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Abstract

The Cambrian Explosion is often seen as a singular event requiring an explanation. In fact,
it is better represented as a cascade of linked events, each with numerous causes. The iconic
middle Cambrian fauna, represented by sites such as the Burgess Shale, is a culmination of
several phases of increases in taxonomic diversity and morphological complexity. I focus on an
often-overlooked increase in complexity that took place in a limited number of phyla in parallel
after the main “explosion”. This increase in morphological complexity and in disparity was
facilitated by an increase in the complexity of the central nervous system, which in itself was a
selective response to the ecological complexity of the biosphere, which had been increasing from
the late Ediacaran. Genetic regulatory components that contributed to an increasingly
differentiated and regionalized central nervous system were developmentally co-opted to
increase the differentiation and complexity of additional organ systems. This process took place
convergently in arthropods, mollusks and annelids at different times throughout the Cambrian

and, later in the Ordovician, also in vertebrates.



27

28

29
30
31
32
33
34
35
36
37
38

39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54
55
56

Introduction

The period between the late Ediacaran and the early Cambrian (roughly 550-520 million
years ago) is the most dramatic period in the evolution of animal life on Earth !4, This period
represents a sequence of increases in animal complexity and diversity, during which the
biosphere transitioned from including a low diversity of mostly sessile suspension or bottom
feeders to a world with numerous animal body plans occupying a dynamic tiered ecosystem with
diverse feeding modes, comprising a range of motile animals moving using different modes of
locomotion in different spaces!>”!. This transition is usually referred to as the Cambrian
Explosion. However, it is becoming increasingly clear that this term is a misnomer, since it is

[8-12

neither exclusively Cambrian nor a true explosion'®12l. The roots of the explosion are in the

Ediacaran[!3-!°], and the increase in animal diversity continued into the Ordovician [°-20-21]
5 y

Over the years, there have been many attempts to explain the “cause” of the Cambrian
Explosion®13-22-32] These explanations have come from different disciplines and often disagree,
because each explanation tries to pinpoint the driving force behind a specific event or process
that took place within the period spanning the late Ediacaran and early Cambrian. While most of
the attempted explanations are probably correct for the specific event or process they focus on,

no one explanation can fully explain the entire transition.

Indeed, the events spanning the border between the Ediacaran and Cambrian are better
represented as a cascade. Rather than a single explosive event, we should be thinking about a
series of causally linked events or processes. Each of these is dependent on the ones before it and
lays the ground for the ones after it. The sequence of events forming what can be called the
Cambrian Cascade, include both abiotic changes and biotic changes!*!. In many cases, the abiotic
changes are driven by biotic events, and vice versa (e.g. changes in the chemistry and
sedimentation of the sea floor were driven by changes in the behavior of animals occupying the
sea floor). Many of the events or processes making up the Cambrian Cascade were general to the
entire biosphere, and thus were presumably drive by global changes. Some can be seen as
“lineage-internal”, meaning they occurred within a specific lineage of animals (e.g., the
evolution of a specific innovation at the origin of a certain cladel**’), whereas others can be seen

as “lineage-interactive”, meaning they were driven by interaction between organisms of different
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lineages, ultimately affecting both (e.g., predator-prey evolutionary arms races or competition for

resources).

When we look at the distribution of diversity in the animal kingdom, it is clear that it is not
distributed evenly. Only a handful of phyla have more than a few thousand species. Furthermore,
the phyla that are today the most speciose (Arthropoda, Annelida, Mollusca, and Chordata) are
also the ones that display the most complex body plans (manifested by e.g. segmented and
regionalized bodies, complex centralized nervous systems, highly differentiated digestive
systems, complex excretory systems etc.) [ will argue that the early stages of the Cambrian
Cascade affected almost all lineages within Bilateria, consolidating the general bilaterian body
plan, whereas later stages affected only specific lineages — those lineages that display higher
complexity and higher diversity (See Text Box 1 for a discussion of defining and identifying
complexity). Evolutionary events that drove an increase in complexity in a small number of
lineages, ultimately led to an increase in taxonomic diversity of those lineages. The late
evolution of the complexity of these lineages, strongly suggests an independent process in each
one, while the similarity in process and outcome suggests a shared driving force, which may

have included interactions among different lineages.

