1 Multilevel Selection Shaping Adaptive Social Networks

- 2 Cédric Sueur^{1,2}, Jean-Louis Deneubourg³
- ¹ CNRS, IPHC UMR, Université de Strasbourg, 67087 Strasbourg, France
- 4 ² Institut Universitaire de France, Paris, France
- ³ Université Libre de Bruxelles (ULB), CENOLI, Bruxelles, Belgium
- 6 Correspondance : Cédric Sueur, cedric.sueur@iphc.cnrs.fr

Abstract

7

8

- 9 Understanding how human and non-human animal social networks evolve through emergent
- properties and feedback mechanisms is essential for explaining their adaptability and
- persistence. Collective social niche construction refers to the process where individuals,
- through their interactions, actively shape the social environment, resulting in network
- structures that influence individual behaviours and drive the emergence of adaptive
- properties. These emergent properties arise from these interactions, producing complex and
- efficient networks capable of optimising communication, cooperation, and problem-solving.
- Processes as self-organisation and phase transitions demonstrate how localised interactions
- can trigger critical transitions, rapidly restructuring network topology to enhance adaptability
- under changing conditions. These self-organized processes are fundamental to the Cumulative
- 19 Cultural Brain Hypothesis, which proposes that increasingly complex and efficient networks
- 20 foster the development of advanced cognitive abilities and social learning. The resulting
- 21 enhancement of communication and information processing, in turn, facilitates further
- 22 network complexity and efficiency, creating a positive feedback loop that supports cultural
- accumulation and resilience. This perspective integrates insights from evolutionary biology,
- behavioural ecology, and network science to highlight the dynamic and adaptive nature of
- social networks, where self-organisation and cumulative processes continually reshape
- 26 network topology to meet ecological and social demands.
- 27 **Keywords:** sociality, social behaviour, optimality, social evolution, self-organisation

28 Introduction

- 29 Since the beginning of humanity, we as humans have faced various pressures that affect our
- survival and the way we interact with each other (Boyd and Richerson 2004; Harari 2014;
- Henrich 2017). These pressures shape the development of social relationships and the
- 32 construction of social networks (Dunbar 2024), thereby influencing our ability to gather,
- process, and disseminate information, which varies in scale and complexity from individual
- decision-making to collective knowledge. The recent COVID-19 pandemic has vividly
- underscored these dynamics, with social distancing becoming a crucial measure to limit
- pathogen spread. This phenomenon mirrors adaptive behaviours in the animal kingdom
- 37 (Battesti et al. 2015; Borgeaud et al. 2017; Sosa et al. 2021a; Maeda et al. 2021), where
- species modify their social interactions quantitatively (e.g. number and frequency of
- 39 contacts) and qualitatively (e.g. nature and strength of interactions) (Moscovice et al. 2020) –
- 40 to optimise fitness and mitigate risks, such as disease transmission (Romano et al. 2020).

These modifications can lead to the formation of isolated social clusters or closed groups, 41 balancing the trade-off between infection risk and access to essential resources or information. 42 This dynamic interaction creates a feedback loop between individual social decisions and the 43 emergent properties of social networks, encompassing both individual-level adjustments and 44 collective-level changes, such as network modularity or division of labour. This emphasises 45 46 the crucial role of adaptive social structures in responding to environmental challenges. As Darwin noted, natural selection is not solely based on individual traits and genetic inheritance; 47 it also encompasses a broader range of influences, including population dynamics and cultural 48 transmission. Selection pressures act on various levels, going beyond the traditional scope of 49 inclusive fitness theory (Nowak 2006; Nowak et al. 2011), and this multifaceted selection 50 process drives the evolution of complex behaviours and social structures, demonstrating that 51 genetic, epigenetic and cultural evolution are essential in shaping adaptive responses and 52 social networks (Jablonka and Lamb 1998; Henrich and McElreath 2003; Claidière et al. 53 2014; Birch and Heyes 2021; Ashe et al. 2021). These processes are underpinned by a 54 network of feedback mechanisms, where interactions between individual, cultural, and 55 56 environmental factors recursively shape selection pressures and evolutionary outcomes.

In his work on alternative brains (Solé et al. 2016, 2019; Macia et al. 2017), Ricard Solé explores how different brain architectures can be seen as neural networks selected through evolutionary processes to gather, process, and disseminate information effectively. This concept of neural network selection parallels the selection of social network structures in animal societies (Pelé and Sueur 2013; Sueur 2023). Complex and seemingly adaptive networks are observed across various levels of biological organisation (Oltvai and Barabási 2002; Do and Gross 2022). By investigating the mechanisms and selective pressures that influence social relationships and network structures (Moscovice et al. 2020), we aim to elucidate how individual strategies and interactions contribute to the evolution of, much like neurons in a brain form complex, adaptive networks to enhance cognitive function (Bullmore and Sporns 2012; Clune et al. 2013). However, we also aim to discuss about the adaptive nature of connectivity, whether within a brain or a social group, underscoring the role of the network topology in enhancing the fitness and survival of individuals and groups.

Social Attraction and Social Avoidance Affecting Social Networks

57

58

59 60

61

62

63

64

65

66

67

68

69

70

Social attraction and social avoidance, which involve the aggregation or repulsion of 71 individuals, are widespread behavioural strategies that individuals use to balance the costs and 72 benefits of group living. Some socio-ecological pressures, such as predator defence and 73 access to reliable information, lead to social attraction, while others, like resource competition 74 75 and the risk of pathogen transmission, lead to social avoidance (Moscovice et al. 2020). Despite this, the biological literature has paid little direct attention to how individuals manage 76 the fitness trade-offs between these two strategies. The increasing evidence of plasticity in 77 78 social network structures (Stroeymeyt et al. 2018; Sueur et al. 2021; Testard et al. 2024) raises key questions about the interaction between social attraction and social avoidance and their 79 influence on the emergent properties of social networks under varying conditions (Romano et 80 al. 2021, 2024). Investigating how individuals respond to specific trade-offs can enhance our 81 understanding of the mechanisms and selective pressures that shape social relationships. 82 Modular networks (Newman 2006) emerge in conditions where interactions are costly, 83 involving only a few individuals, whereas beneficial interactions are more evenly distributed 84 85 among all individuals in the group or in cooperative subgroups (Marcoux and Lusseau 2013; Sah et al. 2017; Romano et al. 2018). These findings highlight the importance of examining 86 opposing pressures to understand the complexity of individual relationships and the resulting 87

diversity in social structures across animal societies (Sueur et al. 2019; Romano et al. 2020,

89 2021).

88

126

Individual decisions influence their social environment, which subsequently impacts the 90 selection pressures driving individual behaviour (Sueur et al. 2019; Cantor et al. 2021). The 91 concept that sociality is shaped by selection pressures acting on individual social and non-92 social phenotypes is not novel. However, the dynamic relationship between individual 93 behaviour, social structure, and information/pathogen transmission (or avoidance and 94 attraction) has only recently been examined in detail (Romano et al. 2018, 2020, 2021; Evans 95 et al. 2020; Ashby and Farine 2022). Co-evolution of strategy and network structure in 96 sender-receiver games can lead to the formation of distinct groups and hybrid signalling 97 behaviours, enhancing communication efficiency in social networks (Fulker et al. 2024). In 98 99 essence, access to information or the risk of infection leads to changes in an individual's social behaviour, resulting in alterations in its centrality within a network. This subsequently 100 influences the network's topology, creating a more or less subdivided (modular) network, 101 which affects how information and pathogens are transmitted throughout the network. The 102 mechanism by which an individual's behaviour impacts the social structure and environment, 103 leading to fitness gains, is termed 'collective social niche construction' (Sueur et al. 2019; 104 Sueur 2023). This idea extends the 'niche construction' perspective commonly found in 105 behavioural ecology (Odling-Smee et al. 1996; Day et al. 2003; Laland and Brown 2006; 106 Laland and O'brien 2011; Laland et al. 2016). The consequences of cultural and/or biological 107 evolutionary forces acting on these individuals at the network level remain largely unknown. 108 The study by Brush et al. (2018) demonstrates how conflicts of interest among individuals can 109 enhance the collective computation of social structures. In many biological systems, the 110 functional behaviour of a group is collectively computed by the system's individual 111 components. An example is the brain's ability to make decisions via the activity of billions of 112 neurons (Bogacz 2007; Marshall et al. 2009; Pelé and Sueur 2013; Solé et al. 2019). A long-113 standing puzzle is how the components' decisions combine to produce beneficial group-level 114 outputs, despite conflicts of interest and imperfect information. Researchers (Bogacz 2007; 115 Marshall et al. 2009; Bogacz et al. 2010) derive a theoretical model from mechanistic first 116 principles, illustrating that conflicts of interest can improve the accuracy of group-level 117 outcomes despite individual components having imperfect information. This model 118 emphasises the role of information accumulation and aggregation phases in collective 119 decision-making, showing that conflicts, when managed properly, can lead to more accurate 120 and adaptive social decisions and structures. This aligns with the broader concept of how 121 individual behavioural strategies influence social network dynamics and stability, particularly 122 under varying ecological and social pressures. Modeling is essential because it allows us to 123 explore emergent processes that are difficult to intuitively grasp from observing individual 124 interactions alone. 125

