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Abstract 33 
How reliable is the evidence in animal cognition research? Concerns are mounting over the 34 
statistical robustness of this and other fields. Many primary studies rely on small samples and 35 
rarely report null results, while meta-analyses sometimes overlook publication bias, all of which 36 
may contribute to unreliable conclusions. We conducted a second-order meta-analysis across 28 37 
published meta-analytical papers in the animal cognition field to evaluate three inferential 38 
metrics: statistical power, Type M (magnitude) error, and Type S (sign) error. These were 39 
calculated at the primary study and meta-analysis levels. To approximate the true effect, we used 40 
the mean effect size from each meta-analysis; when publication bias was detected, we applied a 41 
correction to mitigate potential overestimation. Our results indicate low statistical power and 42 
inflated effect sizes in both primary studies and meta-analyses. After bias correction, on average, 43 
power decreased from 17% to 9% and effect size values decreased from 82% to 45%. Type M 44 
errors were common, indicating that statistically significant results often exaggerated the 45 
underlying effect sizes. For improving the reliability of animal cognition research, we 46 
recommend preregistering and transparently reporting both primary and secondary studies. We 47 
also call for the routine application of publication bias correction in meta-analytical syntheses. 48 
 49 
Keywords 50 
Comparative psychology, Evidence synthesis, Meta-research, Quantitative synthesis, Replication 51 
crisis, Research methodology  52 
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1. Introduction 53 
Research on animal cognition has expanded rapidly over recent decades [1]. The number of both 54 
review and empirical studies has grown faster than in the broader life sciences [1], revealing 55 
diverse cognitive abilities across taxa from invertebrates to mammals. These findings have 56 
important implications for comparative psychology and for evolutionary and ecological theory. 57 
For instance, cognitive traits have been increasingly recognised as key drivers of behavioural 58 
flexibility, niche expansion, and adaptive divergence, central to understanding species 59 
persistence in changing environments [2–4]. However, concerns have emerged about the 60 
statistical reliability and reproducibility of findings in this field, partly due to small sample sizes,  61 
selective reporting of significant results, and methodological heterogeneity [5,6]. The latter,  62 
which is a strength of the field because variation often reflects necessary adaptations to species’ 63 
perceptual and ecological worlds [7], but it also complicates cross-study comparisons. To 64 
address these issues, researchers have increasingly adopted quantitative synthesis methods [5,8]. 65 
Meta-analysis is a powerful tool for synthesising results across studies and estimating overall 66 
effect sizes, often regarded as proxies for “true” effects [9]. Yet, its reliability depends critically 67 
on the quality of the included primary studies.  68 

Similar concerns occur in other disciplines [10–14]. For example, Yang et al. [13] 69 
showed that adjusting for publication bias substantially lowered effect-size estimates and 70 
statistical support for previously reported relationships in ecology and evolution. In psychology, 71 
Bartoš et al. [11] found that over half of psychological meta-analyses exaggerated both the 72 
evidence for and the magnitude of effects. These findings highlight the need for rigorous meta-73 
analytic practices and better reporting standards in both primary and secondary research. 74 