I will briefly review some of the central steps of the cascade, pointing out which were
global, and which were lineage specific or interactive. I will then focus on the step that I suggest
led to the convergent increase in complexity and diversity in three of these four lineages, and

suggest a novel testable hypothesis for the cause of these increases.

The Cambrian Cascade
Wormworld

When did the Cambrian Cascade begin? As with any continuous event, choosing a starting
point is somewhat arbitrary. Since the Cambrian Explosion is usually seen as an explosion in the
evolution of Bilateria, I think it is reasonable to place the beginning of the Cascade at the late
Ediacaran, in the so-called Wormworld of the Nama epoch ['3]. While the earlier Ediacaran fauna
14,16,34-

includes within it organisms that are generally accepted to be the ancestors of bilaterians!

381 the Wormworld fauna includes the first undisputed prevalence of motile Bilateria.
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The Wormworld fauna includes small animals, with either light mineral or organic
exoskeletons. They appeared about 550 million years ago (Ma), probably in the wake of a mass
extinction event!!>-**4% Most of them were probably motile, moving along the sea floor and
grazing on the bacterial mat that covered it. The fossil record of this period also includes trace
fossils supporting the existence of a plethora of worm-like animals moving along the ancient sea

floor!13.14.16:41,42]

Bilaterian genetic toolkits and Urbilateria

17431 Indeed, the through-gut has been

These early bilaterians likely had a through gut!
suggested to be a specific adaptation to the type of life style that includes moving through a food
sourcel®’l as was probably the case for most Wormworld fauna. At the molecular level, it is
highly likely that they already had a Hox cluster, with a division into (at least) anterior, central
and posterior class Hox genes%l. At the regulatory level, they already had distal enhancers,

which allow a more complex and fine-tuned regulation of gene expression[#4-461,

There is an important point (even if seemingly trivial) to be made about this view of the
Wormworld fauna. If the crown group of Bilateria already appeared by this point — and there is
good reason to believe that it did!!®!74748] — any increases in complexity beyond the basic
bilaterian body plan must have occurred independently in each separate lineage. Somewhere
within the Wormworld fauna was the actual Urbilateria — the common ancestor of all extant
bilaterians!*. Over the years there has been a debate how complex Urbilateria actually was!>"-
541, There is no reason to assume it was significantly more complex than its contemporaneous
worms. It thus follows that all bilaterian characters not found in Wormworld are lineage-specific

autapomorphies.
Three-dimensional ecosystems

The next major step in the cascade occurred at the beginning of the Cambrian. The official
base of the Cambrian at 538.8 Ma is defined as the first appearance of trace fossils that penetrate
the surfacel*l; the first animals that live in a three-dimensional world®®l. These fossils are
indicative of a change in substrate utilization. Rather than only living on the microbial mat they
fed on, animals started burrowing more deeply. This behavior disrupted the microbial mat,

ultimately leading to the decline of microbial mats as a significant ecosystem, in what is often



115
116

117
118
119
120

121

122
123
124
125
126
127
128
129

130
131
132
133
134
135

136
137
138

139

140
141
142
143

termed the “Cambrian substrate revolution”>%7], The disruption of microbial mats led to the

extinction of the fauna that relied on it and to the disappearance of the Nama Wormworld!3-27:401,

The number and diversity of penetrating trace fossils increased significantly during the first
stage of the Cambrian, known as the Fortunian, indicating that changes in behavior were taking
place in several different bilaterian lineages*>l. This increasingly complex behavior paved the

way for increasingly complex ecological interactions.
Predation and tiered ecosystems

Several other significant events took place at roughly the same time throughout the
Fortunian. The sequence and interdependence of these events is not always clear and they appear
to have occurred very rapidly!*). The fossil record sees an increase in the diversity of small shelly
fossils; fragments of exoskeletal structures, defensive spines, claws, feeding organs etc.*”). The
increased abundance of small shelly fossils is usually interpreted as indicating a rapid
evolutionary arms race linked to the appearance of predation and of predator defense
mechanisms!®?l, There is evidence of some predation in the Namal?®), but it only became

widespread and a significant evolutionary factor in the Cambrian[®!,

There are very few complete body fossils of the animals of the Fortunian. Nonetheless, we
can reasonably speculate that this stage saw an increase in cephalization and in body support
structures, including both biomineralized skeletons!?%?] and coeloms!®3]. Stem-group members of
most extant phyla, as well as crown-group members of several phyla probably appeared by the
end of the Fortunian!”-%*], These stem and crown-group members are recognizable by the

existence of some or all of the defining synapomorphies of the phyla.

