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Abstract: 

Biological systems are here reinterpreted through a geometric lens that extends the 

insight of general relativity: organisms and their interactions are modelled as 

deformations of a multidimensional biological hyperspace. In this view, each entity acts as 

a source that locally bends a relational field defined by molecular, morphofunctional and 

ecological axes, thereby altering the trajectories of others through both attractive (for 

example, trophic or mutualistic) and repulsive (for example competitive or avoidance) 

effects. The framework is explicitly multiscale, intending to accommodate hierarchical 

organisation from genes to ecosystems, with a data-fixed ecological metric g estimated 

from observations (e.g. Mahalanobis/Fisher–Rao) and updated through time, and it 

incorporates evolutionary directionality, with state-dependent geometry that changes 

through time. A minimal mathematical programme is outlined that links curvature, 

interaction tensors and geodesic motion, together with falsifiable predictions, including 

curvature-dependent convergence or divergence of trajectories, finite-speed propagation 

of ecological influence with a system-dependent upper bound ceco and local reduction to 

classical models. Field equations are derived from a variational principle in which the 

geometric–matter coupling is carried by a scalar field ϕ, so that κ=κ(ϕ); this yields 

covariant conservation of the total ecological–geometric current (Noether/Bianchi). The 

aim is methodological rather than doctrinal: to provide a coherent language that unifies 

ecology, evolution and complexity science and to invite collaboration on a dynamic 

geometry of life. If successful, this approach could inform both the interpretation of large-

scale historical events and practical ecosystem management by making explicit 

constraints, couplings (via κ(ϕ)) and distributed, porous sources. 

1. Introduction 



On the Name 

The name Extended General Theory of Relativity (if in German, erweiterte 

allgemeine Relativitätstheorie) had been chosen in deliberate reference to 

Einstein’s (1916) allgemeine Relativitätstheorie. In that foundational paper, the 

general theory is described as the most comprehensive and natural generalisation 

of gravitation compatible with physical experience. If, as he suggested, this 

formulation exhausted what was conceivable within that discipline, then any 

further generalisation must necessarily move beyond that scientific realm: for 

example, towards the domain of life, but also in all other disciplines that imply the 

dynamics of complex systems. The point of departure proposed here is biology 

(hence, it could for short be referred to as Biorelativity) and more specifically 

evolutionary ecology. The theory is thus grounded in the long-term dynamics of 

life on Earth, but its underlying logic may be extensible to other domains in which 

agents co-construct environments, generate relational fields and alter one 

another’s trajectories in ways that defy simple causal reduction. 

Why Biology Needs New Geometry 

The most formal scientific disciplines, mathematics and physics, have long 

influenced biology, from the eccentric work of D’Arcy Thompson (1917) and the 

energetic models of metabolism (Bauer 1935), through the statistical mechanics of 

population genetics (Fisher, 1930; Haldane, 1924-34; Wright, 1931) to biomechanics 

(Alexander, 1968) and catastrophe theory in biological morphogenesis (Thom 1972 

– but see Sussmann, 1978). In this sense, it could be conceived that, in biology, the 

presence and activity of living agents modify the very conditions under which they 

persist, compete, cooperate and evolve. The environment is not a static 

background, but a historically contingent, dynamically restructured field co-

created by its inhabitants. 

Just as Einstein's general theory of relativity emerged from embedding special 

relativity within the geometric structure of Minkowski spacetime (a four-

dimensional pseudo-Riemannian manifold where the invariant interval fuses 

space and time; see Einstein & Infeld 1938), this conceptual shift in biology 

proposes that ecological and evolutionary processes can be envisioned as 



trajectories across a higher-dimensional, dynamically deformable biological 

hyperspace. Unlike physical systems, however, biological entities are organised 

hierarchically, from genes to cells to organisms to populations to ecosystems and 

the whole biosphere, each level capable of influencing and being influenced by the 

others (Levin, 1992). This nested structure implies that the ecological manifold is 

not simply continuous in spacetime, but also stratified across organisational 

scales, leading to multilevel interactions whose effects are neither additive nor 

strictly local. Unlike the compact, sharply bounded sources of gravitation, 

biological entities are open and porous, partly continuous with the medium that 

contains and integrates them, so identity is better represented as a distributed 

field with moving fuzzy interfaces rather than a discrete mass. This multiscalar, 

co-constructive nature of life, where organisms and their environments are 

mutually influential, requires an extended framework that accommodates 

emergence, plasticity and context-dependence. While in Minkowski space all 

observers agree on the form of physical laws, in the biological analogue, the very 

structure of the space may vary depending on the ecological and evolutionary 

history of its occupants. 

Hence, I explore here the possibility of conceptualising biological systems through 

the lens of geometric deformation, further generalising Einstein’s (1916) insight 

that gravity is the curvature of spacetime. The core proposal is that biological 

entities deform an abstract, multidimensional space that reflects their genetic, 

morphological, behavioural and ecological characteristics as well as all the abiotic 

factors (salinity, rainfall, substrate): the ecomorphological hyperspace (as in niche 

theory; Hutchinson, 1957; cf. Grinnell’s, 1917, habitat-centred niche grounding 

abiotic axes; Soberón, 2007). In this analogy, each biological entity acts as an 

ecological mass-energy that locally deforms the space. Other entities respond to 

this deformation by moving closer or further away, giving rise to ecological and 

evolutionary dynamics. 