Here, we evaluate the statistical reliability of findings in animal cognition by estimating 75 
three complementary metrics, statistical power, Type M (magnitude) error, and Type S (sign) 76 
error [12–16]. We focus on meta-analyses examining learning, memory, and decision-making in 77 
non-human animals, excluding those centred on humans, disease models, or purely physiological 78 
traits (e.g., visual acuity). These metrics, derived from the estimated true effect size, its standard 79 
error, and a significance threshold, provide complementary views of inferential reliability. We 80 
calculate them for both meta-analyses and their constituent primary studies and compare 81 
uncorrected and bias-corrected estimates to evaluate how publication bias affects evidential 82 
strength. We aim to clarify whether current findings offer a reliable foundation for theoretical 83 
and empirical work in animal cognition. 84 
 85 
2. Materials and methods  86 
Literature inclusion and dataset compilation 87 
This study is pre-registered [17], and Figure 1 outlines the workflow from data extraction and 88 
bias correction to the calculation and aggregation of reliability metrics. We limited our analysis 89 
to three widely used effect size metrics, i.e., log response ratio (lnRR), standardised mean 90 
difference (SMD), and Fisher’s z-transformed correlation (Zr), due to their cross-study 91 
comparability, approximate normality, and analytically derivable sampling variances [18]. We 92 
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retained all effect sizes in their original metric (lnRR, SMD, and Zr) and did not convert them to 93 
a different metric. Based on this criterion, we included 28 out of 49 meta-analytical studies [19–94 
46] identified in our previous systematic mapping of the animal cognition literature [1]. The 95 
remaining 21 studies did not use lnRR, SMD, or Zr as their main effect sizes or provide 96 
sufficient information about effect sizes and their variances. The study selection process is 97 
illustrated in Figure S1. We retrieved the data from published figures, tables, supplementary 98 
files, and online repositories (e.g., OSF, Dryad). Among 28 meta-analytical studies, 17 either 99 
reported both effect sizes and corresponding sampling variances extracted from the primary 100 
studies or provided scripts detailing how these values were calculated. In such cases, we either 101 
directly extracted or computed effect sizes and variances based on the provided information. For 102 
three meta-analytical studies, effect sizes and variances were not reported; however, raw 103 
descriptive statistics (e.g., means, standard deviations, sample sizes) were available. These were 104 
used to compute the effect sizes and variances using standard meta-analytic formulas. When only 105 
forest plots (n = 7) or tables reporting sample sizes and effect sizes (n = 1) were available in 106 
meta-analyses, we extracted the necessary values using the WebPlotDigitizer 107 
(https://apps.automeris.io/wpd4/) and calculated the corresponding variances. When the data 108 
were not publicly available, we contacted the corresponding authors. Datasets that required 109 
proprietary software were excluded if access could not be obtained (e.g., Comprehensive Meta‐110 
Analysis software). For each included meta-analytical study, we recorded whether the authors 111 
assessed publication bias, which specific methods they used (e.g., Egger’s test, funnel plots), 112 
whether any correction procedures were applied (e.g., trim-and-fill), and how the corrections 113 
affected the statistical significance of the reported effect sizes. Our final dataset consisted of 48 114 
meta-analytic models, as several of the 28 eligible meta-analytical studies reported multiple 115 
distinct meta-analytic models within a single publication.  116 
 117 
Estimating “true effects” 118 
We followed the methodological framework of Yang et al. [13,14], which aims to estimate bias-119 
corrected effect sizes by accounting for two common forms of publication bias. Small-study 120 
effects refer to the tendency for smaller studies to report larger effects, and the decline effect 121 
describes the tendency for earlier studies to report effects of higher magnitudes than more recent 122 
ones. Yang et al. [13,14]'s multilevel meta-regression model includes both bias terms and 123 
estimates the average effect size that would be expected in the absence of these biases. The 124 
resulting intercept is interpreted as the bias-corrected estimate of the true effect. To assess 125 
statistical power, Type M error, and Type S error, we first estimated the “true effect” size for 126 
each meta-analysis. We define the true effect as the underlying average effect size that would be 127 
expected in the absence of sampling error and publication bias. As a proxy, we used the meta-128 
analytic mean effect size. When evidence of publication bias was detected, we applied the full 129 
bias-correction model; if only one type of bias (e.g., small-study effects but no decline effect) 130 
was detected, we used a reduced version of the model including only the significant bias term. If 131 
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no bias was detected, the uncorrected mean was used. These bias-corrected or uncorrected mean 132 
values served as the estimated “true effects” for subsequent analyses. 133 
 134 
Estimating power and error rates 135 
Using the estimated true effects, we calculated statistical power, and Type M and Type S errors 136 
at two levels. At the meta-analysis level, one estimate of each metric was obtained per meta-137 
analysis, based on the corresponding average sampling variance. These estimates were then 138 
summarised across all meta-analyses using linear mixed-effects models, effectively constituting 139 
a second-order meta-analysis. In parallel, we calculated the same metrics at the primary-study 140 
level, using each study’s standard error and the corresponding meta-analytic mean effect (bias-141 
corrected when applicable, otherwise uncorrected) as the assumed “true effect.” This two-level 142 
approach allowed us to compare inferential reliability both across and within meta-analyses. 143 
Statistical power, defined as the probability of detecting a statistically significant effect (two-144 
sided, α = 0.05), assuming the estimated true effect is correct; higher values indicate greater 145 
sensitivity to detect a true effect as statistically significant. Type M error, the expected degree of 146 
exaggeration in effect size estimates, conditional on statistical significance; values above 1 147 
indicate overestimation, with larger numbers reflecting severe inflation. Type S error, the 148 
probability that a statistically significant result has the incorrect sign (i.e., false direction); high 149 
values indicate a greater risk of misinterpreting the effect size direction. At the meta-analysis 150 
level, we calculated these metrics using the average sampling variance across all effect sizes 151 
within each meta-analysis. At the primary study level, we applied the same assumptions as for 152 
the meta-analysis level - namely, that the meta-analytic mean effect (bias-corrected when 153 
applicable, otherwise uncorrected) represents the true effect, that effect size estimates are 154 
normally distributed, and that statistical significance is evaluated using a two-sided α of 0.05. 155 