From a molecular regulatory point of view, this stage probably saw an increase in the
complexity of chromatin structure and gene regulation*-#6:64, However, most of the molecular

machinery responsible for the events of the Fortunian is likely to have appeared in the Namal®!,
New body plans, new ecologies

The next stages of the early Cambrian are not formally defined and are referred to
informally as Stage 2 (Beginning at 530 Ma) and Stage 3 (beginning at 521 Ma). These stages
see an increase in the diversity of small shelly fossils©®?), followed by an increase in diversity of

body fossils, representing members of numerous different bilaterian lineages!*l. For example,
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trilobites first appear in the fossil record at the very beginning of Stage 3[%, indicating that the
arthropod body plan had already been assembled by this point. The first putative crown annelid
Dannychaeta tucolus also dates to this period'®®). Many of the famous sites of exceptional
preservation, representing the iconic Cambrian fauna are from Stage 3 (e.g. Kerygmachela and
Halkieria from the Sirius Passet and Leanchoilia and Maotianchaeta from Chengjiang)!®7-68]. The
fauna represented in these sites includes representatives of different lineages with varied body
plans, occupying benthic, endobenthic and nektonic habitats. It includes a diversity of predators,
suspension feeders, detritovores, herbivores and morel®®, indicating a much more complex and

tiered ecosystem than before.

The increase in diversity and ecological complexity that is evident in the fossil record of
Cambrian Stage 3, is different from the increases seen in earlier periods. Unlike the first pulses
of increase in diversity of the Nama and Fortunian, which were manifested throughout Bilateria,
this increase in complexity and diversity only covered a few phylal®l. This is best demonstrated
by the dramatic and rapid increase that occurred in arthropods and their close relatives.
Arthropods are completely absent from the body fossil record before the appearance of trilobites
521 Mal®l, although several earlier trace fossils have been interpreted as belonging to
arthropods. Trilobites display the full complexity of the arthropod body plan. If their absence
from the earlier fossil record is not an artifact, then the arthropod body plan was assembled very

rapidly in the few million years before their first appearance in the fossil record!?l,

The middle Cambrian, represented by the iconic Burgess Shale faunal!?!, among others,
sees a turnover in the dominant lineages, but there are no phylum-level body plans that appear
later than the middle Cambrian. There are further increases in diversity, notably in the early

20,21

Ordovician?*2!1 but the main increases in morphological complexity are by and large complete

by this point (but see the vertebrate exception below).

The Brain-First Hypothesis

An increase in complexity can drive an increase in diversity due to the ability to evolve
specialized organs (see Box 1), and thus occupy an increased range of niches through taxon-
specific adaptations of specialized organs. However, this is not a requirement, and diversity can

increase without an increase in morphological complexity. A case in point are the nematodes,
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which are arguably the most species-rich phylum, while maintaining a morphologically simple
and conserved body plan!’%. Similarly, priapulans probably reached their peak diversity in the
middle Cambrian, but remained relatively simple animals, without strongly differentiated or
specialized organs!’!l. Another example is the brachiopods, which also increased in diversity over
the Cambrian, but despite an increase in species number, did not evolve new or complex organ

systemsl’2],

Conversely, the four phyla in question, Arthropoda, Mollusca, Annelida and Chordata,
show a significant increase in complexity, followed shortly by an increase in diversity. In all four
phyla, the increased complexity is manifested by most, if not all, of the following: a complex
centralized nervous system composed of a ladder-like trunk nervous system and an expanded
anterior brain, diverse sensory organs with a peripheral nervous system, a complete coelom often
with distinct compartments, a circulatory system providing nutrition and oxygen to peripheral
tissues, dedicated excretory organs linked to the circulatory system, a differentiated digestive
system with a separation between digestion and absorption, and differentiated muscle bundles

responsible for different types of movement and locomotion!”74],

The increase in complexity and diversity is most notable in the arthropods, where a

