably without
model training or labelled datasets, which are often costly to produce but required by

conventional machine learning classification techniques (Dussert et al. 2025).

In another novel use case involving camera trap images, Fergus et al. (2024) showed that
integrating multimodal LLMs, in this case Microsoft’s Phi-3.5, with retrieval-augmented
generation (RAG) techniques (Section 4.4), can improve species identification and even
provide contextually rich information about the species detected, going beyond what the
camera alone can capture. For example, their LLM-integrated workflow could be potentially
used to generate reports detailing the species in an area, as well as relevant information about
their ecology and conservation status (Fergus et al. 2024). Similarly, NatureLM-audio, an
LLM-based model designed for bioacoustic applications, can be used to detect, classify, and
interpret animal vocalisations using natural language prompts (Robinson et al. 2024). While
the long-term value of these applications and the extent to which they can be scaled up remain

to be seen, the potential of LLMs is already evident.
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2.6 Enhancing Science Communication and Outreach

LLMs are already supporting science communication (Richards et al. 2024), including by
reducing language barriers and promoting the democratisation of science. While English is the
dominant language in scientific publishing, most researchers globally are non-native speakers.
Studies have shown that language proficiency can affect citation rates and overall career
advancement (Hannah et al. 2025). LLMs have proven effective in improving, for example,
scientific writing by refining grammar and enhancing clarity, tasks that often require costly

editing services or reliance on personal networks (Zenni & Andrew 2023).

LLMs could further reduce language barriers by making research published in foreign
languages accessible to the global scientific community (Valdez et al. 2024). While not yet
perfect, LLM-based translation tools generally outperform earlier technologies, enabling
researchers to engage with relevant studies. This is especially valuable in conservation, where
important ecological insights are often published in local journals. As LLMs continue to
advance, they are likely to transform also other aspects of science communication, including

conference presentations.

Beyond reducing language barriers, LLMs can support science communication more broadly
by facilitating, for example, the dissemination of targeted information (Richards et al. 2024).
Lewers (2024) demonstrated that LLM-powered chatbots can simplify complex biodiversity
informatics standards, easing their adoption by researchers. Similarly, Wang et al., (2024)
developed ChatBBNJ, a customised question-answering system built using a prompt-based
configuration to focus on topics related to biodiversity beyond national jurisdiction. The
dissemination of specialised information can also be supported by domain-specific LLMs,
which are fine-tuned through further training. For example, OceanGPT is a LLaMA-based
model retrained on more than 67,000 ocean science documents to answer oceanographic
questions and serve as a virtual expert (Bi et al. 2023). Another example is MarineGPT, which
was fine-tuned on a marine-specific dataset to provide contextual and accurate information on
marine environments (Zheng et al. 2023). Because these models are refined or adapted using
domain-specific information, they can deliver more accurate results for specialised tasks
compared to general-purpose models such as ChatGPT, Gemini, and Qwen, provided, though,
that key issues, including biases associated with the training data, are adequately addressed

(see Ziegler et al. 2024; Section 3).
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LLMs also show potential for engaging broader audiences with ecological topics (Richards et
al. 2024), an important yet often overlooked dimension of science communication. Ecologists
are typically trained to communicate in technical language that may not resonate with non-
experts. LLMs can help adapt messages for diverse audiences and platforms, making research
more accessible (D’Souza et al. 2025). Moreover, specialised models, such as those mentioned
above, can deliver tailored ecological information to the public, stakeholders, and
policymakers. Much like business chatbots designed for customer support, these models can

be adapted to deliver region- or topic-specific ecological insights.

General-purpose pre-trained foundation models can also contribute to the dissemination of
broader scientific knowledge with careful use (Rodas-Trejo & Ocampo-Gonzélez 2024). In an
interesting use case, researchers found that widely used LLMs, such as ChatGPT, can counter
sensationalised media reports about wildlife risks to humans and livestock by providing more
accurate assessments, potentially reducing human-wildlife conflict (Santangeli et al. 2024).
Similarly, researchers in Mexico evaluated ChatGPT as a source of natural history information
on wild mammals, finding it useful, though its outputs required validation (Rodas-Trejo &
Ocampo-Gonzalez 2024), which should be a standard practice when using foundation models

to generate specialised knowledge (Section 4.3).

2.7 Informing Policy and Decision-Making Processes

There is often a disconnect between academic research and policymaking, shaped not only by
differing priorities but also by contrasting norms in how information is communicated. LLMs
can help bridge this gap by translating scientific findings into policy-relevant insights and
synthesising information in ways that align with the needs of decision-makers (Reynolds et al.
2024). In a novel application, DeSantis et al. (2024) used OpenAlI’s GPT-3.5 model to analyse
the national biodiversity targets of individual countries and assess how well they align with the

adopted global biodiversity targets, finding crucial gaps and specific areas for improvement.

