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Abstract 

The foundational models of population dynamics, such as those by Lotka and 

Volterra, presuppose a static, Euclidean phase space where interactions are governed 

by fixed forces. The theory of Biorelativity challenges this, positing that dynamics are 

better described as geodesics on a manifold whose geometry is actively shaped by the 

system’s state and external forcings. This study gives operational form to this concept 

by framing the choice between classical and biorelativistic models as an empirical 

question about the underlying geometry of ecological interactions. A model 

tournament was conducted across three predator-prey datasets, confronting classical 

models with a key formalisation of Biorelativity: a climate-driven ecological clock 

that modulates the metric of the phase space. While simple Euclidean models proved 

sufficient for systems dominated by internal dynamics, the climate-driven ecological 

clock (BR-Z) was the decisive winner for the externally forced Isle Royale system. 

This result provides strong empirical evidence that a geometric, non-static description 

of ecological dynamics is not only more accurate but also more parsimonious, 

vindicating the core tenets of Biorelativity. 
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1 Theoretical Framework: From Flat Space to a Dynamic 

Manifold 

1.1 The Classical View: A Euclidean Arena 

The pioneering work of Lotka [14] and Volterra [24] and subsequent foundational analyses 

by authors like May [16] and Murdoch [18], established the traditionestablished the 

tradition of modelling ecological dynamics within a static, Euclidean phase space. In this 

Newtonian view, populations are treated as points, and their interactions (predation, 

competition) are modelled as eco-evolutionary forces governed by fixed parameters, 

deflecting trajectories from otherwise linear paths. This framework implicitly assumes that 

the underlying space of ecological possibilities is flat, unchanging and absolute. While 

powerful, this view relegates environmental effects to external perturbations acting upon 

the system, rather than being intrinsic to the fabric of the interaction space itself. 

However, this classical Newtonian viewpoint is not the sole conceptual possibility. An 

alternative, inspired by geometric theories of physics, posits that the ecological phase space 

is not merely a static arena but rather a dynamic structure in its own right – 

mathematically, a differentiable manifold ℳ. In this geometric framework, the interactions 

and environmental influences typically modelled as forces manifest instead as the 

curvature and evolving metric 𝑔௜௝ of the manifold itself. The trajectories of populations are 

then hypothesised to follow geodesics, the paths of least 'effort' through this structured 

space. 

This conceptual shift from forces to geometry is not without precedent. For several decades, 

pioneering work, particularly by Antonelli and colleagues, has explored the geometrisation 

of ecological and evolutionary dynamics. This research has demonstrated that classical 

population models, including variants of the Lotka-Volterra equations, can be rigorously 

reformulated as geodesic flows, often utilising the even more general framework of Finsler 

geometry, where the 'metric' of the space can depend on the direction of travel [2]. 

 

 

1.2 The Biorelativity Paradigm: A Geometric Re-interpretation 
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The theory of Biorelativity, as proposed by Fariña [8], offers a paradigm shift analogous to 

Einstein’s move from Newtonian physics to general relativity. It reframes the phase space 

itself as a dynamic, high-dimensional differentiable manifold [26]. There are several core 

concepts that provide the foundation for this view, and they are as follows. 

Formally, the phase space is conceived as an n-dimensional differentiable manifold, 

denoted ℳ, a topological space that locally resembles Euclidean space, allowing calculus to 

be performed. Coordinate systems on ℳ are realised through local charts (mappings from 

subsets of ℳ to open sets in 𝑅௡), and the transition maps between overlapping charts are 

required to be smooth (infinitely differentiable in this context). 

 

Hypervolumes and Projections: An organism or a population is not a simple, dimensionless 

point but a complex hypervolume existing in a high-dimensional eco-morphological 

spacetime. This hypervolume is defined by a vast number of axes representing genetic, 

morphological, behavioural and physiological traits, as well as abiotic factors (salinity, 

rainfall, substrate). The population dynamics we observe in a typical two-dimensional 

phase space (prey vs. predator) are therefore a lower-dimensional projection of this much 

richer reality. The act of modelling is an act of projection, which involves collapsing this 

complexity into a simplified representation. 

This new “point” is an abstraction whose meaning is contingent upon the subspace chosen for 

the projection. For example, a projection onto an average morphological subspace yields a 

point representing the archetypal individual (the centroid of the hypervolume, defined by 

traits such as average body size or diet). An analysis at this level compares interactions 

between these archetypes. Alternatively, a projection onto an ecological functional subspace 

yields a point representing the species’ niche role (e.g., “apex predator,” “large herbivore”). 

Here, the analysis concerns the structure of the ecosystem itself, independent of the specific 

taxa filling those roles. Finally, a projection onto a phylogenetic subspace can represent an 

entire clade, enabling the study of macroevolutionary trajectories. The models employed 

herein, therefore, do not capture the complete state, but a shadow of it, projected onto the 

chosen subspace of analysis. 

 

Curvature as Interaction: In this framework, interactions do not manifest as forces but as 
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the curvature of the phase space itself, in direct analogy to General Relativity where mass-

energy tells spacetime how to curve and curved spacetime tells mass how to move. The 

ecological mass-energy of a species is not its physical weight, but its capacity to modify its 

environment and the relationships within it. An entity with high ecological mass-energy 

drastically alters the landscape of possibilities and probabilities for others, effectively 

deforming the rules of the game. The prey’s trajectory, in response, follows a geodesic, the 

straightest possible path through this curved geometry. 

This curvature can be induced in multiple ways. An ecosystem engineer like a beaver 

(Castor canadensis) imparts extreme curvature by transforming a lotic (running water) 

system into a lentic (still water) one through dam construction. This action blocks the 

geodesics of riverine fish while creating new, low-resistance paths for amphibians and 

aquatic insects. An apex predator like the now extinct sabretoothed cat (Smilodon populator) 

generated a “landscape of fear” that curved the behavioural space of its prey (and other 

species), triggering cascading trophic effects. An invasive species like buffelgrass 

(Pennisetum ciliare) curves the environmental axes by introducing a frequent fire cycle, 

creating conditions lethal to native flora. In each case, a biological entity redefines reality 

for others by altering the structure of the environment itself. 

Mathematically, the intrinsic curvature of the manifold is fully encoded in the Riemann 

curvature tensor, 𝑅௟௜௝
௞  (often denoted  𝐾௟௜௝

௞  in some notations). This type (1, 3) tensor is 

constructed from the connection coefficients Γ௜௝
௞ and their first derivatives. Its non-vanishing 

components quantify the extent to which the manifold deviates locally from Euclidean 

geometry.  

This connection is foundational. The field of information geometry, formalised by Amari, 

provides a robust mathematical framework for treating the space of probability 

distributions as a statistical manifold equipped with a Riemannian metric (the FIM). This 

framework has been successfully applied to foundational models in theoretical biology, 

such as the Wright-Fisher model of population genetics, where the manifold's curvature 

describes the effects of selection and drift [3]. Our hypothesis—that the empirical 

covariance structure Σ−1 approximates the metric gij—is therefore a direct ecological 

application of this established principle. 
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In the biorelativistic interpretation, non-zero curvature directly reflects the intensity and 

nature of ecological interactions, governing phenomena such as the convergence or 

divergence of nearby system trajectories. 

 

The Metric Tensor, Mahalanobis Distance, and Fisher Information: The geometry of this 

space is defined by a metric tensor [15], gij [21]. This can be conceptualised by relating it 

to the covariance structure of the system’s state variables. The Mahalanobis distance, 

d2M(X1, X2) = (X1 − X2)T Σ−1(X1 − X2), naturally accounts for the covariance (Σ) between 

variables. It is thus posited that the metric tensor is approximated by the inverse of the 

covariance matrix, gij ≈ (Σ−1)ij.  

The geometry of this manifold ℳ is defined locally by a metric tensor, gij, which is formally 

a symmetric, non-degenerate tensor field of type (0, 2). It equips the manifold with a notion 

of infinitesimal distance, 𝑑𝑠ଶ ൌ 𝑔௜௝𝑑𝑥௜𝑑𝑥௝
   (where summation over repeated indices is 

implied according to the Einstein convention). In the Biorelativity framework, gij is posited 

to be dynamic, potentially depending on the system state 𝑋 and external forcings 𝑍, i.e., 

𝑔௜௝ሺ𝑋, 𝑍ሻ. The empirical approach herein utilises the inverse covariance matrix  Σ௜௝
ିଵ or the 

Fisher Information Metric (FIM) as operational estimators for the components of 𝑔௜௝ under 

specific distributional assumptions, noting that the FIM intrinsically defines a Riemannian 

geometry on the relevant statistical manifold. 

A more rigorous foundation for the phase space geometry is furnished by the Fisher 

Information Metric (FIM). The FIM naturally endows the space of probability distributions 

pertinent to the ecological system, a statistical manifold, with a Riemannian geometry. This 

geometric structure, intrinsic to the statistical description itself, is generally non-Euclidean; 

that is, the statistical manifold is typically curved. As detailed in Amari & Nagaoka [1], for 

specific cases such as the multivariate Gaussian distributions implicitly assumed in least-

squares fitting procedures, the FIM simplifies and becomes proportional to the inverse of 

the covariance matrix. This crucial link allows the empirically accessible Mahalanobis 

distance to serve as a practical approximation to the underlying FIM. Significantly, this 

implies that the very statistical structure inherent in ecological data may naturally define a 

curved phase space, irrespective of specific interaction mechanisms. This perspective 

strongly resonates with the core proposal of Biorelativity, suggesting that a non-flat 
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geometry is not merely a consequence of biological interactions but potentially an emergent 

property of the system's statistical description itself.  

A metric tensor gij naturally determines a unique affine connection, known as the Levi-

Civita connection. Its coefficients, the Christoffel symbols Γ௜௝
௞ , depend algebraically on the 

first partial derivatives of the metric tensor components. This connection defines the rules 

for parallel transport of vectors along curves on the manifold and is crucial for defining 

geodesics, the paths of 'inertial' motion within the curved space. 

 
Explanatory Box: The FIM - Mahalanobis Approximation. The assertion that the metric 

tensor (gij) can be approximated by the inverse covariance matrix (Σ−1)—the core of the 

Mahalanobis distance—is a specific and powerful result from information geometry. Here 

are its formal conditions and limitations [1]. 

The formal condition for this equivalence rests upon the properties of a multivariate 

Gaussian (normal) distribution. 

The Fisher Information Metric (FIM) defines the geometry of a statistical manifold (the 

space of all possible probability distributions of a certain family). The Mahalanobis 

distance, d2M(x,µ) = (x − µ)T Σ−1(x − µ), defines a distance within a data space. The two 

concepts become equivalent under a precise condition: 

The Fisher-Rao distance (the geodesic distance derived from the FIM) is exactly equal to the 

Mahalanobis distance only within the statistical manifold of Gaussian distributions that 

share a common, fixed covariance matrix Σo , and where only their mean vectors µ are 

parameters that vary. 

In this specific case, the manifold of parameters µ is "flat" (Euclidean), and the FIM is 

constant and equal to the inverse of the shared covariance matrix, gij =  Σ௜௝
ିଵ 

This is the precise assumption invoked when using standard least-squares fitting, which 

assumes Gaussian noise with a stable covariance. 

Mini-Example: When the Approximation Fails. The approximation 𝑔 ൎ Σିଵ fails when the 

underlying statistical manifold is not this simple, constant-covariance Gaussian space. 