75-77

complex segmented body plan is evident already in the early stem group!’>”7"). They rapidly
became the most diverse animal phylum; a status they have held from the Cambrian to the
present!’%78]. Annelids and mollusks attained their complex body plan somewhat later, probably
by the mid-Cambrian, and increased in diversity more slowly. The annelid Cambrian fossil
record is extremely sparse, and it is not clear whether this is an outcome of a preservation bias, or
a true reflection of low diversity. Nonetheless, middle Cambrian annelids display the hallmarks
of the typical annelid body plan!®s-7°-811, The mollusk fossil record is significantly more
extensive, mostly due to their mineralized shells. The main lineages within Mollusca must have
split during the Cambrian or even earlier, since fossils of shells identified as belonging to
individual lineages are found from the early Cambrian and onwards!®?, although no body fossils
are known from this period. Mollusks then underwent a gradual increase in diversity throughout

the Cambrian and Ordovician!®2-34

1. The chordates, and specifically the vertebrates, did not
increase in complexity or in diversity until the Ordovician!®>-¢l, For the sake of the following
discussion, we will put the vertebrates aside, since their radiation cannot be disentangled from

their hyper-mineralized skeletons, and we will focus only on the three “invertebrate” phyla.
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Despite differences in the dynamics and timing of the evolution of these three phyla, their
complexity is manifested in similar ways, such as the appearance of a ladder-like nervous system
with an expanded anterior brain, a regionalized digestive system, and in two of the three, also
segmented body plans!®’-%%1, This raises the questions whether a similar selective force drove the
increase in complexity in all three, given the similarity in the outcome. If so, it is likely to have
been a global selective force that acted on these three phyla convergently, but not on others (or at
least, not as strongly). A selective force that works in parallel over time on several different
lineages implies a long-lasting ecosystem-wide phenomenon. This could be an a-biotic factor, or
a change in the biological interactions within the ecosystem. I suggest that the main selective
force for the convergent increase in complexity was an increase in the need to respond to a more
complex environment and process numerous complex environmental inputs. This was a direct
outcome of the previous phases of the Cambrian Cascade, wherein the ecosystem became
increasingly tiered and the number of trophic levels and the degree of interspecific interactions
increased dramatically(*l. Organisms needed to receive, process and respond to an increased

number of signals coming from different organisms and from different directions.

The outcome of this selective pressure was an improvement of sensory organs, and more
importantly, an increase in the size and differentiation of the central nervous system. In order to
process diverse sensory inputs, I suggest there was selection for the central nervous system to
become increasingly specialized and regionalized. Processing inputs from different sensory
organs was done in different parts of the central nervous system, and especially in the anterior
regions of the central nervous system — the brain. Integrating data from different sensory systems
required the evolution of additional regionalized sections of the brain, as did the execution of
complex behaviors responding to a range of stimuli. The core of the hypothesis I present herein
is that the brain was the first organ system to increase in complexity, and I refer to it hereafter as

the “Brain-First Hypothesis” (Figure 1).

The more complex brain was composed of more types of neural cells and was divided into
more individuated regions than in the ancestral condition. This regionalized and specialized brain
was achieved by an increase in complexity of the developmental program responsible for
forming the brain; developing a uniform structure requires much less regulation than developing
a differentiated structure. The selection for an increasingly complex brain was manifested as a

selection for more tightly regulated and nuanced gene expression patterns. I suggest that this
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resulted in more complex and combinatorial regulatory regions in the cis-regulatory modules of
relevant genes, increased diversity of splice variants in these genes, more roles for non-coding
RNAs, and duplication and sub-functionalization of both regulatory genes and structural genes
involved in neurogenesis. It is these genes and the networks of interactions among them that
drive the development of the morphological plan of the brain, and the more complex they are, the

more complex the resulting brain will bel46-20-21,

While the main driving force for this increased regulatory complexity was the requirement
for improved neural processing, it had additional far-reaching consequences. I suggest that once
these expanded regulatory toolkits and the novel networks emerging from them were in place,
they were rapidly and easily co-opted to regionalize and diversify additional organ systems. Co-
option is a well-known and described phenomenon in the evolution of novelties!*346:93-95],
Existing gene regulatory networks are re-activated or re-used in novel contexts to give rise to
evolutionary novelties. With the increased regulatory complexity, evolution had an “open field”
for numerous cases of co-option. I suggest that these co-option events allowed additional organ
systems to become more highly differentiated, providing the raw material for the increase in
general organismic complexity that occurred in the aforementioned three phyla throughout the
Cambrian.