While policy applications of LLMs in ecology and conservation science are still in the very
early stages, their use in fields such as law and environmental science is more advanced and
offers useful examples (Larosa et al. 2025). Many of these applications involve adapting the
core capabilities of LLMs highlighted above, such as summarisation, information retrieval, and
natural language interaction, for policy-focused tasks (Larosa et al. 2025). Examples include

distilling complex scientific documents into actionable insights, deploying chatbots to

10
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communicate policy guidance to stakeholders, and enhancing public engagement through

clearer, more accessible communication (Larosa et al. 2025).

A particularly innovative and promising application is the integration of LLMs into multi-agent
systems for policy simulation (Kalyuzhnaya et al. 2025; Sreedhar et al. 2025). Socioecological
systems are characterised by complex interactions, feedback loops, and diverse stakeholder
perspectives, all of which can be difficult to map and incorporate into policy decisions. LLM-
powered agents, each representing the views and behaviours of different actors, such as
policymakers, land users, or conservation advocates, can simulate these interactions and help
decision-makers anticipate how policies may unfold in practice (Kalyuzhnaya et al. 2025;
Sreedhar et al. 2025). This approach enables a more nuanced assessment of policy
effectiveness, including potential unintended consequences, supporting the development of

policies that are both robust and context-appropriate.

2.8 Evolving Roles and Broader Applications

The use cases and opportunities outlined above, ranging from data extraction and information
synthesis to habitat mapping and biodiversity monitoring, illustrate only part of the wide-
ranging and rapidly evolving potential of LLMs and how these models are beginning to reshape
ecological workflows. Broader applications discussed in the wider academic literature, such as
the use of LLMs in education (Tupper et al. 2024), law, and social sciences, can further amplify
their relevance and value in ecology and conservation science. Moreover, the emergence of
agentic LLM systems (Plaat et al. 2025), such as AutoGPT (built on top of OpenAI’s GPT-
4), which are designed to perform complex tasks with minimal human input (Plaat et al. 2025),
may further accelerate the automation of ecological workflows, although concerns arise about

oversight, reliability, and equity.

3. Current Challenges

While LLMs show clear promise, their use also brings a range of practical, technical, and
ethical challenges, many of which remain underexamined amid rapid development and must
be addressed to ensure Trustworthy Al (Liu et al. 2023). Key concerns include inaccurate or
even fabricated content, limited transparency and reproducibility, and high technical and

computational demands, especially for more advanced applications. Ethical considerations

11
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include digital inequalities, environmental impact, and the risk of eroding foundational skills

as reliance on these tools grows.

3.1 Hallucinations and Fabricated Content

A major concern that emerged with the public release of LLMs is their tendency to hallucinate,
i.e., to generate plausible but factually incorrect information. A typical example in research
contexts is fabricated references that appear credible but are entirely fictitious, often combining
unrelated author names and article titles. This issue was especially pronounced when popular
models like ChatGPT were first released in 2022 without internet access, but it persists even
today with web-enabled LLMs, especially for queries on less common or out-of-distribution
topics not covered in the models’ training data. Because hallucinations can go undetected

without manual verification, they present a barrier to the effective use of LLMs.

3.2 Inaccurate and Biased Information

Inaccuracies in LLM outputs are not solely due to hallucinations; they can also result from
conflicting, incomplete, or outdated training data or from a model’s inability to apply
contextual or domain-specific reasoning (Berger-Tal et al. 2024). For example, earlier versions
of ChatGPT were trained only on data up to 2021, excluding more recent information. Even
with current models, many of which have access to more up-to-date data and real-time retrieval
capabilities, inaccurate information remains common, underscoring the need for cautious use

and robust validation mechanisms (Section 4.3).

More broadly, LLMs can produce inaccurate or contextually inappropriate content also when
they fail to account for geographic or temporal relevance, an issue of particular concern in
fields such as conservation science, where context is crucial for effective decision-making.
LLM outputs have also been shown to reflect biases in their training data (Berger-Tal et al.
2024; Urzedo et al. 2024). For example, when queried on ecological restoration topics,
ChatGPT’s responses were found to prioritise the dominant perspectives from researchers in
high-income countries, while underrepresenting voices from lower-income regions and
Indigenous communities (Urzedo et al. 2024). Similarly, specialised LLM-based chatbots,
designed to deliver targeted information on a specific topic, can instead propagate biases
(Ziegler et al. 2024), depending on the data used to refine the models and the design choices

made during their development.

12
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Inaccurate output can also result from technical limitations. For instance, model parameters,
such as the context window and maximum output length, can influence the quality, accuracy,
and completeness of a response. Generally, the longer the user prompt or the more extensive
the requested output, the higher the likelithood of erroneous responses. That said, these
limitations are becoming less prominent with long-context LLLMs, which are designed to
process large amounts of text in a single input, and memory-augmented LL.Ms, which can
store, retrieve, and update information as needed beyond the fixed-size input context window.
Nonetheless, users should be mindful of these constraints and how they influence the
performance of the different models used, and apply effective strategies, such as prompt
engineering (Section 4.2), to mitigate errors, ensure content accuracy, and reduce the risk of

flawed outputs influencing future model training.

