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Abstract
The foundational models of population dynamics, such as those by Lotka and
Volterra, presuppose a static, Euclidean phase space where interactions are governed
by fixed forces. The theory of Biorelativity challenges this, positing that dynamics are
better described as geodesics on a manifold whose geometry is actively shaped by the
system’s state and external forcings. This study gives operational form to this concept
by framing the choice between classical and biorelativistic models as an empirical
question about the underlying geometry of ecological interactions. A model
tournament was conducted across three predator-prey datasets, confronting classical
models with a key formalisation of Biorelativity: a climate-driven ecological clock
that modulates the metric of the phase space. While simple Euclidean models proved
sufficient for systems dominated by internal dynamics, the climate-driven ecological
clock (BR-7Z) was the decisive winner for the externally forced Isle Royale system.
This result provides strong empirical evidence that a geometric, non-static description
of ecological dynamics is not only more accurate but also more parsimonious,

vindicating the core tenets of Biorelativity.



1 Theoretical Framework: From Flat Space to a Dynamic

Manifold

11  The Classical View: A Euclidean Arena

The pioneering work of Lotka [14] and Volterra [24] and subsequent foundational analyses
by authors like May [16] and Murdoch [18], established the traditionestablished the
tradition of modelling ecological dynamics within a static, Euclidean phase space. In this
Newtonian view, populations are treated as points, and their interactions (predation,
competition) are modelled as eco-evolutionary forces governed by fixed parameters,
deflecting trajectories from otherwise linear paths. This framework implicitly assumes that
the underlying space of ecological possibilities is flat, unchanging and absolute. While
powerful, this view relegates environmental effects to external perturbations acting upon
the system, rather than being intrinsic to the fabric of the interaction space itself.

However, this classical Newtonian viewpoint is not the sole conceptual possibility. An
alternative, inspired by geometric theories of physics, posits that the ecological phase space
is not merely a static arena but rather a dynamic structure in its own right -
mathematically, a differentiable manifold M. In this geometric framework, the interactions
and environmental influences typically modelled as forces manifest instead as the
curvature and evolving metric g;; of the manifold itself. The trajectories of populations are
then hypothesised to follow geodesics, the paths of least 'effort' through this structured
space.

This conceptual shift from forces to geometry is not without precedent. For several decades,
pioneering work, particularly by Antonelli and colleagues, has explored the geometrisation
of ecological and evolutionary dynamics. This research has demonstrated that classical
population models, including variants of the Lotka-Volterra equations, can be rigorously
reformulated as geodesic flows, often utilising the even more general framework of Finsler

geometry, where the 'metric' of the space can depend on the direction of travel [2].

1.2 The Biorelativity Paradigm: A Geometric Re-interpretation



The theory of Biorelativity, as proposed by Farifia [8], offers a paradigm shift analogous to
Einstein’s move from Newtonian physics to general relativity. It reframes the phase space
itself as a dynamic, high-dimensional differentiable manifold [26]. There are several core
concepts that provide the foundation for this view, and they are as follows.

Formally, the phase space is conceived as an n-dimensional differentiable manifold,
denoted M, a topological space that locally resembles Euclidean space, allowing calculus to
be performed. Coordinate systems on M are realised through local charts (mappings from
subsets of M to open sets in R™), and the transition maps between overlapping charts are

required to be smooth (infinitely differentiable in this context).

Hypervolumes and Projections: An organism or a population is not a simple, dimensionless
point but a complex hypervolume existing in a high-dimensional eco-morphological
spacetime. This hypervolume is defined by a vast number of axes representing genetic,
morphological, behavioural and physiological traits, as well as abiotic factors (salinity,
rainfall, substrate). The population dynamics we observe in a typical two-dimensional
phase space (prey vs. predator) are therefore a lower-dimensional projection of this much
richer reality. The act of modelling is an act of projection, which involves collapsing this
complexity into a simplified representation.

This new “point” is an abstraction whose meaning is contingent upon the subspace chosen for
the projection. For example, a projection onto an average morphological subspace yields a
point representing the archetypal individual (the centroid of the hypervolume, defined by
traits such as average body size or diet). An analysis at this level compares interactions
between these archetypes. Alternatively, a projection onto an ecological functional subspace
yields a point representing the species” niche role (e.g., “apex predator,” “large herbivore”).
Here, the analysis concerns the structure of the ecosystem itself, independent of the specific
taxa filling those roles. Finally, a projection onto a phylogenetic subspace can represent an
entire clade, enabling the study of macroevolutionary trajectories. The models employed
herein, therefore, do not capture the complete state, but a shadow of it, projected onto the

chosen subspace of analysis.

Curvature as Interaction: In this framework, interactions do not manifest as forces but as



the curvature of the phase space itself, in direct analogy to General Relativity where mass-
energy tells spacetime how to curve and curved spacetime tells mass how to move. The
ecological mass-energy of a species is not its physical weight, but its capacity to modify its
environment and the relationships within it. An entity with high ecological mass-energy
drastically alters the landscape of possibilities and probabilities for others, effectively
deforming the rules of the game. The prey’s trajectory, in response, follows a geodesic, the
straightest possible path through this curved geometry.

This curvature can be induced in multiple ways. An ecosystem engineer like a beaver
(Castor canadensis) imparts extreme curvature by transforming a lotic (running water)
system into a lentic (still water) one through dam construction. This action blocks the
geodesics of riverine fish while creating new, low-resistance paths for amphibians and
aquatic insects. An apex predator like the now extinct sabretoothed cat (Smilodon populator)
generated a “landscape of fear” that curved the behavioural space of its prey (and other
species), triggering cascading trophic effects. An invasive species like buffelgrass
(Pennisetum ciliare) curves the environmental axes by introducing a frequent fire cycle,
creating conditions lethal to native flora. In each case, a biological entity redefines reality
for others by altering the structure of the environment itself.

Mathematically, the intrinsic curvature of the manifold is fully encoded in the Riemann
curvature tensor, Rfj; (often denoted Kj; in some notations). This type (1, 3) tensor is
constructed from the connection coefficients I} and their first derivatives. Its non-vanishing
components quantify the extent to which the manifold deviates locally from Euclidean
geometry.

This connection is foundational. The field of information geometry, formalised by Amari,
provides a robust mathematical framework for treating the space of probability
distributions as a statistical manifold equipped with a Riemannian metric (the FIM). This
framework has been successfully applied to foundational models in theoretical biology,
such as the Wright-Fisher model of population genetics, where the manifold's curvature
describes the effects of selection and drift [3]. Our hypothesis —that the empirical
covariance structure 3~ approximates the metric gij—is therefore a direct ecological

application of this established principle.



In the biorelativistic interpretation, non-zero curvature directly reflects the intensity and
nature of ecological interactions, governing phenomena such as the convergence or

divergence of nearby system trajectories.

The Metric Tensor, Mahalanobis Distance, and Fisher Information: The geometry of this
space is defined by a metric tensor [15], g; [21]. This can be conceptualised by relating it
to the covariance structure of the system’s state variables. The Mahalanobis distance,
A2m(X1, X2) = (X1 - X2)TE (X1 - X2), naturally accounts for the covariance () between
variables. It is thus posited that the metric tensor is approximated by the inverse of the
covariance matrix, gij = (Z71)jj.

The geometry of this manifold M is defined locally by a metric tensor, g;;, which is formally
a symmetric, non-degenerate tensor field of type (0, 2). It equips the manifold with a notion
of infinitesimal distance, ds? = g;;dx'dx’/ (where summation over repeated indices is
implied according to the Einstein convention). In the Biorelativity framework, g is posited

to be dynamic, potentially depending on the system state X and external forcings Z, i.e.,

-1
ij

9ij(X, Z). The empirical approach herein utilises the inverse covariance matrix X;;" or the
Fisher Information Metric (FIM) as operational estimators for the components of g;; under
specific distributional assumptions, noting that the FIM intrinsically defines a Riemannian
geometry on the relevant statistical manifold.

A more rigorous foundation for the phase space geometry is furnished by the Fisher
Information Metric (FIM). The FIM naturally endows the space of probability distributions
pertinent to the ecological system, a statistical manifold, with a Riemannian geometry. This
geometric structure, intrinsic to the statistical description itself, is generally non-Euclidean;
that is, the statistical manifold is typically curved. As detailed in Amari & Nagaoka [1], for
specific cases such as the multivariate Gaussian distributions implicitly assumed in least-
squares fitting procedures, the FIM simplifies and becomes proportional to the inverse of
the covariance matrix. This crucial link allows the empirically accessible Mahalanobis
distance to serve as a practical approximation to the underlying FIM. Significantly, this
implies that the very statistical structure inherent in ecological data may naturally define a

curved phase space, irrespective of specific interaction mechanisms. This perspective

strongly resonates with the core proposal of Biorelativity, suggesting that a non-flat



geometry is not merely a consequence of biological interactions but potentially an emergent
property of the system's statistical description itself.

A metric tensor g;j naturally determines a unique affine connection, known as the Levi-
Civita connection. Its coefficients, the Christoffel symbols I, depend algebraically on the
first partial derivatives of the metric tensor components. This connection defines the rules

for parallel transport of vectors along curves on the manifold and is crucial for defining

geodesics, the paths of 'inertial' motion within the curved space.

Explanatory Box: The FIM - Mahalanobis Approximation. The assertion that the metric
tensor (¢ij) can be approximated by the inverse covariance matrix (') —the core of the
Mahalanobis distance —is a specific and powerful result from information geometry. Here
are its formal conditions and limitations [1].

The formal condition for this equivalence rests upon the properties of a multivariate
Gaussian (normal) distribution.

The Fisher Information Metric (FIM) defines the geometry of a statistical manifold (the
space of all possible probability distributions of a certain family). The Mahalanobis
distance, @2m(x,u) = (x - )T 1(x - 1), defines a distance within a data space. The two
concepts become equivalent under a precise condition:

The Fisher-Rao distance (the geodesic distance derived from the FIM) is exactly equal to the
Mahalanobis distance only within the statistical manifold of Gaussian distributions that
share a common, fixed covariance matrix 2, , and where only their mean vectors x are
parameters that vary.