Conceptual Failure: Non-Linearity. Imagine our predator-prey data does not form a 

simple elliptical cloud, but rather a curved, banana-like shape in the phase space (e.g., due 

to a non-linear relationship where ൎ 𝑋ଶ).  The covariance matrix only captures linear 
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correlations. It will (incorrectly) describe this banana shape as a single, large, tilted ellipse. 

The Mahalanobis distance will measure distance relative to the centre of this flawed ellipse. 

The true FIM would be derived from the actual probability distribution of this banana 

shape. This creates a curved statistical manifold. 

In this scenario, Σିଵ is a poor approximation of the true metric 𝑔. The covariance matrix 

fails to capture the true geometric structure, whereas the FIM, by definition, is that 

structure. This limitation also applies to data that is strongly skewed or heteroskedastic 

(where variance is not constant). 

 

Hierarchies as Geometric Constraints: Ecological systems are hierarchical, and the concept of 

a “point” in this hyperspace represents a biological entity at a specific instant, with its 

complexity defining the hierarchical level. 

 Level 1: The Individual Organism. The “point” is a single, concrete living being 

(e.g., an individual jaguar, Panthera onca, in the Pantanal, with coordinates for its 

exact body mass, hunger level and geographic position at an instant, as well as local 

weather conditions). Note that, according to the aim of the analysis, the level 1 could 

have been chosen below the organism, for instance, the cell or the genes. 

 Level 2: The Population. The “point” is an abstraction representing the aggregated 

state of a group (e.g., the jaguar population of the North Pantanal, with coordinates 

for density, age distribution, genetic diversity and abiotic factors). This point acts as 

the “centre of mass” for all its constituent individuals. 

 Level 3: The Community. The “point” is a higher-level abstraction for the set of all 

interacting populations (e.g., the vertebrate community of the North Pantanal, with 

coordinates for total biomass, species richness and energy flow in those particular 

weather general conditions). 

 

Within this framework, a species is not a single point, as it inherently contains variation. A 

species is therefore a hypervolume (or cloud of points) within this hyperspace, formed by the 

totality of all its individual organisms. This volume is dynamic: its centre represents the 

archetypal individual, its extent represents the species’ variability and its movement 

through time represents evolution. Speciation can be visualised as the fragmentation of 
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this hypervolume and extinction as its collapse.  

Biorelativity postulates that external, non-biological macro-level variables (e.g., climate) do 

not exert direct deterministic forces on biological dynamics. Instead, these variables define 

the geometric constraints and the boundary conditions of the system's phase space, within 

which intrinsic biological interactions unfold. 

Consequently, a change in an external variable (such as climate) alters the topology or 

boundaries of this phase space—that is, the shape of the "pitch"—but does not modify the 

fundamental parameters or the governing equations that define the biological interactions 

occurring within it—that is, the "rules of the game". 

 

1.3 Reichenbach’s Dilemma and the Ecological Clock 

This leads to a fundamental problem articulated by the philosopher of science Hans 

Reichenbach [19]. He argued that the geometry of physical space is not an a priori truth but an 

empirical question. A phenomenon can be described by assuming a flat geometry and 

postulating “universal forces”, or by assuming a curved geometry where objects follow 

geodesics. This study operationalises this dilemma by framing the model comparison as a 

test between two families of hypotheses: 

 HF (The “Force” Hypothesis): Climate acts as a universal force, modifying specific 

parameters within a classical, flat RA model. 

 HG (The “Geometric” Hypothesis): Climate modifies the underlying metric of the 

phase space. A simple, scalar-field approximation of this change is tested: the 

ecological clock, 

𝐶௘௖௢ሺ𝑍ሻ, where 𝑋 ൌ 𝐶௘௖௢ሺ𝑍ሻ ∙ 𝐹ሺ𝑋, 𝜃ሻ 

The model tournament is thus presented not as a mere comparison of contingent 

implementations, but as a critical test between these two fundamental explanatory 

frameworks. 

 

2 Methods 

2.1 Datasets and Model Tournament 

Three canonical predator-prey datasets were analysed: the laboratory system of 

Paramecium and Didinium from Gause [10]; the Hudson Bay Company records of lynx and 
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snowshoe hare [22, 23]; and the Isle Royale wolf-moose system [25]. For the Isle Royale 

data, a climate index was constructed from the first principal component of local 

temperature anomalies. 

A focused model tournament was conducted. For the Isle Royale dataset, a full suite of five 

mechanistic models was tested to disentangle the role of climate. For the Hudson Bay and 

Veilleux datasets, where no strong external drivers were measured, a core comparison 

between the classic Rosenzweig-MacArthur [20] and the state-dependent that includes 

proper ecologically relevant time (BR- model was performed. All models were 

implemented in R using the deSolve [7] package for numerical integration and 

minpack.lm for fitting.  

The competing hypotheses were encoded directly into the ODE function: 

 
climate_val <- params$climate_func(t) 
dY_dt <- c_conv * fr_term - (d_mort + params$delta_d * 
climate_val) * Y 
 

Listing 1: R code snippet for the “Force” model (RA-climate),  

where climate acts as an additive force on predator mortality 

 

 
climate_val <- params$climate_func(t) 
c_eco <- exp(params$beta0 + params$beta1 * 
climate_val)  
dX_dt <- dX_dt * c_eco 
dY_dt <- dY_dt * c_eco 
 

Listing 2: R code snippet for the BR-Z model   

where climate acts as a multiplicative scalar on the entire vector field  

 

2.2 Model Selection and Parameterisation 

Models were fitted by minimising the sum of squared errors between observed and 

predicted population densities using the Levenberg-Marquardt algorithm [12] provided by 

the nls.lm function in R. This approach assumes errors are approximately Gaussian, a 

condition under which the Fisher Information Metric and the Mahalanobis metric converge 

[1]. All population time-series were normalised by their respective medians prior to fitting to 

ensure numerical stability and comparability of error metrics across different scales. 

All parameters dependent on covariates (e.g., in Hierarchical Biorelativistic Model, HBM, 
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and geometric ecological clock, BR-Z, models) were implemented using log-links (e.g.,  

𝑒ሺఉబାఉభ௓ሻ) to ensure positivity, guaranteeing biologically plausible values. The total number 

of estimated parameters (k) for each model included all structural coefficients (e.g., r, K), 

any biorelativity coefficients (𝛽௜), the initial population conditions (X0, Y0), and one 

additional parameter for the residual variance (σ2). Model performance was evaluated using 

the Akaike Information Criterion corrected for small sample sizes (AICc), which is grounded 

on information theory and serves as a robust tool for selecting the model with the best 

expected out-of-sample performance [9]. The difference in AICc from the best-performing 

model (∆AICc) and the Akaike weights (wi) were used to rank models and quantify the 

relative evidence for each hypothesis. 

 

 
logLik <- fit$metrics$logLik 
n <- fit$metrics$n 
k <- fit$metrics$k 
AIC <- (2 * k) - (2 * logLik) 
AICc <- AIC + (2 * k * (k + 1)) / (n - k - 1) 
 

Listing 3: R code snippet for calculating AICc 
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2.3 Model Specification, Evaluation, and Validation 

Model families and mechanistic baselines. In addition to the standard RA and the BR-Z 

models, our analysis incorporated 'force-augmented' flat models, denoted RA(b,h|Z). 

These models applied climatic forcing directly to the attack rate (b) or handling time (h). 

We also evaluated a variant employing a Holling Type II [11] functional response. For 

model selection, the total parameter count (k) for each model included its structural 

parameters, initial conditions, and the residual variance (σ²). We report the corrected 

Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC), ΔAICc, and 

Akaike weights to compare model performance. 

 

Out-of-sample evaluation. To assess predictive performance, we implemented a rolling-

origin forecasting procedure across five folds, evaluating horizons from one to five years. 

Forecast accuracy was quantified using the Root Mean Square Error (RMSE) and Mean 

Absolute Error (MAE). For models where predictive intervals were computed, we 

additionally report the Continuous Ranked Probability Score (CRPS). Statistical 

differences in forecast accuracy between models were assessed using the Diebold–

Mariano test. 

 

Identifiability: clock versus parameter forcing. We conducted synthetic data experiments 

to address the structural identifiability of the geometric clock against direct parameter 

forcing. Ground-truth datasets were generated using two distinct processes: (a) a pure 

ecological clock, 𝑐௘௖௢ሺ𝑍ሻ, and (b) direct parameter forcing, 𝜃ሺZሻ. We then fitted models 

from both families to these synthetic datasets and compared their out-of-sample 

predictive performance, particularly under simulated shifts in the forcing variable, Z. 

Furthermore, we quantified the collinearity between the estimated clock effect, 𝑐̂௘௖௢ሺ𝑍ሻ, 

and the estimated direct forcing effect, 𝜃෠ሺZሻ, to assess their empirical distinguishability. 

 

Error structure and parameter positivity. The robustness of our findings to alternative 

error assumptions was examined. We report the sensitivity of the results to models 

incorporating Generalised Least Squares (GLS) with AR(1) residuals and to a simple state-

space model accommodating observation noise [6, 12]. To ensure all biological parameters 
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remained mechanistically plausible, positivity was strictly enforced using exponential link 

functions. 

 

Scaling and non-dimensionalisation. Finally, we present a non-dimensional form of the 

system to clarify its fundamental scaling properties. This adimensional analysis elucidates 

precisely which dimensionless groups are modulated by the ecological clock's temporal 

scaling and which remain invariant, thereby facilitating a more robust comparison of the 

underlying dynamics across disparate datasets. 

 

3 Results 

The model tournament revealed a clear, context-dependent hierarchy. For Isle Royale, the 

climate-driven ecological clock (BR-𝜏Z) was the undisputed winning model (Akaike weight 

= 1.00), dramatically outperforming the classical RA and the force-based RA-climate models 

(Table 1). In stark contrast, for both the Hudson Bay and Veilleux datasets, the simplest 

mechanistic model, RA, was the clear winner (Table 2). 

Table 1: Model Selection Results for the Isle Royale Dataset. The winning model is 

highlighted in bold. 

 

Model k AICc ∆AICc wi

BR_Z 12 -79.82 0.00 1.00

RA_climate 11 -68.93 10.89 0.00

HBM 14 79.59 159.41 0.00

RA 10 37.21 117.03 0.00

BR_ 12 35.74 115.56 0.00

 

Table 2: Model Selection Summaries for Baseline Datasets. 

 

Dataset Model AICc ∆AICc wi

Hudson Bay RA 37.21 0.00 1.00

 BR_ 45.85 8.64 0.01
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Veilleux RA -9.46 0.00 1.00

 BR_ 49.33 58.79 0.00
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4 Discussion 

4.1 The Empirical Resolution of Reichenbach’s Dilemma 

The empirical results presented resolve Reichenbach's dilemma for the specific ecological 

systems studied. We contrast two families of models under parsimonious instantiations: 

force-augmented flat dynamics (HF) and time-warped geometric dynamics (HG). Our 

empirical preference for HG in the externally forced Isle Royale system is predictive–

epistemic, based on its superior performance according to AICc which proxies expected 

out-of-sample predictive loss; it is not presented as a metaphysical verdict about the 

ultimate nature of ecological reality. The results provide a compelling empirical narrative. 