3.3 Lack of Transparency and Reproducibility

Improving the reproducibility of scientific research has become a major focus in recent years.
However, the spread of LLMs introduces new challenges. Three key issues contribute to this
concern. Firstly, LLMs and deep learning models more broadly often operate as black boxes,
making it difficult to trace how outputs are generated. Although ongoing efforts towards
Explainable AI (Liu et al. 2023) could reduce this issue in the future, it is currently a major
concern. Secondly, LLM responses are non-deterministic, meaning that the same prompt can
yield different outputs. While this variability can be partially controlled by adjusting the
model’s hyperparameters (e.g., by setting the temperature to zero to increase consistency;
Iyer et al. 2025), doing so may limit the nuance in the model’s responses. Thirdly, LLMs evolve
rapidly, with frequent releases. Outputs may differ across versions, and even if the model used

is documented, it may later become inaccessible or unsupported.

3.4. Technical Complexity and Computational Demands

Another major challenge associated with the use of LLMs is the technical complexity and
computational resources needed for many applications. While simpler tasks, such as scientific
writing improvements, can be handled through the available user-friendly chat-optimised
interfaces (Mammides & Papadopoulos 2024; Santangeli et al. 2024), more advanced and
potentially impactful applications necessitate access to models via application programming
interfaces (APIs) and their integration into sophisticated workflows (e.g., Chang et al., 2024).

These workflows typically demand advanced programming skills and computational resources

13
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that many researchers and practitioners lack. While such barriers are not unique to LLMs, they
are amplified by the models’ transformative potential and the skills required to fully leverage
them. These issues highlight the importance of accessible training as well as interdisciplinary
collaboration between ecologists, who can offer domain-specific insight, and machine learning

experts who can provide the technical expertise (Murray et al. 2025) (Section 4.6).

3.5 Ethical Concerns

The technical complexities and computational demands also raise ethical concerns. While these
models can support the democratisation of research, e.g., by helping to overcome language
barriers (Valdez et al. 2024), they may also exacerbate digital inequalities if access becomes
unequal through premium pricing, limited infrastructure, or lack of technical skills (Murray et
al. 2025). There is already evidence suggesting that resource limitations in biodiverse but
economically disadvantaged regions contribute to scientific inequities (Mammides et al. 2016;
Campos-Arceiz et al. 2018); unequal access to powerful LLMs risks deepening this divide

(Reynolds et al. 2024).

Another major ethical concern relates to how these models are trained and the sources used in
the process (Liu et al. 2023). Beyond the widely discussed issues, such as copyright
infringement, where content may be used without the creators’ consent, there is a broader
problem of representativeness (Sandbrook 2024; Urzedo et al. 2024). Training data often draws
from readily available sources that do not necessarily reflect all perspectives (Sandbrook 2024).
For example, viewpoints expressed in low-resource languages or by Indigenous communities
are frequently underrepresented (Urzedo et al. 2024), which means LLM outputs may overlook
these critical voices, potentially biasing decision-making (Gewin 2025). Addressing this issue
while respecting data sovereignty (Section 4.4) is essential for the trustworthy and equitable

application of LLMs (Gewin 2025).

There is also valid concern that the current hype around LLMs, and Al more broadly, may
divert resources from essential, conventional practices in ecology and conservation (Reynolds
et al. 2024). Field-based studies already represent a declining proportion of the literature, and
ecology students are spending less time in the field, potentially leading to a disconnect with
nature and its processes (Soga & Gaston 2025). If the rise of LLMs further shifts attention and
resources away from the collection of primary field observations, which represent the backbone

of ecological knowledge, it could represent a negative development.
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A further concern is the risk of deskilling (Reynolds et al. 2024), for example, in tasks related
to computer coding. Learning to code involves hands-on engagement (e.g., writing, debugging,
and refining code), which fosters deeper understanding. If ecologists and conservation
scientists increasingly rely on LLMs to perform these tasks, they may miss essential
opportunities to develop the skills needed to critically evaluate and troubleshoot code on their
own. This concern extends beyond coding and applies to other key tasks, such as scientific

writing and statistical analyses.

Finally, there is growing concern regarding the environmental impact of training, deploying,
and using LLMs (Rillig et al. 2023; Sandbrook 2024). Training large models requires
significant energy and generates substantial emissions, while data centres consume vast
volumes of water for cooling (Sandbrook 2024). Although training is typically more resource-
intensive than usage (inference), the impact varies with model size and efficiency. Mitigation
efforts include using renewable energy, optimising deployment, and adopting energy-efficient
architectures like DeepSeek’s Mixture of the Experts, which activates only a subset of model
parameters during inference. However, these issues underscore the need to use LLMs
thoughtfully, reserving them for tasks that truly require their capabilities. Otherwise,

applications intended to support conservation may ironically end up harming the environment.

4. Recommendations for more effective and responsible use of LLMs

Effective use of LLMs requires recognising their risks and addressing them through both
technical solutions and thoughtful use. While model advances may reduce challenges like
hallucinations, many issues depend on how users interact with these tools. Techniques such as
prompt engineering, retrieval-augmented generation (RAG), and human-in-the-loop
oversight, described below, can improve reliability and inclusivity (Reynolds et al. 2024).
Sharing prompts, workflows, and best practices supports transparency, reproducibility, and
impact. In this section, we offer practical guidance to help maximise benefits and mitigate risks

in ecological and conservation applications.