Genetic and Cultural Selection as Driving Forces of Network Topology Changes

Various examples illustrate the connection between socio-ecological pressures and social 127 network topology. Natural selection impacts individual traits, including behavioural ones, 128 which then influence social network structure, affecting individual survival and reproduction. 129 Behavioural traits play a crucial role in altering social network properties in response to 130 ecological pressures. Animals can be aggressive or tolerant, more or less nepotistic, which 131 132 will affect the network topology (see for instance the Parasite Stress Theory, Fincher and

Thornhill 2012; Thornhill and Fincher 2014). Natural selection operates through genetic and 133

- cultural selection. Intergenerational transmission of behaviour occurs either genetically or via
- social learning, with variation and selection shaping biological and cultural evolution.
- Behavioural traits can be targeted by genetic selection, influencing social network structures.
- Genotypic variance affects personality traits, which are heritable and define inter-individual
- behaviour variations (Dingemanse et al. 2010; Réale et al. 2010). Personality, comprising
- boldness, activity, sociality, exploration, and aggressiveness, influences network connections.
- 140 For instance, aggressive individuals often attract fewer group members, leading to less dense
- but more modular networks (Sueur et al. 2011; Puga-Gonzalez et al. 2018). Conversely, bold
- individuals may become central in their groups, increasing network centralisation (Aplin et al.
- 143 2013). Group composition of individual personalities alters social network structure in
- experimental populations of forked fungus beetles (Cook et al. 2022). Genetic variance in
- individual interaction patterns impacts group network topologies, suggesting that indirect
- genetic effect models are necessary to understand social network evolution (Bijma and
- 147 Wade 2008; Bijma 2011). Specific genes, such as serotonergic and oxytocynergic profiles,
- influence social behaviours like aggression and kin preference (Williams et al. 1994; Lesch et
- al. 1996; Brent et al. 2013; De Wilde et al. 2017). How individual changes their social
- relationships with age, known as social capital, as observed in humans, macaques or ants
- (Almeling et al. 2016; Lucas and Keller 2020; Rosati et al. 2020; Sueur et al. 2021), might be
- seen as an adaptation at different levels.
- 153 Culture, defined as group-specific behaviour transmitted through social learning, represents a
- secondary evolution form (Dawkins 2006; Whiten et al. 2017; Sueur and Huffman 2024).
- Social information and learned behaviour allow faster and better adaptation to environments
- than genetic learning. Social networks influence cultural evolution, as seen in dolphins and
- humpback whales, where behaviour spread follows network topology (Donaldson et al. 2012;
- Mann et al. 2012; Cantor et al. 2015). Cultural evolution also affects social networks through
- positive assortment and homophily, where individuals prefer interacting with others showing
- similar behaviours (Morgan and Laland 2012). This mutual influence process, including
- 161 conformity, leads to network changes (Henrich and Boyd 1998; Cialdini and Goldstein 2004).
- Game theory and social networking studies show that individuals with similar strategies
- prefer to interact, increasing fitness and modifying network topology (Ohtsuki et al. 2006;
- Skyrms and Pemantle 2009). Prestige and learning from key individuals also influence
- cultural evolution and social networks, enhancing network efficiency for information
- exchange and potentially affecting fitness (Henrich and Gil-White 2001; Migliano et al.
- 2017). Integrative anthropology emphasises the interconnectedness of biological and cultural
- factors in human evolution, advocating for a comprehensive approach that includes
- contemporary evolutionary theory and human cultural complexity (Fuentes 2016) that needs
- to be extended to other animal societies (Sueur 2023).

171

Feedback Loop Between Individuals and Networks

- An under-explored question is whether networks of individuals can outperform individuals
- acting in isolation. In a recent experiment, researchers tested how humans modify their social
- interactions and, consequently, network topology in response to changing environmental
- conditions (Almaatouq et al. 2020). They found that network plasticity and environmental
- 176 feedback (based on participants' performance) could improve individual judgments, allowing
- groups to outperform individuals working in isolation. Under full feedback conditions (where
- all participants' performance is public information), dynamic networks became more
- centralised. Networks with higher adaptation rates (i.e. high sensitivity to changes in agents'

- performance) performed better in changing environments, whereas less adaptive networks
- implied longer periods of social learning, reducing errors in more stable environments. These
- findings highlight network plasticity as a key adaptive mechanism refining individual actions.
- 183 Regarding social transmission trade-offs, the adaptiveness of a network influences how
- individuals are affected by information and pathogen pressures (Romano et al. 2020, 2021).
- But what makes a network 'adaptive'?
- Behavioural traits in individuals can be selected over generations through genetic variance
- 187 (genetic evolution) or social learning (cultural evolution), directly influencing the topology of
- social networks. For causal factors like predation and food distribution, and intermediary
- mechanisms such as mating systems, the social network topology results from combined
- individual strategies that affect fitness (Sueur et al. 2019; Moscovice et al. 2020;
- Dunbar 2024). However, the pressure-individual-network triad may function differently for
- infectious agent risk and information sharing as one individual cannot directly make strategies
- 193 for changing its number of partners or contacts changing the whole flow of transmission.
- 194 Simply put, an individual located on one side of a social network cannot influence the
- relationships of conspecifics on the other side of the network with whom it has no direct
- contact. In such cases, the network topology itself may hold intrinsic value, providing benefits
- to all group members regardless of their individual social strategies.
- 198 For example, high network modularity, resulting from the sum of individual choices facing
- ecological pressures, can decrease pathogen transmission (Griffin and Nunn 2012). Similarly,
- 200 network efficiency plays a significant role (Sueur et al. 2013; Pasquaretta et al. 2014). This
- can be compared to the selfish herd theory, where individuals at the centre of a spatial group
- are less predated than those at the periphery, but peripheral individuals also benefit from the
- dilution effect (Hamilton 1971; Foster and Treherne 1981; Delm 1990). However, individual
- decisions are not isolated; the actions of one individual can influence the social environment
- and indirectly affect the relationships, behaviour, and fitness of other conspecifics. For
- instance, a highly connected individual may facilitate the spread of information or pathogens,
- 207 impacting the health and knowledge of others in the network. Conversely, a socially avoidant
- 208 individual may disrupt information flow or alter group cohesion, indirectly affecting the
- adaptive potential of the entire network. Such individual effects can propagate through social
- 210 networks, reshaping interactions and influencing overall network topology. In social
- 211 networks, this translates to network topology representing a trade-off between individual
- strategies to achieve a certain centrality based on first-order metrics (degree and strength or
- 213 weighted degree for food access, reproduction, or protection from predation) and the social
- 214 transmission of information and disease which is more dependent on second order metrics as
- clustering and betweenness (Firth et al. 2017; Sosa et al. 2021b). Thus, the selection of certain
- 216 network properties in some circumstances may enhance the fitness of not just some, but all
- 217 group members.

