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Abstract

How reliable is the evidence in animal cognition research? Concerns are mounting over the
statistical robustness of this and other fields. Many primary studies rely on small samples and
rarely report null results, while meta-analyses sometimes overlook publication bias, all of which
may contribute to unreliable conclusions. We conducted a second-order meta-analysis across 28
published meta-analytical papers in the animal cognition field to evaluate three inferential
metrics: statistical power, Type M (magnitude) error, and Type S (sign) error. These were
calculated at the primary study and meta-analysis levels. To approximate the true effect, we used
the mean effect size from each meta-analysis; when publication bias was detected, we applied a
correction to mitigate potential overestimation. Our results indicate low statistical power and
inflated effect sizes in both primary studies and meta-analyses. After bias correction, on average,
power decreased from 17% to 9% and effect size values decreased from 82% to 45%. Type M
errors were common, indicating that statistically significant results often exaggerated the
underlying effect sizes. For improving the reliability of animal cognition research, we
recommend preregistering and transparently reporting both primary and secondary studies. We
also call for the routine application of publication bias correction in meta-analytical syntheses.

Keywords
Comparative psychology, Evidence synthesis, Meta-research, Quantitative synthesis, Replication
crisis, Research methodology



53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

1. Introduction

Research on animal cognition has expanded rapidly over recent decades [1]. The number of both
review and empirical studies has grown faster than in the broader life sciences [1], revealing
diverse cognitive abilities across taxa from invertebrates to mammals. These findings have
important implications for comparative psychology and for evolutionary and ecological theory.
For instance, cognitive traits have been increasingly recognised as key drivers of behavioural
flexibility, niche expansion, and adaptive divergence, central to understanding species
persistence in changing environments [2—4]. However, concerns have emerged about the
statistical reliability and reproducibility of findings in this field, partly due to small sample sizes,
selective reporting of significant results, and methodological heterogeneity [5,6]. The latter,
which is a strength of the field because variation often reflects necessary adaptations to species’
perceptual and ecological worlds [7], but it also complicates cross-study comparisons. To
address these issues, researchers have increasingly adopted quantitative synthesis methods [5,8].
Meta-analysis is a powerful tool for synthesising results across studies and estimating overall
effect sizes, often regarded as proxies for “true” effects [9]. Yet, its reliability depends critically
on the quality of the included primary studies.

Similar concerns occur in other disciplines [10-14]. For example, Yang et al. [13]
showed that adjusting for publication bias substantially lowered effect-size estimates and
statistical support for previously reported relationships in ecology and evolution. In psychology,
Bartos et al. [11] found that over half of psychological meta-analyses exaggerated both the
evidence for and the magnitude of effects. These findings highlight the need for rigorous meta-
analytic practices and better reporting standards in both primary and secondary research.

Here, we evaluate the statistical reliability of findings in animal cognition by estimating
three complementary metrics, statistical power, Type M (magnitude) error, and Type S (sign)
error [12—16]. We focus on meta-analyses examining learning, memory, and decision-making in
non-human animals, excluding those centred on humans, disease models, or purely physiological
traits (e.g., visual acuity). These metrics, derived from the estimated true effect size, its standard
error, and a significance threshold, provide complementary views of inferential reliability. We
calculate them for both meta-analyses and their constituent primary studies and compare
uncorrected and bias-corrected estimates to evaluate how publication bias affects evidential
strength. We aim to clarify whether current findings offer a reliable foundation for theoretical
and empirical work in animal cognition.