4.1 Detecting Inaccuracies and Measuring Uncertainty

As noted in Section 3, a key limitation of LLMs is their tendency to generate inaccurate
information, including hallucinations (Kumar et al. 2025; Iyer et al. 2025). Although ongoing

research on detecting and mitigating such errors may reduce their frequency, they are unlikely
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to be fully eliminated (Mora-Cross & Calderon-Ramirez 2024). To address this issue, various
strategies can be employed to improve model reliability. These include post-hoc fact-checking
(e.g., cross-referencing output with authoritative sources), self-verification (prompting the
model to assess or justify its own responses), and confidence estimation (assessing the model’s
uncertainty through internal metrics or response patterns) (Mora-Cross & Calderon-Ramirez
2024; Kumar et al. 2025). Importantly, output accuracy will vary depending on the model used
and the specific task, making careful model selection crucial for optimal results. Tools such as

LMArena (https:/Imarena.ai), which allow users to compare different LLMs across multiple

benchmarks and performance metrics, support more informed task-specific decisions.

In practice, users can also adopt simpler techniques that serve as practical forms of confidence
estimation. For example, submitting the same query multiple times and comparing the
variability of outputs can help flag potentially hallucinated content, which tends to lack
consistency. Another approach involves using a second LLM to fact-check the first, though
this can be computationally expensive and increases the environmental footprint of LLM usage.
More broadly, effective prompt engineering, discussed in the next section, can also help reduce

inaccuracies by providing clearer instructions and more targeted context.

4.2 Prompt Engineering

Prompt engineering involves crafting input prompts to guide LLMs toward relevant and
reliable outputs (White et al. 2023a). Well-designed prompts improve clarity, reduce
ambiguity, and better align responses with the user’s intent and domain-specific needs (Sahoo
et al. 2024). For instance, explicitly asking the model to respond with “NA” when information
is not clearly available can reduce hallucinations (Marcos et al. 2025), which often arise from
the assumption that an answer must always be provided. Other best practices include: (a) using
clear, specific language to define the task (e.g., in instruction-based prompting; Table 1); (b)
breaking down complex tasks into manageable steps (prompt chaining); and (c) providing
examples of the desired output and format (Sahoo et al. 2024), a highly effective approach
known as few-shot prompting (White et al. 2023a; Table 1).

Two particularly effective strategies to improve accuracy are role prompting and contextual
prompting (White et al. 2023a; Sahoo et al. 2024) (Table 1). Role prompting involves
instructing the model to adopt a specific identity or perspective (e.g., “Assume you are an

ecologist designing an experiment...”), which can improve both the relevance and factual
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correctness of the response (Sahoo et al. 2024). Contextual prompting entails providing
detailed background information or situational context within the prompt, enabling the model
to generate more targeted, nuanced, and reliable responses. Context may include domain-
specific details, constraints, or examples that anchor the model’s reasoning process (Sahoo et

al. 2024).

Another widely recommended technique is Chain-of-Thought (CoT) prompting (Table 1),
which requires the model to generate a step-by-step explanation of its reasoning (Farrell et al.
2024). This method enhances interpretability by making the model’s logic explicit, thereby
facilitating evaluation of the correctness and coherence of its conclusions. CoT prompting is
particularly effective for complex reasoning tasks and helps reduce the risk of shallow or
unsupported answers (Sahoo et al. 2024). Additional techniques include iterative prompting,
where prompts are refined step-by-step based on previous outputs to improve accuracy and
depth, and prompt ensembling, which involves using multiple prompts to generate varied
responses for the same task and combining them to produce a more robust and consistent result

(Table 1).

Curated prompt catalogues are becoming increasingly common (White et al. 2023a; Sahoo et
al. 2024), especially outside the fields of ecology and conservation science. As LLM use
expands, researchers are encouraged to share their prompt techniques, for instance, in the
supplementary materials of their publications. This practice can promote transparency,
reproducibility, and collective innovation, much like the open sharing of computer code.
Additionally, emerging frameworks such as DSPy provide a programmatic approach to prompt
engineering by structuring prompts as modular, reusable components (Barbosa et al. 2025),

allowing for systematic tuning, better scalability and more maintainable LLM workflows.

4.3 Validation

To use LLMs reliably, users must integrate validation measures into their workflows (Reynolds
et al. 2025). One practical technique, known as citation prompting, is to instruct models to
include footnotes or citations with their responses that can be manually verified. Another
effective validation technique involves cross-checking LLM outputs against established
datasets (Vaghefi et al. 2023). In more formal evaluations, users could employ benchmarking
to assess a model’s performance against task-specific, curated datasets, allowing for the

calculation of accuracy and other relevant performance metrics (Bi et al. 2023). More advanced
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applications may also link models to external databases (Kumar et al. 2025), a form of retrieval-
augmented generation (see Section 4.4). For example, if a model is asked to recommend
strategies for addressing threats to a particular species, its output can be validated through
authoritative sources, either manually or using automated methods. Self-consistency testing is
also a useful method for validating the reliability of LLM outputs (Kumar et al. 2025). It
involves generating multiple responses using the same or slightly varied prompts and assessing

the extent to which the answers converge on a consistent response.