In this theory, the analogue of inertial frames are eco-inertial frames: local charts 

of eco-space, co-moving with a community’s dynamical equilibrium, in which free 

dynamics without net external forcing follow geodesics and the equations take 



their simplest form, that is, normal coordinates with Christoffel symbol comes to 

zero (Γ=0). This is an ecological reformulation of the local equivalence principle in 

which, over sufficiently small space-time domains, curvature is negligible and 

dynamics are approximated by a flat metric, exactly as in general relativity when 

coordinates are constructed in such a way that nullify the Christoffel symbols at a 

point (Carroll 2004). Operationally, the frame is identified by removing the mean 

drift of the system and minimising the covariant acceleration of trajectories; this 

occurs, for example, in the neighbourhood of Lotka–Volterra limit cycles (to be 

discussed elsewhere, Vallejo & Fariña 2025) and near equilibria of consumer–

resource models, and in co-moving frames with environmental fronts for animal 

movement where step-selection models show no residual trend (Lotka 1925; 

Volterra 1926; MacArthur 1970; Tilman 1982; Fortin et al. 2005; Avgar et al. 2016). 

The locality of such frames is constrained by the characteristic speed at which 

ecological reconfigurations propagate, which can be bounded using reaction–

diffusion wave speeds and observed climate velocity (Fisher 1937; Kolmogorov et 

al. 1937; Loarie et al. 2009). In thermodynamic terms, an eco-inertial frame is one 

in which exergy and information gradients vanish to first order, so that production 

and dissipation are locally balanced (Jørgensen 1992). 

On the Use of the Terms ‘Biological’ and ‘Ecological’ 

Throughout this proposal, I refer variously to biological and ecological 

dimensions. While related, these terms are not interchangeable and some 

clarification is warranted. By biological, I refer to organisms in interaction, either 

with one another or with their environment. This relational stance is central: an 

organism does not act or evolve in isolation but through entanglements with 

trophic networks, competitors, symbionts and, importantly, abiotic shifts such as 

climate, the uplift of a mountain range or the opening of a seaway. In this context, 

biological is thus taken to be effectively equivalent to ecological in the broadest 

sense. 

Also, the term ecomorphological, in turn, highlights those organismal traits that 

result from, or participate in, such ecological interactions, an approach that finds 

its roots in niche theory (Hutchinson, 1957 - also see Grinnell’s 1917; Soberón, 2007 



- abiotic niche for geographic distributions). Morphology is often the most visible 

and tractable proxy for ecological function, particularly in macroorganisms such as 

most animals and plants. However, it is by no means the only relevant axis: 

physiology, behaviour, life history traits and even biochemical pathways may 

equally define an organism’s position in ecological space. This is especially true in 

the case of microorganisms, whose morphological simplicity belies their complex 

physiological and ecological versatility. 

Also, genetic information is a first-class component that constrains and is shaped 

by eco-geometry. Concretely, lineages are embedded in a working phylogeny and 

use phylogenetically informed covariances to estimate the ecological metric 𝑔 and 

its local normal coordinates, so that inheritance and shared history are explicit 

rather than tacit (Felsenstein 1985; Pagel 1999). Molecular features enter the 

matter fields Ψ either as slow variables or as latent modulators of the eco-coupling 

𝜅(𝜙(x,t)), providing a transparent path from genotype–phenotype mappings to 

curvature-driven predictions (Hansen 1997; Maynard Smith & Szathmáry 1995). 

While a full genomic dynamics is not intended here, a tractable pipeline is 

committed: assemble a published tree for a focal clade, estimate 𝑔 under 

phylogenetic dependence, then test whether geodesic curvature improves out-of-

sample fit for longitudinal trajectories compared with flat models. This preserves 

the manuscript’s mesoscopic focus while aligning it with molecular and 

comparative evidence. 

It should be noted that scalar–tensor theories (e.g. Brans–Dicke) show how a 

coupling can be promoted to a field; analogously a scalar eco-coupling ϕ, with 

κ=κ(ϕ) (see §5(d) for the variational formulation) is adopted here (Brans and 

Dicke 1961). 

2. From Spacetime to Ecomorphological Hyperspace/Evolutionary Time 

In general relativity, matter and energy curve spacetime and this curvature governs 

the motion of objects through attraction. In an analogous way, organisms could be 

conceived as generating deformations in a hyperdimensional ecological space, 

causing other organisms to respond, whether through attraction (e.g., predation, 

mutualism) or repulsion (e.g., competition, avoidance). Crucially, interaction 



signals are scale dependent: what is repulsive at the level of a species pair (for 

example, exploitative competition) can, once coarse-grained over many 

interactions and environmental feedbacks, act attractively at the level of the 

community by promoting niche partitioning, modular cohesion and stable 

resource flows. In geometric terms, renormalising micro-interactions can flip the 

effective curvature so that local divergence between competitors aligns with 

convergence of assemblages toward a shared attractor basin. Repulsion and 

attraction (see 3) are therefore not fixed properties but scale-relative expressions 

of the same underlying field, mediated by cross-level couplings. 

Following Reichenbach’s (1956, 1958) distinction between mathematical geometry 

(a formal calculus) and physical geometry (an empirical structure fixed by 

measurement), the ecomorphological hyperspace is treated here as an example of 

the latter: its metric is inferred from data and its curvature co-determined by 

interacting organisms, rather than a fixed Euclidean background. This makes the 

geometry itself a testable object, not merely a convenient coordinate scaffold. 

Formally, the axes of this ecological space can be estimated from a trait–

environment matrix X (e.g. rows = taxa, columns = variables) using principal 

component analysis; the eigenvalues quantify the variance captured by each 

orthogonal axis, while distances are better computed with covariance-aware 

metrics to respect trait correlations and niche geometry (Hutchinson, 1957; Jolliffe, 

2002; Etherington, 2021) such as Mahalanobis or the certainly more accurate 

Fisher-Rao Information Metric(Fisher, 1922; Rao, 1945), which does not imply a flat 

geometric space but defines a geometry on a space of probability distributions. 