 We calculated all estimates analytically, assuming normally distributed effect size 156 
estimates and using the standard formulas of Gelman and Carlin [16] as implemented by Yang et 157 
al. [13,14]. At the meta-analysis level, we summarised estimates of statistical power, Type M 158 
error, and Type S error using weighted linear regression (lm function in base R), with the number 159 
of effect sizes per meta-analysis as weights. At the primary study level, we first calculated the 160 
same metrics for each study. Then we aggregated them across studies using linear mixed-effects 161 
models (lmer function, lme4 v1.1.37 [47]), including study identity as a random effect. We 162 
implemented meta-analytic models and bias-correction regressions using the metafor package 163 
(v4.6.0) [48], and figures were created using ggplot2 v3.5.2 [49]. All analyses were conducted in 164 
R v4.4.2 [50]. The data and scripts we used are available at https://github.com/Ayumi-165 
495/statistical_power_AnimCogn.  166 
  167 
3. Results 168 
Among the 28 eligible meta-analytical studies, 25 tested for potential publication bias. Ten of 169 
these also used bias-correction procedures, such as the trim-and-fill method, to adjust the 170 
estimates of overall effect sizes. Four meta-analytical studies identified possible publication bias 171 
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(e.g., significant Egger’s tests or funnel-plot asymmetry) but did not adjust the effect sizes, often 172 
noting that the trim-and-fill method found no missing studies. Two meta-analytical studies 173 
explicitly stated that no evidence of publication bias was detected, and therefore no correction 174 
was made. The remaining nine meta-analytical studies mentioned assessing publication bias but 175 
provided insufficient detail on whether corrections were applied. Of the 48 meta-analytic means 176 
from the 28 meta-analytical studies, 31 were initially statistically significant, but 18 (58.1%) lost 177 
significance after publication bias correction. 178 

Our analyses reveal that, at the meta-analysis level, average statistical power to detect the 179 
uncorrected mean effect was 82.2% (95% CI: 71.7%–94.2%; mean: 114%) but decreased to 180 
44.9% (95% CI: 33.6%–60.0%; mean: 62.1%) after publication bias correction (Figure 2b, Table 181 
S1). Type M error increased from 1.11 (95% CI: 1.03–1.20; mean: 1.30) to 2.03 (95% CI: 1.37–182 
3.02; mean: 5.84) after correcting for publication bias, and some error values were over 20  183 
(Figure 2b, Table S1). Type S error was near zero before publication bias correction (0.06%,  184 
95% CI: 0–0.19%; mean: 0.43%) but increased to 1.21% (95% CI: 0.34–2.35%; mean: 3.70%) 185 
after correction (Figure 2c, Table S1).  186 