Crucially, these technical approaches should be complemented by human-in-the-loop (HITL)
validation, in which domain experts review (Berger-Tal et al. 2024), interpret and correct LLM
outputs as needed before they are used in research or policy (Reynolds et al. 2024). This layer
of oversight helps ensure that the outputs are not only technically accurate but also ecologically
relevant and ethically sound, which is especially important in conservation applications where

decisions can affect multiple stakeholders.

4.4. Retrieval-Augmented Generation (RAG)

RAG can improve the output of LLMs by dynamically incorporating external documents at
inference time, addressing the limitations of foundation models that rely solely on pre-trained
knowledge (Pichai 2023; Kumar et al. 2025). Real-time access to up-to-date and specialised
information can enhance the accuracy and relevance of the responses (Shelby & da Silva 2024;
Kumar et al. 2025). This is especially important in fields like conservation science, where up-

to-date, context-specific knowledge is critical for effective interventions.

RAG frameworks can also help address some of the ethical concerns mentioned above, such
as the underrepresentation of minority groups and Indigenous perspectives. By incorporating
curated, diverse, and context-specific knowledge bases, such as Indigenous ecological
knowledge, they can enable more inclusive and contextually accurate outputs (Pichai 2023).
When proprietary data is involved, RAG can be implemented using locally run, offline
language models to respect data sovereignty. An added advantage is that these smaller models,
which may be equally effective depending on the task, tend to have a lower environmental

impact.
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4.5 Fine-tuning and Specialised Models

While powerful, pre-trained foundation models such as GPT and Qwen often lack the
specialised knowledge required for ecological applications. Fine-tuning these models using
domain-specific datasets can significantly improve the accuracy, relevance, and contextual
appropriateness of their outputs (Abdelmageed 2023; Bi et al. 2023). An example is OceanGPT,
a LLaMa-based model fine-tuned on over 67,000 documents related to ocean science (Bi et al.
2023). However, not all foundation models are available for fine-tuning, and in some cases,
retraining can lead to “catastrophic forgetting”, where the model loses some of its previously
acquired knowledge when updated with new data. Perhaps more importantly, retraining a
model is resource-intensive and computationally demanding, making it impractical in many

Ccascs.

Alternatively, customised models, such as ChatBBNJ (Wang et al. 2024), can be developed for
targeted purposes without retraining. A common approach involves appending predefined
instructions or contextual information to each prompt, which is essentially what custom GPTs
represent. These lightweight adaptations can support domain-specific applications, such as
public awareness campaigns, educational outreach, or policy support, offering more accessible

and effective tools.

4.6 Capacity Building

While the strategies outlined above can largely enhance the reliability and effectiveness of
LLM applications, it is crucial that users are provided with training that builds capacity (Murray
et al. 2025) and disseminates evolving best practices. Without adequate training, researchers
may use these transformative tools without fully recognising their limitations or how to address
them. Formal training can also help unlock the full potential of LLMs, enabling more
innovative and impactful applications (Mammides & Papadopoulos 2024). Such training could
take various forms, including integration into university curricula or shorter workshops offered
at conferences, for example. Equally important is fostering a culture of transparency around
how LLMs are used and evaluated, as well as inclusivity in how they are developed (Murray

et al. 2025).
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5. Conclusion

LLMs will play an increasingly integral role in how ecological and conservation science is
conducted, communicated, and applied. From automating labour-intensive tasks, such as data
extraction and evidence synthesis, to enhancing biodiversity monitoring and improving
communication across languages and disciplines, LLMs have the potential to increase the
efficiency, accessibility, and impact of research. However, these opportunities come with
significant challenges, ranging from technical limitations associated, such us inaccuracies and
difficulties in scaling up applications, to broader concerns about equity, reproducibility, and
environmental sustainability. Addressing these issues will require technological advances and
a strong commitment to best practices, ethical and regulated standards, and inclusive design.
Moving forward, the integration of LLMs into ecological and conservation research should be
guided by trustworthy use and transparent reporting, interdisciplinary collaboration, and
ongoing critical evaluation of their strengths and limitations. Training and support for
researchers, especially those in under-resourced settings, will be essential to ensure equitable
access and meaningful participation in this technological shift. With thoughtful usage, LLMs
can accelerate scientific discovery and help democratise knowledge production and application

in support of global biodiversity goals.
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Figure 1. Countries contributing to research on LLM applications in ecology and conservation
science, based on the distribution of author affiliations in the reviewed articles, preprints, and
conference proceedings. The USA, China, the UK, Australia, and Germany were the top five
contributors (see Fig. S1 for more details).
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Box 1. Glossary of key technical terms related to large language models (LLMs), highlighted
in bold in the text. The glossary was created using Gemini 2.5 Pro through role prompting and
a human-in-the-loop approach to ensure accuracy and brevity. The following prompt was
used: “You are an Al expert tasked with creating a glossary for a manuscript. Your goal is to
make complex Al concepts intuitive for ecologists, field researchers, and conservation
policymakers who are experts in their own fields but novices in AI”.