224

- 218 Structure-dynamic interplays have been studied for years by network scientists. For example,
- 219 Gross and Blasius (2007) introduced the concept of the dynamics on and of networks,
- demonstrating that local dynamics determine the state of nodes, leading to temporal changes
- in network topology ('topological evolution'). These topological changes, in turn, influence
- local dynamics, completing the feedback loop. Networks exhibiting such feedback loops are
- termed 'adaptive' or 'coevolutionary' networks by Gross and Blasius (2007).

From Individual to Multilevel Selection

In animal societies, 'adaptive' can be interpreted as responsive since biological adaptation 225 implies natural selection. Researchers suggest that a multilevel selection process may occur if 226 individuals with behavioural traits favouring a specific network topology – which increases 227 fitness of the group members – are selected through biological or cultural evolution (Gross 228 and Blasius 2007; Fisher and McAdam 2017; Sueur et al. 2019; Cantor et al. 2021). This is 229 230 not indicative of group selection but rather the network-level outcome of a given behavioural phenotype. This discussion extends to group phenotypic composition (Farine et al. 2015). 231 Group phenotypic composition refers to the combination of individual phenotypes within a 232 group and how their interactions and variations shape group-level dynamics and emergent 233 properties, which in turn influence individual fitness and evolutionary outcomes. This concept 234 supports adaptive network hypothesis by demonstrating how emergent properties from 235 individual decisions and interactions contribute to network structure and adaptability. 236

237

238

239

240

241242

243244

245

246

247

248

249

250

251

252

253254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

To observe network evolution, selection should be considered at multiple levels rather than solely at the group level (Traulsen and Nowak 2006; Fisher and McAdam 2017). Social networks in mammals or birds, where most group members are kin, and eusocial insect colonies, where members are not genetically identical, can be likened in terms of selection dynamics. While individuals are the basis of selection, the network's structure is crucial for the survival and fitness of group members (Gross and Blasius 2007; Do and Gross 2022), similar to the importance of hive structure in eusocial insects (Bonabeau et al. 1997; Camazine et al. 2003). It is not a problem to think that complex behaviour as collective one are shaped by selection (Walsh et al. 2020, 2022), so why not about social network topology?

Extending consideration to populations over multiple generations is essential. Behavioural ecology often examines how behaviours relate to fitness and mediate relationships between traits (e.g. morphology and physiology) and fitness. However, this approach can limit the application of evolutionary principles to social networks, despite some studies examining global network outcomes (Ohtsuki et al. 2006; Fisher et al. 2016; Allen et al. 2017; Puga-Gonzalez et al. 2018). A holistic view of networks, considering how individual choices impact behaviour and fitness, can offer insights into sociality evolution. In similar environments with identical ecological pressures, populations displaying behavioural traits that enhance group network modularity (through genetic or cultural evolution) may show higher survival rates during disease outbreaks. Individual exchanges between populations could lead to one behavioural phenotype, coding for a specific network topology, replacing another or to the stable existence of several phenotypes. As for the group phenotypic composition, the network topology might be selected through a combination of individual behavioural strategies, social interactions, and multi-level selection pressures that drive in return phenotypic covariance among interacting individuals as seen in the stickleback (Neumann and Bell 2023), ultimately impacting fitness and evolutionary dynamics (Farine et al. 2015). Thus, social network traits might be determined by multilevel selection, favouring specific behavioural phenotypes at both individual and global levels (Fisher and McAdam 2017). Indeed, both individual and group behaviour (strategy as a collective decision or network topology) can influence individual fitness, but multilevel selection is rarely quantified on social behaviours. Costello et al. (2023) used a contextual analysis to measure the effects of individual network position and group network structure on fitness in forked fungus beetles. It was found that high individual connectivity and centrality increased male mating success, while group network structure did not, and that females had lower reproductive success in populations with many social interactions, highlighting the differential impacts of social behaviour on fitness between males and females and the influence of habitat structure on multilevel selection.

- Network topology significantly impacts individual fitness but is not solely dependent on
- 274 individual social strategies. Multilevel selection typically favours phenotypic variation (Farine
- et al. 2015; Costello et al. 2023), producing mutualistic benefits for all group members
- 276 (Nonacs and Kapheim 2007). Evolutionary processes may favor the 'coding' of group
- 277 phenotypic composition for a network topology, termed 'collective social niche construction'.
- 278 (Sueur et al. 2019). This network topology should remain stable under consistent ecological
- 279 conditions but be resilient or adaptable when conditions change.

Collective social niche construction

280

- Niche construction is a concept in evolutionary biology that refers to the process by which
- organisms alter their own and each other's environments, often modifying the selection
- pressures they face (Odling-Smee et al. 1996; Day et al. 2003; Laland and Brown 2006;
- Laland and O'brien 2011; Laland et al. 2016). This modification of the environment can have
- significant implications for evolutionary processes. There are two main interpretations of
- 286 niche construction: selective niche construction, which focuses on how organisms'
- 287 modifications of their environments affect their fitness and that of their descendants, and
- developmental niche construction, which emphasises how these modifications contribute to
- development and inheritance (Kaiser et al. 2024). To refine this concept, niche construction
- 290 can be understood as involving modifications that create a positive feedback loop, where
- 291 environmental changes actively enhance adaptive advantages or developmental outcomes,
- rather than merely reflecting incidental impacts of organisms on their surroundings.
- Selective niche construction (Kaiser et al. 2024) describes how the persistent modification of
- environments by organisms creates selective pressures that influence the fitness of those
- organisms and their offspring. This concept suggests that the activities of organisms, such as
- building nests or creating social structures, can shape the evolutionary trajectories of
- 297 populations by creating environments that favor certain traits over others. Developmental
- 298 niche construction, on the other hand, focuses on how organisms influence the development
- and inheritance of traits across generations. This involves the transmission of non-genetic
- 300 resources, such as modified environments or social behaviours, that enable the generation and
- maintenance of heritable phenotypic variation. For example, parental care behaviours that
- shape the developmental environment of offspring can lead to stable transmission of certain
- traits and behaviours, influencing evolutionary outcomes.
- 304 Social niche construction refers to the process by which animals actively create and modify
- their social and physical environments to enhance their adaptive strategies and long-term
- interests (Yamagishi and Hashimoto 2016). This concept views behaviour as a strategy
- shaped by stable and predictable responses from others within specific social structures. These
- 308 structures provide the incentives that guide individuals' behaviours, ultimately shaping and
- being shaped by the collective actions and adaptations of the group (MacKinnon and
- Fuentes 2011; Fuentes 2016). This concept was proved from fruitflies (Saltz and Foley 2011)
- 311 to macaques (Flack et al. 2006).
- 312 The concept of collective social niche construction extends these ideas to social networks.
- 313 Social networks in animal societies are formed and shaped by the interactions and behaviours
- of individuals. Just as niche construction alters environmental selection pressures, the
- 315 structure and dynamics of social networks can influence the selection pressures acting on
- 316 individuals within those networks. Social networks can enhance or constrain the flow of
- information, the spread of pathogens, and the distribution of resources with competition or

cooperation, thereby affecting individual fitness and social organisation (Marcoux and 318 319

Lusseau 2013; Sah et al. 2017; Romano et al. 2018, 2024).