The success of the geometric approach suggests a departure from classical dynamics 

operating within a static phase space. The Biorelativity framework posits that ecological 

organisation exhibits reciprocal coupling, often termed 'back-reaction'. Rather than a simple 

top-down chain of command where higher-level variables dictate lower-level dynamics, 

external variables (like climate in the BR-Z model) shape the metric or curvature that 

governs local interactions. In turn, the empirical covariance structure generated by those 

local dynamics updates the metric itself. Operationally, this coupling can be approximated 

by relating the metric tensor to the inverse covariance matrix, 𝑔 ൎ Σିଵ, estimated locally, a 

concept linking the system's statistical properties to the phase space geometry, reminiscent 

of links between Fisher information and Riemannian metrics discussed in information 

geometry. Such dynamic coupling between system state and space structure is central to 

geometric interpretations of dynamics, as explored in frameworks like tensor analysis on 

manifolds (see, for example, Lovelock & Rund [15] or Wasserman [26]). 

It is important, however, to exercise caution regarding the analogy drawn with General 

Relativity. The GR metaphor serves primarily as a heuristic device to guide 

parameterisation—suggesting concepts like ecological clocks and curvature as potential 

descriptors of interaction—and to inform model selection. It does not entail a strong 

ontological claim that ecological interactions literally warp a physical spacetime. Our 

commitment here is pragmatic: the geometric perspective, specifically the ecological clock 

model, yields better expected prediction under documented environmental forcing for the 

Isle Royale system. 

The victory of the BR_Z model in Isle Royale is a validation of the geometric framework 
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(HG). The data indicates that it is more efficient and accurate to state that the pace of life 

slows in harsh winters, a geometric statement about the metric of spacetime than to 

construct force laws linking climate to individual parameters. The decisive failure of the 

RA_climate model, the force hypothesis (HF) supports this interpretation. 

 

Furthermore, the empirical success of the climate-driven ecological clock, 𝐶௘௖௢ሺ𝑍ሻ, merits a 

brief geometrical interpretation within the broader Biorelativity framework proposed by 

Fariña [8]. While the full theory envisages a dynamic metric tensor, 𝑔௜௝ሺ𝑋, 𝑍ሻ, whose 

components evolve depending on the system's state 𝑋 and external forcings 𝑍, the 

ecological clock model represents the simplest non-trivial approximation to such 

dependence. Formally, the effect of 𝐶௘௖௢ሺ𝑍ሻ multiplying the entire vector field, X = 𝐶௘௖௢ሺ𝑍ሻ ∙

𝐹ሺ𝑋, 𝜃ሻ is analogous to a conformal transformation applied specifically to the temporal 

component of a hypothetical underlying eco-evolutionary metric, or equivalently, a 

rescaling of the proper time interval  𝑑𝜏ଶ → 𝐶𝑒𝑐𝑜
െ2 ሺ𝑍ሻ 𝑑𝜏ଶ . As detailed in foundational texts 

on differential geometry, conformal transformations preserve angles but rescale distances 

and intervals. In this ecological context, 𝐶௘௖௢ሺ𝑍ሻ acts as the conformal factor Ω, uniformly 

altering the tempo of dynamics across the phase space without changing the relative 

geometry of the nullclines at any given instant. This provides a geometrically grounded, 

albeit simplified, mechanism for how external variables like climate can modulate the fabric 

of ecological interactions, lending credence to the view that the underlying geometry is 

indeed non-static, as posited by Biorelativity. 

This aligns with the arguments of Reichenbach. While a Euclidean geometry could be 

preserved by introducing ad-hoc forces, parsimony, as operationalised by the AICc, guides 

the analysis to a more elegant conclusion: the geometry itself is non-static.  

Rather than a top-down chain of command, ecological hierarchy exhibits back-reaction: 

higher-level states set the curvature that guides lower-level motion, and the statistical 

imprint of that motion (its variance–covariance structure) in turn reshapes the geometry. 

This perspective, central to the Biorelativity framework, recasts ecological dynamics as 

motion within a deformable ecomorphological manifold, analogous to how mass-energy 

warps spacetime in general relativity. The curvature here represents the landscape of 

ecological possibilities and constraints—such as resource availability gradients, predation 



16  

risk landscapes or niche partitioning opportunities—which are influenced by broader 

system states (e.g., climate, community structure). Individual organisms or populations 

(lower-level entities) navigate this curved space, their trajectories representing ecological 

processes like foraging, competition or dispersal, following paths akin to geodesics 

determined by the local geometry. 

This geometric view necessitates a dynamic coupling between the state of the system and 

the structure of the space itself. We posit a bidirectional coupling: ecological dynamics, 

represented by the state vector 𝑋 evolving under influences from higher levels 𝐻 and 

external factors 𝑍, follow trajectories governed by  𝑋 ൌ 𝑐௘௖௢ሺ𝑋, 𝐻, 𝑍ሻ ∙ 𝐹ሺ𝑋, 𝐻ሻሶ . 

Simultaneously, the geometry of the manifold, encoded by a metric tensor 𝑔, evolves based 

on the statistical properties emerging from these dynamics. Specifically, identifying the 

metric 𝑔 with the inverse of the variance-covariance matrix Σିଵ derived from the system's 

state 𝑔ሺ𝑋, 𝐻, 𝑍ሻ ൌ  Σିଵሺ𝑋, 𝐻, 𝑍ሻ, allows for geometry evolution described by 𝜕்Σ ൌ

 Ψሺ𝑠𝑡𝑎𝑡𝑠ሺ𝑋, 𝐻, 𝑍ሻሻ. In this formulation, higher-level variables (𝐻, 𝑍) modulate the curvature 

(affecting 𝑔 or its associated connection coefficients  Γ௜௝
௞, thereby influencing the geodesics 

followed by 𝑋. Conversely, the statistical patterns generated by the motion of 𝑋 (and 𝐻, 𝑍), 

captured in  Σ, feed back to reshape the metric g itself via the function Ψ. This formalises the 

concept of back-reaction, where ecological agents both respond to and co-create the 

geometric structure of their interaction space. 

 

4.2 Parsimony and the Rejection of Unnecessary Complexity 

The path of model development in this study itself provides a meta-narrative. The HBM 

represented a direct translation of a complex theoretical idea but was severely penalised for 

over-parameterisation. The success of the simpler BR_Z model is therefore a crucial 

finding. It suggests that while the geometry is indeed dynamic, the change is better 

captured by a single, elegant deformation of the time dimension. The failure of the HBM 

was not a failure of the geometric paradigm, but a success for the principle of parsimony 

within it. 

The success of the simple RA model in the other two datasets acts as a scientific control. It 

demonstrates that the analysis does not simply overfit, but correctly chooses the simplest 

geometric structure supported by the data which, in those cases, is flat and unchanging. 
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4.3 Limitations and Future Work 

This study relies on in-sample metrics (AICc) for model selection. While robust, future 

work must corroborate these findings using out-of-sample validation, such as a rolling-

origin forecast comparison. Furthermore, this study used a single PC1 axis as the climate 

driver; a more thorough analysis would involve a covariate substitution test to determine 

which specific environmental variables (e.g., snow depth, temperature) provide the most 

explanatory power. Finally, richer mechanistic baselines (e.g., models where climate affects 

multiple parameters simultaneously) are required to provide a stronger challenge to the 

geometric hypothesis. 

Future investigations could explore incorporating additional known ecological 

mechanisms, such as Allee effects [5] which can significantly alter system equilibria and 

stability [21], within this geometric framework to assess their interaction with potential 

phase-space curvature. 

 

5 Outlook: Formalising a Tensorial Ecology 

The success of the scalar ecological clock model is a powerful validation of the geometric 

approach. However, it represents a minimal formalisation of Biorelativity. The 

mathematical framework of tensor calculus and differential geometry [21] provides the 

tools to construct a fully tensorial theory. 

 

5.1 The Geodesic Equation with a Dynamic Metric 

A direct implementation of Biorelativity would replace the classical equations of motion 

with the geodesic equation on a manifold with a climate-dependent metric, gij(Z). The 

dynamics would be governed by: 

 

 
𝑑ଶ𝑋௞

𝑑𝜏ଶ ൅  Γ௜௝
௞ 𝑑𝑋௜

𝑑𝜏
𝑑𝑋௝

𝑑𝜏
ൌ 0 

 

Here, xi are the population state variables,  is biological time, and Γ௜௝
௞ (Z) are the 

Christoffel symbols, which depend on the derivatives of the metric tensor gij(Z), thus 
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explicitly encoding how climate alters the curvature of the phase space. 

The rigorous mathematical basis for this implementation stems from the field of geometric 

dynamics, which provides the formalism for transforming a first-order autonomous 

differential system (a 'flow') into the second-order geodesic equations of motion on a 

Riemannian manifold [17]. In this context, the connection coefficients Γ௜௝
௞ derived from the 

metric gij(Z) function as the 'fictitious forces' that arise purely from the curvature of the 

manifold, elegantly replacing the ad-hoc 'universal forces' of the classical Newtonian 

paradigm. 

 

5.2 An Eco-Evolutionary Manifold 

 

To fully realise the Biorelativity framework, the manifold must capture not only ecological 

dynamics but also evolutionary change, treating both as commensurate components of a 

single system. Indeed, as argued by Jost [13], geometry and information are the 

fundamental mathematical concepts required for a modern, unified theoretical biology.   

A more comprehensive model would exist on an eco-evolutionary manifold, ℳ௘௖௢ି௘௩௢, 

whose coordinates include population densities (Ni) and mean trait values (φα). The metric 

tensor on this expanded manifold, gAB, would have blocks describing purely ecological 

interactions (gij) and evolutionary dynamics (gαβ), as well as the crucial eco-evolutionary 

feedback (giβ). This provides a rigorous geometric framework for modelling adaptive 

dynamics as trajectories on a dynamically curving manifold. 

 

6 Conclusion 

This study does not merely compare models; it tests competing descriptions of ecological 

reality. By formalising principles of Biorelativity into a falsifiable model, strong evidence is 

provided that a geometric, non-static view of phase space is a superior explanatory 

framework for systems subject to strong external forcing. The climate-driven ecological 

clock is not a universal law, but a powerful tool whose success in the Isle Royale system 

empirically vindicates the foundational concepts of a relativistic approach to biology. The 

findings suggest that for many ecological systems, the most insightful question may not be 

“how do forces change the dynamics?” but rather “how does the environment change the 
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arena of life itself?”. 
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A Mathematical and Conceptual Appendix 

A.1 Geodesic Equation and the Time-Warp Approximation 

The core postulate of a geometric theory is that trajectories follow geodesics. For a 

manifold with metric gij and coordinates Xk, the geodesic equation is given by: 

𝑑ଶ𝑋௞

𝑑𝜏ଶ ൅  Γ௜௝
௞ 𝑑𝑋௜

𝑑𝜏
𝑑𝑋௝

𝑑𝜏
ൌ 0 

 

where Γk are the Christoffel symbols, which depend on the first derivatives of the metric 

tensor[11, 26].  

The ecological clock model, X˙ = ceco(Z) ∙ F(X), can be seen as a conformal transformation 

of a flat background metric, gt  = ceco(Z)2 ∙ δij. This transformation introduces curvature. 

Under simplifying assumptions (e.g., weak field limit, where curvature is small), the 

geodesic dynamics can be approximated by a force-like equation where the “force” is 

proportional to the gradient of the clock function. The empirical success of the scalar clock 

model thus provides evidence for a non-trivial underlying geometry, with ceco(Z) serving 

as the simplest possible approximation (a scalar field) of the metric tensor’s dependence 

on Z. 

 

A.2 Identifiability and Non-Equivalence 

A key concern is whether the geometric model (BR_Z) is truly distinguishable from a 

classical model where all parameters depend on climate, i.e., θ(Z). While they may achieve 

similar in-sample fits, their functional forms are different. A model with θ(Z) implies that 

climate alters multiple, specific biological mechanisms independently. The BR_Z model 

proposes a more constrained, holistic effect: a single modulation of the system’s tempo. 