Artificial Intelligence: The broad field of creating computer systems that can perform tasks that
typically require human intelligence, such as natural language understanding.

Agentic LLMs: Large Language Models (LLMs) that can perform multi-step tasks autonomously to
achieve a goal.

Context Window: The amount of text (the "context") an LLM can "remember" or consider at one
time when generating a response.

Explainable Al: A set of tools and techniques that aim to make Al decisions understandable to
humans, opening the "black box."

Fine-tuning: Taking a large, pre-trained "foundation model" and providing additional, specialised
training on a smaller, domain-specific dataset.

Foundation Models: Very large, powerful Al models (like GPT-4) that are pre-trained on a
massive, general dataset (e.g., a large portion of the internet). They can be adapted to a wide
range of tasks through fine-tuning.

Hallucinations: When an LLM generates text that is factually incorrect, nonsensical but presents it
confidently as fact.

Human-in-the-loop (HITL): A system design where humans are intentionally included in the Al
decision-making process, typically to review, correct, or validate the Al's outputs.

Hyperparameters: The settings and knobs of a machine learning model that are set by the
researcher before the training process begins.

Large Language Models: Advanced deep learning models, typically utilising transformer
architectures, pre-trained on extensive text and code datasets to comprehend and generate
human-like language for diverse natural language processing applications.

Long-context LLMs: A new generation of Large Multimodal Models with a very large Context
Window, allowing them to process and "remember" entire books, long videos, or hours of audio at
once.

Memory-augmented LLMs: Models augmented with external memory that persists across
sessions, allowing them to store and retrieve information beyond the limits of their fixed context
window.

Prompt Engineering: The technique of crafting effective inputs ("prompts") to get the desired
output from an LLM.

Retrieval-Augmented Generation (RAG): A technique that allows an LLM to access and pull
information from a specific, trusted database before answering a question.

Self-consistency: A technique to improve an Al's reasoning by generating multiple different
answers to the same complex question and then choosing the most common or logically consistent
answer.

Trustworthy Al: An umbrella term for Al that is lawful, ethical, and technically robust. Key pillars
include fairness (unbiased), explainability, reliability, and accountability.
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Table 1. Overview of key prompting strategies that can be used to enhance the accuracy,
reliability and relevance of the outputs generated by LLMs. Hypothetical examples of how they
could be used in the context of ecology and conservation science are provided in the
supplementary materials. The descriptions and examples were generated using Gemini 2.5 Pro
through role prompting and a human-in-the-loop approach to ensure accuracy and clarity.
The following prompt was used: “You are an Al expert writing a section for a manuscript on
Al applications in ecology and conservation science. The target audience is ecologists, field
researchers, and policymakers—experts in their domain but novices in Al. Your task is to define
and illustrate eight key prompt engineering strategies. The tone must be formal, clear, and
respectful of the reader's expertise. Please provide the following: strategy name, definition,
and example use relevant to ecology and conservation science.”

Prompting Description
Strategy
. Instructs the model to break down its process into a series of
Chain-of- . . . : s
Thought (CoT) intermediate, sequential steps. By asking the model to "think step-by-
. step," the user can encourage a more rigorous and transparent
Prompting . .
reasoning process, which often leads to more accurate final answers.
Instructs the model to provide sources, references, or citations for the
Citation information it generates. Crucially, this strategy must be paired with
Prompting independent verification, as models can "hallucinate"—i.e., generate
plausible but non-existent citations.
Provides the model with several examples (the "shots") of the desired
Few-shot input-output pattern before presenting the actual task. This is highly
Prompting effective for tasks requiring a specific format, structure, or style, as the
model learns from the provided exemplars.
. Involves a clear and concise command that states the desired task. It
Instruction- . . . :
based prompting forms the basis of all prompting and is most effective for
straightforward, well-defined objectives.
A conversational approach where the initial prompt is a starting point
. for a dialogue. The user refines, corrects, or expands upon the model's
Iterative . . .
Prompting output through a series of follow-up prompts. This dynamic process
allows for the progressive shaping of the final output, making it highly
effective for nuanced and complex writing tasks.
Involves breaking a large, multifaceted task into a series of smaller,
Prompt discrete sub-tasks. The output from one prompt is used as the direct
Chaining input for the next, creating a workflow or "chain." This modular
approach improves control and the quality of the final product.
Involves querying the model with multiple, distinct prompts that all
address the same core task. The different prompts might use different
Prompt . . .
. phrasing, roles, or constraints. The resulting outputs are then
Ensembling

synthesized by the user to produce a more comprehensive, robust, and
less biased final answer.
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Role Prompting

Instructs the models to assume a specific persona, expertise, or role
before posing the query. This primes the model to adopt a particular
tone, vocabulary, and conceptual framework, leading to more
contextually relevant and nuanced outputs.
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Emerging Applications of Large Language Models in Ecology and Conservation Science

Supplementary Materials

Method used to identify and review relevant research:

To identify relevant documents, we searched Web of Science, Scopus, and Google Scholar in
January 2025 using the following search terms: (“LLMs” OR “Large Language Model*” OR
“ChatGPT”) AND (“Ecology” OR “Biodiversity” OR “Conservation”). Given that Google
Scholar returns a large number of results, some only tangentially related to the search terms,
we limited this search to the first 100 results. This approach is common practice and was

justified by confirming that articles beyond the first 100 were not relevant to our purposes.