320 Collective social niche construction provides a framework for understanding how social

structures evolve in response to ecological and social pressures. It highlights the importance 321

of considering both genetic and cultural selection in shaping social networks. Cultural 322

evolution, driven by social learning and information transmission, can rapidly alter social 323

network structures, influencing the adaptive landscape of populations. Similarly, genetic 324

selection on individual traits, such as personality and social behaviours, can lead to the 325

emergence of distinct network topologies that enhance group fitness. However, the emergence 326

of distinct network topologies is not exclusively driven by genetic factors. For instance, 327

transitions between gregarious and territorial social structures can arise through ontogenetic 328

development, where age-related changes in behaviour influence social strategies. Similarly, 329

learning processes, such as individual experience and environmental feedback, can shape 330

social interactions, leading to dynamic shifts in network organisation. Cultural influences, 331

including the transmission of behaviours and traditions within a population, can also drive 332

changes in network topology, creating flexible structures that adapt to new ecological or 333

social contexts. These mechanisms demonstrate that the diversity of network structures 334

observed in nature results from the interplay of multiple processes – genetic, ontogenetic, 335

experiential, and cultural – all of which contribute to the evolution of sociality. 336

By integrating the concepts of niche construction and social network evolution, collective 337

social niche construction offers a comprehensive perspective on the adaptive nature of 338

connectivity in animal societies. This approach underscores the role of the network topology 339

in enhancing the fitness and survival of individuals and populations, providing a valuable lens 340

through which to study the evolution of sociality. 341

342

348

Cumulative cultural brain hypothesis and social networks

Humans are an undeniably remarkable species with massive brains, amazing technology, and 343

large, well-connected social networks. The co-occurrence of these traits is no accident. The 344

Cultural Brain Hypothesis and the Cumulative Cultural Brain Hypothesis provide a 345

framework to understand the evolutionary processes that led to the expansion of brain size 346

and complexity in humans and other taxa (Muthukrishna and Henrich 2016; Muthukrishna et 347

al. 2018). According to these hypotheses, brains have been selected for their ability to store

349 and manage information, acquired through asocial or social learning. This selection process

creates a feedback loop between brain size, adaptive knowledge, group size, social learning, 350

and the juvenile period. The Cultural Brain Hypothesis posits that larger brains facilitate 351

greater social learning and innovation, while the Cumulative Cultural Brain Hypothesis 352

suggests that this leads to a positive feedback loop, driving further increases in brain size and 353

cultural complexity. These processes are deeply intertwined with human social structures, 354

which are characterised by diverse, dynamic and efficient network topologies (Henrich 2017). 355

For example, central place foraging, a key feature of early hunter-gatherer societies, likely 356

357 facilitated the development of complex social networks by changing patterns of mobility and

increasing opportunities for information exchange (Garg et al. 2021). This process also entails 358

the competitive selection of information, where individuals or groups prioritise certain types 359

360 of knowledge over others, akin to the dynamics observed in honeybee hives. According to the

Information Center Theory (Zahavi 1977), communal gathering points, such as roosts or 361

hives, serve as hubs where information about resource availability is shared, contested, and 362

refined, enhancing collective decision-making efficiency. This adaptation of social ties 363 (Almaatoug et al. 2020) is supported by evidence from behavioural and psychological studies, 364 showing that humans intentionally form and adjust their social networks to enhance collective 365 learning, memory, and problem-solving capabilities. Memory, in this context, operates at 366 multiple levels: it can be stored within individuals, within units, or within the structure and 367 patterns of the network itself, serving as a site of collective memory (Thomas and d'Ari 1990; 368 Anastasio et al. 2012). By collective memory here, we meant that the network topology 369 affects as feedbacks the individual behaviour as Hinde (1976) suggested. This concept aligns 370 with the idea of hysteresis, where the history of a system influences its current state and 371 allows for multiple stable solutions depending on past conditions. From the scale of genes to 372 societies, hysteresis illustrates how networks retain and adapt information over time, thereby 373 shaping their resilience and functional diversity (Couzin 2007). This process of memory 374 consolidation across scales demonstrates how structural and behavioural patterns emerging 375 from interactions within networks can act as repositories of information, enhancing 376 adaptability and collective intelligence. For example, from the scale of genes to societies, 377 378 hysteresis illustrates how networks retain and adapt information over time, shaping their resilience and functional diversity. The dynamic nature of these networks allows for 379 adaptation to environmental and social changes, improving collective intelligence and 380 decision-making. Such adaptive changes of social structures is crucial for fostering creativity 381 and innovation (Baten et al. 2020), as individuals tend to follow high-performing peers, 382 thereby enhancing their own creative outputs. Moreover, humans employ strategies like 383 384 prestige-biased social learning (Brand et al. 2020), where they preferentially learn from highly respected and successful individuals, efficiently acquiring adaptive information. This 385 highlights a contrast with traditional approaches to self-organisation, which often anonymize 386 387 individual actors in favour of emphasising emergent network properties. By contrast, prestigebiased learning underscores the importance of specific, identifiable actors whose roles and 388 influence can significantly shape the dynamics and outcomes of the network. This structuring 389 of social networks not only supports cooperation but also maintains social hierarchies 390 conducive to collective benefits (Lozano et al. 2020), illustrating the profound impact of 391 human cognition and cultural inheritance on the topology and functionality of social 392 networks. 393

Cumulative cultural brain hypotheses linking with adaptive networks in humans is well illustrated (Henrich 2017). However, is there something similar that can be found in other animals? Pasquaretta et al. (2014) found that the neocortex ratio is correlated with network efficiency in primates. Such network properties affecting individual fitness could be shaped by natural selection. These results align with the social brain and cultural intelligence hypotheses, which suggest that the importance of network efficiency and information flow through social learning is related to cognitive abilities. A recent finding (Testard et al. 2024) shows that macaques are able to adjust their social tolerance after a hurricane, facilitating access to scarce shade critical for thermoregulation. This illustrates a broader principle of behavioural modulation based on physiological states, where individuals adapt their social strategies to meet immediate survival needs, such as temperature regulation, resource access, or recovery from stress. Why not observe this adaptive response in the context of social network topologies, as seen with responses to epidemics in different animal species (Romano et al. 2020)? Indeed social networks predict brain structure in rhesus macaques (Testard et al. 2022) but also in baboons (Meguerditchian et al. 2021) reinforce the feedback loop between individual-level and network-level (Sueur et al. 2019).

394

395 396

397

398

399

400

401 402

403

404 405

406

407

408

409

410

While the Cultural Brain Hypothesis and the Cumulative Cultural Brain Hypothesis 411 emphasise the role of positive feedback loops in driving brain expansion and cultural 412 complexity, it is essential to acknowledge that positive feedback mechanisms do not merely 413 result in gradual accumulation. Instead, they often involve amplification effects that push 414 systems beyond critical thresholds, resulting in phase transitions or emergent properties. This 415 dynamic is not exclusive to brain evolution but is also evident in other domains, such as 416 behavioural flexibility in social insects and cellular differentiation. For instance, in social 417 insects, positive feedback mechanisms enhance collective intelligence, allowing colonies to 418 transition from disorganised states to highly efficient organisational structures (Couzin 2007; 419 Krause et al. 2010; McMillen and Levin 2024). Similarly, in cellular differentiation, feedback 420 loops involving cross-inhibition and molecular signalling contribute to the formation of 421 distinct cell types, as highlighted by Waddington's epigenetic landscape (Wang et al. 2011). 422 These processes illustrate how positive feedback not only amplifies existing structures but 423 also generates new organisational patterns and adaptive functionalities. Moreover, this 424 concept extends to social network evolution, where behavioural interactions (e.g., affiliative 425 426 or agonistic signals) can create self-organized patterns reminiscent of Turing models (Maini and Woolley 2019) that explain natural pattern formation, such as stripes and patches but may 427 also explain network clusterisation (Li et al. 2023; Luo et al. 2024; Pranesh et al. 2024). Thus, 428 429 understanding how positive feedback loops operate across various levels of biological organisation can provide valuable insights into the evolution of complex social structures and 430 431 adaptive networks. In many species, self-organisation processes may conduct to adaptive 432 networks in the same way that it conducts to efficient complex collectives (Bonabeau et al. 1997; Couzin and Krause 2003; Hemelrijk 2005; Gross and Blasius 2007; Puga-Gonzalez and 433 Sueur 2017; Do and Gross 2022). Adaptive networks in various species often emerge through 434 self-organisation, a process that underscores the intricate interplay between evolutionary 435 pressures and inherent organisational principles. Simple rules, which dictate interactions and 436 adjustments based on local information, lead to the self-organisation of adaptive networks (Do 437 and Gross 2022). Through processes such as preferential attachment (Nowak 2006; Poncela et 438 al. 2008; Fotouhi et al. 2019), where nodes link to highly connected nodes, or rewiring, where 439 nodes alter their connections to optimise local conditions, complex global structures form. 440 These emergent properties include dynamic critical states resembling phase transitions, 441 442 spontaneous division of labour into distinct functional classes, and intricate topologies that enhance information flow and resilience. Thus, the interplay of basic local interactions drives 443 the evolution of sophisticated adaptive networks that can efficiently respond to environmental 444 445 and internal changes.