Grinnell’s (1917; Soberón, 2007) environmental niche underpins climatic axes in 

this geometry. Thus, each organism, population or species is represented by a 

vector in this space whose position and separation reflect both trait loadings and 

correlated environmental structure. At the interaction level, ecological structure is 

naturally encoded by 𝑛 × 𝑛 matrices (e.g. the community Jacobian, or the 

adjacency/Laplacian of a network), whose eigenvalues/eigenvectors govern local 

stability, modular cohesion and diffusion time-scales; thereby connecting classical 

community-matrix stability theory with spectral analyses of ecological networks 



(May, 1972; Chung, 1997; Bascompte and Jordano, 2007). In the present framework, 

deformations of the space arise jointly from (i) covariance structure in X (axis 

scaling/rotation) and (ii) the spectral properties of the interaction matrix (field 

curvature across levels). 

The ecological metric g is treated here as a data-fixed, physical geometry. Locally, 

two complementary estimators are adopted: (i) a covariance-aware metric 

(Mahalanobis) when states are represented as trait–environment vectors; (ii) the 

Fisher–Rao information metric when states are probability distributions, which 

directly yields a non-Euclidean geometry on the statistical manifold. In practice, 

(a) local charts are estimated with PCA or related low-distortion embeddings, (b) 

g is computed as Σ−1 (covariance) or as Fisher–Rao, and (c) uncertainty is 

propagated into curvature estimates. This makes the geometry testable and 

comparable across systems. 

3. Attraction, Repulsion and Multiscale Interactions 

Unlike gravity, which is only attractive, ecological interactions are both attractive 

and repulsive. The analogy here aligns more closely with the vectorial nature of 

electromagnetic fields (Maxwell 1865), where charges of opposite sign attract and 

like charges repel. However, it is worth noting that even in physics, the 

simplification of gravitational interaction as purely attractive holds only locally. 

On cosmological scales, observations since the late 1990s have revealed that the 

universe is undergoing accelerated expansion (Riess et al. 1998; Perlmutter et al. 

1999). This suggests that the interplay between attraction and repulsion, and their 

scale-dependent dominance, is not unique to biological systems. In both physics 

and biology, large-scale organisation may arise from forces that are locally 

attractive but globally dispersive or expansive. 

Undisputably, interactions in Biology are fairly more complex: mutualisms, 

parasitism and commensalism correspond to different types of ecological 'charges'. 

It may therefore be necessary to develop a theory of vector fields (analogous to 

electromagnetic fields) or complex tensor fields capable of representing multiple 

types of interactions simultaneously. 



Additionally, biological systems are inherently hierarchical. Organisms are coded 

in genes, composed by molecules, cells, tissues and organs; they exist within 

populations, which constitute species, which participate in communities and 

ecosystems. This multilevel organisation implies that the geometry of the 

biological field must be able to represent scale-dependent and nested interactions. 

Each level could be understood as an additional dimension or as different scales 

within ecological space, requiring formalisms capable of moving fluidly across 

scales (renormalisation theories, hierarchical complex systems, fractals). 

This shift from attraction to repulsion can be illustrated conceptually as a 

deformation of ecological space: a prey organism, initially creating a local 

depression that draws a predator toward it (Fig. 1A), may, following an 

evolutionary change such as increased body size, come to generate a convex, 

repelling curvature that inhibits predatory access (Fig. 1B). Note that the biological 

entities are in a continuous with the fabric of the hyperspace/evolutionary time. 

Such geometric transitions model the qualitative change in ecological interaction 

through alterations in local curvature. Moreover, the repelled organism may not 

simply remain isolated but could instead be displaced into the ecological domain 

of another species, triggering a cascade of indirect effects akin to a biological 

butterfly effect (Lorenz, 1963). In this way, local changes in one region of the 

ecomorphological hyperspace may propagate across the system at a maximum 

speed ceco similar to c in Lorentz’s equations, reshaping broader ecological 

dynamics. 

Given g, the Levi-Civita connection (metric-compatible, torsion-free) is adopted 

as the canonical choice for inertial ecological motion (geodesics). This ensures a 

clean parallel transport and well-posed geodesic deviation. Extensions with 

torsion or non-metricity can encode history-dependence, but this subject is left for 

future work focused on irreversible memory effects. 

4. Incorporating Evolution and Time’s Arrow 

The second difference is perhaps the most profound: there is a great difference 

between the physical and biological domains in the unidirectionality and 

historical contingency of evolution. Indeed, Gould (1987) distinguishes between 



cyclical time and the arrow of time and emphasises that historical processes, such 

as evolution and unlike planetary orbits, should be understood as irreversible, 

characterised by unique trajectories that cannot be replicated. 

Eddington’s cone and time’s arrow. 

In a Minkowski spacetime, the light-cone structure fixes what can causally 

influence what, even though the fundamental equations are largely time-reversal 

symmetric (Minkowski, 1908-09). Eddington (1928) argued that the arrow of time 

is selected by the growth of entropy, which picks out the future-directed branch of 

the cone and renders macroscopic evolution irreversible. For living systems, which 

are open and far from equilibrium, this asymmetry is amplified: they export 

entropy while maintaining organisation via flows and feedbacks, paradigmatic 

dissipative structures (Prigogine, 1977). In the present framework, causal influence 

is constrained by an ecological cone with slope ceco. Beyond this kinematic bound, 

causation is shaped by a non-stationary ecological metric gij and by an evolving 

coupling κ(ϕ(x,)) mediated by the scalar eco-coupling field ϕ; when sensitivity to 

ecomorphological separation or evolutionary age is required, κ depends only on 

scalar invariants such as the geodesic distance dg and ecological proper time τ. 

Together these features bias geodesics toward persistence. 

The result is an anti-deterministic stance: given identical macrostates there 

remain many admissible microhistories, and which branch is realised depends on 

stochastic innovations, selection and cross-level feedbacks rather than geometry 

alone (Eddington, 1928; Prigogine, 1977). 

The ecomorphological space itself is not static: it is constantly reshaped by 

evolutionary innovations, extinctions and environmental change from external 

sources. Evolution introduces irreversible directionality, unpredictability and 

historical contingency, in contrast to the relative stability and predictability of 

classical physical laws. 