These two hypotheses make different predictions about how the system would behave 

under novel climatic conditions. A synthetic data experiment (not shown here, but 

pending) would be required to demonstrate that a BR_Z model is better at recovering the 

true generating process from data simulated with a time-warp, confirming their non-

equivalence in predictive power. 
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A.3 Adimensionalisation 

The Rosenzweig-MacArthur [20] model can be non-dimensionalised to reduce its 

parameters. When the ecological clock ceco(Z) is applied to this non-dimensional system, it 

becomes clear that it does not alter the dimensionless parameters that define the geometry 

of the nullclines. Instead, it multiplies the entire system, confirming its role as a pure 

rescaling of the characteristic timescale of the dynamics, t˜ = t/ceco(Z), where t˜ is the new, 

dimensionless biological time. 

 

A.4 Temporal Reparameterisation vs. Geodesic Dynamics 

 

A.4.1 Temporal Reparameterisation. Let the classical dynamics be given by the vector field 

𝑋ሶ ൌ 𝐹ሺ𝑋ሻ. We introduce a biological proper time, 𝜏, defined by the differential relation  𝑑𝜏 ൌ

𝑐௘௖௢ሺ𝑍ሻ𝑑𝑡, where 𝑐௘௖௢ሺ𝑍ሻ ൐ 0 is the scalar clock function. By the chain rule, the dynamics 

with respect to  𝜏 are:  

𝑑𝑋
𝑑𝜏

 ൌ  
𝑑𝑋
𝑑𝑡

𝑑𝑡
𝑑𝜏

 ൌ 𝐹ሺ𝑋ሻ ൬
1

𝑐௘௖௢ሺ𝑍ሻ
൰ 

The resulting vector field is merely a rescaling of the original. Consequently, the trajectories 

in phase space (the integral curves) remain unchanged; only their parametrisation, or the 

speed at which they are traversed, is altered. 

 

A.4.2 Geodesic Dynamics. A more profound geometric hypothesis posits that motion is 

geodesic upon a manifold with a metric 𝑔௜௝ሺ𝑋, 𝑍ሻ. In this case, trajectories do not follow 𝐹ሺ𝑋ሻ 

but instead satisfy the geodesic equation:  

𝑑ଶ𝑋௞

𝑑𝜏ଶ ൅  Γ௜௝
௞ 𝑑𝑋௜

𝑑𝜏
𝑑𝑋௝

𝑑𝜏
ൌ 0 

where Γ௜௝
௞ are the Christoffel symbols (connection coefficients) derived from the metric. Non-

zero connection terms act as inertial fictitious forces [11, 21] that can rotate the tangent field, 

fundamentally altering the shape of the curves in phase space, not just the speed. 

 

A.4.3 Clock-as-Geodesic Approximation. A scalar clock (A.4.1) may approximate a full 

geodesic dynamic (A.4.2) under restrictive conditions. If the metric is (i) weakly varying and 
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(ii) approximately diagonal and conformal to the Euclidean metric, such that 𝑔௜௝ሺ𝑋, 𝑍ሻ ൎ

𝜆ሺ𝑍ሻ𝛿௜௝, the connection terms Γ௜௝
௞ may be negligible. If a reference vector field 𝐹ሺ𝑋ሻ is already 

closely aligned with the local geodesics, the dominant effect of the metric will be the scalar 

timing modulation  𝑐௘௖௢ሺ𝑍ሻ ൎ 1/ඥ𝜆ሺ𝑍ሻ. Departures from this simplicity (e.g., strong 

gradients, or significant off-diagonal terms in 𝑔௜௝) would necessitate explicit connection 

terms to account for directional changes. 

 

A.4.4 Conformal Curvature. Consider a conformally flat metric 𝑔′௜௝ ൌ  𝑒ଶథሺ௑,௓ሻ𝛿௜௝. If the 

conformal factor 𝜙 depends on the state variables 𝑋 (i.e., 𝜙 ൌ 𝜙ሺ𝑋ሻ), the phase space 𝑋 

becomes intrinsically curved. However, in our clock model, the factor depends only on the 

exogenous variable 𝑍ሺ𝑡ሻ, i.e., 𝜙 ൌ 𝜙ሺ𝑍ሺ𝑡ሻሻ As the Laplacian with respect to 𝑋 is Δ௑ 𝜙 ൌ 0, 

the phase space 𝑋 itself remains flat (Euclidean) at any given instant. Any curvature 

induced by the clock resides in the extended state-time manifold (𝑋, 𝑡ሻ, not intrinsically 

within the phase space 𝑋. 

 

A.4.5  Well-posedness. The use of log-links (e.g., 𝑏ሺ𝑍ሻ ൌ  𝑒ఉ೅௓) ensures that all biological 

parameters remain strictly positive. This, combined with the standard Holling-type [11] 

functional responses, results in a right-hand-side vector field F(𝑋, 𝑍ሺ𝑡ሻሻ that is locally 

Lipschitz-continuous on the observed domain. By the Picard–Lindelöf theorem, this 

guarantees the local existence and uniqueness of solutions, confirming the models are well-

posed. The empirical ranges of the forced parameters are reported to ensure they remain 

within physically plausible bounds. 

 

A.5 An Eco-Evolutionary Manifold: Geometrically Unifying Ecology and 

Evolution  

The concept of an eco-evolutionary manifold, denoted as ℳ௘௖௢ି௘௩௢, represents a crucial step 

in operationalising the Biorelativity theory. Biorelativity posits that ecological dynamics are 

best understood not as movements within a static, Euclidean phase space influenced by 

external forces, but as geodesics on a dynamic manifold whose geometry is actively shaped 

by the system's state and interactions. The eco-evolutionary manifold provides a concrete 
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mathematical structure for this dynamic geometry by explicitly unifying ecological and 

evolutionary state variables. 

Motivation: Traditional models often treat ecology (population dynamics) and evolution 

(changes in traits) separately, or link them by having ecological parameters depend on 

traits in an ad-hoc manner. Biorelativity seeks a more fundamental unification. It views the 

commonly observed low-dimensional phase spaces (like prey vs. predator density) as 

projections from a much richer, higher-dimensional eco-morphological spacetime 

encompassing genetic, morphological, behavioural and physiological traits alongside 

population variables. ℳ௘௖௢ି௘௩௢ aims to capture more of this underlying reality by creating a 

unified space where both ecological and evolutionary changes manifest as movement. 

Coordinates and Structure: The coordinates on this manifold explicitly include both 

population densities (𝑁௜, where i indexes species or populations) and mean trait values (𝜙ఈ, 

where 𝛼 indexes relevant traits, such as average body size, foraging efficiency, etc.). A point 

on ℳ௘௖௢ି௘௩௢  thus represents the combined ecological and evolutionary state of the system 

at an instant. 

The Metric Tensor (𝒈𝑨𝑩) defining the Geometry of Interaction: The core of the geometric 

description lies in the metric tensor, (𝑔஺஻) , defined on ℳ௘௖௢ି௘௩௢. This tensor generalises the 

concept of distance and angle to the curved manifold, determining its local geometry. 

Crucially, in the Biorelativity framework, this metric is not fixed but dynamic, shaped by 

the state variables themselves. The proposed structure for 𝑔஺஻ on ℳ௘௖௢ି௘௩௢ highlights the 

interconnectedness. 

Ecological Block (𝑔௜௝): This sub-matrix describes the purely ecological geometry. It 

determines the distances and curvature related to changes in population densities (𝑁௜, 𝑁௝). 

This block captures how ecological interactions (predation, competition) manifest 

geometrically when only population numbers change. It can be seen as a dynamic 

generalisation of the geometry underlying classical phase-plane analysis, potentially linked 

to covariance structures or Fisher Information Metrics. 

Evolutionary Block (𝑔ఈఉ): This sub-matrix describes the purely evolutionary geometry, 

relating to changes in mean trait values (𝜙ఈ, 𝜙ఉ). It captures the geometry of the fitness 

landscape or the space of possible trait combinations, influenced by selection pressures 

acting directly on traits. 
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Eco-Evolutionary Feedback Block (𝑔௜ఉ and 𝑔ఉ௜): These off-diagonal blocks are perhaps the 

most significant conceptual advance. They explicitly encode the feedback loops between 

ecology and evolution as intrinsic components of the manifold's geometry. 

𝑔௜ఉ quantifies how changes in trait 𝛽 influence the dynamics of population 𝑖 (e.g., how 

increased prey size affects predator population growth). 

𝑔ఉ௜ quantifies how changes in population 𝑖 influence the evolutionary trajectory of trait 𝛽  

(e.g., how high predator density selects for different prey defence traits – density-

dependent selection). 

Dynamics as trajectories on the Manifold: Within this framework, adaptive dynamics – the 

simultaneous change in population densities and mean trait values – are modelled as 

trajectories on the dynamically curving manifold ℳeco−evo.  Following the core tenet of 

Biorelativity, these trajectories are hypothesised to follow geodesics defined by the metric 

𝑔஺஻. The geodesic equation: 

ௗమ௫ೖ

ௗఛమ ൅  Γ௜௝
௞ ௗ௫೔

ௗఛ

ௗ௫ೕ

ௗఛ
ൌ 0, 

 

where 𝑥௞ represents the coordinates (𝑁௜ or 𝜙ఈ),  𝜏 is an appropriate measure of eco-

evolutionary proper time, and Γ௜௝
௞ are the Christoffel symbols derived from the metric 𝑔஺஻, 

formally describes this motion. Changes in the system state (populations or traits) alter the 

metric 𝑔஺஻, which in turn alters the curvature and thus the subsequent geodesic paths 

available to the system. 

Significance: This formulation provides a rigorous geometric framework for modelling eco-

evolutionary dynamics. It moves beyond the Newtonian paradigm of forces acting in a 

fixed space, embracing a relativistic view where interactions manifest as the curvature of 

the state space itself. By incorporating eco-evolutionary feedback directly into the metric 

tensor, it offers a potentially more fundamental and unified way to understand how 

ecological and evolutionary processes shape each other over time. The mathematical 

language required relies heavily on tensor calculus and differential geometry, as detailed in 

texts such as Lovelock & Rund [15] and Wasserman [26]. This approach allows the complex 

interplay of ecological interactions, evolutionary pressures and their feedbacks to be 

described coherently within a single, dynamic geometric structure. 
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A.6 Distinguishing Temporal Reparameterisation and Geodesic Dynamics 

In order to illustrate the formal distinction between a simple temporal reparameterisation 

(the ecological clock) and a more fundamental geodesic dynamic, we present the R code 

(trespanelesV01.R) used to generate the conceptual three-panel diagram. 

 

Panel (a) Classical: RA X˙= F(X, θ). This is a standard vector field in Euclidean space. From 

a naturalist’s perspective, the rules of the game are fixed. The predator’s functional 

response and the prey’s growth are constant. 

Panel (b) RA with Ecological Clock (BR-𝝉Z): Ẋ     = c(Z) ∙ F(X, θ). This is a conformal 

transformation. Mathematically, the vector field’s direction at any point (N, P) is identical to 

Panel (a), but its magnitude is scaled by c(Z). Ecologically, this represents a time-warp or a 

change in the entire system’s pace of life. All processes (growth, predation, death) speed up 

or slowdown in unison, as if a universal metabolic rate were being externally modulated. 