A co-option of neural developmental pathways into other organ systems has already been

(881 and indeed for

suggested for the evolution of the arthropod segmentation cascade
segmentation in general. An increase in sensory functions as a driver of the Cambrian explosion
is also an idea that has been suggested in the past!®*!32], but has not gained traction. The Brain-

First Hypothesis suggests that segmentation is only one example of a broader phenomenon, and

suggests a mechanistic link between the increase in sensory functions and overall complexity.

More highly differentiated and regionalized structures and organs allowed an increase in
morphological disparity (the degree to which organisms within a lineage are morphologically
different from each other). Taxonomic diversity then increased through series of adaptive
radiations making use of novelties that appeared as a result of new regulatory elements being
recruited to new morphological structures!®3l. Thus, the final — but indirect — outcome of the
increased ecological complexity of the early Cambrian was an overall increase in taxonomic

diversity, with most of this diversity stemming from three phyla with increased complexity.
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This process of increasing sensory sensitivity, neural complexity, and morphological
diversity probably did not occur at once, but in a gradual repeated feedback loop over an
extended period during the Cambrian. It remains an open question why this process did not occur
in other phyla, which were presumably experiencing the same ecological environment. Like
many things in evolution, chance events probably had a significant role!!. Perhaps these phyla
already displayed some unknown exaptation to processing complex sensory inputs, allowing
them to adapt and undergo an increase in neural complexity, with accelerating feedback driving
the process more rapidly in these lineages. It also remains unknown what drove the early
increase in diversity in morphologically less complex taxa (e.g. priapulans or brachiopods).
Intriguingly, these phyla with early increases in diversity, but no parallel increase in complexity,

declined with time (again, with the exception of nematodes).

Implications and predictions of the hypothesis

The hypothesis suggested above provides a simple explanation, based on first-principles,
for the increase in complexity and diversity seen in a limited number of animal lineages after the
main diversification of the early Cambrian. Furthermore, this explanation also allows us to
formulate a number of predictions and ways to test them, using molecular data from extant
organisms. These tests must allow us to differentiate between the Brain-First Hypothesis and
alternate hypotheses: that increased overall complexity evolved earlier (for an unknown reason)
and in turn repeatedly drove increased neural complexity (via an unknown mechanism), or that
complexity in all organ systems evolved more or less in parallel (under unknown selective

pressure).

First, we would need to test the link between increased morphological complexity and
regulatory complexity in the three phyla: Mollusca, Annelida and Arthropoda. Intuitively, this
link seems almost trivial, but it has never been empirically studied. We would expect to see the
morphological complexity manifested in higher diversity of a range of regulatory elements.
These should include not only regulatory genes such as transcription factors and signaling
molecules, but also cis-regulatory modules, non-coding RNAs, alternative splice variants in
structural genes and more. We should be able to distinguish between increases in regulatory

elements that occurred before the diversification of Bilateria and those that occurred only in
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specific lineages by mapping the diversity of regulatory elements phylogenetically. This will
allow us to elucidate which increases in regulatory complexity are shared across large
phylogenetic distances and which have independently and convergently evolved in specific
lineages. We would expect to see the most significant lineage-specific increases in regulatory
diversity within the three focal phyla. The recent increased availability of high-quality genomes
from representatives of numerous phyla, makes this type of analysis an achievable goal.
Conversely, if there is no evidence for higher regulatory complexity in mollusks, annelids and
arthropods, this would weaken the link between morphological and regulatory complexity and

decrease support for the Brain-First Hypothesis.