Whereas Fig. 1 shows the simplest case (i.e., similar to gravity interactions of 

general relativity), in Fig. 2, a single sphere moves forward in time (as in evolution) 

through a deformable ecological surface, simplified here again as a two-

dimensional elastic mesh. It leaves behind a deep trailing depression and 



generating a forward elevation and lateral distortion. The shape and displacement 

of the surface illustrate the temporal dynamics of ecological interaction: the 

depression behind the sphere implies an attractive effect on other organisms or 

ecological entities, while the raised front region indicates repulsive or exclusionary 

effects due to the evolving position or properties of the focal organism. This 

asymmetric deformation represents how organisms and other biological entities, 

as they change over time, simultaneously reshape their ecological surroundings, 

attracting some components of the system while repelling others. 

As a consequence of the above discussed issues, any generalised geometric theory 

for biology must go beyond the static manifolds of classical physics and embrace 

evolving topologies, singularities, bifurcations and path dependence. Concepts 

from dynamical systems theory, stochastic processes and non-equilibrium 

thermodynamics may be indispensable. This could be modelled using non-

stationary dynamic geometries (spaces that change over time), which would 

require advanced mathematical theory such as dynamic differential geometry, 

chaos theory and non-linear dynamics, bifurcation theory (catastrophes), 

stochastic processes, Bayesian methods and, when needed, possibly new 

developments. 

In line with Reichenbach’s (1956, 1958) causal theory of time, temporal order is 

grounded in causal order. Within the present framework, evolutionary change 

causes deformations of the ecological geometry, and those deformations in turn 

constrain subsequent trajectories; the geometry thus acts as a record of causal 

history. The evolutionary arrow is therefore not imposed externally but emerges 

from the directed accumulation of causal constraints in the evolving metric–

connection pair (𝑔, Γ). 

On the ecological speed bound. ceco  is treated as a system-dependent upper 

bound on the propagation of ecological reconfiguration, not as a universal 

constant. Operationally, it is bracketed by reaction–diffusion wave speeds and 

climate velocity in the focal system; estimates enter causal cones and delay kernels 

accordingly. 

5. Toward a Formal Theory 



Background 

The conceptual framework proposed here seeks to extend the principle of 

relativity beyond its physical origins, offering a dynamic, geometric perspective on 

biological systems and their interactions. However, in doing so, it is essential to 

acknowledge and evaluate the theoretical landscapes that precede and, to some 

extent, inform this approach. Rather than reinvent existing frameworks, the 

present proposal aims to integrate and generalise their insights within a unified, 

relational geometry of life. 

Several prior models are particularly relevant. First among them is ecological niche 

theory, particularly as formulated by Grinnell (1917) and Hutchinson (1957), who 

conceptualised species as occupying positions within a multidimensional 

ecological space. This notion of a hypervolume prefigures the idea of an 

ecomorphological hyperspace, albeit without a dynamic geometry or explicit 

interaction fields. 

Darwin (1859) envisaged evolution as a historically contingent and branching 

process, comparable to a tree, where lineages diverge and cannot return to 

ancestral states. This vision anticipates the idea of adaptive landscapes as 

introduced by Wright (1932) and later expanded by Simpson (1944), in which 

fitness surfaces guide evolutionary trajectories. While powerful as a metaphor, 

these landscapes are typically scalar and static and lack the capacity to represent 

mutual deformation among interacting agents. In contrast, the present framework 

imagines a relational geometry in which all organisms are both shaping and being 

shaped by the hyperspace itself. 

A related and independent attempt to import relativistic thinking into 

evolutionary theory is Greenstein’s (2015) General Relativistic Biology, which 

recasts natural selection via an equality between statistical and causal perspectives 

on fitness and proposes a Newtonian-style relation N = f s (where N is natural 

selection, f is fitness and s is struggle) under a general principle of biological 

relativity. The approach presented here differs in offering an explicit differential-

geometric formalism: a dynamically deformable ecomorphological manifold with 

metric 𝑔𝑖𝑗 , curvature 𝐺𝑖𝑗, interaction tensors 𝑇𝑖𝑗 and a context-dependent coupling 



κ, alongside a special-relativistic analogue with 𝑐eco, rest eco-mass and geodesic 

dynamics across hierarchical levels. In this sense, Greenstein (2015) motivates the 

relativistic reframing, whereas here a field-theoretic and tensorial structure aimed 

at analysis and testable modelling is provided. 

For the action 

 𝑆 = ∫ √∣ 𝑔 ∣ [
1

2𝜅(𝜙)
𝑅 + ℒ𝑒𝑐𝑜(𝛹, 𝛻𝛹; 𝑔) −

1

2
𝑔𝑖𝑗𝜕𝑖𝜙𝜕𝑗𝜙 − 𝑈(𝜙)] 𝑑𝑉, 

the scalar eco-coupling equation reads 

□𝜙 − 𝑈′(𝜙) −
1

2
𝜅(𝜙)−2𝑅 = 0. 

Conservation. By diffeomorphism invariance and the contracted Bianchi 

identity, the total ecological–geometric current is covariantly conserved, so that 

any apparent non-conservation at the ecological sector is balanced by exchange 

with the ϕ-field; in closed, time-independent limits, Noether’s theorem yields 

conservation of the eco-Hamiltonian. 

The emerging fields of ecological network theory and complex network theory 

offer powerful tools for analysing the structure and dynamics of multispecies 

systems. These approaches highlight the importance of indirect effects, 

modularity and feedbacks, features that any relational geometry of life must 

ultimately accommodate. 

In addition, the proposal resonates with the principles of complex adaptive 

systems theory, as developed in part through the work of the Santa Fe Institute 

(see Kauffman 1993; Levin 1998; Cowan, Pines & Meltzer 1994). Those models 

emphasise self-organisation, emergence and non-linear dynamics in hierarchical 

systems, key attributes of the biological world that a generalised theory of 

ecological relativity must be capable of capturing. 