The trajectory’s path in phase space remains unchanged, but the speed of traversal along 

that path is altered. 

Panel (c) Hypothetical Geodesic Dynamics: 𝐗𝐤ሷ ൅ 𝚪𝐤𝐗ሶ ଍𝐗ሶ ଎ሶ ൌ 𝟎 . This panel illustrates 

dynamics on a hypothetically curved manifold. The vector field, implemented in the 

geo_model function within the R code, deviates from the classical RA field. Crucially, the 

terms 𝐟𝐨𝐫𝐜𝐞𝐗𝟏 and  𝐟𝐨𝐫𝐜𝐞𝐗𝟐 added within geo_model serve as an ad-hoc representation 
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intended to mimic the effect of the Christoffel symbols Γk(Z) that appear in the geodesic 

equation. The geodesic equation describes the fundamental path of inertial motion in 

curved spaces, as detailed in differential geometry and central to the Biorelativity 

framework. It must be stressed that this implementation is purely illustrative, 

demonstrating the concept of trajectory deviation due to underlying geometry, rather than 

being derived from the rigorous calculation of Christoffel symbols based on a specific 

metric tensor 𝒈𝒊𝒋. The resulting trajectory (black line) visibly differs from that in the flat 

space of Panel (a), showcasing how geometric effects alter system dynamics. 

 

The provided R code implements these three scenarios numerically. The function ra_model 

is the classical HF case. The function ra_model_clock implements the HG hypothesis 

tested in this paper, showing a uniform scaling of the derivatives. The function 

ra_model_geodesic implements a hypothetical non-trivial curvature by adding fictitious 

force terms (𝛾ଵ, 𝛾ଶ) that are not proportional to the base vector field, thus altering the 

trajectory’s direction. This demonstrates the conceptual and mathematical distinction 

between the models. 

rm(list = ls()) 
library(ggplot2) 
library(deSolve) 
library(patchwork) 
library(dplyr) 
library(tidyr) 
# --- 1. Define the Base Model (Rosenzweig-MacArthur) --- 
# Parameters for a limit cycle 
params <- list( 
  r = 1.0,   # Prey growth rate 
  K = 5.0,   # Prey carrying capacity 
  a = 1.0,   # Predator attack rate 
  h = 0.5,   # Handling time 
  e = 0.4,   # Conversion efficiency 
  m = 0.2    # Predator mortality rate 
) 
# RA model function for 'deSolve' 
ra_model <- function(t, state, params) { 
  X1 <- state[1] # Prey 
  X2 <- state[2] # Predator 
  with(as.list(params), { 
    # dX/dt equations 
    dX1_dt <- r * X1 * (1 - X1 / K) - a * X1 * X2 / (1 + a * h * X1) 
    dX2_dt <- e * a * X1 * X2 / (1 + a * h * X1) - m * X2 
    return(list(c(dX1_dt, dX2_dt))) 
  })} 
# --- 2. Prepare Data for the Plots --- 
# Create a grid of the state space 
grid_data <- expand.grid( 
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  X1 = seq(0.1, 5.5, length.out = 20), 
  X2 = seq(0.1, 2.5, length.out = 20)) 
 
# --- (a) RA Field Data (Standard) --- 
# Calculate derivatives at each grid point 
vec_data_a <- grid_data %>% 
  rowwise() %>% 
  mutate( 
    derivs = list(ra_model(0, c(X1, X2), params)[[1]]), 
    dX1 = derivs[1], 
    dX2 = derivs[2] 
  ) %>% 
  ungroup() 
 
# Simulate a trajectory 
traj_a <- as.data.frame( 
  ode(y = c(X1 = 1, X2 = 1), times = seq(0, 100, by = 0.1),  
      func = ra_model, parms = params)) 
 
# Calculate Nullclines 
# We use 'with(params, { ... })' so that 'mutate' can "see" 
# the variables 'r', 'K', 'a', 'h', 'm', 'e'. 
nullclines <- with(params, { 
  grid_data %>% 
    mutate( 
      # Prey Nullcline (dX1/dt = 0) 
      # X2 = r * (1 - X1 / K) * (1 + a * h * X1) / a 
      null_X1 = r * (1 - X1 / K) * (1 + a * h * X1) / a, 
       
      # Predator Nullcline (dX2/dt = 0) 
      # X1 = m / (a * (e - m * h)) 
      null_X2_X1_val = m / (a * (e - m * h)), 
      # Drawn as a vertical line 
      null_X2_X2_val = X2  
    ) 
}) 
 
# --- (b) Ecological Clock Data (BR-tau(Z)) --- 
# The 'clock' (c_eco) is a scalar factor. 
vec_data_b <- vec_data_a %>% 
  mutate( 
    # c_eco is small (slow) when X1 is low, fast when X1 is high 
    c_eco = 0.3 + 0.7 * (X1 / params$K),  
     
    # Re-scale the derivatives (same direction, different magnitude) 
    dX1 = dX1 * c_eco, 
    dX2 = dX2 * c_eco 
  ) 
 
# --- (c) Hypothetical Geodesic Data (g(X,Z)) --- 
# Calculate equilibrium points (needed for the 'force') 
X1_eq <- nullclines$null_X2_X1_val[1] 
X2_eq <- with(params, r * (1 - X1_eq / K) * (1 + a * h * X1_eq) / a) 
 
# The vector field for ggplot CAN access X1_eq and X2_eq 
# because they are in the script's global environment. 
vec_data_c <- vec_data_a %>% 
  mutate( 
    # Connection 'force' (Gamma * V) - e.g., rotation 
    force_X1 = -0.3 * (X2 - X2_eq), 
    force_X2 =  0.3 * (X1 - X1_eq), 
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    # The new field is (RA + Force) 
    dX1 = dX1 + force_X1, 
    dX2 = dX2 + force_X2 
  ) 
# Create a parameter list including equilibrium points 
params_geo <- c(params, list(X1_eq = X1_eq, X2_eq = X2_eq)) 
 
geo_model <- function(t, state, params) { 
  X1 <- state[1] 
  X2 <- state[2] 
   
  # 1. Get RA derivatives 
ra_derivs <- ra_model(t, state, params)[[1]] 
   
  # 2. Calculate geometric 'force' (using 'with') 
  with(as.list(params), { 
    force_X1 <- -0.3 * (X2 - X2_eq) 
    force_X2 <-  0.3 * (X1 - X1_eq) 
     
    # 3. Sum them up 
    return(list(c(ra_derivs[1] + force_X1,  
                  ra_derivs[2] + force_X2))) 
  }) 
} 
 
# 3. Simulate the curved trajectory using 'params_geo' 
traj_c <- as.data.frame( 
  ode(y = c(X1 = 1, X2 = 1), times = seq(0, 100, by = 0.1),  
      func = geo_model, parms = params_geo) # <-- Use the extended list 
) 
 
# --- 3. Create Plots with ggplot2 --- 
 
# Common axis limits 
lims_x <- c(0, 5.5) 
lims_y <- c(0, 2.5) 
# Base function to draw nullclines 
plot_nullclines <- function() { 
  list( 
    # Prey Nullcline 
    geom_line(data = nullclines, aes(x = X1, y = null_X1),  
              color = "darkgreen", linetype = "dashed", linewidth = 1), 
    # Predator Nullcline 
    geom_line(data = nullclines, aes(x = null_X2_X1_val, y = null_X2_X2_val),  
              color = "darkred", linetype = "dashed", linewidth = 1) 
  ) 
} 
# Normalize vectors for visualization (optional, but helpful) 
normalize_vecs <- function(df, scale = 0.2) { 
  df %>% 
    mutate( 
      magnitude = sqrt(dX1^2 + dX2^2), 
      dX1_norm = dX1 / magnitude * scale, 
      dX2_norm = dX2 / magnitude * scale 
    ) 
} 
# --- Panel (a): RA Field (Flat Space) --- 
p_a <- ggplot(data = normalize_vecs(vec_data_a), aes(x = X1, y = X2)) + 
  geom_segment(aes(xend = X1 + dX1_norm, yend = X2 + dX2_norm), 
               arrow = arrow(length = unit(0.1, "cm")),  
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               alpha = 0.5, color = "blue") + 
  plot_nullclines() + 
  geom_path(data = traj_a, aes(x = X1, y = X2), color = "black", linewidth = 1) + 
  coord_cartesian(xlim = lims_x, ylim = lims_y) + 
  labs(title = "(a) RA Field (Flat Space)", 
       subtitle = "Standard trajectory and velocity", 
       x = "Prey (X1)", y = "Predator (X2)") + 
  theme_bw() 
# --- Panel (b): RA with Clock (BR-tau(Z)) --- 
p_b <- ggplot(data = normalize_vecs(vec_data_b, scale=0.25), aes(x = X1, y = X2)) 
+ 
  geom_segment(aes(xend = X1 + dX1_norm, yend = X2 + dX2_norm,  
                   color = c_eco), # Color by 'c_eco' to show the change 
               arrow = arrow(length = unit(0.1, "cm")),  
               alpha = 0.7) + 
  scale_color_viridis_c(name = "Velocity\n(c_eco)", option = "plasma") + 
  plot_nullclines() + 
  geom_path(data = traj_a, aes(x = X1, y = X2), color = "black", linewidth = 1) + 
  coord_cartesian(xlim = lims_x, ylim = lims_y) + 
  labs(title = "(b) RA with Clock (BR-τ(Z))", 
       subtitle = "Same trajectory, rescaled velocity (shorter/longer vectors)", 
       x = "Prey (X1)", y = "Predator (X2)") + 
  theme_bw() 
 
# --- Panel (c): Hypothetical Geodesic (g(X,Z)) --- 
p_c <- ggplot(data = normalize_vecs(vec_data_c), aes(x = X1, y = X2)) + 
  geom_segment(aes(xend = X1 + dX1_norm, yend = X2 + dX2_norm), 
               arrow = arrow(length = unit(0.1, "cm")),  
               alpha = 0.5, color = "purple") + 
  plot_nullclines() + 
  geom_path(data = traj_c, aes(x = X1, y = X2), color = "black", linewidth = 1) + 
  coord_cartesian(xlim = lims_x, ylim = lims_y) + 
  labs(title = "(c) Hypothetical Geodesic (g(X,Z))", 
       subtitle = "'Curved' trajectory due to geometric forces (connection)", 
       x = "Prey (X1)", y = "Predator (X2)") + 
  theme_bw() 

# --- 4. Combine the plots --- 
final_plot <- p_a + p_b + p_c + plot_layout(nrow = 1) 

 print(final_plot) 
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B Reproducible R Code  

The following is the complete R code used to perform the data loading, pre-processing, 

model fitting and summary generation presented in this paper.  