Phase transitions in networks describe abrupt changes in network topology resulting from 446 variations in internal or external parameters, such as social interactions, environmental 447 conditions, or biological processes (Vicsek 2007). These transitions are particularly relevant 448 to the concept of collective social niche construction, where feedback loops between 449 450 individual decisions and emergent network properties shape the evolution of social structures. In adaptive networks, the self-organised interplay between local interactions and global 451 network dynamics creates conditions where minor changes in individual behaviour can lead to 452 453 critical transitions, resulting in shifts from decentralised, modular structures to centralised or highly connected topologies (Schweitzer and Andres 2022; Romanczuk and Daniels 2022). 454 Such transitions are analogous to the critical phenomena observed in other complex systems, 455 where self-organized criticality and network optimisation processes drive structural changes 456 that enhance resilience, information flow, and adaptive capacity (Gross and Blasius 2007). 457 Furthermore, phase transitions provide a mechanistic explanation for how social systems can 458 rapidly reorganise in response to environmental or social pressures, such as predation risk, 459

- resource availability, or disease spread (Das et al. 2024). Notably, abrupt changes in network
- structures can also arise from variations in dominance styles, where more tolerant or despotic
- social systems produce different modularity and centrality patterns (Puga-Gonzalez and
- Sueur 2017; Puga-Gonzalez et al. 2018). Additionally, pressures related to disease and
- information transmission can shape the modularity of networks, as individuals selectively
- interact to balance benefits from information access and avoid costs from pathogen exposure
- 466 (Romano et al. 2024). This dynamic process of adaptation and network restructuring
- demonstrates how phase transitions contribute to the evolution of social networks by
- 468 enhancing collective decision-making, cultural transmission, and long-term resilience through
- emergent structures optimised for specific socio-ecological contexts.

Conclusion

470

- Adaptive social networks are shaped by the dynamic interplay between individual behaviours,
- social structures, and environmental pressures. Collective social niche construction highlights
- 473 how individuals actively influence their social environment, generating emergent network
- 474 properties that optimise fitness and information flow. Mechanisms like social attraction, social
- avoidance, self-organisation, and phase transitions drive network formation, evolution, and
- 476 resilience. The Cumulative Cultural Brain Hypothesis suggests that increasingly complex
- 477 networks enhance cognitive abilities and cultural accumulation, creating feedback loops that
- 478 reshape network structures.
- 479 By integrating insights from theoretical morphology, network science, and multiscale
- 480 biological architectures, we can better understand these adaptive networks. The concept of a
- 481 'network morphospace' (Avena-Koenigsberger et al. 2015) where networks are mapped based
- on shared connectivity traits, helps identify the generative rules and constraints shaping
- network evolution. Network geometry (Boguñá et al. 2021), encompassing shortest paths,
- latent spaces, and dynamic processes, reveals fundamental symmetries like fractality and scale
- invariance, crucial for applications from brain function to the network topology. Additionally,
- biological systems exhibit a multiscale architecture, with each level from molecules to
- animal groups solving distinct problems through collective dynamics (Couzin 2007;
- 488 Centola 2022; McMillen and Levin 2024). This nested and functional structure highlights how
- 489 collective intelligence drives adaptive functionality across scales.

491 Glossary

490

- 492 **Adaptive networks**: Networks that dynamically adjust to environmental and social changes
- 493 to improve resilience and information flow efficiency.
- 494 **Behavioural traits**: Characteristics of individual behaviour, such as aggression, sociability, or
- tolerance, often influenced by genetic and environmental factors.
- 496 **Cultural evolution**: The process by which behaviours, traditions, and knowledge are
- 497 transmitted and modified within a population through social learning, often faster than genetic
- 498 evolution.

499 500 501	Emergent properties : Features or behaviours of a complex system (like a social network) that arise from interactions among its components but cannot be predicted from the properties of individual elements.
502 503 504	Feedback loop : A process where the outputs of a system influence its inputs, either reinforcing or regulating the system (e.g. individual decisions influence network structure, which in turn affects individual behaviour).
505 506	Genetic selection : The process by which certain genetic traits increase in frequency within a population due to their survival or reproductive advantages.
507 508 509	Modularity (network modularity): A measure of network structure that describes the division of a network into subgroups that are densely connected internally but sparsely connected with others.
510 511	Niche construction : The process by which organisms actively modify their environment or that of other species, thereby influencing the selection pressures they face.
512 513 514	Social attraction and avoidance : Behavioural strategies involving the approach or avoidance of others to maximise benefits (e.g. predator defence) and minimise costs (e.g. resource competition).
515 516	Social learning : The acquisition of behaviours through observing or imitating others, often a key driver of cultural evolution.
517 518	Topology (network topology): The arrangement and structure of connections within a network, influencing how information or resources flow.
519 520	Plasticity (network plasticity): The ability of a network to adapt or reconfigure in response to environmental or social changes.
521 522	Self-organisation : The spontaneous emergence of complex structures or behaviours in a system based on simple rules, without centralised control.
523 524	Cultural Brain Hypothesis : The idea that the evolution of larger and more complex brains is linked to the development of social and cultural capabilities.
525 526	Homophily : The tendency of individuals to interact primarily with those who are similar to them in behaviours, attitudes, or other characteristics.
527 528	Division of labour : The distribution of tasks among members of a group or system, often seen in complex social networks to enhance efficiency.
529 530	Pathogen spread : The transmission of diseases or pathogens through social interactions or networks.
531	
532	References

533 534	Allen B, Lippner G, Chen Y-T, et al (2017) Evolutionary dynamics on any population structure. Nature advance online publication: https://doi.org/10.1038/nature21723
535 536 537	Almaatouq A, Noriega-Campero A, Alotaibi A, et al (2020) Adaptive social networks promote the wisdom of crowds. Proc Natl Acad Sci U S A 117:11379 – 113686. https://doi.org/10.1073/pnas.1917687117
538 539 540	Almeling L, Hammerschmidt K, Sennhenn-Reulen H, et al (2016) Motivational Shifts in Aging Monkeys and the Origins of Social Selectivity. Curr Biol CB 26:1744 – 1749. https://doi.org/10.1016/j.cub.2016.04.066
541 542	Anastasio TJ, Ehrenberger KA, Watson P, Zhang W (2012) Individual and collective memory consolidation: Analogous processes on different levels. MIT Press
543 544	Aplin LM, Farine D, Morand-Ferron J, et al (2013) Individual personalities predict social behaviour in wild networks of great tits (Parus major). Ecol Lett 16:1365 – 1372
545 546	Ashby B, Farine DR (2022) Social information use shapes the coevolution of sociality and virulence. Evolution 76:1153 – 1169. https://doi.org/10.1111/evo.14491
547 548	Ashe A, Colot V, Oldroyd BP (2021) How does epigenetics influence the course of evolution? Philos Trans R Soc B Biol Sci 376:20200111. https://doi.org/10.1098/rstb.2020.0111
549 550	Avena-Koenigsberger A, Goñi J, Solé R, Sporns O (2015) Network morphospace. J R Soc Interface 12:20140881. https://doi.org/10.1098/rsif.2014.0881
551 552 553	Baten RA, Bagley D, Tenesaca A, et al (2020) Creativity in temporal social networks: how divergent thinking is impacted by one's choice of peers. J R Soc Interface 17:20200667. https://doi.org/10.1098/rsif.2020.0667
554 555 556	Battesti M, Pasquaretta C, Moreno C, et al (2015) Ecology of information: social transmission dynamics within groups of non-social insects. Proc R Soc Lond B Biol Sci 282:20142480. https://doi.org/10.1098/rspb.2014.2480
557 558	Bijma P (2011) A general definition of the heritable variation that determines the potential of a population to respond to selection. Genetics 189:1347 – 1359
559 560	Bijma P, Wade M (2008) The joint effects of kin, multilevel selection and indirect genetic effects on response to genetic selection. J Evol Biol 21:1175 – 1188
561 562	Birch J, Heyes C (2021) The cultural evolution of cultural evolution. Philos Trans R Soc B 376:20200051. https://doi.org/10.1098/rstb.2020.0051
563 564	Bogacz R (2007) Optimal decision-making theories: linking neurobiology with behaviour. Trends Cogn Sci 11:118 – 125. https://doi.org/10.1016/j.tics.2006.12.006
565 566	Bogacz R, Wagenmakers E-J, Forstmann BU, Nieuwenhuis S (2010) The neural basis of the speed – accuracy tradeoff. Trends Neurosci 33:10 – 16
567 568	Boguñá M, Bonamassa I, De Domenico M, et al (2021) Network geometry. Nat Rev Phys 3:114 – 135. https://doi.org/10.1038/s42254-020-00264-4