In this specific case, the manifold of parameters x is "flat" (Euclidean), and the FIM is
constant and equal to the inverse of the shared covariance matrix, gj = Z;;'

This is the precise assumption invoked when using standard least-squares fitting, which
assumes Gaussian noise with a stable covariance.

Mini-Example: When the Approximation Fails. The approximation g ~ X! fails when the
underlying statistical manifold is not this simple, constant-covariance Gaussian space.
Conceptual Failure: Non-Linearity. Imagine our predator-prey data does not form a
simple elliptical cloud, but rather a curved, banana-like shape in the phase space (e.g., due

to a non-linear relationship where ~ X?). The covariance matrix only captures linear



correlations. It will (incorrectly) describe this banana shape as a single, large, tilted ellipse.
The Mahalanobis distance will measure distance relative to the centre of this flawed ellipse.
The true FIM would be derived from the actual probability distribution of this banana
shape. This creates a curved statistical manifold.

In this scenario, 27! is a poor approximation of the true metric g. The covariance matrix
fails to capture the true geometric structure, whereas the FIM, by definition, is that
structure. This limitation also applies to data that is strongly skewed or heteroskedastic

(where variance is not constant).

Hierarchies as Geometric Constraints: Ecological systems are hierarchical, and the concept of
a “point” in this hyperspace represents a biological entity at a specific instant, with its
complexity defining the hierarchical level.

e Level 1: The Individual Organism. The “point” is a single, concrete living being
(e.g., an individual jaguar, Panthera onca, in the Pantanal, with coordinates for its
exact body mass, hunger level and geographic position at an instant, as well as local
weather conditions). Note that, according to the aim of the analysis, the level 1 could
have been chosen below the organism, for instance, the cell or the genes.

e Level 2: The Population. The “point” is an abstraction representing the aggregated
state of a group (e.g., the jaguar population of the North Pantanal, with coordinates
for density, age distribution, genetic diversity and abiotic factors). This point acts as
the “centre of mass” for all its constituent individuals.

e Level 3: The Community. The “point” is a higher-level abstraction for the set of all
interacting populations (e.g., the vertebrate community of the North Pantanal, with
coordinates for total biomass, species richness and energy flow in those particular

weather general conditions).

Within this framework, a species is not a single point, as it inherently contains variation. A
species is therefore a hypervolume (or cloud of points) within this hyperspace, formed by the
totality of all its individual organisms. This volume is dynamic: its centre represents the
archetypal individual, its extent represents the species’ variability and its movement

through time represents evolution. Speciation can be visualised as the fragmentation of



this hypervolume and extinction as its collapse.

Biorelativity postulates that external, non-biological macro-level variables (e.g., climate) do
not exert direct deterministic forces on biological dynamics. Instead, these variables define
the geometric constraints and the boundary conditions of the system's phase space, within
which intrinsic biological interactions unfold.

Consequently, a change in an external variable (such as climate) alters the topology or
boundaries of this phase space —that is, the shape of the "pitch" —but does not modify the
fundamental parameters or the governing equations that define the biological interactions

occurring within it— that is, the "rules of the game".

1.3 Reichenbach’s Dilemma and the Ecological Clock

This leads to a fundamental problem articulated by the philosopher of science Hans
Reichenbach [19]. He argued that the geometry of physical space is not an a priori truth but an
empirical question. A phenomenon can be described by assuming a flat geometry and
postulating “universal forces”, or by assuming a curved geometry where objects follow
geodesics. This study operationalises this dilemma by framing the model comparison as a
test between two families of hypotheses:

e Hr (The “Force” Hypothesis): Climate acts as a universal force, modifying specific
parameters within a classical, flat RA model.

e Hg (The “Geometric” Hypothesis): Climate modifies the underlying metric of the
phase space. A simple, scalar-field approximation of this change is tested: the
ecological clock,

Ceco(Z), where X = Coco(Z) - F(X, 6)
The model tournament is thus presented not as a mere comparison of contingent
implementations, but as a critical test between these two fundamental explanatory

frameworks.

2 Methods

21 Datasets and Model Tournament
Three canonical predator-prey datasets were analysed: the laboratory system of

Paramecium and Didinium from Gause [10]; the Hudson Bay Company records of lynx and



snowshoe hare [22, 23]; and the Isle Royale wolf-moose system [25]. For the Isle Royale
data, a climate index was constructed from the first principal component of local
temperature anomalies.

A focused model tournament was conducted. For the Isle Royale dataset, a full suite of five
mechanistic models was tested to disentangle the role of climate. For the Hudson Bay and
Veilleux datasets, where no strong external drivers were measured, a core comparison
between the classic Rosenzweig-MacArthur [20] and the state-dependent that includes
proper ecologically relevant time (BR-7) model was performed. All models were
implemented in R using the deSolve [7] package for numerical integration and

minpack. 1m for fitting.

The competing hypotheses were encoded directly into the ODE function:

climate val <- paramsS$Sclimate func(t)
dY dt <- c conv * fr term - (d mort + params$Sdelta d *
climate val) * Y

Listing 1: R code snippet for the “Force” model (RA-climate),

where climate acts as an additive force on predator mortality

climate val <- params$climate func(t)
c_eco <- exp(paramsSbetal + paramsSbetal *
climate val)

dX dt <- dX dt * c_eco

dy dt <- dY dt * c_eco

Listing 2: R code snippet for the BR-7Z model

where climate acts as a multiplicative scalar on the entire vector field

22  Model Selection and Parameterisation

Models were fitted by minimising the sum of squared errors between observed and
predicted population densities using the Levenberg-Marquardt algorithm [12] provided by
the n1s.1m function in R. This approach assumes errors are approximately Gaussian, a
condition under which the Fisher Information Metric and the Mahalanobis metric converge
[1]. All population time-series were normalised by their respective medians prior to fitting to
ensure numerical stability and comparability of error metrics across different scales.

All parameters dependent on covariates (e.g., in Hierarchical Biorelativistic Model, HBM,



and geometric ecological clock, BR-7Z, models) were implemented using log-links (e.g.,

ePotF12)) to ensure positivity, guaranteeing biologically plausible values. The total number
of estimated parameters (k) for each model included all structural coefficients (e.g., r, K),
any biorelativity coefficients (f;), the initial population conditions (Xo, Yo), and one
additional parameter for the residual variance (02). Model performance was evaluated using
the Akaike Information Criterion corrected for small sample sizes (AICc), which is grounded
on information theory and serves as a robust tool for selecting the model with the best
expected out-of-sample performance [9]. The difference in AICc from the best-performing
model (AAICc) and the Akaike weights (w;) were used to rank models and quantify the

relative evidence for each hypothesis.

logLik <- fit$metrics$loglLik

n <- fitSmetricss$n

k <- fitSmetrics$k

AIC <- (2 * k) = (2 * logLik)

AICc <- AIC + (2 * k * (k + 1)) / (n — k - 1)

Listing 3: R code snippet for calculating AICc

10



2.3 Model Specification, Evaluation, and Validation

Model families and mechanistic baselines. In addition to the standard RA and the BR-7Z
models, our analysis incorporated 'force-augmented' flat models, denoted RA(b,h | Z).
These models applied climatic forcing directly to the attack rate (b) or handling time (/).
We also evaluated a variant employing a Holling Type II [11] functional response. For
model selection, the total parameter count (k) for each model included its structural
parameters, initial conditions, and the residual variance (0?). We report the corrected
Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC), AAICc, and

Akaike weights to compare model performance.

Out-of-sample evaluation. To assess predictive performance, we implemented a rolling-
origin forecasting procedure across five folds, evaluating horizons from one to five years.
Forecast accuracy was quantified using the Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). For models where predictive intervals were computed, we
additionally report the Continuous Ranked Probability Score (CRPS). Statistical
differences in forecast accuracy between models were assessed using the Diebold-

Mariano test.

Identifiability: clock versus parameter forcing. We conducted synthetic data experiments
to address the structural identifiability of the geometric clock against direct parameter
forcing. Ground-truth datasets were generated using two distinct processes: (a) a pure
ecological clock, c,.,(Z), and (b) direct parameter forcing, 8(Z). We then fitted models
from both families to these synthetic datasets and compared their out-of-sample
predictive performance, particularly under simulated shifts in the forcing variable, Z.
Furthermore, we quantified the collinearity between the estimated clock effect, ¢,.,(Z),

and the estimated direct forcing effect, 8(Z), to assess their empirical distinguishability.

Error structure and parameter positivity. The robustness of our findings to alternative
error assumptions was examined. We report the sensitivity of the results to models
incorporating Generalised Least Squares (GLS) with AR(1) residuals and to a simple state-

space model accommodating observation noise [6, 12]. To ensure all biological parameters
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remained mechanistically plausible, positivity was strictly enforced using exponential link

functions.

Scaling and non-dimensionalisation. Finally, we present a non-dimensional form of the
system to clarify its fundamental scaling properties. This adimensional analysis elucidates
precisely which dimensionless groups are modulated by the ecological clock's temporal
scaling and which remain invariant, thereby facilitating a more robust comparison of the

underlying dynamics across disparate datasets.

3 Results

The model tournament revealed a clear, context-dependent hierarchy. For Isle Royale, the
climate-driven ecological clock (BR-tZ) was the undisputed winning model (Akaike weight
=1.00), dramatically outperforming the classical RA and the force-based RA-climate models
(Table 1). In stark contrast, for both the Hudson Bay and Veilleux datasets, the simplest
mechanistic model, RA, was the clear winner (Table 2).

Table 1: Model Selection Results for the Isle Royale Dataset. The winning model is
highlighted in bold.

Model k AICc AAICc wi
BR_7Z 12 -79.82 0.00 1.00
RA_climate 11 -68.93 10.89 0.00
HBM 14 7959 159.41 0.00
RA 10 3721 117.03 0.00
BR_7 12 3574 11556 0.00

Table 2: Model Selection Summaries for Baseline Datasets.