2. Materials and methods

Literature inclusion and dataset compilation

This study is pre-registered [17], and Figure 1 outlines the workflow from data extraction and
bias correction to the calculation and aggregation of reliability metrics. We limited our analysis
to three widely used effect size metrics, i.e., log response ratio (InRR), standardised mean
difference (SMD), and Fisher’s z-transformed correlation (Zr), due to their cross-study
comparability, approximate normality, and analytically derivable sampling variances [18]. We
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retained all effect sizes in their original metric (InRR, SMD, and Zr) and did not convert them to
a different metric. Based on this criterion, we included 28 out of 49 meta-analytical studies [19—
46] identified in our previous systematic mapping of the animal cognition literature [1]. The
remaining 21 studies did not use InRR, SMD, or Zr as their main effect sizes or provide
sufficient information about effect sizes and their variances. The study selection process is
illustrated in Figure S1. We retrieved the data from published figures, tables, supplementary
files, and online repositories (e.g., OSF, Dryad). Among 28 meta-analytical studies, 17 either
reported both effect sizes and corresponding sampling variances extracted from the primary
studies or provided scripts detailing how these values were calculated. In such cases, we either
directly extracted or computed effect sizes and variances based on the provided information. For
three meta-analytical studies, effect sizes and variances were not reported; however, raw
descriptive statistics (e.g., means, standard deviations, sample sizes) were available. These were
used to compute the effect sizes and variances using standard meta-analytic formulas. When only
forest plots (n = 7) or tables reporting sample sizes and effect sizes (n = 1) were available in
meta-analyses, we extracted the necessary values using the WebPlotDigitizer
(https://apps.automeris.io/wpd4/) and calculated the corresponding variances. When the data
were not publicly available, we contacted the corresponding authors. Datasets that required
proprietary software were excluded if access could not be obtained (e.g., Comprehensive Meta-
Analysis software). For each included meta-analytical study, we recorded whether the authors
assessed publication bias, which specific methods they used (e.g., Egger’s test, funnel plots),
whether any correction procedures were applied (e.g., trim-and-fill), and how the corrections
affected the statistical significance of the reported effect sizes. Our final dataset consisted of 48
meta-analytic models, as several of the 28 eligible meta-analytical studies reported multiple
distinct meta-analytic models within a single publication.

Estimating “true effects”

We followed the methodological framework of Yang et al. [13,14], which aims to estimate bias-
corrected effect sizes by accounting for two common forms of publication bias. Small-study
effects refer to the tendency for smaller studies to report larger effects, and the decline effect
describes the tendency for earlier studies to report effects of higher magnitudes than more recent
ones. Yang et al. [13,14]'s multilevel meta-regression model includes both bias terms and
estimates the average effect size that would be expected in the absence of these biases. The
resulting intercept is interpreted as the bias-corrected estimate of the true effect. To assess
statistical power, Type M error, and Type S error, we first estimated the “true effect” size for
each meta-analysis. We define the true effect as the underlying average effect size that would be
expected in the absence of sampling error and publication bias. As a proxy, we used the meta-
analytic mean effect size. When evidence of publication bias was detected, we applied the full
bias-correction model; if only one type of bias (e.g., small-study effects but no decline effect)
was detected, we used a reduced version of the model including only the significant bias term. If
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no bias was detected, the uncorrected mean was used. These bias-corrected or uncorrected mean
values served as the estimated “true effects” for subsequent analyses.

Estimating power and error rates
Using the estimated true effects, we calculated statistical power, and Type M and Type S errors
at two levels. At the meta-analysis level, one estimate of each metric was obtained per meta-
analysis, based on the corresponding average sampling variance. These estimates were then
summarised across all meta-analyses using linear mixed-effects models, effectively constituting
a second-order meta-analysis. In parallel, we calculated the same metrics at the primary-study
level, using each study’s standard error and the corresponding meta-analytic mean effect (bias-
corrected when applicable, otherwise uncorrected) as the assumed “true effect.” This two-level
approach allowed us to compare inferential reliability both across and within meta-analyses.
Statistical power, defined as the probability of detecting a statistically significant effect (two-
sided, o = 0.05), assuming the estimated true effect is correct; higher values indicate greater
sensitivity to detect a true effect as statistically significant. Type M error, the expected degree of
exaggeration in effect size estimates, conditional on statistical significance; values above 1
indicate overestimation, with larger numbers reflecting severe inflation. Type S error, the
probability that a statistically significant result has the incorrect sign (i.e., false direction); high
values indicate a greater risk of misinterpreting the effect size direction. At the meta-analysis
level, we calculated these metrics using the average sampling variance across all effect sizes
within each meta-analysis. At the primary study level, we applied the same assumptions as for
the meta-analysis level - namely, that the meta-analytic mean effect (bias-corrected when
applicable, otherwise uncorrected) represents the true effect, that effect size estimates are
normally distributed, and that statistical significance is evaluated using a two-sided a of 0.05.
We calculated all estimates analytically, assuming normally distributed effect size
estimates and using the standard formulas of Gelman and Carlin [16] as implemented by Yang et
al. [13,14]. At the meta-analysis level, we summarised estimates of statistical power, Type M
error, and Type S error using weighted linear regression (Im function in base R), with the number
of effect sizes per meta-analysis as weights. At the primary study level, we first calculated the
same metrics for each study. Then we aggregated them across studies using linear mixed-effects
models (Imer function, Ime4 v1.1.37 [47]), including study identity as a random effect. We
implemented meta-analytic models and bias-correction regressions using the metafor package
(v4.6.0) [48], and figures were created using ggplot2 v3.5.2 [49]. All analyses were conducted in
R v4.4.2 [50]. The data and scripts we used are available at https://github.com/Ayumi-
495/statistical power AnimCogn.