At the primary study level, we found that the average power was low 17.20% (95% CI: 187 
16.4%–18.0%; mean: 23.1%) before publication bias correction and dropping further to 9.06% 188 
(95% CI: 8.75%–9.37%; mean: 12.2%) when using bias-corrected meta-analytic mean effect 189 
estimates (Figure 2a, Table S1). Type M error increased from 2.86 (95% CI: 2.76–2.95; mean: 190 
3.48) to 7.79 (95% CI: 7.13–8.51; mean: 9.49), with some values exceeding 20 (Figure 2b, Table 191 
S1). Type S error increased from 2.69% (95% CI: 2.50–2.90%; mean: 4.34%) to 9.85% (95% CI: 192 
9.25–10.5%; mean: 13.4%) after correction (Figure 2c, Table S1).  193 
 194 
4. Discussion 195 
How do the low statistical power and high Type M errors we found compare with those in other 196 
fields? At the meta-analysis level, statistical power in animal cognition (82.2% before correction, 197 
dropping to 44.9% after; Table S1) was similar to that in ecology and evolution (55% to 36%) 198 
and global change biology (40–67% before correction, declining thereafter) [13,14].  199 

Type M errors in animal cognition meta-analyses sometimes exceeded a twentyfold 200 
overestimate (observed in 3 cases after correction; Figure 2b). This indicates that statistically 201 
significant findings in this field can substantially overstate the true effect sizes, creating a 202 
misleading impression of the magnitude of the phenomena. By contrast, ecology and evolution 203 
typically report Type M values between 1 and 2 after correction [13,14], implying only twofold 204 
or more minor exaggeration of true effects.  205 

At the primary-study level, statistical power averaged 17.2% before correction and only 206 
9.1% after correction for publication bias in animal cognition (Table S1), lower than values 207 
reported for ecology and evolution (23% before bias correction, 15 % after [14]), psychology 208 
(36 % after bias correction [12]), and neuroscience (21% after correction [51]), and comparable 209 
to the lowest bias-corrected estimates in medicine (9%: [52]). Effect‑size inflation (Type M 210 
errors) was also greater (2.86 before correction, 7.79 after correction; some >20; Figure 2c, Table 211 
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S1), whereas other fields report lower values (ecology and evolution [14]: 2.5 to 4.0; global 212 
change biology [13]: 2 to 6). These results indicate that animal cognition studies have 213 
exceptionally low power and large effect-size exaggeration, making the field particularly 214 
vulnerable to biased inference. 215 

In contrast to our findings for power and Type M error, we found that Type S error in 216 
animal cognition was very low at the meta-analysis level (0.06% uncorrected, 1.21% corrected; 217 
Table S1), below the values reported for ecology and evolution [14]. At the primary-study level, 218 
however, it rose from 2.69% to 9.85% after bias correction (Table S1), exceeding typical 219 
estimates in ecology and evolution (5–8% [14]) and global change biology (<5% [13]). Thus, 220 
although low-powered primary studies in animal cognition carry a higher risk of sign errors, 221 
meta-analytic synthesis appears to mitigate this, leaving the field relatively less affected than 222 
related disciplines. 223 

In primary studies in animal cognition, small sample sizes and high individual variability 224 
are common [8]. These constraints, though often unavoidable, make significant findings more 225 
likely to arise from random upward fluctuations than from accurate estimation, leading to 226 
exaggerated effect sizes (i.e., high Type M error)  [53]. The problem may be further exacerbated 227 
when subjects that fail to complete cognitive tasks are excluded, a practice that has been noticed 228 
in the field [5,54,55]. Although sometimes methodologically justified, such exclusions further 229 
reduce sample sizes and can bias estimates by systematically omitting lower-performing 230 
individuals or alternative behavioural strategies, inflating effect sizes and reducing 231 
generalisability. 232 

Problems at the primary‑study level inevitably carry over into meta‑analyses. When 233 
available studies are few, underpowered, or selectively report results, the meta-analysis rests on 234 
weak and biased evidence. Under these conditions, estimates are prone to inaccuracy, overstate 235 
true effects, and display unstable statistical power [51,56–58]. Rather than correcting these 236 
weaknesses, meta-analyses can unintentionally amplify them, creating a false sense of reliability 237 
when significant results are reported without considering underlying study quality or structure 238 
[56,59].  239 