Next, we would need to demonstrate that the increases in regulatory complexity evolved in
the nervous system first and that the expanded regulatory toolkit was co-opted to other
morphological structures. Under this assumption, we would expect the largest number and range
of regulatory elements to be found in gene regulatory networks involved in the development of
the brain in each of the three phyla. If complexity in other organs is a result of co-option of
regulatory elements that originally evolved in the nervous system, only some elements of this
neural-development toolkit should be found in the networks involved in developing other
complex organ systems. Furthermore, if this co-option occurred independently in different organ
systems, we would expect different regulatory elements to be found in the development of each
system. Finally, this subset of the regulatory toolkit used in different systems, would also be
different in each phylum. This would indicate that the co-option of regulatory elements occurred
independently not only in each system but also in each lineage. Conversely, if complexity in
different organ systems evolved independently of complexity of the nervous system (either
before or after it), we would find system-specific regulatory elements, and would not expect the

nervous system to display an unusual number or range of regulatory elements.

Finally, we would need to demonstrate that lineages that did not increase in complexity
during the Cambrian, e.g. Priapula, Brachiopoda, Platyhelminthes etc., maintain a basic
bilaterian regulatory toolkit representing the increase in complexity that occurred in the early
phases of the Cambrian Cascade. Studying these lineages from a comparative genomic
perspective should provide us with a baseline for what level of regulatory complexity was
presumably found in the early Cambrian, before the increase in complexity seen in the three

focal phyla. A phylogenetic comparison of the regulatory elements within these lineages should
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show that they date back to the last common ancestor of Bilateria, or possibly to the last common
ancestor of one of the super-phyla (e.g. Ecdysozoa, Spiralia). We expect a much smaller number

of lineage-specific regulatory innovations compared with the more complex phyla.

Concluding remarks

Reframing the Cambrian Explosion as a cascade removes the need to find an “explanation”
for a singular event. Indeed, each phase in the Cambrian Cascade has its own cause (or several
causes). The iconic fauna of the famous fossil sites of the middle Cambrian is not a direct
outcome of an increase in animal diversity at the base of the Cambrian, but rather an outcome of
several pulses of increased diversity, throughout the early and middle Cambrian. This increase in
morphological complexity and in disparity was made possible by an increase in the complexity
of the central nervous system, which in itself was a selective response to the ecological
complexity of the biosphere, which had been increasing from the late Ediacaran. The molecular
fingerprints of this process can probably still be found in the most diverse animal groups that

exist today.

Text Box 1 — Defining and quantifying complexity

Since we are exploring the evolution of complexity, it seems prudent to put down a
definition of complexity. This point has been discussed and debated extensively for many
years®>26%1 and it is beyond the scope of the current contribution to cover this debate in
sufficient detail. Most approaches to quantifying complexity have to do with the number and
diversity of constituent parts, be it cell number or difference between segments in a segmented
organism®), Within the framework of the current hypothesis, the increase in complexity I am
discussing involves an increase in the number and diversity of differentiated organs, in the
diversity of serially repeated organs and in the adaptive specializations of different organs. Under
this practical definition, a centipede is more complex than a nematode and a crayfish is more
complex than a centipede. At the level of individual organs, a multicellular metanephridium is

more complex that a single-celled protonephridium. Different organisms can display different
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levels of complexity and different aspects of complexity in a modular fashion. Nonetheless,
organisms with higher degrees of complexity (e.g. arthropods, vertebrates) tend to display

complexity in several organ systems and characteristics at once.

Complexity is an inherent characteristic of biological systems in general and of the Earth’s
biosphere in particular. However, complexity is expensive in terms of genetic and energetic
resources, and there is no a-priori reason to assume that complexity per se has any inherent
evolutionary advantage. There have been many attempts to model the conditions what would
lead to an increase in complexity over timel®>9%191 and these are often based on emergent

phenomena or regulatory complexity, rather than on positive selection for complexity.

There is probably no single metric that can quantify the overall complexity of an entire
organism in such a way that one can map it on a phylogenetic tree as though it were a
quantitative character. Nonetheless, it is possible to identify lineages that are generally more
complex than other lineages, and to identify lineages wherein complexity increases over time,
based on some version of the practical definition given above. There are undoubtably many cases
of increase in complexity over evolutionary time in specific lineages. However, consistent
directional increase in complexity is not a universal phenomenon!’3]. The Brain-First hypothesis
aims to explain the directional increase in complexity in three phyla at a crucial stage in the early

evolution of the biosphere.
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