569 570	Bonabeau E, Theraulaz G, Deneubourg J-L, et al (1997) Self-organisation in social insects. Trends Ecol Evol 12:188 – 193
571 572 573	Borgeaud C, Sosa S, Sueur C, Bshary R (2017) The influence of demographic variation on social network stability in wild vervet monkeys. Anim Behav 134:155 – 165. https://doi.org/10.1016/j.anbehav.2017.09.028
574	Boyd R, Richerson PJ (2004) The Origin and Evolution of Cultures. Oxford University Press
575 576	Brand CO, Heap S, Morgan TJH, Mesoudi A (2020) The emergence and adaptive use of prestige in an online social learning task. Sci Rep 10:12095. https://doi.org/10.1038/s41598-020-68982-4
577 578	Brent LJN, Heilbronner SR, Horvath JE, et al (2013) Genetic origins of social networks in rhesus macaques. Sci Rep 3:. https://doi.org/10.1038/srep01042
579 580	Brush ER, Krakauer DC, Flack JC (2018) Conflicts of interest improve collective computation of adaptive social structures. Sci Adv. https://doi.org/10.1126/sciadv.1603311
581 582	Bullmore E, Sporns O (2012) The economy of brain network organisation. Nat Rev Neurosci 13:336 – 349. https://doi.org/10.1038/nrn3214
583 584	Camazine S, Deneubourg J-L, Franks NR, et al (2003) Self-organisation in biological systems. Princeton University Press
585 586 587	Cantor M, Maldonado-Chaparro AA, Beck KB, et al (2021) The importance of individual-to-society feedbacks in animal ecology and evolution. J Anim Ecol 90:27 – 44. https://doi.org/10.1111/1365-2656.13336
588 589	Cantor M, Shoemaker LG, Cabral RB, et al (2015) Multilevel animal societies can emerge from cultural transmission. Nat Commun 6:
590 591	Centola D (2022) The network science of collective intelligence. Trends Cogn Sci 26:923 – 941. https://doi.org/10.1016/j.tics.2022.08.009
592 593	Cialdini RB, Goldstein NJ (2004) Social influence: Compliance and conformity. Annu Rev Psychol 55:591 – 621
594 595	Claidière N, Scott-Phillips TC, Sperber D (2014) How Darwinian is cultural evolution? Philos Trans R Soc B Biol Sci 369:20130368. https://doi.org/10.1098/rstb.2013.0368
596 597	Clune J, Mouret J-B, Lipson H (2013) The evolutionary origins of modularity. Proc R Soc B Biol Sci 280:20122863. https://doi.org/10.1098/rspb.2012.2863
598 599 600	Cook PA, Baker OM, Costello RA, et al (2022) Group composition of individual personalities alters social network structure in experimental populations of forked fungus beetles. Biol Lett 18:20210509. https://doi.org/10.1098/rsbl.2021.0509
601 602 603	Costello RA, Cook PA, Brodie ED III, Formica VA (2023) Multilevel selection on social network traits differs between sexes in experimental populations of forked fungus beetles. Evolution 77:289 – 303. https://doi.org/10.1093/evolut/qpac012
604	Couzin I (2007) Collective minds. Nature 445:715 – 715. https://doi.org/10.1038/445715a

605 606	Couzin ID, Krause J (2003) Self-Organization and Collective Behavior in Vertebrates. Academic Press, pp 1–75
607 608	Das S, Samaei MH, Scoglio C (2024) SIR epidemics in interconnected networks: threshold curve and phase transition. Appl Netw Sci 9:1 – 24. https://doi.org/10.1007/s41109-024-00649-9
609	Dawkins R (2006) The Selfish Gene: 30th Anniversary edition. Oxford University Press
610 611	Day RL, Laland KN, Odling-Smee FJ (2003) Rethinking Adaptation: The Niche-Construction Perspective. Perspect Biol Med 46:80 – 95. https://doi.org/10.1353/pbm.2003.0003
612 613	De Wilde TR, Ten Velden FS, De Dreu CK (2017) The Neuropeptide Oxytocin Enhances Information Sharing and Group Decision Making Quality. Sci Rep 7:
614 615	Delm MM (1990) Vigilance for predators: detection and dilution effects. Behav Ecol Sociobiol 26:337 – 342
616 617	Dingemanse NJ, Kazem AJ, Réale D, Wright J (2010) Behavioural reaction norms: animal personality meets individual plasticity. Trends Ecol Evol 25:81 – 89
618 619	Do A-L, Gross T (2022) Self-Organization in Continuous Adaptive Networks. River Publishers, New York
620 621	Donaldson R, Finn H, Bejder L, et al (2012) The social side of human – wildlife interaction: wildlife can learn harmful behaviours from each other. Anim Conserv 15:427 – 435
622 623	Dunbar RIM (2024) Structural and Cognitive Mechanisms of Group Cohesion in Primates. Behav Brain Sci 1–80. https://doi.org/10.1017/S0140525X2400030X
624 625 626	Evans JC, Silk MJ, Boogert NJ, Hodgson DJ (2020) Infected or informed? Social structure and the simultaneous transmission of information and infectious disease. Oikos 129:1271 – 1288. https://doi.org/10.1111/oik.07148
627 628	Farine DR, Montiglio P-O, Spiegel O (2015) From individuals to groups and back: the evolutionary implications of group phenotypic composition. Trends Ecol Evol 30:609 – 621
629 630 631	Fincher CL, Thornhill R (2012) Parasite-stress promotes in-group assortative sociality: The cases of strong family ties and heightened religiosity. Behav Brain Sci 35:61 – 79. https://doi.org/10.1017/S0140525X11000021
632 633 634	Firth JA, Sheldon BC, Brent LJN (2017) Indirectly connected: simple social differences can explain the causes and apparent consequences of complex social network positions. Proc R Soc B 284:20171939. https://doi.org/10.1098/rspb.2017.1939
635 636	Fisher D, McAdam A (2017) Social traits, social networks and evolutionary biology. J Evol Biol 30:2088 – 2103. https://doi.org/10.1111/jeb.13195
637 638	Fisher DN, Rodríguez-Muñoz R, Tregenza T (2016) Wild cricket social networks show stability across generations. BMC Evol Biol 16:151
639 640	Flack JC, Girvan M, de Waal FBM, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426 – 429. https://doi.org/10.1038/nature04326