A complementary line of work is the Principle of Biological Relativity (Noble et al. 

2019), which argues that, a priori, there is no privileged level of causation in 

multiscale biological systems, and that circular but asymmetric causality links 



levels: upward causation is captured by the dynamics (e.g., differential equations) 

of lower-level processes, whereas downward causation is best represented as the 

setting of initial and boundary conditions determined by higher-level organisation 

and environmental context. This view aligns with the present framework’s 

emphasis on multilevel constraints and historical dependence. Again, this 

contribution differs by introducing an explicit differential-geometric formalism, a 

deformable ecological manifold with metric 𝑔𝑖𝑗, curvature 𝐺𝑖𝑗, interaction tensors 

𝑇𝑖𝑗 and a state-dependent coupling κ(ϕ(x,t)), together with a special-relativistic 

analogue 𝑐eco, rest eco-mass) for modelling feasible trajectories. 

Finally, the field of macroecology provides a large-scale empirical and theoretical 

context in which to situate this proposal. Macroecology seeks to understand broad 

patterns of diversity, distribution and interaction across space and time and may 

serve both as a testbed and as an arena for application of the proposed geometric 

formalism. 

In sum, the framework outlined here is not constructed in opposition to these 

existing paradigms but seeks to unify and extend them through a novel 

mathematical and conceptual language inspired by the geometry of relativistic 

physics. 

Mathematical Challenges 

This theory aims to unify these approaches within a broader geometric-dynamic 

perspective, connecting evolution, ecology, morphology, and environment 

through an advanced mathematical formulation inspired by theoretical physics. 

At present, the proposal includes only the draft of a precise mathematical 

formalism. However, potential avenues include: 

• Defining a dynamic manifold or fibre bundle for the ecological hyperspace. 

• Constructing ecological interaction tensors analogous to the Einstein 

tensor. 

• Describing interaction fields (e.g., attraction/repulsion) using vector 

calculus or differential geometry. 



• Modelling species trajectories through geodesics influenced by other 

organisms’ warping effects. 

• Introducing evolutionary perturbations through stochastic deformation 

terms or field fluctuations. 

Many classical models reappear as local or coordinate limits of a state space 

endowed with a time‑varying metric g, connection Γ and context‑dependent 

coupling κ. This provides a bridge between the proposed geometry and familiar 

dynamics and offers routes for parameter estimation. 

 

Logistic growth: 
𝑑𝑁

𝑑𝑡
= 𝑟𝑁 (1 −

𝑁

𝐾
) 

Local 1D flow on a flat metric. The vector field can be written as gradient flow in a 

suitable potential Φ(𝑁) or as geodesic motion with non‑zero drift. 

Lotka–Volterra predator–prey (see Vallejo & Fariña 2025):  
𝑑𝑥

𝑑𝑡
= (𝛼 − 𝛽𝑦)𝑥,

 
𝑑𝑦

𝑑𝑡
= (𝛿𝑥 − 𝛾)𝑦 

Local 2D dynamics in normal coordinates ( = 0 at equilibrium, g ≈ I). Interaction 

coefficients map into entries of 𝑇𝑖𝑗 and the local Jacobian. 

Generalised LV competition: 𝐍̇ = 𝐍 ⊙ (𝑟 − 𝐴𝐍). 

Near operating points the flow matches the proposed form with T capturing 

pairwise effects and g shaping anisotropic response. 

MacArthur consumer–resource:  𝑁𝑖
̇ = 𝑁𝑖(∑ 𝑐𝑖αα 𝑅α − 𝑚𝑖), 𝑅α̇ = 𝑠α − 𝑑α𝑅α −

∑ 𝑐𝑖α𝑖 𝑁𝑖 𝑅∝ 

Provides a mechanistic T via resources. After adiabatic elimination of R, an 

effective interaction tensor consistent with 𝜅 is obtained. 

Replicator dynamics:  𝑥𝑖̇ = 𝑥𝑖[(𝐴𝑥)𝑖 − x ∙ 𝐴x] 

Gradient flow under the Shahshahani metric on the simplex: a canonical example 

where the choice of metric determines the dynamics, aligning with the present 

emphasis on g. 

Ornstein–Uhlenbeck trait evolution:  𝑑𝑣 = − − 𝛽𝑣𝑑𝑡 + √2𝐷𝑑𝑊𝑡 



Linear well in a flat metric with stochastic forcing; local SDE limit for traits. 

Fisher–KPP reaction–diffusion:  
𝜕𝑝

𝜕𝑡
= 𝑘

𝜕2𝑝

𝜕𝑥2 + 𝑚𝑝(1 − 𝑝) 

Spatiotemporal extension where diffusion acts as Δ𝑔 if the substrate carries a 

metric g; front speed can bound 𝑐eco. 

Wright–Fisher diffusion / Fokker–Planck:  
𝜕𝑃

𝜕𝑡
 =  − ∑

𝜕

𝜕𝑥𝑖
𝑖 (𝐴𝑖 𝑃) +

 
1

2
∑

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑖.𝑗 (𝐵𝑖𝑗𝑃) 

Links to information geometry and natural gradients, again highlighting the role 

of a non‑Euclidean metric. Geometric fitness is a functional of the interaction 

metric 𝑔𝑖𝑗, curvature 𝐺𝑖𝑗, interaction tensors 𝑇𝑖𝑗 and a state-dependent coupling 

κ(ϕ(x,t)), together with a replicator/Fokker–Planck–type equation for the state 

distribution P, where f increases with growing 𝜌𝑒 and with the curvature of the 

space such that desirable trajectories (resources/allies) converge while threats 

diverge. 