Note: Advanced traditional models (SINDy-like) to empirically derive dynamics taken 

from [4] 
 
# UNIFIED ROBUST ANALYSIS OF PREDATOR-PREY DYNAMICS: 
# Comparing Classical Models with Biorelativistic Geometric Interpretations 
# DESCRIPTION: 
# This script compares traditional ecological models (assuming a flat, static  
# phase space) against Biorelativity-inspired models that allow for dynamic  
# geometry. It uses an advanced empirical discovery engine ("Traditional")  
# to find data-driven dynamics, contrasting them with mechanistic models  
# including Rosenzweig-MacArthur (RA) and Biorelativity variants (ecological 
clock). 
# The goal is to test if a geometric, potentially non-static description of  
# ecological phase space provides a better fit, especially under external  
# forcing (e.g., climate), following Fariña's Biorelativity hypothesis. 
# 
# KEY FEATURES: 
# - Advanced "Traditional" model (SINDy-like) to empirically derive dynamics. 
# - Compares classical RA with Biorelativity models (BR-tau, BR-tau_Z, HBM). 
# - Tests the "ecological clock" concept (BR-tau_Z) where external factors  
#   modulate the tempo of dynamics, akin to a conformal transformation of  
#   the phase space metric. 
# - Calculates RMSE in both scaled (for fitting) and original biological units. 
# ============================================================================= 
 
# --- PART 0: INITIAL SETUP --- 
rm(list = ls()) 
 
# Load necessary R packages for analysis and visualization 
suppressPackageStartupMessages({ 
  library(deSolve)      # For solving ordinary differential equations (ODEs) 
  library(dplyr)        # For data manipulation 
  library(ggplot2)      # For plotting 
  library(tidyr)        # For data tidying 
  library(boot)         # Potentially used in bootstrapping (though main bootstrap 
is custom) 
  library(gridExtra)    # For arranging plots 
  library(minpack.lm)   # For Levenberg-Marquardt non-linear least squares 
(nls.lm) 
  library(glmnet)       # For LASSO regression (used in the empirical model) 
  library(splines)      # Used implicitly by smooth.spline 
  library(ggfortify)    # For plotting time series diagnostics (e.g., ACF) 
}) 
 
 
# --- PART 1: ADVANCED EMPIRICAL MODEL ENGINE --- 
# This section defines functions to empirically discover the governing equations  
# directly from time-series data, without assuming a specific mechanistic model  
# structure *a priori*. It approximates derivatives using splines and then uses  
# sparse regression (LASSO) to identify the significant terms (e.g., N, P, N*P)  
# driving the rates of change (dN/dt, dP/dt). Bootstrapping assesses the  
# robustness of term selection. This represents the 'Traditional' or data-driven  
# approach, agnostic to underlying geometry. 
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fit_empirical_model_advanced <- function(times, obs_data_original, prey_name, 
pred_name) { 
   
  # Step 1: Internal Scaling (Mean/SD) - Standardizes variables for numerical 
stability  
  # before derivative estimation and regression. This doesn't affect the model  
  # structure discovery but helps the algorithms converge. 
  scale_params <- list( 
    prey_mean = mean(obs_data_original[, 1], na.rm=TRUE), prey_sd = 
sd(obs_data_original[, 1], na.rm=TRUE), 
    pred_mean = mean(obs_data_original[, 2], na.rm=TRUE), pred_sd = 
sd(obs_data_original[, 2], na.rm=TRUE) 
  ) 
  obs_data_scaled <- obs_data_original 
  obs_data_scaled[, 1] <- (obs_data_original[, 1] - scale_params$prey_mean) / 
scale_params$prey_sd 
  obs_data_scaled[, 2] <- (obs_data_original[, 2] - scale_params$pred_mean) / 
scale_params$pred_sd 
   
  # Step 2: Grid search for optimal spline smoothing parameter ('spar') 
  # Smoothing is necessary to estimate derivatives from noisy data. Finding the  
  # optimal 'spar' balances fidelity to the data with smoothness. The AIC is used 
  # to select the 'spar' that yields the best empirical model overall. 
  spar_grid <- seq(0.4, 0.9, by = 0.05) 
  results_list <- list() 
   
  for (spar_val in spar_grid) { 
    # Estimate derivatives (rates of change) using smoothing splines 
    derivatives_scaled <- matrix(NA, nrow = nrow(obs_data_scaled), ncol = 2) 
    derivatives_scaled[, 1] <- predict(smooth.spline(times, obs_data_scaled[, 1], 
spar = spar_val), times, deriv = 1)$y # d(Prey)/dt 
    derivatives_scaled[, 2] <- predict(smooth.spline(times, obs_data_scaled[, 2], 
spar = spar_val), times, deriv = 1)$y # d(Predator)/dt 
     
    # Create Theta library: Basis functions representing potential interaction 
terms 
    # (e.g., linear growth, density dependence, predator-prey interaction) 
    Theta <- data.frame(const=1, X=obs_data_scaled[,1], Y=obs_data_scaled[,2],  
                        X2=obs_data_scaled[,1]^2, 
XY=obs_data_scaled[,1]*obs_data_scaled[,2], Y2=obs_data_scaled[,2]^2) 
     
    # Use LASSO with cross-validation to perform sparse regression.  
    # This selects the most important terms from Theta to explain the derivatives.
    final_lasso_prey <- try(cv.glmnet(as.matrix(Theta), derivatives_scaled[, 1], 
alpha = 1, nfolds = min(10, nrow(Theta))), silent=TRUE) 
    final_lasso_pred <- try(cv.glmnet(as.matrix(Theta), derivatives_scaled[, 2], 
alpha = 1, nfolds = min(10, nrow(Theta))), silent=TRUE) 
     
    # Skip if LASSO fails for this spar value 
    if (inherits(final_lasso_prey, "try-error") || inherits(final_lasso_pred, 
"try-error")) next 
     
    # Extract coefficients at optimal lambda 
    C_s_prey <- coef(final_lasso_prey, s = "lambda.min") 
    C_s_pred <- coef(final_lasso_pred, s = "lambda.min") 
     
    # Calculate model complexity (number of non-zero parameters) 
    k_total <- sum(C_s_prey != 0) + sum(C_s_pred != 0) 
     
    # Calculate predictions and residuals 
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    pred_prey <- predict(final_lasso_prey, newx = as.matrix(Theta), s = 
"lambda.min") 
    pred_pred <- predict(final_lasso_pred, newx = as.matrix(Theta), s = 
"lambda.min") 
     
    res_prey_scaled <- derivatives_scaled[, 1] - pred_prey 
    res_pred_scaled <- derivatives_scaled[, 2] - pred_pred 
     
    # Calculate Log-Likelihood assuming Gaussian residuals for the derivative fit 
    n_obs <- nrow(obs_data_scaled) 
    sigma2_prey <- sum(res_prey_scaled^2) / n_obs; if(sigma2_prey < 1e-9) 
sigma2_prey <- 1e-9 # Avoid log(0) 
    sigma2_pred <- sum(res_pred_scaled^2) / n_obs; if(sigma2_pred < 1e-9) 
sigma2_pred <- 1e-9 
     
    logLik <- sum(dnorm(res_prey_scaled, 0, sqrt(sigma2_prey), log=T)) + 
sum(dnorm(res_pred_scaled, 0, sqrt(sigma2_pred), log=T)) 
     
    # Calculate AIC (includes +2 for estimating the two residual variances) 
    aic <- 2 * (k_total + 2) - 2 * logLik  
     
    # Store results for this spar value 
    results_list[[as.character(spar_val)]] <- list( 
      spar = spar_val, aic = aic, k = k_total + 2, logLik = logLik, 
      coefs_scaled = cbind(C_s_prey, C_s_pred), 
      res_prey_scaled = res_prey_scaled, 
      res_pred_scaled = res_pred_scaled 
    ) 
  } 
   
  # If no model converged, return NULL 
  if (length(results_list) == 0) return(NULL) 
   
  # Step 3: Select the best model based on minimum AIC across spar values 
  best_result <- results_list[[which.min(sapply(results_list, `[[`, "aic"))]] 
  C_s <- best_result$coefs_scaled # Best coefficients in scaled units 
   
  # Unscale coefficients back to original biological units 
  # This involves reversing the mean/sd scaling transformation algebraically. 
  w_mean <- scale_params$prey_mean; w_sd <- scale_params$prey_sd 
  m_mean <- scale_params$pred_mean; m_sd <- scale_params$pred_sd 
  C_unscaled <- matrix(0, nrow=6, ncol=2) 
   
  # Unscaling formulas derived algebraically (tedious but necessary) 
  C_unscaled[1,1] <- w_sd*(C_s[1,1] - C_s[2,1]*(w_mean/w_sd) - 
C_s[3,1]*(m_mean/m_sd) + C_s[4,1]*(w_mean/w_sd)^2 + 
C_s[5,1]*(w_mean/w_sd)*(m_mean/m_sd) + C_s[6,1]*(m_mean/m_sd)^2) 
  C_unscaled[2,1] <- w_sd*((1/w_sd)*C_s[2,1] - 2*C_s[4,1]*(w_mean/w_sd^2) - 
C_s[5,1]*(m_mean/(w_sd*m_sd))) 
  C_unscaled[3,1] <- w_sd*((1/m_sd)*C_s[3,1] - C_s[5,1]*(w_mean/(w_sd*m_sd)) - 
2*C_s[6,1]*(m_mean/m_sd^2)) 
  C_unscaled[4,1] <- w_sd*(1/w_sd^2)*C_s[4,1] 
  C_unscaled[5,1] <- w_sd*(1/(w_sd*m_sd))*C_s[5,1] 
  C_unscaled[6,1] <- w_sd*(1/m_sd^2)*C_s[6,1] 
   
  C_unscaled[1,2] <- m_sd*(C_s[1,2] - C_s[2,2]*(w_mean/w_sd) - 
C_s[3,2]*(m_mean/m_sd) + C_s[4,2]*(w_mean/w_sd)^2 + 
C_s[5,2]*(w_mean/w_sd)*(m_mean/m_sd) + C_s[6,2]*(m_mean/m_sd)^2) 
  C_unscaled[2,2] <- m_sd*((1/w_sd)*C_s[2,2] - 2*C_s[4,2]*(w_mean/w_sd^2) - 
C_s[5,2]*(m_mean/(w_sd*m_sd))) 
  C_unscaled[3,2] <- m_sd*((1/m_sd)*C_s[3,2] - C_s[5,2]*(w_mean/(w_sd*m_sd)) - 
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2*C_s[6,2]*(m_mean/m_sd^2)) 
  C_unscaled[4,2] <- m_sd*(1/w_sd^2)*C_s[4,2] 
  C_unscaled[5,2] <- m_sd*(1/(w_sd*m_sd))*C_s[5,2] 
  C_unscaled[6,2] <- m_sd*(1/m_sd^2)*C_s[6,2] 
   
  # Store final unscaled coefficients 
  final_coeffs <- data.frame( 
    Term = c("const", prey_name, pred_name, paste0(prey_name,"^2"), 
paste0(prey_name,"*",pred_name), paste0(pred_name,"^2")), 
    Prey_dot = C_unscaled[,1], 
    Pred_dot = C_unscaled[,2] 
  ) 
   
  # Final model selection metrics (AICc, BIC) for the best empirical model 
  n <- nrow(obs_data_original) * 2 # Total number of derivative points fitted 
  k <- best_result$k 
  aic <- best_result$aic 
  logLik <- best_result$logLik 
  bic <- k * log(n) - 2 * logLik 
  aicc <- aic + (2*k*(k+1))/(n-k-1) 
   
  # Calculate RMSE based on the fit to the *derivatives* in scaled units 
  rmse_scaled_prey <- sqrt(mean(best_result$res_prey_scaled^2)) 
  rmse_scaled_pred <- sqrt(mean(best_result$res_pred_scaled^2)) 
   
  # Return results: unscaled coefficients and model metrics 
  return(list( 
    coefficients = final_coeffs, 
    metrics = data.frame(k=k, logLik=logLik, AIC=aic, AICc=aicc, BIC=bic,  
                         RMSE_Scaled_Prey = rmse_scaled_prey, RMSE_Scaled_Predator 
= rmse_scaled_pred, 
                         RMSE_Original_Prey = NA, RMSE_Original_Predator = NA) # 
Original RMSE not directly calculated here 
  )) 
} 
 