Dataset Model AICc AAICc Wi
Hudson Bay RA 37.21 0.00 1.00
BR_ 7 45.85 8.64 0.01

12



Veilleux RA -9.46 0.00 1.00
BR_ 7 4933 58.79 0.00
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4 Discussion

41 The Empirical Resolution of Reichenbach’s Dilemma

The empirical results presented resolve Reichenbach's dilemma for the specific ecological
systems studied. We contrast two families of models under parsimonious instantiations:
force-augmented flat dynamics (Hr) and time-warped geometric dynamics (Hg). Our
empirical preference for Hg in the externally forced Isle Royale system is predictive-
epistemic, based on its superior performance according to AICc which proxies expected
out-of-sample predictive loss; it is not presented as a metaphysical verdict about the
ultimate nature of ecological reality. The results provide a compelling empirical narrative.
The success of the geometric approach suggests a departure from classical dynamics
operating within a static phase space. The Biorelativity framework posits that ecological
organisation exhibits reciprocal coupling, often termed 'back-reaction'. Rather than a simple
top-down chain of command where higher-level variables dictate lower-level dynamics,
external variables (like climate in the BR-7Z model) shape the metric or curvature that
governs local interactions. In turn, the empirical covariance structure generated by those
local dynamics updates the metric itself. Operationally, this coupling can be approximated
by relating the metric tensor to the inverse covariance matrix, g = ¥~ 1 estimated locally, a
concept linking the system's statistical properties to the phase space geometry, reminiscent
of links between Fisher information and Riemannian metrics discussed in information
geometry. Such dynamic coupling between system state and space structure is central to
geometric interpretations of dynamics, as explored in frameworks like tensor analysis on
manifolds (see, for example, Lovelock & Rund [15] or Wasserman [26]).

It is important, however, to exercise caution regarding the analogy drawn with General
Relativity. The GR metaphor serves primarily as a heuristic device to guide
parameterisation — suggesting concepts like ecological clocks and curvature as potential
descriptors of interaction —and to inform model selection. It does not entail a strong
ontological claim that ecological interactions literally warp a physical spacetime. Our
commitment here is pragmatic: the geometric perspective, specifically the ecological clock
model, yields better expected prediction under documented environmental forcing for the
Isle Royale system.

The victory of the BR_7Z model in Isle Royale is a validation of the geometric framework
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(Hc). The data indicates that it is more efficient and accurate to state that the pace of life
slows in harsh winters, a geometric statement about the metric of spacetime than to
construct force laws linking climate to individual parameters. The decisive failure of the

RA_climate model, the force hypothesis (HF) supports this interpretation.

Furthermore, the empirical success of the climate-driven ecological clock, C..,(Z), merits a
brief geometrical interpretation within the broader Biorelativity framework proposed by
Farifia [8]. While the full theory envisages a dynamic metric tensor, g;;(X, Z), whose
components evolve depending on the system's state X and external forcings Z, the
ecological clock model represents the simplest non-trivial approximation to such
dependence. Formally, the effect of C,.,(Z) multiplying the entire vector field, X = C,.,(Z)
F(X, ) is analogous to a conformal transformation applied specifically to the temporal
component of a hypothetical underlying eco-evolutionary metric, or equivalently, a
rescaling of the proper time interval dt? — C;2(Z) dt? . As detailed in foundational texts
on differential geometry, conformal transformations preserve angles but rescale distances
and intervals. In this ecological context, C,.,(Z) acts as the conformal factor Q, uniformly
altering the tempo of dynamics across the phase space without changing the relative
geometry of the nullclines at any given instant. This provides a geometrically grounded,
albeit simplified, mechanism for how external variables like climate can modulate the fabric
of ecological interactions, lending credence to the view that the underlying geometry is
indeed non-static, as posited by Biorelativity.

This aligns with the arguments of Reichenbach. While a Euclidean geometry could be
preserved by introducing ad-hoc forces, parsimony, as operationalised by the AICc, guides
the analysis to a more elegant conclusion: the geometry itself is non-static.

Rather than a top-down chain of command, ecological hierarchy exhibits back-reaction:
higher-level states set the curvature that guides lower-level motion, and the statistical
imprint of that motion (its variance-covariance structure) in turn reshapes the geometry.
This perspective, central to the Biorelativity framework, recasts ecological dynamics as
motion within a deformable ecomorphological manifold, analogous to how mass-energy
warps spacetime in general relativity. The curvature here represents the landscape of

ecological possibilities and constraints — such as resource availability gradients, predation
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risk landscapes or niche partitioning opportunities —which are influenced by broader
system states (e.g., climate, community structure). Individual organisms or populations
(lower-level entities) navigate this curved space, their trajectories representing ecological
processes like foraging, competition or dispersal, following paths akin to geodesics
determined by the local geometry.

This geometric view necessitates a dynamic coupling between the state of the system and
the structure of the space itself. We posit a bidirectional coupling: ecological dynamics,
represented by the state vector X evolving under influences from higher levels H and
external factors Z, follow trajectories governed by X = c,.,(X, H,Z)-F(X,H).
Simultaneously, the geometry of the manifold, encoded by a metric tensor g, evolves based
on the statistical properties emerging from these dynamics. Specifically, identifying the
metric g with the inverse of the variance-covariance matrix £~! derived from the system's
state g(X,H,Z) = 7 Y(X,H, Z), allows for geometry evolution described by d;% =
W(stats(X,H,Z)). In this formulation, higher-level variables (H, Z) modulate the curvature
k

(affecting g or its associated connection coefficients Tjj,

thereby influencing the geodesics
followed by X. Conversely, the statistical patterns generated by the motion of X (and H, Z),
captured in X, feed back to reshape the metric g itself via the function W. This formalises the
concept of back-reaction, where ecological agents both respond to and co-create the

geometric structure of their interaction space.

42 Parsimony and the Rejection of Unnecessary Complexity

The path of model development in this study itself provides a meta-narrative. The HBM
represented a direct translation of a complex theoretical idea but was severely penalised for
over-parameterisation. The success of the simpler BR_7Z model is therefore a crucial
finding. It suggests that while the geometry is indeed dynamic, the change is better
captured by a single, elegant deformation of the time dimension. The failure of the HBM
was not a failure of the geometric paradigm, but a success for the principle of parsimony
within it.

The success of the simple RA model in the other two datasets acts as a scientific control. It
demonstrates that the analysis does not simply overfit, but correctly chooses the simplest

geometric structure supported by the data which, in those cases, is flat and unchanging.
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43 Limitations and Future Work

This study relies on in-sample metrics (AICc) for model selection. While robust, future
work must corroborate these findings using out-of-sample validation, such as a rolling-
origin forecast comparison. Furthermore, this study used a single PC1 axis as the climate
driver; a more thorough analysis would involve a covariate substitution test to determine
which specific environmental variables (e.g., snow depth, temperature) provide the most
explanatory power. Finally, richer mechanistic baselines (e.g., models where climate affects
multiple parameters simultaneously) are required to provide a stronger challenge to the
geometric hypothesis.

Future investigations could explore incorporating additional known ecological
mechanisms, such as Allee effects [5] which can significantly alter system equilibria and
stability [21], within this geometric framework to assess their interaction with potential

phase-space curvature.

5 Outlook: Formalising a Tensorial Ecology

The success of the scalar ecological clock model is a powerful validation of the geometric
approach. However, it represents a minimal formalisation of Biorelativity. The
mathematical framework of tensor calculus and differential geometry [21] provides the

tools to construct a fully tensorial theory.

51 The Geodesic Equation with a Dynamic Metric
A direct implementation of Biorelativity would replace the classical equations of motion
with the geodesic equation on a manifold with a climate-dependent metric, g;(Z). The

dynamics would be governed by:

dZX"_l_ L dXtdx)
dt? YUdr dr

Here, x' are the population state variables, 7 is biological time, and gl’j (Z) are the

Christoffel symbols, which depend on the derivatives of the metric tensor gii(Z), thus
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explicitly encoding how climate alters the curvature of the phase space.

The rigorous mathematical basis for this implementation stems from the field of geometric
dynamics, which provides the formalism for transforming a first-order autonomous
differential system (a 'flow') into the second-order geodesic equations of motion on a
Riemannian manifold [17]. In this context, the connection coefficients Fl-’j derived from the
metric g;{(Z) function as the 'fictitious forces' that arise purely from the curvature of the
manifold, elegantly replacing the ad-hoc 'universal forces' of the classical Newtonian

paradigm.

52 An Eco-Evolutionary Manifold

To fully realise the Biorelativity framework, the manifold must capture not only ecological
dynamics but also evolutionary change, treating both as commensurate components of a
single system. Indeed, as argued by Jost [13], geometry and information are the
fundamental mathematical concepts required for a modern, unified theoretical biology.

A more comprehensive model would exist on an eco-evolutionary manifold, M, ,—eyo,
whose coordinates include population densities (N¥) and mean trait values (¢?). The metric
tensor on this expanded manifold, gas, would have blocks describing purely ecological
interactions (g;) and evolutionary dynamics (gqag), as well as the crucial eco-evolutionary
feedback (gig). This provides a rigorous geometric framework for modelling adaptive

dynamics as trajectories on a dynamically curving manifold.

6 Conclusion

This study does not merely compare models; it tests competing descriptions of ecological
reality. By formalising principles of Biorelativity into a falsifiable model, strong evidence is
provided that a geometric, non-static view of phase space is a superior explanatory
framework for systems subject to strong external forcing. The climate-driven ecological
clock is not a universal law, but a powerful tool whose success in the Isle Royale system
empirically vindicates the foundational concepts of a relativistic approach to biology. The
findings suggest that for many ecological systems, the most insightful question may not be

“how do forces change the dynamics?” but rather “how does the environment change the
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arena of life itself?”.
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A Mathematical and Conceptual Appendix

A1l Geodesic Equation and the Time-Warp Approximation
The core postulate of a geometric theory is that trajectories follow geodesics. For a
manifold with metric g;j and coordinates X, the geodesic equation is given by:

d*x*  dX'dx
+ i _—
dt? Y dr dt

where I'* are the Christoffel symbols, which depend on the first derivatives of the metric
tensor([11, 26].