3. Results

Among the 28 eligible meta-analytical studies, 25 tested for potential publication bias. Ten of
these also used bias-correction procedures, such as the trim-and-fill method, to adjust the
estimates of overall effect sizes. Four meta-analytical studies identified possible publication bias
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(e.g., significant Egger’s tests or funnel-plot asymmetry) but did not adjust the effect sizes, often
noting that the trim-and-fill method found no missing studies. Two meta-analytical studies
explicitly stated that no evidence of publication bias was detected, and therefore no correction
was made. The remaining nine meta-analytical studies mentioned assessing publication bias but
provided insufficient detail on whether corrections were applied. Of the 48 meta-analytic means
from the 28 meta-analytical studies, 31 were initially statistically significant, but 18 (58.1%) lost
significance after publication bias correction.

Our analyses reveal that, at the meta-analysis level, average statistical power to detect the
uncorrected mean effect was 82.2% (95% CI: 71.7%-94.2%; mean: 114%) but decreased to
44.9% (95% CI: 33.6%—60.0%; mean: 62.1%) after publication bias correction (Figure 2b, Table
S1). Type M error increased from 1.11 (95% CI: 1.03—1.20; mean: 1.30) to 2.03 (95% CI: 1.37—
3.02; mean: 5.84) after correcting for publication bias, and some error values were over 20
(Figure 2b, Table S1). Type S error was near zero before publication bias correction (0.06%,
95% CI: 0—0.19%; mean: 0.43%) but increased to 1.21% (95% CI: 0.34-2.35%; mean: 3.70%)
after correction (Figure 2c, Table S1).

At the primary study level, we found that the average power was low 17.20% (95% CI:
16.4%—18.0%; mean: 23.1%) before publication bias correction and dropping further to 9.06%
(95% CI: 8.75%-9.37%; mean: 12.2%) when using bias-corrected meta-analytic mean effect
estimates (Figure 2a, Table S1). Type M error increased from 2.86 (95% CI: 2.76-2.95; mean:
3.48) to 7.79 (95% CI: 7.13-8.51; mean: 9.49), with some values exceeding 20 (Figure 2b, Table
S1). Type S error increased from 2.69% (95% CI: 2.50-2.90%; mean: 4.34%) to 9.85% (95% CI:
9.25-10.5%; mean: 13.4%) after correction (Figure 2c, Table S1).

4. Discussion

How do the low statistical power and high Type M errors we found compare with those in other
fields? At the meta-analysis level, statistical power in animal cognition (82.2% before correction,
dropping to 44.9% after; Table S1) was similar to that in ecology and evolution (55% to 36%)
and global change biology (40—67% before correction, declining thereafter) [13,14].

Type M errors in animal cognition meta-analyses sometimes exceeded a twentyfold
overestimate (observed in 3 cases after correction; Figure 2b). This indicates that statistically
significant findings in this field can substantially overstate the true effect sizes, creating a
misleading impression of the magnitude of the phenomena. By contrast, ecology and evolution
typically report Type M values between 1 and 2 after correction [13,14], implying only twofold
or more minor exaggeration of true effects.

At the primary-study level, statistical power averaged 17.2% before correction and only
9.1% after correction for publication bias in animal cognition (Table S1), lower than values
reported for ecology and evolution (23% before bias correction, 15 % after [14]), psychology
(36 % after bias correction [12]), and neuroscience (21% after correction [51]), and comparable
to the lowest bias-corrected estimates in medicine (9%: [52]). Effect-size inflation (Type M
errors) was also greater (2.86 before correction, 7.79 after correction; some >20; Figure 2¢, Table
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S1), whereas other fields report lower values (ecology and evolution [14]: 2.5 to 4.0; global
change biology [13]: 2 to 6). These results indicate that animal cognition studies have
exceptionally low power and large effect-size exaggeration, making the field particularly
vulnerable to biased inference.