 
# --- PART 2: MECHANISTIC MODEL DEFINITIONS --- 
# This function defines the differential equations for various mechanistic models.
# It uses a 'model_type' parameter to switch between different biological 
hypotheses: 
# - RA: Standard Rosenzweig-MacArthur (flat, static Euclidean phase space). 
# - RA_climate: RA where climate acts as an external 'force' modifying a parameter 
(predator mortality). 
# - BR_tau: Biorelativity model where the 'ecological clock' speed depends on the 
system state (N, P). 
# - BR_tau_Z: Biorelativity model where the 'ecological clock' speed depends on an 
external variable Z (climate). 
#            This represents climate modulating the overall tempo of dynamics 
(conformal metric change). 
# - HBM: Hierarchical Biorelativistic Model where climate affects multiple 
parameters involved  
#        in the interaction term (attack rate 'b', handling time 'h'), potentially 
representing 
#        a more complex geometric deformation or state-dependent force. 
 
unified_ode_model <- function(t, state, params) { 
  X <- state[1] # Prey density/abundance 
  Y <- state[2] # Predator density/abundance 
   
  # Default parameter values (can be overridden by specific models below) 
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  r <- params$r; K <- params$K; b_attack <- params$b; c_conv <- params$c; d_mort 
<- params$d; h_handling <- params$h 
   
  # Handle climate influence based on model type 
  if (params$model_type == "HBM" && !is.null(params$climate_func)) { 
    # HBM: Climate affects interaction parameters (b, h) via log-link 
    climate_val <- params$climate_func(t) 
    b_attack <- exp(params$log_b_intercept + params$beta_b * climate_val) 
    h_handling <- exp(params$log_h_intercept + params$beta_h * climate_val) 
  } 
   
  # Calculate the functional response (Holling Type II) using current parameters 
  fr_term <- b_attack * X * Y / (1 + b_attack * h_handling * X) 
   
  # Base RA equations 
  dX_dt <- r * X * (1 - X / K) - fr_term 
  dY_dt <- c_conv * fr_term - d_mort * Y 
   
  # Apply model-specific modifications 
   
  if (params$model_type == "RA_climate" && !is.null(params$climate_func)) { 
    # RA_climate: Climate acts as an additive 'force' on predator mortality 
    climate_val <- params$climate_func(t) 
    dY_dt <- c_conv * fr_term - (d_mort + params$delta_d * climate_val) * Y # 
Modified mortality 
  } 
   
  if (params$model_type == "BR_tau") { 
    # BR_tau: Ecological clock speed depends on state variables (X, Y) 
    c_eco <- exp(params$beta0 + params$beta1 * X + params$beta2 * Y) # Scalar 
clock factor 
    dX_dt <- dX_dt * c_eco # Scale both rates 
    dY_dt <- dY_dt * c_eco 
  } 
   
  if (params$model_type == "BR_tau_Z" && !is.null(params$climate_func)) { 
    # BR_tau_Z: Ecological clock speed depends on external climate variable Z 
    climate_val <- params$climate_func(t) 
    c_eco <- exp(params$beta0 + params$beta1 * climate_val) # Scalar clock factor 
    dX_dt <- dX_dt * c_eco # Scale both rates 
    dY_dt <- dY_dt * c_eco 
  } 
   
  # Return the calculated derivatives 
  return(list(c(dX_dt, dY_dt))) 
} 
 
 
# --- PART 3: MECHANISTIC FITTING ENGINE --- 
# This function fits the specified mechanistic model (defined in 
unified_ode_model)  
# to the observed time-series data using non-linear least squares (nls.lm). 
# It handles parameter initialization, bounds, the optimization process, and  
# calculation of model selection metrics (AICc, BIC) and goodness-of-fit (RMSE). 
# It works with data scaled by the median for fitting stability, but calculates  
# RMSE in both scaled and original biological units. 
 
fit_mechanistic_model <- function(times, obs_data_original, obs_data_scaled, 
model_type, scaling_factors, climate_data = NULL) { 
   
  # Residual function for nls.lm: Calculates the difference between observed  
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  # scaled data and the ODE model output for a given parameter set. 
  residuals_func <- function(params_vec) { 
    # Convert parameter vector back to a list 
    params_list <- as.list(params_vec); names(params_list) <- 
names(initial_params) 
    params_list$model_type <- model_type # Pass model type to ODE function 
     
    # Create an interpolation function for climate data if provided 
    if (!is.null(climate_data)) {  
      params_list$climate_func <- approxfun(climate_data$time, 
climate_data$climate, rule = 2) # rule=2 uses nearest neighbor for extrapolation 
    } else {  
      params_list$climate_func <- NULL  
    } 
     
    # Set initial conditions from fitted parameters 
    initial_conditions <- c(X = params_list$X0, Y = params_list$Y0) 
     
    # Solve the ODE system 
    out <- try(ode(y = initial_conditions, times = times, func = 
unified_ode_model, parms = params_list), silent = TRUE) 
     
    # Error handling: if ODE solver fails or returns unexpected results, return 
large residuals 
    if (inherits(out, "try-error") || any(is.na(out)) || nrow(out) != 
length(times)) {  
      return(rep(1e6, length(obs_data_scaled))) # Penalize failed runs heavily 
    } 
     
    # Return the vector of residuals (scaled data - scaled model output) 
    return(as.vector(obs_data_scaled - out[, -1])) # Exclude time column 
  } 
   
  # Define initial parameter guesses and bounds based on the model type 
  # Initial guesses are generic; bounds ensure biological plausibility (e.g., 
positive rates) 
  initial_params <- c(r=0.5, K=max(obs_data_scaled[,1],na.rm=T)*1.2, b=0.1, c=0.1, 
d=0.1, h=0.1, X0=obs_data_scaled[1,1], Y0=obs_data_scaled[1,2]) 
  lower_bounds <- rep(1e-9, length(initial_params)) # Rates must be positive 
  upper_bounds <- c(5, max(obs_data_scaled[,1],na.rm=T)*3, 5, 5, 5, 5, 
max(obs_data_scaled[,1],na.rm=T)*1.5, max(obs_data_scaled[,2],na.rm=T)*1.5) # 
Generous upper bounds 
   
  # Add model-specific parameters and adjust bounds 
  if (model_type == "RA_climate") {  
    initial_params <- c(initial_params, delta_d = 0);  
    lower_bounds <- c(lower_bounds, -2); upper_bounds <- c(upper_bounds, 2) # 
Climate effect can be neg or pos 
  } else if (model_type == "BR_tau") {  
    initial_params<-c(initial_params, beta0=0, beta1=0, beta2=0); # Clock 
parameters centered at 0 (exp(0)=1) 
    lower_bounds<-c(lower_bounds, -20, -20, -20); upper_bounds<-c(upper_bounds, 
20, 20, 20) # Wide bounds for log-scale clock effects 
  } else if (model_type == "BR_tau_Z") {  
    initial_params <- c(initial_params, beta0=0, beta1=0); # Clock parameters 
centered at 0 
    lower_bounds <- c(lower_bounds, -10, -10); upper_bounds <- c(upper_bounds, 10, 
10) # Bounds for climate effect on clock 
  } else if (model_type == "HBM") {  
    initial_params <- c(initial_params, log_b_intercept=log(0.1), beta_b=0, 
log_h_intercept=log(0.1), beta_h=0); # Log-scale intercepts, betas centered at 0 
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    lower_bounds <- c(lower_bounds, -10, -10, -10, -10); upper_bounds <- 
c(upper_bounds, 10, 10, 10, 10) # Bounds for log-params and climate effects 
  } 
   
  # Perform the non-linear least squares fit using nls.lm 
  fit_nls <- try(nls.lm(par=initial_params, fn=residuals_func, lower=lower_bounds, 
upper=upper_bounds, control=nls.lm.control(maxiter=1000, ftol=1e-8, ptol=1e-8)), 
silent=TRUE) 
   
  # If fitting fails, return NULL 
  if (inherits(fit_nls, "try-error")) return(NULL) 
   
  # Calculate model selection metrics (LogLik, AICc, BIC) 
  final_params <- as.list(coef(fit_nls)) 
  n <- length(obs_data_scaled) # Total number of data points (N*T + P*T) 
  k_fit <- length(final_params) # Number of fitted structural parameters + initial 
conditions 
   
  # Estimate residual variance (sigma^2) 
  sigma2 <- sum(fit_nls$fvec^2) / (n - k_fit); if(sigma2 < 1e-9) sigma2 <- 1e-9 # 
Avoid log(0) 
   
  # Calculate Log-Likelihood assuming Gaussian residuals 
  logLik <- -n/2 * log(2 * pi * sigma2) - sum(fit_nls$fvec^2) / (2 * sigma2) 
   
  # Calculate AIC, AICc, BIC (k includes sigma^2 estimate) 
  k <- k_fit + 1  
  AIC <- 2 * k - 2 * logLik 
  AICc <- AIC + (2 * k * (k + 1)) / (n - k - 1) # Corrected AIC for small sample 
size 
  BIC <- k * log(n) - 2 * logLik 
   
  # Calculate Root Mean Squared Error (RMSE) in scaled units (based on fitting 
residuals) 
  res_scaled_matrix <- matrix(fit_nls$fvec, ncol=2) 
  RMSE_Scaled_Prey <- sqrt(mean(res_scaled_matrix[,1]^2)) 
  RMSE_Scaled_Predator <- sqrt(mean(res_scaled_matrix[,2]^2)) 
   
  # Calculate RMSE in original biological units 
  pred_scaled <- obs_data_scaled - res_scaled_matrix # Model predictions in scaled 
units 
  pred_original <- sweep(pred_scaled, 2, scaling_factors, FUN="*") # Convert 
predictions back to original scale 
  RMSE_Original_Prey <- sqrt(mean((obs_data_original[,1] - pred_original[,1])^2, 
na.rm=TRUE)) # Compare original data and unscaled predictions 
  RMSE_Original_Predator <- sqrt(mean((obs_data_original[,2] - 
pred_original[,2])^2, na.rm=TRUE)) 
   
  # Prepare parameters list for output/simulation 
  final_params$model_type <- model_type 
  if (!is.null(climate_data)) {  
    final_params$climate_func <- approxfun(climate_data$time, 
climate_data$climate, rule=2)  
  } 
   
  # Return fitted parameters and performance metrics 
  return(list( 
    params=final_params,  
    metrics=data.frame(k=k, logLik=logLik, AIC=AIC, AICc=AICc, BIC=BIC,  
                     RMSE_Scaled_Prey=RMSE_Scaled_Prey, 
RMSE_Scaled_Predator=RMSE_Scaled_Predator,  
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                     RMSE_Original_Prey=RMSE_Original_Prey, 
RMSE_Original_Predator=RMSE_Original_Predator) 
  )) 
} 
 
 
# --- PART 4: MAIN ANALYSIS PIPELINE --- 
# Defines the datasets and iterates through them, running the appropriate models. 
 