The ecological clock model, X = geco(Z) - F(X), can be seen as a conformal transformation
of a flat background metric, §' = ceco(Z)? - 6. This transformation introduces curvature.
Under simplifying assumptions (e.g., weak field limit, where curvature is small), the
geodesic dynamics can be approximated by a force-like equation where the “force” is
proportional to the gradient of the clock function. The empirical success of the scalar clock
model thus provides evidence for a non-trivial underlying geometry, with ceco(Z) serving
as the simplest possible approximation (a scalar field) of the metric tensor’s dependence

onZ.

A2 Identifiability and Non-Equivalence

A key concern is whether the geometric model (BR_7Z) is truly distinguishable from a
classical model where all parameters depend on climate, i.e., 6(Z). While they may achieve
similar in-sample fits, their functional forms are different. A model with 6(Z) implies that
climate alters multiple, specific biological mechanisms independently. The BR_7Z model
proposes a more constrained, holistic effect: a single modulation of the system’s tempo.
These two hypotheses make different predictions about how the system would behave
under novel climatic conditions. A synthetic data experiment (not shown here, but
pending) would be required to demonstrate that a BR_zZ model is better at recovering the
true generating process from data simulated with a time-warp, confirming their non-

equivalence in predictive power.
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A3 Adimensionalisation

The Rosenzweig-MacArthur [20] model can be non-dimensionalised to reduce its
parameters. When the ecological clock ceco(Z) is applied to this non-dimensional system, it
becomes clear that it does not alter the dimensionless parameters that define the geometry
of the nullclines. Instead, it multiplies the entire system, confirming its role as a pure

rescaling of the characteristic timescale of the dynamics, { = t/ceco(Z), where ¢ is the new,

dimensionless biological time.

A4 Temporal Reparameterisation vs. Geodesic Dynamics

A.4.1Temporal Reparameterisation. Let the classical dynamics be given by the vector field
X = F(X). We introduce a biological proper time, 7, defined by the differential relation dt =
Ceco(Z)dt, where c,..,(Z) > 0 is the scalar clock function. By the chain rule, the dynamics

with respect to 7 are:

dX_dth_FX< 1 )
dr  dtdr ()ceCO(Z)

The resulting vector field is merely a rescaling of the original. Consequently, the trajectories

in phase space (the integral curves) remain unchanged; only their parametrisation, or the

speed at which they are traversed, is altered.

A.4.2 Geodesic Dynamics. A more profound geometric hypothesis posits that motion is
geodesic upon a manifold with a metric g;;(X, Z). In this case, trajectories do not follow F(X)

but instead satisfy the geodesic equation:

d*xk  dX'dx
+TE———=0

dt? Jdt dt
where % are the Christoffel symbols (connection coefficients) derived from the metric. Non-

zero connection terms act as inertial fictitious forces [11, 21] that can rotate the tangent field,

fundamentally altering the shape of the curves in phase space, not just the speed.

A.4.3 Clock-as-Geodesic Approximation. A scalar clock (A.4.1) may approximate a full

geodesic dynamic (A.4.2) under restrictive conditions. If the metric is (i) weakly varying and
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(ii) approximately diagonal and conformal to the Euclidean metric, such that g;;(X, Z) ~
A(Z)8;j, the connection terms I may be negligible. If a reference vector field F(X) is already
closely aligned with the local geodesics, the dominant effect of the metric will be the scalar
timing modulation c,.,(Z) = 1/ \/m . Departures from this simplicity (e.g., strong
gradients, or significant off-diagonal terms in g;;) would necessitate explicit connection

terms to account for directional changes.

A.4.4 Conformal Curvature. Consider a conformally flat metric g';; = e?¢X2§;;. If the
conformal factor ¢ depends on the state variables X (i.e., ¢ = ¢ (X)), the phase space X
becomes intrinsically curved. However, in our clock model, the factor depends only on the
exogenous variable Z(t), i.e., ¢ = ¢(Z(t)) As the Laplacian with respectto X is Ay ¢ =0,
the phase space X itself remains flat (Euclidean) at any given instant. Any curvature
induced by the clock resides in the extended state-time manifold (X, t), not intrinsically

within the phase space X.

A.4.5 Well-posedness. The use of log-links (e.g., b(Z) = e# 'z ) ensures that all biological
parameters remain strictly positive. This, combined with the standard Holling-type [11]
functional responses, results in a right-hand-side vector field F(X, Z(t)) that is locally
Lipschitz-continuous on the observed domain. By the Picard-Lindel6f theorem, this
guarantees the local existence and uniqueness of solutions, confirming the models are well-
posed. The empirical ranges of the forced parameters are reported to ensure they remain

within physically plausible bounds.

A5 An Eco-Evolutionary Manifold: Geometrically Unifying Ecology and

Evolution
The concept of an eco-evolutionary manifold, denoted as M,.,_.y0, represents a crucial step
in operationalising the Biorelativity theory. Biorelativity posits that ecological dynamics are
best understood not as movements within a static, Euclidean phase space influenced by
external forces, but as geodesics on a dynamic manifold whose geometry is actively shaped

by the system's state and interactions. The eco-evolutionary manifold provides a concrete
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mathematical structure for this dynamic geometry by explicitly unifying ecological and
evolutionary state variables.

Motivation: Traditional models often treat ecology (population dynamics) and evolution
(changes in traits) separately, or link them by having ecological parameters depend on
traits in an ad-hoc manner. Biorelativity seeks a more fundamental unification. It views the
commonly observed low-dimensional phase spaces (like prey vs. predator density) as
projections from a much richer, higher-dimensional eco-morphological spacetime
encompassing genetic, morphological, behavioural and physiological traits alongside
population variables. M., _ey, aims to capture more of this underlying reality by creating a
unified space where both ecological and evolutionary changes manifest as movement.
Coordinates and Structure: The coordinates on this manifold explicitly include both
population densities (N!, where i indexes species or populations) and mean trait values (¢%,
where a indexes relevant traits, such as average body size, foraging efficiency, etc.). A point
on Mcp—evo thus represents the combined ecological and evolutionary state of the system
at an instant.

The Metric Tensor (g,p) defining the Geometry of Interaction: The core of the geometric
description lies in the metric tensor, (g45) , defined on M ,—¢y0- This tensor generalises the
concept of distance and angle to the curved manifold, determining its local geometry.
Crucially, in the Biorelativity framework, this metric is not fixed but dynamic, shaped by
the state variables themselves. The proposed structure for g g on Mec,—eyo highlights the
interconnectedness.

Ecological Block (g;;): This sub-matrix describes the purely ecological geometry. It
determines the distances and curvature related to changes in population densities (N¢, N/).
This block captures how ecological interactions (predation, competition) manifest
geometrically when only population numbers change. It can be seen as a dynamic
generalisation of the geometry underlying classical phase-plane analysis, potentially linked
to covariance structures or Fisher Information Metrics.

Evolutionary Block (g,z): This sub-matrix describes the purely evolutionary geometry,
relating to changes in mean trait values (¢%, ¢P). It captures the geometry of the fitness
landscape or the space of possible trait combinations, influenced by selection pressures

acting directly on traits.
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Eco-Evolutionary Feedback Block (g;s and gg;): These off-diagonal blocks are perhaps the
most significant conceptual advance. They explicitly encode the feedback loops between
ecology and evolution as intrinsic components of the manifold's geometry.

gig quantifies how changes in trait § influence the dynamics of population i (e.g., how
increased prey size affects predator population growth).

gpi quantifies how changes in population i influence the evolutionary trajectory of trait 8
(e.g., how high predator density selects for different prey defence traits - density-
dependent selection).

Dynamics as trajectories on the Manifold: Within this framework, adaptive dynamics - the
simultaneous change in population densities and mean trait values - are modelled as
trajectories on the dynamically curving manifold M eco-eoo. Following the core tenet of
Biorelativity, these trajectories are hypothesised to follow geodesics defined by the metric

9gag- The geodesic equation:

d?xk K dxtdx)
dr? Y dr dr

=0,

where x* represents the coordinates (N! or ¢%), T is an appropriate measure of eco-
evolutionary proper time, and I‘i'j are the Christoffel symbols derived from the metric g p,
formally describes this motion. Changes in the system state (populations or traits) alter the
metric g,p, which in turn alters the curvature and thus the subsequent geodesic paths
available to the system.

Significance: This formulation provides a rigorous geometric framework for modelling eco-
evolutionary dynamics. It moves beyond the Newtonian paradigm of forces acting in a
fixed space, embracing a relativistic view where interactions manifest as the curvature of
the state space itself. By incorporating eco-evolutionary feedback directly into the metric
tensor, it offers a potentially more fundamental and unified way to understand how
ecological and evolutionary processes shape each other over time. The mathematical
language required relies heavily on tensor calculus and differential geometry, as detailed in
texts such as Lovelock & Rund [15] and Wasserman [26]. This approach allows the complex
interplay of ecological interactions, evolutionary pressures and their feedbacks to be

described coherently within a single, dynamic geometric structure.
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A6 Distinguishing Temporal Reparameterisation and Geodesic Dynamics
In order to illustrate the formal distinction between a simple temporal reparameterisation
(the ecological clock) and a more fundamental geodesic dynamic, we present the R code

(trespanelesV01.R) used to generate the conceptual three-panel diagram.

2.5+ 25 254,40
0t
2.0 20
Velocidad
& - (c_eco) a
X 151 X 15 = 1.
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E E E
p 2 0.7 o
21.01 21.01 &
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Panel (a) Classical: RA X'= F(X, 0). This is a standard vector field in Euclidean space. From
a naturalist’s perspective, the rules of the game are fixed. The predator’s functional
response and the prey’s growth are constant.

Panel (b) RA with Ecological Clock (BR-tZ): X= ¢(Z) - F(X, 0). This is a conformal
transformation. Mathematically, the vector field’s direction at any point (N, P) is identical to
Panel (a), but its magnitude is scaled by ¢(Z). Ecologically, this represents a time-warp or a
change in the entire system’s pace of life. All processes (growth, predation, death) speed up
or slowdown in unison, as if a universal metabolic rate were being externally modulated.
The trajectory’s path in phase space remains unchanged, but the speed of traversal along

that path is altered.