In contrast to our findings for power and Type M error, we found that Type S error in
animal cognition was very low at the meta-analysis level (0.06% uncorrected, 1.21% corrected;
Table S1), below the values reported for ecology and evolution [14]. At the primary-study level,
however, it rose from 2.69% to 9.85% after bias correction (Table S1), exceeding typical
estimates in ecology and evolution (5-8% [14]) and global change biology (<5% [13]). Thus,
although low-powered primary studies in animal cognition carry a higher risk of sign errors,
meta-analytic synthesis appears to mitigate this, leaving the field relatively less affected than
related disciplines.

In primary studies in animal cognition, small sample sizes and high individual variability
are common [8]. These constraints, though often unavoidable, make significant findings more
likely to arise from random upward fluctuations than from accurate estimation, leading to
exaggerated effect sizes (i.e., high Type M error) [53]. The problem may be further exacerbated
when subjects that fail to complete cognitive tasks are excluded, a practice that has been noticed
in the field [5,54,55]. Although sometimes methodologically justified, such exclusions further
reduce sample sizes and can bias estimates by systematically omitting lower-performing
individuals or alternative behavioural strategies, inflating effect sizes and reducing
generalisability.

Problems at the primary-study level inevitably carry over into meta-analyses. When
available studies are few, underpowered, or selectively report results, the meta-analysis rests on
weak and biased evidence. Under these conditions, estimates are prone to inaccuracy, overstate
true effects, and display unstable statistical power [51,56-58]. Rather than correcting these
weaknesses, meta-analyses can unintentionally amplify them, creating a false sense of reliability
when significant results are reported without considering underlying study quality or structure
[56,59].

Publication bias remains a pervasive methodological challenge in meta-analytical studies,
including those in animal cognition. While detection tools such as Egger’s regression and funnel
plots were commonly used, correction methods appeared in fewer than 10% of studies and relied
almost exclusively on the trim-and-fill method. In some cases, publication bias was detected
using Egger’s regression, but not with the trim-and-fill method. As a result, the authors reported
that they could not impute any missing studies and therefore could not adjust the estimate.

Although widely used, the trim-and-fill method has well-known limitations: it struggles
to identify or adjust for missing studies under high heterogeneity or when asymmetry stems from
causes other than publication bias [60]. It is also difficult to apply in multilevel or multivariate
models, limiting its use in modern analyses [60]. Egger’s regression can be used to adjust
estimates (e.g., by extrapolating to the intercept), but this approach was rarely implemented in
the meta-analytical studies we included. Future work should consider regression-based
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alternatives that address selective reporting and statistical dependence, such as the robust
estimation approach recently proposed by Yang et al. [61], which has performed reliably across
hundreds of meta-analyses in ecology and evolution.

To address the statistical, methodological, and interpretive challenges identified in this
study, we recommend a multi-pronged approach involving both empirical researchers and
meta-analysts (Table 1). At the primary-study level, practices such as larger sample sizes,
reporting null or non-significant results, and documenting task failures alongside successes are
essential to mitigate selective reporting, reduce publication bias, and improve transparency
[6,62—64]. At the meta-analytic level, publication bias should be detected and corrected using
methods tailored to the sample size and heterogeneity of the data, with careful consideration of
the quality and structure of the contributing studies.

More broadly, at both the primary-study and meta-analytic levels, we recommend two
key open-science practices: (1) pre-registration and (2) data and code sharing. Pre-registration
requires researchers to specify their aims, questions, predictions, experimental designs, and
analytical methods before data collection, reducing the risk of selective reporting and post-hoc
modifications [6,62—66]. While initially planned analyses follow pre-specified predictions,
additional exploratory analyses conducted after data collection are acceptable if transparently
reported and justified [64,67,68]. This distinction helps readers differentiate confirmatory from
exploratory findings, strengthening the reliability of the former while retaining the hypothesis-
generating value of the latter [65]. Public sharing of data and code, and also detailed
methodological descriptions via free and public platforms like OSF or Zenodo, should be
adopted and meaningfully evaluated by journals and funding agencies [69-71].