Publication bias remains a pervasive methodological challenge in meta‑analytical studies, 240 
including those in animal cognition. While detection tools such as Egger’s regression and funnel 241 
plots were commonly used, correction methods appeared in fewer than 10% of studies and relied 242 
almost exclusively on the trim-and-fill method. In some cases, publication bias was detected 243 
using Egger’s regression, but not with the trim-and-fill method. As a result, the authors reported 244 
that they could not impute any missing studies and therefore could not adjust the estimate.  245 

Although widely used, the trim-and-fill method has well-known limitations: it struggles 246 
to identify or adjust for missing studies under high heterogeneity or when asymmetry stems from 247 
causes other than publication bias [60]. It is also difficult to apply in multilevel or multivariate 248 
models, limiting its use in modern analyses [60]. Egger’s regression can be used to adjust 249 
estimates (e.g., by extrapolating to the intercept), but this approach was rarely implemented in 250 
the meta‑analytical studies we included. Future work should consider regression-based 251 
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alternatives that address selective reporting and statistical dependence, such as the robust 252 
estimation approach recently proposed by Yang et al. [61], which has performed reliably across 253 
hundreds of meta-analyses in ecology and evolution. 254 

To address the statistical, methodological, and interpretive challenges identified in this 255 
study, we recommend a multi‑pronged approach involving both empirical researchers and 256 
meta‑analysts (Table 1). At the primary-study level, practices such as larger sample sizes, 257 
reporting null or non-significant results, and documenting task failures alongside successes are 258 
essential to mitigate selective reporting, reduce publication bias, and improve transparency 259 
[6,62–64]. At the meta-analytic level, publication bias should be detected and corrected using 260 
methods tailored to the sample size and heterogeneity of the data, with careful consideration of 261 
the quality and structure of the contributing studies. 262 

More broadly, at both the primary-study and meta-analytic levels, we recommend two 263 
key open-science practices: (1) pre-registration and (2) data and code sharing. Pre-registration 264 
requires researchers to specify their aims, questions, predictions, experimental designs, and 265 
analytical methods before data collection, reducing the risk of selective reporting and post-hoc 266 
modifications [6,62–66]. While initially planned analyses follow pre-specified predictions, 267 
additional exploratory analyses conducted after data collection are acceptable if transparently 268 
reported and justified [64,67,68]. This distinction helps readers differentiate confirmatory from 269 
exploratory findings, strengthening the reliability of the former while retaining the hypothesis-270 
generating value of the latter [65]. Public sharing of data and code, and also detailed 271 
methodological descriptions via free and public platforms like OSF or Zenodo, should be 272 
adopted and meaningfully evaluated by journals and funding agencies [69–71]. 273 

Variation in primary study design is often necessary in animal cognition research, as 274 
experiments must be adapted to the perceptual, cognitive, and ecological characteristics of 275 
different species. This flexibility is a strength, enabling species-appropriate and ecologically 276 
meaningful insights. Still, unfortunately, it can also affect the comparability of studies, make 277 
meta‑analytic synthesis more difficult, and increase uncertainty and irreproducibility [7,8,38], 278 
which has also been widely recognised in other fields using animal subjects [72]. Recent 279 
developments in Big Team Science offer promising solutions, including coordinated multi‑lab 280 
studies, standardised protocols, and inclusive sampling across taxa, including understudied 281 
species [73,74]. Such collaborative efforts can enhance reproducibility, increase statistical 282 
power, and enable more rigorous, ecologically grounded cross‑species comparisons. 283 
Incorporating data generated through these initiatives into future meta‑analyses could 284 
substantially improve the robustness and generalisability of conclusions in animal cognition 285 
research. 286 

Our study has two limitations that also present directions for future work. First, the 287 
relatively small number of eligible meta-analytical papers constrained the comprehensiveness of 288 
our estimation. In many cases, even after contacting authors, the data and code were unavailable, 289 
particularly when supplementary materials were insufficient for reanalysis. This highlights the 290 
need to promote open-data practices and to establish infrastructure where data sharing is standard 291 
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rather than exceptional. Second, our focus on three commonly used effect size metrics (SMD, 292 
lnRR, and Zr) resulted in the exclusion of studies employing alternative metrics. Although such 293 
cases were relatively rare (30.6%; 15 out of 49 meta-analytical studies), including a broader 294 
range of effect size measures in future studies could enhance the generalisability and 295 
applicability of meta-analytic findings. 296 