Leslie matrix / McKendrick–von Foerster:  𝐧𝑡+1 =  𝐋𝐧t;  𝜕𝑡𝑛 +  𝜕𝑎𝑛 =  − 𝜇(𝑎)  𝑛 

provide structured axes and constraints that can be encoded in block metrics and 

cross‑level couplings 𝐶{𝐿𝑀}. 

Networked reaction–diffusion on graphs: x = F(𝑥)̇ − ℒ𝑥 with graph Laplacian ℒ. 

A special case of g on discrete geometries. Useful to estimate anisotropy and 

effective distances induced by g. 

Technical box: Eco-inertial frames and geodesic motion 

Definition. An eco-inertial frame at (𝑥∗,𝑡∗) is a local chart of the ecological state 

manifold (ℳ, 𝑔) that is co-moving with the system’s mean drift, such that normal 

coordinates satisfy Γ𝑗𝑘
𝑖  𝑥∗ = 0 and the free motion of the focal system is geodesic: 

𝐷𝑢𝜇

𝑑𝜏
=  

𝑑2𝑥𝜇

𝑑𝜏2 + Γ𝜈𝜆
𝜇 𝑑𝑥𝜈

𝑑𝜏

𝑑𝑥𝜆

𝑑𝜏
= 0, 

with 𝑢𝜇 =
𝑑𝑥𝜇

𝑑𝜏 . Here g is a data-derived ecological metric. 

Operational detection. 

(i) Construct the state vector 



𝑧=(abundances, resources, traits, information, habitat)  

(ii) Estimate g from an ecological similarity kernel or as the Hessian of a potential 

function. 

(iii) Compute normal coordinates via the Riemannian exponential–logarithm 

around (𝑧\∗, 𝑡\∗)  

 (iv) Choose the co-moving chart that minimises ∥
Du

𝑑𝜏
∥ on short time windows.  

 (v) Diagnose ecoevolutionary forces as departures from geodesic motion in that 

chart. 

Local validity. The frame is valid while the ecological curvature scale 𝜌 ∼

∥ R ∥−1 2⁄  greatly exceeds the observational scale L, and while reconfiguration 

speeds are below a context-dependent bound. Two practical bounds are: 

• Reaction-diffusion propagation: Fisher-KPP dynamics 𝑢𝜏 = 𝐷∇2𝑢 +

𝑟𝑢(1 − 𝑢), where 𝑢(𝑥,𝜏) is the local population density,  denotes time, D is 

the diffusion coefficient representing dispersal and r is the intrinsic growth 

rate;  the minimum wave speed is 𝑐∗ = 2√𝑟𝐷. 

• Climate velocity: the instantaneous speed required to track isotherms 

provides an empirical upper bound on environmental forcing speed. 

See Carroll (2004) for normal coordinates in General relativity, Fisher (1937) and 

Kolmogorov et al. (1937) for wave speeds and Loarie et al. (2009) for climate 

velocity. 

Thermodynamic characterisation. In an eco-inertial frame, net exergy and 

information fluxes cancel to first order at the focal scale, yielding zero local 

gradient of these potentials. This follows the exergy formalism in ecosystems 

(Jørgensen 1992). 

Box 1. Classical models as local limits of the geometric framework 

Given the conceptual ambition of the framework, it may ultimately require not 

only the application of existing mathematical tools but also the creation of new 

ones. Newton developed his method of fluxions, a form of differential calculus, to 

describe motion and change, and this formed the mathematical foundation for his 

formulation of classical mechanics in the Principia (1687). Hence, a genuinely 



extended theory of biological relativity may demand a corresponding expansion of 

mathematical language, capable of handling systems in which causality is 

distributed, feedback is ubiquitous and the geometry itself evolves under the 

influence of historical interactions. Such a development would lie beyond the 

scope of this initial proposal, but its necessity should not be excluded a priori. 

Apart from such unpredictable needs, this theory will require a robust and 

sophisticated mathematical formulation, which may involve: 

a) Formal definition of ecological space (n-dimensional hyperspace): 

• A vector space or differentiable manifold of dimension n. 

• Each species i is described by a state vector whose coordinates correspond 

to ecological variables. 

b) Tensor fields representing interactions: 

• An ecological metric tensor that describes how each organism locally 

modifies the ecological space. 

• Vector or tensor fields to represent attraction–repulsion interactions 

(analogous to the electromagnetic tensor). 

Interaction fields would need to capture not only the presence of relationships 

among organisms but also their magnitude, directionality and context-

dependence. These could take the form of ecological interaction tensors (e.g. 

predation, competition, mutualism), analogous in structure to the energy-

momentum tensor in general relativity. However, unlike in the physical case, the 

coupling between interaction and curvature is unlikely to be governed by a 

universal constant. Instead, the ecological analogue of Einstein's field equation 

may require a context-sensitive coupling mechanism (possibly a dynamic operator 

or a nested system of equations – see c) modulated by trophic asymmetries, 

environmental feedbacks, local densities and historical constraints. This reflects 

the plastic and historically contingent nature of ecological interactions. 

c) Porous boundaries and distributed sources 



Unlike point sources, biological entities are open systems with fuzzy interfaces 

(Levin 1992; Allen & Starr 1982; Deacon 2011); we therefore represent identity as 

distributed fields (phase-/level-set), letting Tij and gij depend on smoothed 

densities and evolving interfaces. 

Formally, the porous, partly continuous nature of biological entities suggests 

replacing point sources by distributed identities. Each entity i can be represented 

by a smooth phase-field, with membership constrained to the unit interval; 

alternatively, a level-set field may be used whose zero-level gives the moving 

interface. 