Variation in primary study design is often necessary in animal cognition research, as
experiments must be adapted to the perceptual, cognitive, and ecological characteristics of
different species. This flexibility is a strength, enabling species-appropriate and ecologically
meaningful insights. Still, unfortunately, it can also affect the comparability of studies, make
meta-analytic synthesis more difficult, and increase uncertainty and irreproducibility [7,8,38],
which has also been widely recognised in other fields using animal subjects [72]. Recent
developments in Big Team Science offer promising solutions, including coordinated multi-lab
studies, standardised protocols, and inclusive sampling across taxa, including understudied
species [73,74]. Such collaborative efforts can enhance reproducibility, increase statistical
power, and enable more rigorous, ecologically grounded cross-species comparisons.
Incorporating data generated through these initiatives into future meta-analyses could
substantially improve the robustness and generalisability of conclusions in animal cognition
research.

Our study has two limitations that also present directions for future work. First, the
relatively small number of eligible meta-analytical papers constrained the comprehensiveness of
our estimation. In many cases, even after contacting authors, the data and code were unavailable,
particularly when supplementary materials were insufficient for reanalysis. This highlights the
need to promote open-data practices and to establish infrastructure where data sharing is standard
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rather than exceptional. Second, our focus on three commonly used effect size metrics (SMD,
InRR, and Zr) resulted in the exclusion of studies employing alternative metrics. Although such
cases were relatively rare (30.6%; 15 out of 49 meta-analytical studies), including a broader
range of effect size measures in future studies could enhance the generalisability and
applicability of meta-analytic findings.

Open-science initiatives can help guide animal cognition research and its related
disciplines toward greater transparency, reliability, and cumulative progress. Meanwhile, we
acknowledge that not all data can or should be shared openly. Access to behavioural videos, task
protocols, or long-term observations may need restriction when they contain sensitive
information (e.g., location information of threatened species) or when ethical or contractual
obligations are involved. By adopting open science practices where feasible and transparently
outlining restrictions, the field can enhance the credibility of individual primary and meta-
analytical studies, yielding more robust insights into cognition.

Strengthening the evidential base is particularly important in ecological and evolutionary
research, where cognition is increasingly recognised as an adaptive trait shaped by natural
selection [4,75]. Rigorous and transparent estimation of cognitive abilities is essential for
understanding how behavioural adaptations influence survival, reproduction, and species
interactions, especially under rapid environmental change. In the Anthropocene, behavioural and
cognitive flexibility may determine which species are most resilient to human-induced pressures
[76-78]. A more robust evidence base will also enable cognitive traits to be more effectively
integrated into ecological models and conservation planning, helping identify characteristics
associated with resilience or vulnerability in a changing world.
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332 Table 1. Summary of common methodological issues in animal cognition research in primary

333 and meta-analytical studies, their potential impacts, and practical solutions. Entries are grouped
334 by research phase: Study design, Data collection, Statistical analysis, and Reporting. The
335  “Target” indicates whether recommendations apply to primary, meta-analytical studies, or both.
336  The “Reference” lists supporting sources.

Phase Target Problem Consequence Recommended Solution Reference
Study Primary studies Low statistical High false negative  Increase sample sizes where feasible; [7,79,80]
design power in rate; increased Type consider design strategies that

primary M/S errors; improve power
studies unreliable effect
estimates
Study Both High Inflated uncertainty; Primary studies should justify design [7,81-83]
design/ heterogeneity ~ poor construct choices and report species and
Statistical in task design  validity; limits contextual details in full. Also, try
analysis and contexts cross-study collaborative or team-science
comparability and approaches (e.g., multi-lab designs)
interpretability in to enhance reproducibility,
meta-analyses generalizability, and equity. Meta-
analyses should quantify and account
for heterogeneity (e.g., via subgroup
analysis or meta-regression), and can
also benefit from prospective and
collaborative frameworks to improve
robustness and inclusivity
Statistical Meta-analytical Inadequate Overrepresentation  Apply bias correction methods [61]
analysis  studies detection or of significant appropriate to data structure and
correction of  results; inflated heterogeneity (e.g., robust estimation
publication effect sizes; false approaches)
bias confidence
Reporting  Primary studies Selective Inflated estimates of ~ Study registration - report all tested [84]
reporting of cognitive ability; individuals, including those who
individuals reduced failed tasks; transparently report all
(e.g., generalisability; outcomes, including non-significant

excluding task
failures) and
outcomes (e.g.,
omitting non-
significant
results)

lower statistical

power; biased

scientific record;

increased

publication bias

results

11



Reporting  Primary studies

Reporting  Both

Lack of
standardised
reporting
practices

Incomplete or
inaccessible
data/code

Reduced
reproducibility;
difficult study
quality assessment;
hindered meta-
analytic synthesis