Open-science initiatives can help guide animal cognition research and its related 297 
disciplines toward greater transparency, reliability, and cumulative progress. Meanwhile, we 298 
acknowledge that not all data can or should be shared openly. Access to behavioural videos, task 299 
protocols, or long-term observations may need restriction when they contain sensitive 300 
information (e.g., location information of threatened species) or when ethical or contractual 301 
obligations are involved. By adopting open science practices where feasible and transparently 302 
outlining restrictions, the field can enhance the credibility of individual primary and meta-303 
analytical studies, yielding more robust insights into cognition. 304 

Strengthening the evidential base is particularly important in ecological and evolutionary 305 
research, where cognition is increasingly recognised as an adaptive trait shaped by natural 306 
selection [4,75]. Rigorous and transparent estimation of cognitive abilities is essential for 307 
understanding how behavioural adaptations influence survival, reproduction, and species 308 
interactions, especially under rapid environmental change. In the Anthropocene, behavioural and 309 
cognitive flexibility may determine which species are most resilient to human-induced pressures 310 
[76–78]. A more robust evidence base will also enable cognitive traits to be more effectively 311 
integrated into ecological models and conservation planning, helping identify characteristics 312 
associated with resilience or vulnerability in a changing world.  313 
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Table 1. Summary of common methodological issues in animal cognition research in primary 332 
and meta-analytical studies, their potential impacts, and practical solutions. Entries are grouped 333 
by research phase: Study design, Data collection, Statistical analysis, and Reporting. The 334 
“Target” indicates whether recommendations apply to primary, meta-analytical studies, or both. 335 
The “Reference” lists supporting sources. 336 

Phase Target Problem Consequence Recommended Solution Reference 

Study 
design 

Primary studies Low statistical 
power in 
primary 
studies 

High false negative 
rate; increased Type 
M/S errors; 
unreliable effect 
estimates 

Increase sample sizes where feasible; 
consider design strategies that 
improve power 

[7,79,80] 

Study 
design/ 
Statistical 
analysis 

Both High 
heterogeneity 
in task design 
and contexts 

Inflated uncertainty; 
poor construct 
validity; limits 
cross-study 
comparability and 
interpretability in 
meta-analyses 

Primary studies should justify design 
choices and report species and 
contextual details in full. Also, try 
collaborative or team-science 
approaches (e.g., multi-lab designs) 
to enhance reproducibility, 
generalizability, and equity. Meta-
analyses should quantify and account 
for heterogeneity (e.g., via subgroup 
analysis or meta-regression), and can 
also benefit from prospective and 
collaborative frameworks to improve 
robustness and inclusivity 

[7,81–83] 

Statistical 
analysis 

Meta-analytical 
studies 

Inadequate 
detection or 
correction of 
publication 
bias 

Overrepresentation 
of significant 
results; inflated 
effect sizes; false 
confidence 

Apply bias correction methods 
appropriate to data structure and 
heterogeneity (e.g., robust estimation 
approaches) 

[61] 

Reporting Primary studies Selective 
reporting of 
individuals 
(e.g., 
excluding task 
failures) and 
outcomes (e.g., 
omitting non-
significant 
results) 

Inflated estimates of 
cognitive ability; 
reduced 
generalisability; 
lower statistical 
power; biased 
scientific record; 
increased 
publication bias 

Study registration - report all tested 
individuals, including those who 
failed tasks; transparently report all 
outcomes, including non-significant 
results 

[84] 
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Reporting Primary studies Lack of 
standardised 
reporting 
practices 

Reduced 
reproducibility; 
difficult study 
quality assessment; 
hindered meta-
analytic synthesis 

Follow structured reporting 
guidelines (e.g., ARRIVE); clearly 
document procedures, task designs, 
subject characteristics, and analyses 

[85–87] 