Phase-field range 

χi(x, t) ∈ [0,1] 

Level-set interface 

Interface: {x:  ϕi(x, t) = 0} 

Interaction and curvature depend on smoothed densities and interface geometry: 

Smoothed density 

ρĩ(x, t) = (Kσ ∗ χi)(x, t) = ∫ Kσ(x − y) χi(y, t) dy 

Interaction tensor 

𝑇𝑖𝑗(𝒙, 𝜏) = ∑ 𝑤𝑖(𝐱, 𝑡)

𝑖

 𝜕𝑖𝜒𝑖  𝜕𝑗𝜒𝑖 + ∑ 𝛽𝑖𝑘(𝐱, 𝜏)

𝑖,𝑘

 (𝐾𝜎 ∗ 𝜒𝑖) (𝐾𝜎 ∗ 𝜒𝑘) 

 

Metric response 

𝑔𝑖𝑗(𝑥, 𝑡) = 𝑔𝑖𝑗
0 (x) + ∑ ai(𝑥, 𝑡)

i

 ∂iχi  ∂jχi 

The effect of distributed sources is represented through a scalar eco-coupling 

field ϕ\phiϕ and write the coupling as κ(x,τ)=κ (ϕ(x,τ)). The field ϕ aggregates 

non-local inputs via a kernel defined on (ℳ, 𝑔), 



𝜙(𝑥, 𝜏) = 𝜙0(𝑥) + ∫ 𝐾𝜎 (𝑑𝑔(𝑥, 𝑦)) 𝐹(𝜒(𝑦, 𝜏), ∇𝑔𝜒(𝑦, 𝜏))d𝑉𝑦𝑀
, 

so that 

 κ(x,τ) = κ(ϕ(x,τ)) 

with dg the geodesic distance, ∇g the metric gradient, and d𝑉{𝑦}the Riemannian 

volume element. 

Interfaces evolve under Allen–Cahn/Cahn–Hilliard-type dynamics: 

∂η

∂t
= − 𝑀

δ𝐹

δ𝜂
+ 𝜍(𝑥, 𝑡) 

 

Free energy functional in analogy to classical density functional theory (Mermin 

1973; Evans 1979): 

ℱ𝑏𝑖𝑜[𝜌(𝑥, 𝜏); 𝑔𝑖𝑗(𝑥, 𝜏), 𝜙(𝑥, 𝜏)] = ℱ𝑒𝑛𝑡[𝜌] + ℱ𝑖𝑛𝑡[𝜌, 𝑔] + ∫ 𝑉𝑒𝑐𝑜
𝑀

(𝑥, 𝜏)𝜌(𝑥, 𝜏) 𝑑𝑉 

Here ρ(x,) denotes the density of biological or ecological states (such as 

abundances, biomass or genetic diversity), 𝑔𝑖𝑗(𝑥, 𝑡) is the eco-relativistic metric 

that curves the hyperspace of possibilities,and κ(ϕ(x,t))  represents coupling 

factors dependent on spatial position, time and the phase of the life or 

evolutionary cycle. The term ℱ𝑒𝑛𝑡(𝜌) accounts for entropic contributions 

associated with the diversity of states: 

ℱ𝑒𝑛𝑡(𝜌) = 𝑘𝑏𝑖𝑜𝑇𝑒𝑐𝑜 ∫ 𝑑𝑥 𝜌(𝑥, 𝑡) [𝑙𝑛 (Λ𝑒𝑐𝑜
𝑑 𝜌(𝑥, 𝑡)) − 1] 

Where 𝑇𝑒𝑐𝑜 is an effective ecological temperature reflecting environmental 

variability and Λ𝑒𝑐𝑜 a characteristic scale such as generation time or dispersal 

amplitude. Interactions between entities are encoded in 

ℱ𝑖𝑛𝑡 =  ∬ 𝑑𝑥 𝑑𝑥′𝜌(𝑥)𝑊(𝑥, 𝑥′; 𝑔𝑖𝑗 , 𝜅)𝜌(𝑥′), 



where W is an eco-relativistic interaction kernel (competition, predation, 

symbiosis). Finally, 𝑉𝑒𝑐𝑜(𝑥, 𝑡) plays the role of an external potential, representing 

the abiotic template (climate, soils, hydrology) and external perturbations such as 

invasions or anthropogenic impacts. Minimisation of this functional yields the 

stable distributions of ecological states, while fluctuations around the minimum 

may be described by Fokker–Planck- or replicator-type equations (cf. Hofbauer & 

Sigmund 1998; Traulsen & Hauert 2009), where the metric 𝑔𝑖𝑗 enters as a diffusion 

tensor in niche hyperspace. This construction highlights how the irreversibility 

and contingency of evolutionary trajectories can be formulated in a variational 

framework formally analogous to free energy but constrained by biorelativistic 

geodesics (Prigogine & Stengers 1984; Ulanowicz 1997). 

d) Action principle and field equations: 

In scalar–tensor extensions of general relativity (e.g. Brans–Dicke), the 

gravitational coupling becomes dynamical via a scalar field ϕ (Brans and Dicke 

1961). In the present framework, the ecological coupling plays the analogous role: 

we write κ=κ(ϕ), with ϕ mediating how interactions deform the ecological 

geometry. 

Coordinative definitions. In Reichenbach’s (1956, 1958) sense, we adopt explicit 

coordinative definitions linking theory to observation: (i) axes of the ecological 

state space are fixed by a declared statistical procedure (e.g. trait–environment 

PCA with covariance-aware distances), and (ii) eco-inertial frames are defined 

operationally by removing mean drift and minimising covariant acceleration in 

local charts. These conventions are not empirical claims by themselves; they 

license the empirical content of the theory by making subsequent predictions 

falsifiable within a transparent measurement protocol. 