Panel (c) Hypothetical Geodesic Dynamics: X* + I'X'X) = 0 . This panel illustrates
dynamics on a hypothetically curved manifold. The vector field, implemented in the
geo_model function within the R code, deviates from the classical RA field. Crucially, the

terms forceyx; and forcey, added within geo_model serve as an ad-hoc representation
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intended to mimic the effect of the Christoffel symbols I'%(Z) that appear in the geodesic
equation. The geodesic equation describes the fundamental path of inertial motion in
curved spaces, as detailed in differential geometry and central to the Biorelativity
framework. It must be stressed that this implementation is purely illustrative,
demonstrating the concept of trajectory deviation due to underlying geometry, rather than
being derived from the rigorous calculation of Christoffel symbols based on a specific
metric tensor g;;. The resulting trajectory (black line) visibly differs from that in the flat

space of Panel (a), showcasing how geometric effects alter system dynamics.

The provided R code implements these three scenarios numerically. The function ra_model
is the classical Hr case. The function ra model clock implementsthe Hc hypothesis
tested in this paper, showing a uniform scaling of the derivatives. The function

ra model geodesic implements a hypothetical non-trivial curvature by adding fictitious
force terms (y1,¥,) that are not proportional to the base vector field, thus altering the
trajectory’s direction. This demonstrates the conceptual and mathematical distinction

between the models.

rm(list = 1s())
library (ggplot2)

library (deSolve)

library (patchwork)

library (dplyr)

library (tidyr)

# -—-— 1. Define the Base Model (Rosenzweig-MacArthur) ---
# Parameters for a limit cycle

params <- list(

r =1.0, # Prey growth rate

K = 5.0, # Prey carrying capacity
a=1.0, # Predator attack rate

h = 0.5, # Handling time

e = 0.4, # Conversion efficiency
m= 0.2 # Predator mortality rate

)
# RA model function for 'deSolve'
ra model <- function(t, state, params) {
X1 <- state[l] # Prey
X2 <- state[2] # Predator
with(as.list (params), {
# dX/dt equations
Xm_dt <-r * X1 * (1 - X1 /K - a*Xl *X2/ (1 +a*h * X1)
dX2 dt <- e * a * X1 * X2 / (1 + a * h * X1) - m * X2
return (list(c(dX1l dt, dX2 dt)))
1)}
# ——— 2. Prepare Data for the Plots ---
# Create a grid of the state space
grid data <- expand.grid(
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X1l = seq(0.1, 5.5, length.out = 20),
X2 = seq(0.1, 2.5, length.out = 20))
# --- (a) RA Field Data (Standard) ---

# Calculate derivatives at each grid point
vec _data a <- grid data %>%

rowwise () %$>%
mutate (
derivs = list(ra model (0, c(X1l, X2), params)[[1]]),

dX1l = derivs|[1l],
dX2 = derivs|[2]
) %>%

ungroup ()

# Simulate a trajectory
traj a <- as.data.frame(
ode(y = ¢c(X1 =1, X2 = 1), times = seqg(0, 100, by
func = ra model, parms = params))

0.1),

# Calculate Nullclines
# We use 'with(params, { ... })' so that 'mutate' can "see"
# the variables 'r', 'K', 'a', 'h', 'm', 'e'.
nullclines <- with (params, {
grid data %>%
mutate (
# Prey Nullcline (dX1/dt = 0)
# X2 =r * (1 - X1 /K) * (1l +a*h=*X1l) / a
null X1 = r * (1 - X1 /K) * (1 +a*h*Xl) / a,

# Predator Nullcline (dX2/dt = 0)

# X1 =m/ (a * (¢ -—m * h))
null X2 X1 val =m / (a * (e - m * h)),
# Drawn as a vertical line
null X2 X2 val = X2

})

# -—— (b) Ecological Clock Data (BR-tau(Z)) ---
# The 'clock' (c_eco) is a scalar factor.
vec_data b <- vec _data a %>%
mutate (
# c eco is small (slow) when X1 is low, fast when X1 is high
c eco = 0.3 + 0.7 * (X1 / paramsS$SK),

# Re-scale the derivatives (same direction, different magnitude)
dX1l = dX1 * c_eco,
dX2 = dX2 * c_eco

)

# --- (c) Hypothetical Geodesic Data (g(X,Z2)) ---

# Calculate equilibrium points (needed for the 'force')

X1l eq <- nullclines$null X2 X1 vall[l]

X2 eq <- with(params, r * (1 - X1 eq / K) * (1 + a* h * X1 eq) / a)

# The vector field for ggplot CAN access X1 eq and X2 eq
# because they are in the script's global environment.
vec data c <- vec data a %>%

mutate (
# Connection 'force' (Gamma * V) - e.g., rotation
force X1 = -0.3 * (X2 - X2 eq),
force X2 = 0.3 * (X1 - X1 eq),
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# The new field is (RA + Force)
dX1 = dX1 + force X1,
dX2 = dX2 + force X2
)
# Create a parameter list including equilibrium points
params_geo <- c(params, list(Xl eq = X1 eq, X2 eqg = X2 eq))

geo _model <- function(t, state, params) {
X1 <- state[1l]
X2 <- state[2]

# 1. Get RA derivatives
ra derivs <- ra model (t, state, params) [[1]]

# 2. Calculate geometric 'force' (using 'with')
with(as.list (params), {

force X1 <- -0.3 * (X2 - X2 eq)

force X2 <- 0.3 * (X1 - X1 eq)

# 3. Sum them up
return(list(c(ra derivs[1l] + force X1,
ra derivs[2] + force X2)))
})
}

# 3. Simulate the curved trajectory using 'params_ geo'
traj ¢ <- as.data.frame(
ode(y = c(X1 =1, X2 = 1), times = seq(0, 100, by = 0.1),
func = geo model, parms = params geo) # <-- Use the extended list

)

# -—— 3. Create Plots with ggplot2 ---

# Common axis limits
lims x <- ¢ (0, 5.5)
lims y <- c(0, 2.5)
# Base function to draw nullclines
plot nullclines <- function() {
list(
# Prey Nullcline
geom line(data = nullclines, aes(x = X1, y = null X1),
color = "darkgreen", linetype = "dashed", linewidth = 1),
# Predator Nullcline
geom line(data = nullclines, aes(x = null X2 X1 val, y = null X2 X2 val),
color = "darkred", linetype = "dashed", linewidth = 1)
)
}

# Normalize vectors for visualization (optional, but helpful)
normalize vecs <- function(df, scale = 0.2) {
df %>%
mutate (
magnitude = sqrt (dX1"2 + dX272),
dX1l norm = dX1 / magnitude * scale,
dX2 norm = dX2 / magnitude * scale
)
}

# --- Panel (a): RA Field (Flat Space) ---
p_a <- ggplot(data = normalize vecs(vec_data a), aes(x = X1, y = X2)) +
geom_segment (aes (xend = X1 + dX1 norm, yend = X2 + dX2 norm),
arrow = arrow (length = unit (0.1, "cm")),
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alpha = 0.5, color = "blue") +
plot nullclines() +

geom path(data = traj a, aes(x = X1, y = X2), color = "black", linewidth = 1) +
coord cartesian(xlim = lims x, ylim = lims y) +
labs (title = "(a) RA Field (Flat Space)",
subtitle = "Standard trajectory and velocity",
x = "Prey (X1)", y = "Predator (X2)") +
theme bw ()
# --- Panel (b): RA with Clock (BR-tau(z)) ---

p b <- ggplot(data = normalize vecs (vec_data b, scale=0.25), aes(x = X1, y = X2))
+

geom_ segment (aes (xend = X1 + dX1 norm, yend = X2 + dX2 norm,

color = c_eco), # Color by 'c_eco' to show the change
arrow = arrow(length = unit (0.1, "cm")),
alpha = 0.7) +
scale color viridis c(name = "Velocity\n(c eco)", option = "plasma") +
plot nullclines() +
geom path(data = traj a, aes(x = X1, y = X2), color = "black", linewidth = 1) +
coord cartesian(xlim = lims x, ylim = lims y) +
labs(title = " (b) RA with Clock (BR-1(Z))",
subtitle = "Same trajectory, rescaled velocity (shorter/longer vectors)",
x = "Prey (X1)", y = "Predator (X2)") +
theme bw ()
# —--- Panel (c): Hypothetical Geodesic (g(X,2)) ---
p_c <- ggplot(data = normalize vecs(vec data c), aes(x = X1, y = X2)) +
geom_ segment (aes (xend = X1 + dX1 norm, yend = X2 + dX2 norm),
arrow = arrow(length = unit (0.1, "cm")),
alpha = 0.5, color = "purple") +
plot nullclines() +
geom path(data = traj c, aes(x = X1, y = X2), color = "black", linewidth = 1) +
coord cartesian(xlim = lims x, ylim = lims y) +
labs (title = " (c) Hypothetical Geodesic (g(X,Z))",
subtitle = "'Curved' trajectory due to geometric forces (connection)",
x = "Prey (X1)", y = "Predator (X2)") +
theme bw ()
# -——— 4. Combine the plots ---

final plot <- p a + p b + p ¢ + plot layout(nrow = 1)
print (final plot)
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Reproducible R Code

The following is the complete R code used to perform the data loading, pre-processing,

model fitting and summary generation presented in this paper.

Note: Advanced traditional models (SINDy-like) to empirically derive dynamics taken
from [4]

H oS S S S S S S S SR S S QS S SR S S S S e

#

rm

#

UNIFIED ROBUST ANALYSIS OF PREDATOR-PREY DYNAMICS:

Comparing Classical Models with Biorelativistic Geometric Interpretations
DESCRIPTION:

This script compares traditional ecological models (assuming a flat, static
phase space) against Biorelativity-inspired models that allow for dynamic
geometry. It uses an advanced empirical discovery engine ("Traditional")

to find data-driven dynamics, contrasting them with mechanistic models
including Rosenzweig-MacArthur (RA) and Biorelativity wvariants (ecological

lock) .

The goal is to test if a geometric, potentially non-static description of
ecological phase space provides a better fit, especially under external
forcing (e.g., climate), following Farifia's Biorelativity hypothesis.