Limits
reproducibility and
secondary use (e.g.,
in meta-analyses)

Follow structured reporting
guidelines (e.g., ARRIVE); clearly
document procedures, task designs,
subject characteristics, and analyses

Share data and code in open
repositories (e.g., OSF, Zenodo);
ensure materials are sufficient for
reproducibility; External validation
(peer-review)

[85-87]

[69-71,88]
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data extraction

r. Study identification &

Extract or reconstruct meta-analytical studies
effect sizes and their variances meta-analysis models
(SMD, InRR, Zr) (based on EEN primary studies)

Within meta-analysis model l
(primary study level)

Bias detection Q

Identify and correct small-study effects and decline effects

Apply multilevel meta-regression to
correct effect size estimate if bias is present

0‘ Obtain “true” effect sizes
(bias-corrected if needed)

Use the meta-analytic overall mean
as the proxy for each primary study's true effect

Calculate statistical power and Type M and Type S errors
for each meta-analysis model and its primary studies

Calculate Statistical Metrics A

Between meta-analysis model l
(meta-analysis model level)

13 Aggregation

across all meta-analysis models and their primary studies

Estimate average overall statistical power and Type M and Type S errors

Figure 1. Conceptual workflow diagram. Effect sizes and their variances were extracted or

reconstructed from 48 meta-analyses encompassing 5,740 primary studies. Publication bias was

assessed within each meta-analysis by detecting small-study and decline effects and, when

necessary, correcting them using multilevel meta-regression. The resulting meta-analytic means

served as proxies for the “true” effect sizes at both the primary-study and meta-analysis levels.

Statistical power (probability of detecting a true effect), Type M error (effect-size exaggeration),

and Type S error (probability of obtaining the wrong sign) were then calculated at both levels
and aggregated across meta-analyses to yield overall estimates of inferential reliability.
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Figure 2. Statistical performance of animal cognition meta-analyses at the primary-study and
meta-analysis levels. Each row represents a distinct meta-analysis model, grouped by effect-size
metric: InRR, SMD, or Zr. For each meta-analysis model, metrics are shown for the original
(uncorrected) and bias-corrected effect-size estimates. (a) Statistical power: Median power to
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355  probability of obtaining a significant effect in the wrong direction; darker yellow-green indicates
356  higher Type S error. Violin plots above each panel summarise distributions across meta-analyses.
357  Each point represents one meta-analysis (matching a row in the bar plots), and the horizontal line
358  denotes the overall mean.
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Figure S1. ROSE-like flow chart. This figure follows a format proposed by the Reporting
Standards for Systematic Evidence Syntheses (ROSES), providing a structured and transparent
framework for reporting systematic reviews and maps in environmental and related disciplines.
Although no formal visualisation standard currently exists for systematic mapping in the field of
animal cognition, we adapted the ROSES format to improve clarity and reproducibility. The
flowchart illustrates the full literature selection process, beginning with an extensive search
across multiple sources, including bibliographic databases, grey literature (BASE), backward and
forward citation tracking, and non-English records retrieved via Google Scholar. A total of 8,963
records were identified. After removing 2,312 duplicates, 6,651 records remained for title,
abstract, and keyword screening. Of these, 100 articles were selected for full-text screening, and
49 were retained for the final quantitative synthesis (Mizuno et al., 2025). Our project focused on




28 out of 49 meta-analytical studies identified in the synthesis, which were eligible for
quantitative evaluation. These 28 studies comprised a total of 48 meta-analytic models.



Table S1. The model estimates of (a) Statistical power, (b) Type M error, and (c) Type S error,

based on both uncorrected (original - B_O[overall]) and bias-corrected (f_0[bias-corrected])
effect sizes. All estimates are reported at two levels: the primary study level and the
meta-analysis level. We used mixed-effects models and weighted regression models to compute
the median and 95% confidence intervals. All values were back-transformed from the model
estimates. For statistical power and type S error, values below 0 or above 1 were constrained to 0
and 1 (denoted as 0* or 1*). £ = number of effect sizes; N = number of primary studies.