641 642	Foster W, Treherne J (1981) Evidence for the dilution effect in the selfish herd from fish predation on a marine insect. Nature 293:466
643 644	Fotouhi B, Momeni N, Allen B, Nowak MA (2019) Evolution of cooperation on large networks with community structure. J R Soc Interface. https://doi.org/10.1098/rsif.2018.0677
645 646	Fuentes A (2016) The Extended Evolutionary Synthesis, Ethnography, and the Human Niche: Toward an Integrated Anthropology. Curr Anthropol 57:S13 – S26. https://doi.org/10.1086/685684
647 648	Fulker Z, Forber P, Smead R, Riedl C (2024) Spontaneous emergence of groups and signalling diversity in dynamic networks. Phys Rev E 109:014309. https://doi.org/10.1103/PhysRevE.109.014309
649 650 651	Garg K, Padilla-Iglesias C, Restrepo Ochoa N, Knight VB (2021) Hunter – gatherer foraging networks promote information transmission. R Soc Open Sci 8:211324. https://doi.org/10.1098/rsos.211324
652 653	Griffin RH, Nunn CL (2012) Community structure and the spread of infectious disease in primate social networks. Evol Ecol 26:779 – 800. https://doi.org/10.1007/s10682-011-9526-2
654 655	Gross T, Blasius B (2007) Adaptive coevolutionary networks: a review. J R Soc Interface 5:259 – 271. https://doi.org/10.1098/rsif.2007.1229
656 657	Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295 – 311. https://doi.org/10.1016/0022-5193(71)90189-5
658	Harari YN (2014) Sapiens: A brief history of humankind. Random House
659 660	Hemelrijk CK (2005) Self-organisation and evolution of biological and social systems. Cambridge University Press
661 662	Henrich J (2017) The secret of our success: how culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press
663 664 665	Henrich J, Boyd R (1998) The Evolution of Conformist Transmission and the Emergence of Between- Group Differences. Evol Hum Behav 19:215 – 241. https://doi.org/10.1016/S1090- 5138(98)00018-X
666 667	Henrich J, Gil-White FJ (2001) The evolution of prestige: Freely conferred deference as a mechanism for enhancing the benefits of cultural transmission. Evol Hum Behav 22:165 – 196
668 669	Henrich J, McElreath R (2003) The evolution of cultural evolution. Evol Anthropol Issues News Rev 12:123 – 135. https://doi.org/10.1002/evan.10110
670 671	Hinde RA (1976) Interactions, Relationships and Social Structure. Man 11:1 – 17. https://doi.org/10.2307/2800384
672 673	Jablonka E, Lamb MJ (1998) Epigenetic inheritance in evolution. J Evol Biol 11:159 – 183. https://doi.org/10.1046/j.1420-9101.1998.11020159.x
674 675 676	Kaiser MI, Gadau J, Kaiser S, et al (2024) Individualized social niches in animals: Theoretical clarifications and processes of niche change. BioScience 74:146 – 158. https://doi.org/10.1093/biosci/biad122

677 678	Krause J, Ruxton GD, Krause S (2010) Swarm intelligence in animals and humans. Trends Ecol Evol 25:28 – 34
679 680	Laland K, Matthews B, Feldman MW (2016) An introduction to niche construction theory. Evol Ecol 30:191 – 202. https://doi.org/10.1007/s10682-016-9821-z
681 682	Laland KN, Brown GR (2006) Niche construction, human behaviour, and the adaptive-lag hypothesis. Evol Anthropol Issues News Rev 15:95 – 104. https://doi.org/10.1002/evan.20093
683 684	Laland KN, O'brien MJ (2011) Cultural niche construction: an introduction. Biol Theory 6:191 – 202. https://doi.org/10.1007/s13752-012-0026-6
685 686	Lesch K-P, Bengel D, Heils A, et al (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274:1527 – 1531
687 688 689	Li D, Song W, Liu J (2023) Complex Network Evolution Model Based on Turing Pattern Dynamics. IEEE Trans Pattern Anal Mach Intell 45:4229 – 4244. https://doi.org/10.1109/TPAMI.2022.3197276
690 691	Lozano P, Gavrilets S, Sánchez A (2020) Cooperation, social norm internalization, and hierarchical societies. Sci Rep 10:15359. https://doi.org/10.1038/s41598-020-71664-w
692 693	Lucas ER, Keller L (2020) The co-evolution of longevity and social life. Funct Ecol 34:76 – 87. https://doi.org/10.1111/1365-2435.13445
694 695	Luo X, Sun G, He R, et al (2024) The relationship between clustering and networked Turing patterns. Chaos Interdiscip J Nonlinear Sci 34:073114. https://doi.org/10.1063/5.0195450
696 697	Macia J, Vidiella B, Solé RV (2017) Synthetic associative learning in engineered multicellular consortia. J R Soc Interface 14:20170158. https://doi.org/10.1098/rsif.2017.0158
698 699 700	MacKinnon KC, Fuentes A (2011) Primates, Niche Construction, and Social Complexity: The Roles of Social Cooperation and Altruism. In: Sussman RW, Cloninger CR (eds) Origins of Altruism and Cooperation. Springer, New York, NY, pp 121–143
701 702	Maeda T, Ochi S, Ringhofer M, et al (2021) Aerial drone observations identified a multilevel society in feral horses. Sci Rep 11:71. https://doi.org/10.1038/s41598-020-79790-1
703 704 705	Maini PK, Woolley TE (2019) The Turing Model for Biological Pattern Formation. In: Bianchi A, Hillen T, Lewis MA, Yi Y (eds) The Dynamics of Biological Systems. Springer International Publishing, Cham, pp 189–204
706 707	Mann J, Stanton MA, Patterson EM, et al (2012) Social networks reveal cultural behaviour in toolusing dolphins. Nat Commun 3:980. https://doi.org/10.1038/ncomms1983
708 709	Marcoux M, Lusseau D (2013) Network modularity promotes cooperation. J Theor Biol 324:103 – 108. https://doi.org/10.1016/j.jtbi.2012.12.012
710 711	Marshall JAR, Bogacz R, Dornhaus A, et al (2009) On optimal decision-making in brains and social insect colonies. J R Soc Interface 6:1065 – 1074. https://doi.org/10.1098/rsif.2008.0511
712 713	McMillen P, Levin M (2024) Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 7:1–17. https://doi.org/10.1038/s42003-024-06037-4

714 715 716	Meguerditchian A, Marie D, Margiotoudi K, et al (2021) Baboons (Papio anubis) living in larger social groups have bigger brains. Evol Hum Behav 42:30 – 34. https://doi.org/10.1016/j.evolhumbehav.2020.06.010
717 718 719	Migliano AB, Page AE, Gómez-Gardeñes J, et al (2017) Characterization of hunter-gatherer networks and implications for cumulative culture. Nat Hum Behav 1:0043. https://doi.org/10.1038/s41562-016-0043
720	Morgan TJH, Laland KN (2012) The biological bases of conformity. Front Neurosci 6:
721 722 723	Moscovice LR, Sueur C, Aureli F (2020) How socio-ecological factors influence the differentiation of social relationships: an integrated conceptual framework. Biol Lett 16:20200384. https://doi.org/10.1098/rsbl.2020.0384
724 725 726	Muthukrishna M, Doebeli M, Chudek M, Henrich J (2018) The Cultural Brain Hypothesis: How culture drives brain expansion, sociality, and life history. PLOS Comput Biol 14:e1006504. https://doi.org/10.1371/journal.pcbi.1006504
727 728	Muthukrishna M, Henrich J (2016) Innovation in the collective brain. Philos Trans R Soc B Biol Sci 371:20150192. https://doi.org/10.1098/rstb.2015.0192
729 730	Neumann KM, Bell AM (2023) Social network differences and phenotypic divergence between stickleback ecotypes. Behav Ecol 34:437 – 445. https://doi.org/10.1093/beheco/arad009
731 732	Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103:8577 – 8582. https://doi.org/10.1073/pnas.0601602103
733 734	Nonacs P, Kapheim KM (2007) Social heterosis and the maintenance of genetic diversity. J Evol Biol 20:2253 – 2265. https://doi.org/10.1111/j.1420-9101.2007.01418.x
735 736	Nowak MA (2006) Five Rules for the Evolution of Cooperation. Science 314:1560 – 1563. https://doi.org/10.1126/science.1133755
737	Nowak MA, Tarnita CE, Wilson EO (2011) Nowak et al. reply. Nature 471:E9 – E10
738	Odling-Smee FJ, Laland KN, Feldman MW (1996) Niche construction. Am Nat 147:641 – 648
739 740	Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502 – 505. https://doi.org/10.1038/nature04605
741 742	Oltvai ZN, Barabási A-L (2002) Life's Complexity Pyramid. Science 298:763 – 764. https://doi.org/10.1126/science.1078563
743 744	Pasquaretta C, Levé M, Claidière N, et al (2014) Social networks in primates: smart and tolerant species have more efficient networks. Sci Rep 4:7600. https://doi.org/10.1038/srep07600
745 746 747	Pelé M, Sueur C (2013) Decision-making theories: linking the disparate research areas of individual and collective cognition. Anim Cogn 16:543 – 556. https://doi.org/10.1007/s10071-013-0631-1
748 749 750	Poncela J, Gómez-Gardeñes J, Floría LM, et al (2008) Complex Cooperative Networks from Evolutionary Preferential Attachment. PLOS ONE 3:e2449. https://doi.org/10.1371/journal.pone.0002449