Reporting Both Incomplete or 
inaccessible 
data/code 

Limits 
reproducibility and 
secondary use (e.g., 
in meta-analyses) 

Share data and code in open 
repositories (e.g., OSF, Zenodo); 
ensure materials are sufficient for 
reproducibility; External validation 
(peer-review) 

[69–71,88] 

 337 
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 338 
Figure 1. Conceptual workflow diagram. Effect sizes and their variances were extracted or 339 
reconstructed from 48 meta-analyses encompassing 5,740 primary studies. Publication bias was 340 
assessed within each meta-analysis by detecting small-study and decline effects and, when 341 
necessary, correcting them using multilevel meta-regression. The resulting meta-analytic means 342 
served as proxies for the “true” effect sizes at both the primary-study and meta-analysis levels. 343 
Statistical power (probability of detecting a true effect), Type M error (effect-size exaggeration), 344 
and Type S error (probability of obtaining the wrong sign) were then calculated at both levels 345 
and aggregated across meta-analyses to yield overall estimates of inferential reliability.  346 
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347 
Figure 2. Statistical performance of animal cognition meta-analyses at the primary-study and 348 
meta-analysis levels. Each row represents a distinct meta-analysis model, grouped by effect-size 349 
metric: lnRR, SMD, or Zr. For each meta-analysis model, metrics are shown for the original 350 
(uncorrected) and bias-corrected effect-size estimates. (a) Statistical power: Median power to 351 
detect the (true or bias-corrected) meta-analytic effect size; darker red bars indicate lower power. 352 
(b) Type M error: Median exaggeration ratio between estimated and true effect sizes; darker blue 353 
indicates stronger overestimation (values > 20 shown as “20+”). (c) Type S error: Median 354 
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probability of obtaining a significant effect in the wrong direction; darker yellow-green indicates 355 
higher Type S error. Violin plots above each panel summarise distributions across meta-analyses. 356 
Each point represents one meta-analysis (matching a row in the bar plots), and the horizontal line 357 
denotes the overall mean.  358 
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Figure S1. ROSE-like flow chart. This figure follows a format proposed by the Reporting 
Standards for Systematic Evidence Syntheses (ROSES), providing a structured and transparent 
framework for reporting systematic reviews and maps in environmental and related disciplines. 
Although no formal visualisation standard currently exists for systematic mapping in the field of 
animal cognition, we adapted the ROSES format to improve clarity and reproducibility. The 
flowchart illustrates the full literature selection process, beginning with an extensive search 
across multiple sources, including bibliographic databases, grey literature (BASE), backward and 
forward citation tracking, and non-English records retrieved via Google Scholar. A total of 8,963 
records were identified. After removing 2,312 duplicates, 6,651 records remained for title, 
abstract, and keyword screening. Of these, 100 articles were selected for full-text screening, and 
49 were retained for the final quantitative synthesis (Mizuno et al., 2025). Our project focused on 



28 out of 49 meta-analytical studies identified in the synthesis, which were eligible for 
quantitative evaluation. These 28 studies comprised a total of 48 meta-analytic models. 

 



Table S1. The model estimates of (a) Statistical power, (b) Type M error, and (c) Type S error, 
based on both uncorrected (original - β_0[overall]) and bias-corrected (β_0[bias-corrected]) 
effect sizes. All estimates are reported at two levels: the primary study level and the 
meta-analysis level. We used mixed-effects models and weighted regression models to compute 
the median and 95% confidence intervals. All values were back-transformed from the model 
estimates. For statistical power and type S error, values below 0 or above 1 were constrained to 0 
and 1 (denoted as 0* or 1*). k = number of effect sizes; N = number of primary studies. 
 