Effect size 95% CI
Level types True effects Median lower upper Mean k& N
Statistical Primary study
power level All B O[overall] 0.17 0.16 0.18 0.23 5740 1415
B O[bias-corrected] 0.09 0.09 0.09 0.12 5740 1415
InRR B_O[overall] 0.19 0.16 0.21 0.29 1602 224
B O[bias-corrected] 0.11 0.10 0.12 0.17 1602 224
SMD B_O[overall] 0.17 0.16 0.18 0.21 2835 945
B_O[bias-corrected] 0.08 0.08 0.09 0.11 2835 945
Zr B_O[overall] 0.18 0.16 0.20 0.23 1303 246
B O[bias-corrected] 0.11 0.10 0.12 0.14 1303 246
meta-analysis
level All B_O[overall] 0.82 0.72 0.94 1.14 5740 1415
B_O[bias-corrected] 0.45 0.34 0.60 0.62 5740 1415
InRR B_O[overall] 0.77 0.36 1* 093 1602 224
B_O[bias-corrected] 0.62 0.30 1* 0.75 1602 224
SMD B_O[overall] 0.89 0.76 1* 1.31 2835 945
B_O[bias-corrected] 0.41 0.27 0.63 0.61 2835 945
Zr B_O[overall] 0.75 0.56 1* 0.89 1303 246
B_O[bias-corrected] 0.36 0.20 0.67 0.43 1303 246
Type M Primary study
error level All B_O[overall] 2.86 2.76 2.95 3.48 5740 1415
_O[bias-corrected] 7.79 7.13 8.51 9.49 5740 1415
InRR B_O[overall] 3.02 2.69 3.39 428 1602 224



B O[bias-corrected] 4.99 4.45 5.59 7.07 1602 224
SMD B_O[overall] 2.79 2.69 2.89 3.15 2835 945
B O[bias-corrected] 9.16 8.13 1032 1035 2835 945
Zr B_O[overall] 2.87 2.62 3.15 3.40 1303 246
B O[bias-corrected] 5.76 5.05 6.56 6.81 1303 246

meta-analysis
level All B_O[overall] 1.11 1.03 1.20 1.30 5740 1415
B O[bias-corrected] 2.03 1.37 3.02 5.84 5740 1415
InRR B O[overall] 1.14 0.78 1.66 1.20 1602 224
B O[bias-corrected] 1.28 0.87 1.87 1.46 1602 224
SMD B_O[overall] 1.07 0.96 1.19 1.32 2835 945
_O[bias-corrected] 2.80 1.46 540 11.79 2835 945
Zr B_O[overall] 1.15 1.00 1.33 1.21 1303 246
B O[bias-corrected] 1.80 1.17 2.79 2.47 1303 246

Type S Primary study
error level All B_O[overall] 0.0269 0.0250 0.0289 0.0433 5740 1415
_O[bias-corrected] 0.0985 0.0925 0.1049 0.1378 5740 1415
InRR B_O[overall] 0.0330 0.0264 0.0404 0.0660 1602 224
_O[bias-corrected] 0.0760 0.0640 0.0897 0.1336 1602 224
SMD B_O[overall] 0.0251 0.0231 0.0273 0.0368 2835 945
_O[bias-corrected] 0.1049 0.0973 0.1129 0.1351 2835 945
Zr B_O[overall] 0.0276 0.0223 0.0336 0.0487 1303 246
_O[bias-corrected] 0.0912 0.0777 0.1065 0.1378 1303 246

meta-analysis
level All B_O[overall] 0.00058 0* 0.00194 0.0043 5740 1415
_O[bias-corrected] 0.01215 0.00345 0.02352 0.0370 5740 1415
InRR B_O[overall] 0.00044 0* 0.002 0.00048 1602 224
_O[bias-corrected] 0.0011 0* 0.009 0.0066 1602 224
SMD B_O[overall] 0.00086 0* 0.00332 0.0065 2835 945



Zr

B O[bias-corrected]
B O[overall]
B O[bias-corrected]

0.02211 0.00574 0.04719 0.0636 2835 945

0.00016
0.00922

0* 0.00078 0.00030
0* 0.02731 0.0224

1303 246
1303 246