KEY FEATURES:

- Advanced "Traditional" model (SINDy-like) to empirically derive dynamics.

- Compares classical RA with Biorelativity models (BR-tau, BR-tau 7, HBM).

- Tests the "ecological clock" concept (BR-tau Z) where external factors
modulate the tempo of dynamics, akin to a conformal transformation of
the phase space metric.

- Calculates RMSE in both scaled (for fitting) and original biological units.

--- PART 0O: INITIAL SETUP ---
(list = 1s())

Load necessary R packages for analysis and visualization

suppressPackageStartupMessages ({

library (deSolve) # For solving ordinary differential equations (ODEs)
library (dplyr) # For data manipulation

library (ggplot?2) # For plotting

library(tidyr) # For data tidying

library (boot) # Potentially used in bootstrapping (though main bootstrap

is custom)

library(gridExtra)
library (minpack.lm)

For arranging plots
For Levenberg-Marquardt non-linear least squares

#
#

(nls.1lm)

})

H= H S o

library (glmnet) # For LASSO regression (used in the empirical model)
library(splines) # Used implicitly by smooth.spline
library(ggfortify) # For plotting time series diagnostics (e.g., ACF)

-—— PART 1: ADVANCED EMPIRICAL MODEL ENGINE ---

This section defines functions to empirically discover the governing equations
directly from time-series data, without assuming a specific mechanistic model
structure *a priori*. It approximates derivatives using splines and then uses
sparse regression (LASSO) to identify the significant terms (e.g., N, P, N*P)
driving the rates of change (dN/dt, dP/dt). Bootstrapping assesses the
robustness of term selection. This represents the 'Traditional' or data-driven
approach, agnostic to underlying geometry.
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fit empirical model advanced <- function(times, obs data original, prey name,
pred name) {

# Step 1: Internal Scaling (Mean/SD) - Standardizes variables for numerical
stability
# before derivative estimation and regression. This doesn't affect the model
# structure discovery but helps the algorithms converge.
scale params <- list(
prey mean = mean (obs data original[, 1], na.rm=TRUE), prey sd
sd (obs _data original[, 1], na.rm=TRUE),
pred mean = mean (obs data original[, 2], na.rm=TRUE), pred sd =
sd(obs data originall[, 2], na.rm=TRUE)
)

obs data scaled <- obs data original

obs data scaled[, 1] <- (obs data originall, 1] - scale_params$prey_mean) /
scale paramsS$prey sd
obs data scaled[, 2] <- (obs data originall, 2] - scale_params$pred_mean) /

scale paramsS$Spred sd

Step 2: Grid search for optimal spline smoothing parameter ('spar')

Smoothing is necessary to estimate derivatives from noisy data. Finding the
optimal 'spar' balances fidelity to the data with smoothness. The AIC is used
to select the 'spar' that yields the best empirical model overall.

spar_grid <- seq(0.4, 0.9, by = 0.05)

results list <- list()

HH= H FH

for (spar val in spar grid) {
# Estimate derivatives (rates of change) using smoothing splines
derivatives scaled <- matrix(NA, nrow = nrow(obs data scaled), ncol = 2)
derivatives scaled[, 1] <- predict (smooth.spline(times, obs data scaled[, 1],
spar = spar _val), times, deriv = 1)S%y # d(Prey)/dt
derivatives scaled[, 2] <- predict(smooth.spline(times, obs data scaled[, 2],
spar = spar val), times, deriv = 1)$y # d(Predator)/dt

# Create Theta library: Basis functions representing potential interaction
terms
# (e.g., linear growth, density dependence, predator-prey interaction)
Theta <- data.frame(const=1, X=obs data scaled[,1], Y=obs data scaled[,2],
X2=obs_data scaled[,1]"2,
XY=obs data scaled[,1l]*obs data scaled[,2], Y2=obs data scaled[,2]"2)

# Use LASSO with cross-validation to perform sparse regression.

# This selects the most important terms from Theta to explain the derivatives.

final lasso prey <- try(cv.glmnet (as.matrix(Theta), derivatives_ scaled[, 1],
alpha = 1, nfolds = min (10, nrow(Theta))), silent=TRUE)

final lasso pred <- try(cv.glmnet (as.matrix(Theta), derivatives scaledl[, 2],
alpha = 1, nfolds = min(10, nrow(Theta))), silent=TRUE)

# Skip if LASSO fails for this spar value
if (inherits(final lasso prey, "try-error") || inherits(final lasso_pred,
"try-error")) next

# Extract coefficients at optimal lambda
C_s prey <- coef(final lasso _prey, s "lambda.min")
C_s pred <- coef(final lasso pred, s "lambda.min")

# Calculate model complexity (number of non-zero parameters)
k total <- sum(C_s prey != 0) + sum(C_s pred != 0)

# Calculate predictions and residuals
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pred prey <- predict(final lasso prey, newx = as.matrix(Theta), s =
"lambda.min")

pred pred <- predict(final lasso pred, newx
"lambda.min")

as.matrix (Theta), s

res_prey scaled <- derivatives scaled[, 1] - pred prey
res pred scaled <- derivatives scaled[, 2] - pred pred

# Calculate Log-Likelihood assuming Gaussian residuals for the derivative fit
n_obs <- nrow(obs data scaled)
sigma2 prey <- sum(res prey scaled”2) / n obs; if(sigma2 prey < le-9)
sigma2 prey <- le-9 # Avoid log(0)
sigma2 pred <- sum(res pred scaled”2) / n obs; if(sigma2 pred < le-9)
sigma2 pred <- le-9

logLik <- sum(dnorm(res prey scaled, 0, sgrt(sigma2 prey), log=T)) +
sum(dnorm(res_pred scaled, 0, sqgrt(sigma2 pred), log=T))

# Calculate AIC (includes +2 for estimating the two residual variances)
aic <- 2 * (k _total + 2) - 2 * logLik

# Store results for this spar value
results list[[as.character(spar val)]] <- list(
spar = spar _val, aic = aic, k = k _total + 2, logLik = logLik,
coefs scaled = cbind(C_s prey, C s pred),
res prey scaled = res prey scaled,
res pred scaled = res pred scaled

}

# If no model converged, return NULL
if (length(results list) == 0) return(NULL)

# Step 3: Select the best model based on minimum AIC across spar values
best result <- results list[[which.min(sapply(results list, “[[ , "aic"))]]
C s <- best resultScoefs scaled # Best coefficients in scaled units

# Unscale coefficients back to original biological units

# This involves reversing the mean/sd scaling transformation algebraically.
w_mean <- scale params$prey mean; w sd <- scale params$Sprey sd

m mean <- scale paramsSpred mean; m sd <- scale paramsSpred sd

C unscaled <- matrix (0, nrow=6, ncol=2)

# Unscaling formulas derived algebraically (tedious but necessary)
C unscaled[1l,1] <- w_sd*(C_s[1,1] - C_s[2,1]*(w_mean/w_sd) -

C_s[3,1]*(m_mean/m_sd) + C_s[4,1]*(w_mean/w_sd)A2 +
C s[5,1]1*(w mean/w_sd)* (m mean/m sd) + C s[6,1]*(m mean/m sd)"2)

C unscaled[2,1] <- w_sd*((1/w_sd)*C_s[2,1] - 2*C_s[4,1]*(w _mean/w sd"2) -
C_s[5,1]*(m_mean/(w_sd*m_sd)))
C _unscaled[3,1] <- w_sd*((l/m_sd)*C_s[S,l] - C_s[5,1]*(w_mean/(w_sd*m_sd)) -

2*C s[6,1]*(m mean/m _sd"2))

C unscaled([4,1] <- w_sd*(1/w_sd"2)*C s[4,1]

C unscaled[5,1] <- w_sd*(1/(w_sd*m sd))*C s[5,1]
C unscaled[6,1] <- w_sd*(1/m sd"2)*C s[6,1]

C unscaled[1l,2] <- m sd*(C_s[1l,2] - C s[2,2]*(w _mean/w_sd) -

C s[3,2]*(m mean/m sd) + C_s[4,2]*(w mean/w_sd)"2 +
C s[5,2]*(w_mean/w_sd)* (m_mean/m sd) + C s[6,2]* (m_mean/m sd)"2)

C unscaled[2,2] <- m sd*((1/w_sd)*C_s[2,2] - 2*C_s[4,2]*(w_mean/w_sd"2) -
C s[5,2]*(m mean/(w_sd*m sd)))
C unscaled[3,2] <- m sd*((1/m sd)*C s[3,2] - C s[5,2]*(w mean/(w sd*m sd)) -
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2*C s[6,2]*(m mean/m _sd"2))
C unscaled([4,2] <- m sd*(1/w _sd"2)*C s[4,2]
C unscaled[5,2] <- m sd*(1/(w_sd*m sd))*C s[5,2]
C unscaled[6,2] <- m sd*(1/m sd"2)*C s[6,2]

# Store final unscaled coefficients
final coeffs <- data.frame (
Term = c("const", prey name, pred name, pastel(prey name,""2"),
pastel (prey name,"*",pred name), pastel(pred name,""2")),
Prey dot = C unscaled[,1],
Pred dot = C unscaledl[,2]
)

# Final model selection metrics (AICc, BIC) for the best empirical model

n <- nrow(obs data original) * 2 # Total number of derivative points fitted
k <- best resultsSk

aic <- best results$aic

logLik <- best result$logLik

bic <- k * log(n) - 2 * logLik

aicc <- aic + (2*k*(k+1))/(n-k-1)

# Calculate RMSE based on the fit to the *derivatives* in scaled units
rmse_scaled prey <- sqgrt (mean (best result$res prey scaled"2))
rmse_scaled pred <- sqgrt (mean (best result$res pred scaled"2))

# Return results: unscaled coefficients and model metrics
return (list(
coefficients = final coeffs,
metrics = data.frame (k=k, logLik=logLik, AIC=aic, AICc=aicc, BIC=bic,
RMSE Scaled Prey = rmse scaled prey, RMSE Scaled Predator
= rmse_scaled pred,
RMSE Original Prey = NA, RMSE Original Predator = NA) #
Original RMSE not directly calculated here
))
}