 Level 
Effect size 
types True effects Median 

95% CI 

Mean k N lower upper 

Statistical 
power 

Primary study 
level All β_0[overall] 0.17 0.16 0.18 0.23 5740 1415 

   β_0[bias-corrected] 0.09 0.09 0.09 0.12 5740 1415 

  lnRR β_0[overall] 0.19 0.16 0.21 0.29 1602 224 

   β_0[bias-corrected] 0.11 0.10 0.12 0.17 1602 224 

  SMD β_0[overall] 0.17 0.16 0.18 0.21 2835 945 

   β_0[bias-corrected] 0.08 0.08 0.09 0.11 2835 945 

  Zr β_0[overall] 0.18 0.16 0.20 0.23 1303 246 

   β_0[bias-corrected] 0.11 0.10 0.12 0.14 1303 246 

          

 

meta-analysis 
level All β_0[overall] 0.82 0.72 0.94 1.14 5740 1415 

   β_0[bias-corrected] 0.45 0.34 0.60 0.62 5740 1415 

  lnRR β_0[overall] 0.77 0.36 1* 0.93 1602 224 

   β_0[bias-corrected] 0.62 0.30 1* 0.75 1602 224 

  SMD β_0[overall] 0.89 0.76 1* 1.31 2835 945 

   β_0[bias-corrected] 0.41 0.27 0.63 0.61 2835 945 

  Zr β_0[overall] 0.75 0.56 1* 0.89 1303 246 

   β_0[bias-corrected] 0.36 0.20 0.67 0.43 1303 246 

Type M 
error 

Primary study 
level All β_0[overall] 2.86 2.76 2.95 3.48 5740 1415 

   β_0[bias-corrected] 7.79 7.13 8.51 9.49 5740 1415 

  lnRR β_0[overall] 3.02 2.69 3.39 4.28 1602 224 



   β_0[bias-corrected] 4.99 4.45 5.59 7.07 1602 224 

  SMD β_0[overall] 2.79 2.69 2.89 3.15 2835 945 

   β_0[bias-corrected] 9.16 8.13 10.32 10.35 2835 945 

  Zr β_0[overall] 2.87 2.62 3.15 3.40 1303 246 

   β_0[bias-corrected] 5.76 5.05 6.56 6.81 1303 246 

          

 

meta-analysis 
level All β_0[overall] 1.11 1.03 1.20 1.30 5740 1415 

   β_0[bias-corrected] 2.03 1.37 3.02 5.84 5740 1415 

  lnRR β_0[overall] 1.14 0.78 1.66 1.20 1602 224 

   β_0[bias-corrected] 1.28 0.87 1.87 1.46 1602 224 

  SMD β_0[overall] 1.07 0.96 1.19 1.32 2835 945 

   β_0[bias-corrected] 2.80 1.46 5.40 11.79 2835 945 

  Zr β_0[overall] 1.15 1.00 1.33 1.21 1303 246 

   β_0[bias-corrected] 1.80 1.17 2.79 2.47 1303 246 

Type S 
error 

Primary study 
level All β_0[overall] 0.0269 0.0250 0.0289 0.0433 5740 1415 

   β_0[bias-corrected] 0.0985 0.0925 0.1049 0.1378 5740 1415 

  lnRR β_0[overall] 0.0330 0.0264 0.0404 0.0660 1602 224 

   β_0[bias-corrected] 0.0760 0.0640 0.0897 0.1336 1602 224 

  SMD β_0[overall] 0.0251 0.0231 0.0273 0.0368 2835 945 

   β_0[bias-corrected] 0.1049 0.0973 0.1129 0.1351 2835 945 

  Zr β_0[overall] 0.0276 0.0223 0.0336 0.0487 1303 246 

   β_0[bias-corrected] 0.0912 0.0777 0.1065 0.1378 1303 246 

          

 

meta-analysis 
level All β_0[overall] 0.00058 0* 0.00194 0.0043 5740 1415 

   β_0[bias-corrected] 0.01215 0.00345 0.02352 0.0370 5740 1415 

  lnRR β_0[overall] 0.00044 0* 0.002 0.00048 1602 224 

   β_0[bias-corrected] 0.0011 0* 0.009 0.0066 1602 224 

  SMD β_0[overall] 0.00086 0* 0.00332 0.0065 2835 945 



   β_0[bias-corrected] 0.02211 0.00574 0.04719 0.0636 2835 945 

  Zr β_0[overall] 0.00016 0* 0.00078 0.00030 1303 246 

   β_0[bias-corrected] 0.00922 0* 0.02731 0.0224 1303 246 

 