As noted in the main text, we did not restrict our review to peer-reviewed literature but also
included preprints and conference proceedings, provided they were indexed in at least one of
the three databases searched. Our search initially returned 338 documents: 133 from Web of
Science, 105 from Scopus, and 100 from Google Scholar. After removing duplicates, 267
unique documents remained, which were screened for relevance by the lead author. Articles
were excluded if they were unrelated to ecology or conservation, or if they did not specifically
refer to large language models (e.g., papers using the acronym “LLM” for other meanings).
This screening process resulted in 92 articles. To ensure completeness, the lead author also
queried Consensus, ScholarGPT, and ChatGPT for additional references, identifying 8 more
relevant articles. The final list of 100 articles was then divided among the first four authors,
who each reviewed 25 documents and extracted key information using a shared template

developed and agreed upon by all authors.

For each article, we extracted key information such as the authorship, title, and dates of
submission and publication. We recorded the article type (e.g., Preprint, Primary Research,
Review, Conference Proceedings), the countries in which the authors are based, and the
categories of their affiliated institutions (e.g., Academia, NGOs). Each article was classified
according to whether it described a specific application of LLMs or offered general
commentary or review. We noted the study’s objective, the described use(s) of LLMs (e.g.,
species distribution modelling, sentiment analysis, etc.), the intended user groups (e.g.,

researchers, practitioners), and whether the application was demonstrated or merely proposed.
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We also documented the ecological and geographical focus of each study, the specific LLM(s)
mentioned, and the methods used. Additionally, we summarised the main conclusions and
reported benefits of LLM use, along with any technical or non-technical limitations identified
by the authors. Where applicable, we recorded proposed solutions, assessed the accessibility
of the described workflow, and evaluated their usability based on ease of implementation. We
also noted any additional relevant references. Finally, prior to submission, the lead author
conducted an updated scan of the literature to identify any new documents published between
January and June 2025, and reviewed reference lists for additional relevant but previously

unlisted documents. This brought the final number of documents reviewed to 123.
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Figure S1. Number of times each country appeared across the 123 reviewed articles, preprints,
and conference proceedings, based on author affiliations. If multiple authors from the same
country were listed in a single publication, the country was counted only once for that
document.
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Box S1. A glossary of additional technical terms related to LLMs, which are also mentioned in
the text. As with Box 1, the definitions were generated using Gemini 2.5 Pro through role
prompting and a human-in-the-loop approach to ensure accuracy and brevity. The following
prompt was used: “You are an Al expert tasked with creating a glossary for a manuscript. Your
goal is to make complex Al concepts intuitive for ecologists, field researchers, and

conservation policymakers who are experts in their own fields but novices in AI”’

Artificial Neural Network: A computational model inspired by the structure of the human brain,
the core building block of Deep Learning.

Data Sovereignty: The principle that data is subject to the laws and governance structures of the
nation or community where it is collected.

Deep Learning: A subfield of machine learning that uses very large, multi-layered Artificial
Neural Networks to find extremely complex patterns in vast amounts of data.

Digital Inequalities: The disparities in access to and use of digital technologies, including Al,
among different social, economic, or geographic groups.

Few-Shot Learning: Training a model to perform a new task using only a handful ("a few shots")
of examples.

Living Evidence Syntheses: A systematic review or evidence map that is continuously updated
as new research becomes available, often with the help of Al to automate the search and filtering
of new studies.

Low-resource Language: A language for which there is very little digital text data available,
making it difficult to train Al models like LLMs.

Maximum Output Length: The limit on how much text an LLM can generate in a single
response.

Natural Language Processing (NLP): A field of Al focused on enabling computers to
understand, interpret, and generate human language. LLMs are the most advanced form of NLP.

Pseudo-labels: Labels for data that are generated by an Al model itself, not by a human. These
are then used to train the model further.

Self-reflection: An advanced Al capability where a model can review, critique, and improve its
own work.

Summarisation: The task of generating a shorter version of a text while preserving its essential
meaning and key information.

Supervised Learning: The most common type of machine learning, where the model learns
from data that has been manually labelled with the correct answer.

Unsupervised Learning: A type of machine learning where the model finds hidden patterns or
structures in data that has not been labelled.

Zero-shot Learning: A model's ability to perform a task it was never explicitly trained to do,
without seeing any examples of that task.