# Configuration for each dataset 
datasets_config <- list( 
  IsleRoyale = list(file="isleroyale_wolf_moose_climate.csv", prey="moose", 
predator="wolves", time="year",  
                    climate_vars=c("jan.feb.ave.temp", "july.sept.ave.temp")), # 
Has climate data 
  HudsonBay = list(file="hudson_lynx_hare.csv", prey="hare", predator="lynx", 
time="year",  
                   climate_vars=NULL), # No climate data 
  Veilleux = list(file="veilleux_paramecium_didinium.csv", prey="paramecium", 
predator="didinium", time="time",  
                  climate_vars=NULL) # Lab data, no climate 
) 
 
# List to store results from all models and datasets 
final_summary_list <- list() 
 
# Loop through each dataset configuration 
for (name in names(datasets_config)) { 
  cat(paste("\n--- Processing Dataset:", name, "---\n")) 
  config <- datasets_config[[name]] 
  df <- read.csv(config$file, stringsAsFactors = FALSE) 
   
  # Extract original observation data (prey, predator) and time 
  obs_data_original <- df %>% select(all_of(c(config$prey, config$predator))) %>% 
as.matrix() %>% na.omit() # Ensure no NAs 
  # Find corresponding time points after removing NAs 
  times <- df[[config$time]][complete.cases(df %>% select(all_of(c(config$prey, 
config$predator))))]  
   
  # Ensure data and time have same length after NA removal 
  if(nrow(obs_data_original) != length(times)) { 
      stop(paste("Mismatch in lengths after NA removal for dataset:", name)) 
  } 
 
  # --- Run Traditional (Empirical) Model --- 
  cat("  -> Fitting model: Traditional (Empirical)... ") 
  fit_empirical <- try(fit_empirical_model_advanced(times, obs_data_original, 
config$prey, config$predator), silent=TRUE) 
   
  if(!inherits(fit_empirical, "try-error") && !is.null(fit_empirical)){ 
    cat("Success!\n") 
    # Save the unscaled coefficients discovered by the empirical model 
    write.csv(fit_empirical$coefficients, 
file=paste0("_coeffs_",name,"_Traditional.csv"), row.names=F) 
    # Store metrics for final comparison 
    final_summary_list[[length(final_summary_list) + 1]] <- list(dataset=name, 
model="Traditional", metrics=fit_empirical$metrics, params=NULL) # No params list 
needed, saved separately 
  } else {  
    cat("Failed.\n")  
    print(fit_empirical) # Print error if it failed 
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  } 
   
  # --- Prepare for Mechanistic Models --- 
  # Median scaling: used for numerical stability during mechanistic model fitting 
  scaling_factors <- apply(obs_data_original, 2, median, na.rm=TRUE) 
  obs_data_scaled <- sweep(obs_data_original, 2, scaling_factors, FUN="/") 
   
  # Define which mechanistic models to run based on dataset 
  climate_df <- NULL 
  if (name == "IsleRoyale") { 
    # Isle Royale has climate data, so run all models including climate-driven 
ones 
    models_to_run <- c("RA", "RA_climate", "BR_tau", "BR_tau_Z", "HBM") 
    # Process climate data: Use PCA to get a single climate index if multiple 
variables exist 
    climate_vars_present <- config$climate_vars[config$climate_vars %in% 
names(df)] 
    if(length(climate_vars_present) > 0) { 
        climate_raw <- df[complete.cases(df %>% select(all_of(c(config$prey, 
config$predator)))), climate_vars_present, drop = FALSE] 
        if (ncol(climate_raw) > 1) { 
             pca_result <- prcomp(climate_raw, center=T, scale.=T) 
             climate_df <- data.frame(time = times, climate = pca_result$x[, 1]) # 
Use PC1 
        } else if (ncol(climate_raw) == 1) { 
             climate_df <- data.frame(time = times, climate = 
scale(climate_raw[,1])) # Use the single scaled variable 
        } else { 
             cat("Warning: Climate variables specified but not found or resulted 
in empty data after NA removal.\n") 
        } 
    } else { 
        cat("Warning: IsleRoyale specified climate variables not found in the data 
file.\n") 
    } 
 
  } else { 
    # Other datasets: run only baseline models without external climate forcing 
    models_to_run <- c("RA", "BR_tau") 
  } 
   
  # --- Run Mechanistic Models Loop --- 
  for (model_name in models_to_run) { 
    cat(paste("  -> Fitting model:", model_name, "... ")) 
    # Provide climate_df only if the model requires it 
    current_climate_df <- if (model_name %in% c("RA_climate", "BR_tau_Z", "HBM") 
&& !is.null(climate_df)) climate_df else NULL 
     
    # Fit the model 
    fit_mech <- try(fit_mechanistic_model(times, obs_data_original, 
obs_data_scaled, model_name, scaling_factors, current_climate_df), silent=TRUE) 
     
    # Store results if successful 
    if (!inherits(fit_mech, "try-error") && !is.null(fit_mech)) { 
      cat("Success!\n") 
      # Store metrics and parameters for final summary and parameter output files 
      final_summary_list[[length(final_summary_list) + 1]] <- list(dataset=name, 
model=model_name, metrics=fit_mech$metrics, params=fit_mech$params) 
    } else {  
      cat("Failed.\n")  
      print(fit_mech) # Print error if it failed 
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    } 
  } 
} # End dataset loop 
 
 
# --- PART 5: GENERATE ALL OUTPUT FILES --- 
# Consolidates results into summary tables and saves parameter estimates. 
 
# Helper function to create a concise parameter string for the summary table 
createInfoString <- function(model_name, params) { 
  if (is.null(params)) return("See coefficients file") # For Traditional model 
  p <- lapply(params, function(x) if(is.numeric(x)) round(x, 4) else x) # Round 
numeric parameters 
  # Create strings specific to each model structure 
  if (model_name == "RA") { return(paste0("r=", p$r, ", K=", p$K, ", b=", p$b, ", 
c=", p$c, ", d=", p$d, ", h=", p$h)) }  
  else if (model_name == "BR_tau") { betas_str <- paste(round(c(p$beta0, p$beta1, 
p$beta2),4), collapse=","); return(paste0("r=", p$r, ", K=", p$K, ", b=", p$b, ", 
c=", p$c, ", d=", p$d, ", h=", p$h, ", beta_clock=[", betas_str, "]")) }  
  else if (model_name == "BR_tau_Z") { betas_str <- paste(round(c(p$beta0, 
p$beta1),4), collapse=","); return(paste0("r=", p$r, ", K=", p$K, ", b=", p$b, ", 
c=", p$c, ", d=", p$d, ", h=", p$h, ", beta_clock_Z=[", betas_str, "]")) }  
  else if (model_name == "RA_climate") { return(paste0("r=", p$r, ", K=", p$K, ", 
b=", p$b, ", c=", p$c, ", d=", p$d, ", h=", p$h, ", delta_d=", 
round(p$delta_d,4))) } 
  else if (model_name == "HBM") { return(paste0("r=", p$r, ", K=", p$K, ", c=", 
p$c, ", d=", p$d, ", h_int=", p$log_h_intercept, ", b_int=", p$log_b_intercept, ", 
beta_b=", round(p$beta_b,4), ", beta_h=", round(p$beta_h,4))) } 
  return("") # Default empty string 
} 
 
# 1. Create the Original Scale Summary Table (_FINAL_COMPARATIVE_SUMMARY.csv) 
original_summary_df <- do.call(rbind, lapply(final_summary_list, function(res) { 
  data.frame( 
    Dataset = res$dataset, 
    Method = ifelse(res$model == "Traditional", "Traditional (Empirical)", 
paste0("Mechanistic (", res$model, ")")), 
    RMSE_Prey = res$metrics$RMSE_Original_Prey, # RMSE in original prey units 
    RMSE_Predator = res$metrics$RMSE_Original_Predator, # RMSE in original 
predator units 
    AIC = res$metrics$AIC, 
    BIC = res$metrics$BIC, 
    Info = createInfoString(res$model, res$params) # Concise parameter info 
  ) 
})) 
# Round numeric columns and arrange for readability 
original_summary_df <- original_summary_df %>%  
                       mutate(across(where(is.numeric), ~round(., 2))) %>%  
                       arrange(Dataset, AIC) # Sort by dataset, then by AIC 
 
# Save the summary comparing models in original units 
write.csv(original_summary_df, "_FINAL_COMPARATIVE_SUMMARY.csv", row.names = 
FALSE) 
cat("\n-> Successfully generated _FINAL_COMPARATIVE_SUMMARY.csv\n") 
 
# 2. Save Parameter Files (_params_...csv) for each mechanistic model fit 
for (res in final_summary_list) { 
  if (res$model != "Traditional") { # Only save for mechanistic models 
    params_to_save <- res$params 
    # Exclude non-numeric or complex elements like the climate function 
    params_to_save <- params_to_save[sapply(params_to_save, function(x) 
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is.numeric(x) && length(x) == 1)]  
    params_df <- data.frame(parameter=names(params_to_save), 
value=unlist(params_to_save)) 
    filename <- paste0("_params_", res$dataset, "_", res$model, ".csv") 
    write.csv(params_df, filename, row.names = FALSE) 
  } 
} 
cat("-> Successfully generated all _params_...csv files\n") 
 
# 3. Create and Save the Robustness Matrix (_ROBUSTNESS_MATRIX.csv) 
# This uses AICc for model comparison, incorporating the correction for small 
sample sizes. 
robustness_matrix_df <- do.call(rbind, lapply(final_summary_list, function(res) { 
  # Combine dataset/model info with all calculated metrics 
  data.frame( 
    Dataset = res$dataset, 
    Model = res$model, 
    res$metrics # Includes k, logLik, AIC, AICc, BIC, scaled & original RMSEs 
  ) 
})) 
 
# Check if any results were produced before proceeding 
if (nrow(robustness_matrix_df) > 0) { 
  # Calculate combined RMSE metrics 
  robustness_matrix_df <- robustness_matrix_df %>% 
    mutate( 
      RMSE_Scaled_Combined = sqrt(RMSE_Scaled_Prey^2 + RMSE_Scaled_Predator^2), 
      RMSE_Original_Combined = sqrt(RMSE_Original_Prey^2 + 
RMSE_Original_Predator^2) 
    ) 
   
  # Calculate delta AICc and Akaike Weights within each dataset group 
  final_summary_output <- robustness_matrix_df %>% 
    select(Dataset, Model, k, logLik, AIC, AICc, BIC, RMSE_Scaled_Combined, 
RMSE_Original_Combined) %>% 
    group_by(Dataset) %>% 
    arrange(AICc, .by_group = TRUE) %>% # Sort by AICc within each dataset 
    mutate( 
      delta_AICc = AICc - min(AICc, na.rm = TRUE), # Difference from the best 
model 
      weight_AICc = exp(-0.5 * delta_AICc) / sum(exp(-0.5 * delta_AICc), na.rm = 
TRUE) # Akaike weight (probability of being the best model) 
    ) %>% ungroup() %>% mutate(across(where(is.numeric), ~round(., 2))) # Round 
for presentation 
   
  # Select final columns for the robustness matrix 
  final_summary_output <- final_summary_output %>%  
    select(Dataset, Model, k, logLik, AIC, AICc, BIC, RMSE_Scaled_Combined, 
RMSE_Original_Combined, delta_AICc, weight_AICc) 
     
  # Save the robustness matrix 
  write.csv(final_summary_output, file="_ROBUSTNESS_MATRIX.csv", row.names=F) 
  cat("-> Successfully generated _ROBUSTNESS_MATRIX.csv\n") 
   
  # Print the final robustness matrix to the console 
  cat("\n=================================================================\n") 
  cat(" ROBUSTNESS MATRIX (AICc based model comparison)                \n") 
  cat("=================================================================\n\n") 
  print(as.data.frame(final_summary_output)) 
   
} else {  
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  cat("\nAnalysis produced no valid model fits to summarize.\n")  
} 

cat("\n--- Analysis Script Finished ---\n") 
 