# —-—-— PART 2: MECHANISTIC MODEL DEFINITIONS ---

# This function defines the differential equations for various mechanistic models.
# It uses a 'model type' parameter to switch between different biological
hypotheses:

# - RA: Standard Rosenzweig-MacArthur (flat, static Euclidean phase space).

# - RA climate: RA where climate acts as an external 'force' modifying a parameter
(predator mortality).

# - BR tau: Biorelativity model where the 'ecological clock' speed depends on the
system state (N, P).

# - BR tau Z: Biorelativity model where the 'ecological clock' speed depends on an
external variable Z (climate).

# This represents climate modulating the overall tempo of dynamics
(conformal metric change).

# — HBM: Hierarchical Biorelativistic Model where climate affects multiple
parameters involved

# in the interaction term (attack rate 'b', handling time 'h'), potentially
representing

# a more complex geometric deformation or state-dependent force.

unified ode model <- function(t, state, params) {
X <- state[l] # Prey density/abundance
Y <- state[2] # Predator density/abundance

# Default parameter values (can be overridden by specific models below)
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r <- paramsSr; K <- params$K; b _attack <- params$b; c_conv <- params$c; d mort
<- params$d; h handling <- params$h

# Handle climate influence based on model type
if (params$model type == "HBM" && !is.null (params$climate func)) {
# HBM: Climate affects interaction parameters (b, h) via log-link
climate val <- params$climate func(t)
b attack <- exp(paramsS$log b intercept + params$beta b * climate val)
h handling <- exp(params$log h intercept + paramsSbeta h * climate val)

}

# Calculate the functional response (Holling Type II) using current parameters
fr term <- b attack * X * Y / (1 + b attack * h handling * X)

# Base RA equations
dX dt <- r * X * (1L - X / K) - fr term
dY dt <- ¢ conv * fr term - d mort * Y

# Apply model-specific modifications

if (paramsS$model type == "RA climate" && !is.null(params$climate func)) {
# RA climate: Climate acts as an additive 'force' on predator mortality
climate val <- params$climate func(t)
dY dt <- c_conv * fr term - (d mort + paramsSdelta d * climate val) * Y #
Modified mortality
}

if (paramsS$model type == "BR tau") {
# BR_tau: Ecological clock speed depends on state variables (X, Y)
c_eco <- exp(paramsSbetal + params$betal * X + paramsSbeta2 * Y) # Scalar
clock factor
dX dt <- dX dt * c_eco # Scale both rates
dY dt <- dY dt * c_eco
}

if (paramsS$model type == "BR tau Z" && !is.null (params$climate func)) {
# BR tau Z: Ecological clock speed depends on external climate variable 2
climate val <- params$climate func(t)
c_eco <- exp(paramsSbetal + paramsSbetal * climate val) # Scalar clock factor
dX dt <- dX dt * c eco # Scale both rates
dy dt <- dy dt * c_eco

}

# Return the calculated derivatives
return(list(c(dX dt, dy _dt)))
}

# —--- PART 3: MECHANISTIC FITTING ENGINE ---

# This function fits the specified mechanistic model (defined in
unified ode model)

to the observed time-series data using non-linear least squares (nls.lm).

It handles parameter initialization, bounds, the optimization process, and
calculation of model selection metrics (AICc, BIC) and goodness-of-fit (RMSE).
It works with data scaled by the median for fitting stability, but calculates
RMSE in both scaled and original biological units.

H= H o

fit mechanistic model <- function(times, obs data original, obs data scaled,
model type, scaling factors, climate data = NULL) {

# Residual function for nls.lm: Calculates the difference between observed
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# scaled data and the ODE model output for a given parameter set.
residuals func <- function (params_vec) {
# Convert parameter vector back to a list
params_list <- as.list(params_vec); names (params_list) <-
names (initial params)
params list$model type <- model type # Pass model type to ODE function

# Create an interpolation function for climate data if provided

if (!is.null(climate _data)) {
params_list$Sclimate func <- approxfun(climate dataS$time,
climate data$climate, rule = 2) # rule=2 uses nearest neighbor for extrapolation
} else {

params listS$Sclimate func <- NULL

}

# Set initial conditions from fitted parameters
initial conditions <- c(X = params 1ist$X0, Y = params 1list$YO0)

# Solve the ODE system
out <- try(ode(y = initial conditions, times = times, func =
unified ode model, parms = params_list), silent = TRUE)

# Error handling: if ODE solver fails or returns unexpected results, return
large residuals

if (inherits(out, "try-error") || any(is.na(out)) || nrow(out) !=
length (times)) {
return(rep(le6, length(obs data scaled))) # Penalize failed runs heavily
}
# Return the vector of residuals (scaled data - scaled model output)
return (as.vector (obs _data scaled - out[, -1])) # Exclude time column

}

# Define initial parameter guesses and bounds based on the model type

# Initial guesses are generic; bounds ensure biological plausibility (e.g.,
positive rates)

initial params <- c(r=0.5, K=max(obs data scaled[,1l],na.rm=T)*1.2, b=0.1, c=0.1,
d=0.1, h=0.1, XO=obs data scaled[1l,1], YO=obs data scaled[1l,2])

lower bounds <- rep(le-9, length(initial params)) # Rates must be positive

upper bounds <- c(5, max(obs data scaled[,1],na.rm=T)*3, 5, 5, 5, 5,
max (obs_data scaled[,1],na.rm=T)*1.5, max(obs data scaled[,2],na.rm=T)*1.5) #
Generous upper bounds

# Add model-specific parameters and adjust bounds

if (model type == "RA climate") ({
initial params <- c(initial params, delta d = 0);
lower bounds <- c(lower bounds, -2); upper bounds <- c(upper bounds, 2) #
Climate effect can be neg or pos
} else if (model type == "BR tau") {

initial params<-c(initial params, beta0=0, betal=0, beta2=0); # Clock
parameters centered at 0 (exp(0)=1)

lower bounds<-c(lower bounds, -20, -20, -20); upper bounds<-c (upper bounds,
20, 20, 20) # Wide bounds for log-scale clock effects
} else if (model type == "BR tau 2") {
initial params <- c(initial params, beta0=0, betal=0); # Clock parameters
centered at 0
lower bounds <- c(lower bounds, -10, -10); upper bounds <- c(upper bounds, 10,
10) # Bounds for climate effect on clock
} else if (model type == "HBM") ({

initial params <- c(initial params, log b intercept=log(0.1), beta b=0,
log h intercept=log(0.1), beta h=0); # Log-scale intercepts, betas centered at 0

37




lower bounds <- c(lower bounds, -10, -10, -10, -10); upper bounds <-
c (upper bounds, 10, 10, 10, 10) # Bounds for log-params and climate effects

}

# Perform the non-linear least squares fit using nls.lm

fit nls <- try(nls.lm(par=initial params, fn=residuals func, lower=lower bounds,
upper=upper bounds, control=nls.lm.control (maxiter=1000, ftol=le-8, ptol=le-8)),
silent=TRUE)

# If fitting fails, return NULL
if (inherits(fit nls, "try-error")) return (NULL)

# Calculate model selection metrics (LogLik, AICc, BIC)

final params <- as.list(coef (fit nls))

n <- length (obs data scaled) # Total number of data points (N*T + P*T)

k fit <- length(final params) # Number of fitted structural parameters + initial
conditions

# Estimate residual variance (sigma”2)
sigma2 <- sum(fit nls$fvec”2) / (n - k fit); if(sigma2 < le-9) sigma2 <- le-9 #
Avoid log (0)

# Calculate Log-Likelihood assuming Gaussian residuals
logLik <- -n/2 * log(2 * pi * sigma2) - sum(fit nls$fvec”2) / (2 * sigma2)

# Calculate AIC, AICc, BIC (k includes sigma”2 estimate)

k <- k fit + 1

AIC <- 2 * k - 2 * loglLik

AICc <- AIC + (2 * k * (k + 1)) / (n - k - 1) # Corrected AIC for small sample
size

BIC <- k * log(n) - 2 * logLik

# Calculate Root Mean Squared Error (RMSE) in scaled units (based on fitting
residuals)

res scaled matrix <- matrix(fit nls$fvec, ncol=2)

RMSE Scaled Prey <- sqgrt (mean(res_scaled matrix[,1]"2))

RMSE Scaled Predator <- sqgrt(mean(res scaled matrix[,2]"2))

# Calculate RMSE in original biological units
pred scaled <- obs data scaled - res scaled matrix # Model predictions in scaled

units

pred original <- sweep(pred scaled, 2, scaling factors, FUN="*") # Convert
predictions back to original scale

RMSE Original Prey <- sqgrt (mean((obs data originall[,1l] - pred originall,1])"2,
na.rm=TRUE)) # Compare original data and unscaled predictions

RMSE Original Predator <- sqgrt(mean((obs data originall, 2]
pred originall,2])”"2, na.rm=TRUE))

# Prepare parameters list for output/simulation
final params$model type <- model type
if (!is.null(climate data)) {
final params$climate func <- approxfun(climate data$time,
climate data$climate, rule=2)

}

# Return fitted parameters and performance metrics
return (list (
params=final params,
metrics=data.frame (k=k, logLik=logLik, AIC=AIC, AICc=AICc, BIC=BIC,
RMSE Scaled Prey=RMSE Scaled Prey,
RMSE Scaled Predator=RMSE Scaled Predator,
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RMSE Original Prey=RMSE Original Prey,
RMSE Original Predator=RMSE Original Predator)
))
}

# —--- PART 4: MAIN ANALYSIS PIPELINE ---
# Defines the datasets and iterates through them, running the appropriate models.