751 752	Pranesh S, Jaiswal D, Gupta S (2024) Effect of clustering on Turing instability in complex networks. Chaos Interdiscip J Nonlinear Sci 34:093109. https://doi.org/10.1063/5.0223381
753 754 755	Puga-Gonzalez I, Ostner J, Schülke O, et al (2018) Mechanisms of reciprocity and diversity in social networks: a modeling and comparative approach. Behav Ecol 29:745 – 760. https://doi.org/10.1093/beheco/ary034
756 757	Puga-Gonzalez I, Sueur C (2017) Emergence of complex social networks from spatial structure and rules of thumb: a modelling approach. Ecol Complex 31:189 – 200
758 759	Réale D, Dingemanse NJ, Kazem AJ, Wright J (2010) Evolutionary and ecological approaches to the study of personality. Philos Trans R Soc B Biol Sci 365:3937–3946
760 761 762	Romanczuk P, Daniels BC (2022) Phase Transitions and Criticality in the Collective Behavior of Animals ? Self-Organization and Biological Function. In: Order, Disorder and Criticality. WORLD SCIENTIFIC, pp 179–208
763 764	Romano V, MacIntosh AJJ, Sueur C (2020) Stemming the Flow: Information, Infection, and Social Evolution. Trends Ecol Evol 35:849 – 853. https://doi.org/10.1016/j.tree.2020.07.004
765 766 767	Romano V, Puga-Gonzalez I, MacIntosh AJ, Sueur C (2024) The role of social attraction and social avoidance in shaping modular networks. R Soc Open Sci 11:231619. https://doi.org/10.1098/rsos.231619
768 769 770	Romano V, Shen M, Pansanel J, et al (2018) Social transmission in networks: global efficiency peaks with intermediate levels of modularity. Behav Ecol Sociobiol 72:154. https://doi.org/10.1007/s00265-018-2564-9
771 772	Romano V, Sueur C, MacIntosh AJJ (2021) The trade-off between information and pathogen transmission in animal societies. Oikos. https://doi.org/10.1111/oik.08290
773 774	Rosati AG, Hagberg L, Enigk DK, et al (2020) Social selectivity in aging wild chimpanzees. Science 370:473 – 476. https://doi.org/10.1126/science.aaz9129
775 776	Sah P, Leu ST, Cross PC, et al (2017) Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proc Natl Acad Sci 201613616
777 778 779	Saltz JB, Foley BR (2011) Natural genetic variation in social niche construction: social effects of aggression drive disruptive sexual selection in Drosophila melanogaster. Am Nat 177:645 – 654
780 781	Schweitzer F, Andres G (2022) Social nucleation: Group formation as a phase transition. Phys Rev E 105:044301. https://doi.org/10.1103/PhysRevE.105.044301
782 783	Skyrms B, Pemantle R (2009) A dynamic model of social network formation. In: Adaptive networks. Springer, pp 231–251
784 785	Solé R, Amor DR, Duran-Nebreda S, et al (2016) Synthetic collective intelligence. Biosystems 148:47 – 61. https://doi.org/10.1016/j.biosystems.2016.01.002
786 787	Solé R, Moses M, Forrest S (2019) Liquid brains, solid brains. Philos Trans R Soc B Biol Sci 374:20190040. https://doi.org/10.1098/rstb.2019.0040

788 789	Sosa S, Jacoby D, Lihoreau M, Sueur C (2021a) Animal social networks: Towards an integrative framework embedding social interactions, space and time. Methods Ecol Evol 12:4 – 9
790 791 792	Sosa S, Sueur C, Puga-Gonzalez I (2021b) Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol Evol 12:10 – 21. https://doi.org/10.1111/2041-210X.13366
793 794	Stroeymeyt N, Grasse AV, Crespi A, et al (2018) Social network plasticity decreases disease transmission in a eusocial insect. Science 362:941 – 945
795 796	Sueur C (2023) Socioconnectomics: Connectomics Should Be Extended to Societies to Better Understand Evolutionary Processes. Sci 5:5. https://doi.org/10.3390/sci5010005
797 798	Sueur C, Huffman MA (2024) Co-cultures: exploring interspecies culture among humans and other animals. Trends Ecol Evol. https://doi.org/10.1016/j.tree.2024.05.011
799 800 801	Sueur C, King AJ, Pelé M, Petit O (2013) Fast and accurate decisions as a result of scale-free network properties in two primate species. In: Gilbert T, Kirkilionis M, Nicolis G (eds) Proceedings of the European conference on complex systems 2012. pp 579–584
802 803	Sueur C, Petit O, De Marco A, et al (2011) A comparative network analysis of social style in macaques. Anim Behav 82:845 – 852. https://doi.org/10.1016/j.anbehav.2011.07.020
804 805	Sueur C, Quque M, Naud A, et al (2021) Social capital: an independent dimension of healthy ageing. Peer Community J 1:. https://doi.org/10.24072/pcjournal.33
806 807 808	Sueur C, Romano V, Sosa S, Puga-Gonzalez I (2019) Mechanisms of network evolution: a focus on socioecological factors, intermediary mechanisms, and selection pressures. Primates 60:167 – 181. https://doi.org/10.1007/s10329-018-0682-7
809 810 811	Testard C, Brent LJN, Andersson J, et al (2022) Social connections predict brain structure in a multidimensional free-ranging primate society. Sci Adv 8:eabl5794. https://doi.org/10.1126/sciadv.abl5794
812 813	Testard C, Shergold C, Acevedo-Ithier A, et al (2024) Ecological disturbance alters the adaptive benefits of social ties. Science 384:1330 – 1335. https://doi.org/10.1126/science.adk0606
814	Thomas R, d'Ari R (1990) Biological feedback. CRC press
815 816	Thornhill R, Fincher CL (2014) The parasite-stress theory of values and sociality: Infectious disease, history and human values worldwide. Springer
817 818	Traulsen A, Nowak MA (2006) Evolution of cooperation by multilevel selection. Proc Natl Acad Sci 103:10952 – 10955. https://doi.org/10.1073/pnas.0602530103
819 820	Vicsek T (2007) Phase transitions and overlapping modules in complex networks. Phys Stat Mech Its Appl 378:20 – 32. https://doi.org/10.1016/j.physa.2006.11.075
821 822 823	Walsh JT, Garonski A, Jackan C, Linksvayer TA (2020) The collective behaviour of ant groups depends on group genotypic composition. bioRxiv 2020.12.16.423107. https://doi.org/10.1101/2020.12.16.423107

824 825 826	Walsh JT, Garonski A, Jackan C, Linksvayer TA (2022) The Collective Behavior of Ant Groups Depends on Group Genotypic Composition. J Hered 113:102 – 108. https://doi.org/10.1093/jhered/esab045
827 828 829	Wang J, Zhang K, Xu L, Wang E (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc Natl Acad Sci 108:8257 – 8262. https://doi.org/10.1073/pnas.1017017108
830 831	Whiten A, Ayala FJ, Feldman MW, Laland KN (2017) The extension of biology through culture. Proc Natl Acad Sci 114:7775 – 7781. https://doi.org/10.1073/pnas.1707630114
832 833 834	Williams JR, Insel TR, Harbaugh CR, Carter CS (1994) Oxytocin administered centrally facilitates formation of a partner preference in female prairie voles (Microtus ochrogaster). J Neuroendocrinol 6:247 – 250
835	Yamagishi T, Hashimoto H (2016) Social niche construction. Curr Opin Psychol 8:119 – 124
836	
837	
838	
839	