33



Table S1. Hypothetical examples of how the prompting strategies mentioned in the text could
be used in the context of ecology and conservation science. Examples were generated using
Gemini 2.5 Pro through role prompting and a human-in-the-loop approach to ensure
accuracy and clarity. The following prompt was used: “You are an Al expert writing a section
for a manuscript on Al applications in ecology and conservation science. The target audience
is ecologists, field researchers, and policymakers—experts in their domain but novices in Al
Your task is to define and illustrate eight key prompt engineering strategies. The tone must be
formal, clear, and respectful of the reader's expertise. Please provide the following: strategy
name, definition, and example use relevant to ecology and conservation science.’

1

Prompting Example

Strategy

Chain-of- A conservation planner is presented with a new dataset and wants to
Thought (CoT) generate initial hypotheses.

Prompting

Prompt: “A recent camera trap study in a protected Bornean rainforest
reserve shows a 30% decline in sun bear (Helarctos malayanus)
sightings over the past five years, while sightings of wild boar (Sus
scrofa) have increased by 50%. Outline the potential ecological drivers
for this inverse trend. Please explain your reasoning for each potential
driver step-by-step.”

Citation A graduate student is writing a literature review.

Promptin
pHng Prompt: "Provide a summary of the current scientific consensus on the

effectiveness of wildlife corridors for connecting fragmented
populations of large carnivores in North America. Please include
citations to key peer-reviewed articles published after 2018."

User Action: The student must then use a scholarly database (e.g., Web
of Science, Google Scholar) to locate and verify cited articles to
confirm their existence and relevance.

Few-shot A field researcher has handwritten notes and wants to digitize and
Prompting structure them into a consistent format for a database.

Prompt: "I will provide unstructured field notes, and you will convert
them into a structured JSON format. Here are two examples:

Example 1 Input: 'Oct 5, 2023, transect 4, observed a golden eagle

soaring overhead, adult.’
Example 1 Output: {"date": "2023-10-05", "location": "transect 4",

"non ”.

"species": "Aquila chrysaetos", "count".

", n

1, "notes": "Adult, soaring
behaviour observed."}

Example 2 Input: '10/5/23, near the creek bed, saw 2 northern leopard

frogs by the water's edge.’
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Prompting
Strategy

Example

Example 2 Output: {"date": "2023-10-05", "location": "creek bed",

" on

"species": "Lithobates pipiens", "count": 2, "notes": "Observed at

water's edge."}

New Input: 'Spotted a black bear, seemed to be a subadult, crossing
game trail 2 on Oct 6, 2023."

Your Task: Now, please convert the new input into the structured JSSON
format.”

Instruction-
based
prompting

A researcher needs to quickly understand the core arguments of a dense
government report before further reading.

Prompt: "Summarize the key findings and policy recommendations
concerning biodiversity loss from the 2023 IPBES report on invasive
alien species. The summary should be approximately 300 words and
suitable for a non-technical audience.”

Iterative
Prompting

An ecology student is researching a topic for an essay.

Prompt 1: "Provide a list of the major benefits of mangrove ecosystems
for coastal protection.”

LLM OQOutput: (Provides a general overview mentioning wave
attenuation, shoreline stabilization, and biodiversity conservation)

User Prompt 2: "That is a good start. Now, please refine this list by
focusing specifically on their role in mitigating storm surge associated
with tropical cyclones in the Caribbean. Also, frame your response
using the concept of 'ecosystem services'."

LLM Output: (Returns a more targeted response, highlighting
regulating services such as wave energy dissipation, sediment trapping,
and flood risk reduction, with references to Caribbean case studies)

Prompt
Chaining

A conservation practitioner is developing a comprehensive species
management plan.

Prompt 1: "Please generate a list of the top five threats to the giant
panda (Ailuropoda melanoleuca), citing habitat loss, fragmentation,
and climate change."”

Prompt 2 (using output from 1): "Using the list of threats above,
outline a set of specific, measurable, achievable, relevant, and time-
bound (SMART) conservation objectives to address the number one
threat: habitat loss and fragmentation."
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Prompting
Strategy

Example

Prompt 3 (using output from 2): "Based on the SMART objectives you
just created, propose three potential stakeholder engagement strategies
to ensure local community buy-in for the conservation plan.”

Prompt
Ensembling

A policymaker needs to understand the multifaceted impacts of a
proposed dam project.

Prompt A: "From the perspective of a freshwater ecologist, outline the
potential negative impacts of constructing a hydroelectric dam on
riverine biodiversity and fish migration."

Prompt B: "From the perspective of an energy policy analyst, outline
the primary benefits of the same hydroelectric dam project in terms of
renewable energy generation and grid stability."

Synthesis: The policymaker would then integrate both outputs to draft
a balanced briefing document that acknowledges the ecological trade-
offs and the energy benefits.

Role Prompting

A forest ecologist wants to draft an outreach document to explain their
research to the public.

Prompt: "Act as a science communicator specializing in forest ecology.
Write a 500-word blog post explaining the concept of 'trophic cascades’
using the reintroduction of wolves to Yellowstone National Park as the
primary example. The tone should be engaging, accessible, and avoid
technical jargon."
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