# Configuration for each dataset
datasets _config <- list(

IsleRoyale = list(file="isleroyale wolf moose climate.csv", prey="moose",
predator="wolves", time="year",
climate vars=c("jan.feb.ave.temp", "july.sept.ave.temp")), #

Has climate data
HudsonBay = list(file="hudson lynx hare.csv", prey="hare", predator="lynx",
time="year",
climate vars=NULL), # No climate data
Veilleux = list(file="veilleux paramecium didinium.csv", prey="paramecium",
predator="didinium", time="time",
climate vars=NULL) # Lab data, no climate

)

# List to store results from all models and datasets
final summary list <- list()

# Loop through each dataset configuration

for (name in names (datasets config)) {
cat (paste ("\n--- Processing Dataset:", name, "---\n"))
config <- datasets config[[name]]
df <- read.csv(config$file, stringsAsFactors = FALSE)

# Extract original observation data (prey, predator) and time

obs data original <- df %>% select(all of(c(config$prey, config$predator))) %>%
as.matrix () %>% na.omit () # Ensure no NAs

# Find corresponding time points after removing NAs

times <- df[[config$time]] [complete.cases (df %>% select(all of (c(configSprey,
configSpredator))))]

# Ensure data and time have same length after NA removal
if (nrow(obs_data original) != length(times)) {
stop (paste ("Mismatch in lengths after NA removal for dataset:", name))

}

# --- Run Traditional (Empirical) Model ---

cat (" -> Fitting model: Traditional (Empirical)... ")

fit empirical <- try(fit empirical model advanced(times, obs data original,
configSprey, configS$predator), silent=TRUE)

if(!inherits(fit empirical, "try-error") && !is.null(fit empirical)) {
cat ("Success!'\n")
# Save the unscaled coefficients discovered by the empirical model
write.csv (fit empiricalScoefficients,

file=pasteO (" coeffs ",name," Traditional.csv"), row.names=F)
# Store metrics for final comparison
final summary list[[length(final summary list) + 1]] <- list (dataset=name,

model="Traditional", metrics=fit empirical$metrics, params=NULL) # No params list
needed, saved separately
} else {
cat ("Failed.\n")
print (fit empirical) # Print error if it failed
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}

# -—-—- Prepare for Mechanistic Models ---

# Median scaling: used for numerical stability during mechanistic model fitting
scaling factors <- apply(obs data original, 2, median, na.rm=TRUE)

obs data scaled <- sweep (obs data original, 2, scaling factors, FUN="/")

# Define which mechanistic models to run based on dataset
climate df <- NULL
if (name == "IsleRoyale") {
# Isle Royale has climate data, so run all models including climate-driven
ones
models to run <- c("RA", "RA climate", "BR tau", "BR tau Zz", "HBM")
# Process climate data: Use PCA to get a single climate index if multiple
variables exist
climate vars present <- config$climate vars[configS$Sclimate vars %in%
names (df) ]
if (length(climate vars present) > 0) {
climate raw <- df[complete.cases(df $>% select(all of(c(config$prey,
configS$predator)))), climate vars present, drop = FALSE]
if (ncol(climate raw) > 1) {
pca result <- prcomp(climate raw, center=T, scale.=T)
climate df <- data.frame(time = times, climate = pca result$x[, 1]) #
Use PC1
} else if (ncol(climate raw) == 1) {
climate df <- data.frame(time = times, climate =
scale(climate raw[,1])) # Use the single scaled variable
} else {
cat ("Warning: Climate variables specified but not found or resulted
in empty data after NA removal.\n")
}
} else {
cat ("Warning: IsleRoyale specified climate variables not found in the data
file.\n")
}

} else {
# Other datasets: run only baseline models without external climate forcing
models to run <- c("RA", "BR tau")

}

# —-—— Run Mechanistic Models Loop --—-—
for (model name in models to run) {
cat (paste (" =-> Fitting model:", model name, "... "))

# Provide climate df only if the model requires it
current climate df <- if (model name %in% c("RA climate", "BR tau z", "HBM")
&& !'is.null(climate df)) climate df else NULL

# Fit the model
fit mech <- try(fit mechanistic model (times, obs data original,
obs data scaled, model name, scaling factors, current climate df), silent=TRUE)

# Store results if successful
if (!inherits(fit mech, "try-error") && !is.null(fit mech)) {
cat ("Success!\n")
# Store metrics and parameters for final summary and parameter output files

final summary list[[length(final summary list) + 1]] <- list (dataset=name,
model=model name, metrics=fit mechSmetrics, params=fit mech$params)
} else {

cat ("Failed.\n")
print (fit mech) # Print error if it failed
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}
}
} # End dataset loop

# —--- PART 5: GENERATE ALL OUTPUT FILES ---
# Consolidates results into summary tables and saves parameter estimates.

# Helper function to create a concise parameter string for the summary table
createInfoString <- function(model name, params) {

if (is.null (params)) return("See coefficients file") # For Traditional model

p <- lapply(params, function(x) if(is.numeric(x)) round(x, 4) else x) # Round
numeric parameters

# Create strings specific to each model structure

if (model name == "RA") { return(pasteO("r=", pSr, ", K=", pSK, ", b=", pS$b, ",
c=", p$c, ", d=", ps$d, ", h=", pSh)) }

else if (model name == "BR tau") { betas str <- paste(round(c(p$betal, p$betal,
pSbeta2),4), collapse=","); return(pastel("r=", pSr, ", K=", pS$K, ", b=", pSb, ",
c=", p$c, ", d=", psd, ", h=", psh, ", beta clock=[", betas str, "]")) }

else if (model name == "BR tau 2Z") { betas str <- paste(round(c(pSbetal,
pSbetal),4), collapse=","); return(pastel("r=", pSr, ", K=", pSK, ", b=", ps$b, ",
c=", p$c, ", d=", ps$d, ", h=", ps$h, ", beta clock Z=[", betas str, "1")) }

else if (model name == "RA climate") { return(paste0("r=", pSr, ", K=", p$K, ",

b:", psb, ", C:", psc, ", d:", psd, ", h:", p$h, ", delta_d:",
round (p$delta d,4))) }

else if (model name == "HBM") { return(pastel("r=", p$r, ", K=", p$K, ", c=",
pSc, ", d=", pSd, ", h int=", p$log h intercept, ", b int=", p$log b intercept, ",
beta b=", round(pSbeta b,4), ", beta h=", round(p$beta h,4))) }

return("") # Default empty string

}

# 1. Create the Original Scale Summary Table ( FINAL COMPARATIVE SUMMARY.csv)
original summary df <- do.call(rbind, lapply(final summary list, function(res) ({
data.frame (

Dataset = res$dataset,
Method = ifelse(res$model == "Traditional", "Traditional (Empirical)",
pastel ("Mechanistic (", resSmodel, ")")),

RMSE Prey = resSmetricsSRMSE Original Prey, # RMSE in original prey units
RMSE Predator = resSmetrics$RMSE Original Predator, # RMSE in original
predator units
AIC = resSmetricsS$SAIC,
BIC = res$metrics$BIC,
Info = createInfoString(res$model, resSparams) # Concise parameter info
)
1))
# Round numeric columns and arrange for readability
original summary df <- original summary df %>%
mutate (across (where (is.numeric), ~round(., 2))) %>%
arrange (Dataset, AIC) # Sort by dataset, then by AIC

# Save the summary comparing models in original units
write.csv(original summary df, " FINAL COMPARATIVE SUMMARY.csv", row.names =
FALSE)

cat ("\n-> Successfully generated FINAL COMPARATIVE SUMMARY.csv\n")

# 2. Save Parameter Files ( params ...csv) for each mechanistic model fit
for (res in final summary list) {
if (resSmodel != "Traditional”™) { # Only save for mechanistic models

params_to save <- res$params
# Exclude non-numeric or complex elements like the climate function
params to save <- params to save[sapply(params to save, function (x)
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is.numeric (x) && length(x) == 1)]
params_df <- data.frame (parameter=names (params_to save),
value=unlist (params_to_ save))

filename <- paste0O (" params ", res$dataset, " ", res$model, ".csv")
write.csv(params_df, filename, row.names = FALSE)
}
}
cat ("-> Successfully generated all params ...csv files\n")

# 3. Create and Save the Robustness Matrix ( ROBUSTNESS MATRIX.csv)
# This uses AICc for model comparison, incorporating the correction for small
sample sizes.
robustness matrix df <- do.call(rbind, lapply(final summary list, function(res) {
# Combine dataset/model info with all calculated metrics
data.frame (
Dataset = res$dataset,
Model = resS$Smodel,
res$Smetrics # Includes k, logLik, AIC, AICc, BIC, scaled & original RMSEs
)
1))

# Check if any results were produced before proceeding
if (nrow(robustness matrix df) > 0) {
# Calculate combined RMSE metrics
robustness matrix df <- robustness matrix df 3%>%
mutate (
RMSE Scaled Combined = sqrt (RMSE Scaled Prey”2 + RMSE Scaled Predator”2),
RMSE Original Combined = sqrt(RMSE Original Prey”2 +
RMSE Original Predator”2)
)

# Calculate delta AICc and Akaike Weights within each dataset group
final summary output <- robustness matrix df %>%
select (Dataset, Model, k, logLik, AIC, AICc, BIC, RMSE Scaled Combined,
RMSE Original Combined) %>%
group by (Dataset) $%>%
arrange (AICc, .by group = TRUE) %>% # Sort by AICc within each dataset
mutate (
delta AICc = AICc - min(AICc, na.rm = TRUE), # Difference from the best
model
weight AICc = exp(-0.5 * delta AICc) / sum(exp(-0.5 * delta AICc), na.rm =
TRUE) # Akaike weight (probability of being the best model)
) %>% ungroup () %>% mutate (across (where(is.numeric), ~round(., 2))) # Round
for presentation

# Select final columns for the robustness matrix
final summary output <- final summary output %>%
select (Dataset, Model, k, logLik, AIC, AICc, BIC, RMSE Scaled Combined,
RMSE Original Combined, delta AICc, weight AICc)

# Save the robustness matrix
write.csv(final summary output, file=" ROBUSTNESS MATRIX.csv", row.names=F)
cat ("-> Successfully generated ROBUSTNESS MATRIX.csv\n")

# Print the final robustness matrix to the console

cat("\n= _______________ \n")
cat (" ROBUSTNESS MATRIX (AICc based model comparison) \n")
e —— \n\n")

print (as.data.frame (final summary output))

} else {
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}

cat ("\nAnalysis produced no valid model fits to summarize.\n")

cat ("\n--- Analysis Script Finished ---\n")
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