Ecological matter Lagrangian. On the probability simplex Δn−1 with 

Shahshahani metric 𝑔𝑎𝑏(𝑝) =
𝛿𝑎𝑏

𝑝𝑎
− 1, it is taken 

ℒ𝑒𝑐𝑜(Ψ, Ψ; 𝑔) =  
1

2

̇
𝑔𝑎𝑏(𝑝)𝑝̇𝑎𝑝̇𝑏 − 𝑉(𝑝), 

where V encodes interaction structure. For frequency-dependent selection with 

payoff matrix A, choose 𝑉(𝑝) = −𝑓̇(𝑝) with 𝑓̇(𝑝) =p⊤Ap. Euler–Lagrange with the 



simplex constraint (plus Rayleigh dissipation) yields the replicator dynamics; 

thus V captures competition/mutualism/games and g captures 

inheritance/information geometry. Analogous forms obtain for Lotka–Volterra 

and consumer–resource models by taking Ψ as densities and V as a smooth eco-

potential on a Riemannian chart. 

Remark. Other ecological systems (e.g. resource–consumer or Lotka–Volterra – to 

be discussed elsewhere: Vallejo & Fariña 2025) admit analogous forms by choosing 

Ψ as densities and V as a smooth eco‑potential (e.g. logistic or MacArthur resource 

potentials) on a Riemannian chart of M; dissipation accounts for open‑system 

fluxes. 

Conservation. 

From diffeomorphism invariance of the total action and the Bianchi identity we 

obtain covariant conservation of the total current 

𝛻𝑖{ 𝜅(𝜙)(𝑇𝑖𝑗
𝑒𝑐𝑜 +  𝑇𝑖𝑗

(𝜃)
)} =  0, 

so that apparent non‑conservation at the ecological level is balanced by exchange 

with the coupling field ϕ. In closed, time‑independent conditions (no external 

drive, fixed g, fixed V), Noether’s theorem for time translations implies 

conservation of the eco‑Hamiltonian 

ℇ =
1

2
 𝑔𝑎𝑏 ṗ𝑎 ṗ𝑏 + 𝑉(𝑝), 

interpretable as kinetic plus potential eco‑energy. Biologically, this yields a precise 

balance: in the absence of external fluxes the total eco‑energy is conserved, 

whereas in open systems deviations 𝛻𝑖𝑇𝑖𝑗
𝑒𝑐𝑜 ≠  0 quantify regulated exchange of 

biomass, diversity or information with ϕ or the environment. 

An ecological state manifold (ℳ, 𝑔) is considered on which “ecological matter” 

fields Ψ (e.g., densities, frequencies, trait fields) evolve. Let ϕ be a scalar eco-

coupling field that modulates the geometry–matter interaction. The total action is 

𝑆[𝑔, 𝛹, 𝜙]    = ∫|𝑔| [
1

2𝜅(𝛷)
𝑅 + ℒ𝑒𝑐𝑜(Ψ, ∇Ψ; 𝑔) −

1

2
𝑔𝑖𝑗𝜕𝑖𝜙𝜕𝑗𝜙 − 𝑈(𝜙)] 𝑑𝑉. 



Stationarity of S under independent variations yields: 

(i) variation in 𝑔𝑖𝑗: 

𝐺𝑖𝑗 = 𝜅(𝜙)(𝑇𝑖𝑗
𝑒𝑐𝑜 + 𝑇𝑖𝑗

𝜙
) + ∇𝑖∇𝑗 (

1

𝜅(𝜙)
) − 𝑔𝑖𝑗□ (

1

𝜅(𝜙)
), 

with  

𝑇𝑖𝑗
𝑒𝑐𝑜 ≔ −

2

√|𝑔|

𝛿

𝛿𝑔𝑖𝑗 (√|𝑔|ℒ𝑒𝑐𝑜) and 𝑇𝑖𝑗
𝑒𝑐𝑜 ≔ 𝜕𝑖𝜙𝜕𝑗𝜙 −

1

2
𝑔𝑖𝑗(𝜕𝜙)2 − 𝑔𝑖𝑗𝑈(𝜙); 

ii) variation in Ψ: the ecological Euler–Lagrange equations; 

(iii) variation in ϕ: 

𝜙 − 𝑈′(𝜙) +
1

2
𝜅′(𝜙)𝜅(𝜙)−2𝑅 = 0. 

Because ∇𝑖𝐺𝑖𝑗 = 0 (Bianchi identity), the total ecological-geometric current is 

covariantly conserved: 

∇𝑖{𝜅(𝜙)(𝑇𝑖𝑗
𝑒𝑐𝑜 + 𝑇𝑖𝑗

𝜙
)} = 0, 

so that any apparent non-conservation at the ecological level is balanced by 

exchange with the coupling field ϕ. In the limit 𝜅(𝜙) ≡ 𝜅0  and 𝑈′(𝜙)   =  0, these 

equations reduce to the standard Einstein-type relation 𝐺𝑖𝑗 = 𝜅0𝑇𝑖𝑗 . Free motion 

in eco-inertial frames follows geodesics of g; non-geodesic terms represent 

external or cross-scale interactions encoded in ℒ𝑒𝑐𝑜. 

Let n = 2 with payoffs 

    A = [[α, β], [γ, δ]],  and  f̄(p) = pT A p, 

and p = (p, 1−p). With g(p) = 1/(p(1−p)) and V(p) = − f̄(p), the matter Lagrangian 

reads 

    ℒ𝑒𝑐𝑜 =  ½ ·  (ṗ)2 / (𝑝(1 − 𝑝))  + 𝑓̄(𝑝). 

The field equations with dissipation recover ṗ =  𝑝(1 − 𝑝)[(𝐴 𝑝)1 − (𝐴 𝑝)2]. 

Embedding this subsystem in (ℳ, g), the sectional curvature near a fixed point p* 

is governed by the Hessian of V pulled back by g. Negative curvature (destabilising 

games) predicts divergence of nearby ecological trajectories, while positive 

curvature (stabilising interactions) predicts convergence, providing a concrete, 

falsifiable link between interaction structure and geodesic behaviour. This 

operationalises the curvature–trajectory prediction without leaving the 



action‑based framework. 

Coupling structure. The geometric–matter coupling is carried by a scalar field ϕ 

so that κ=κ(ϕ(x,τ)) enters the action as 
1

2𝜅(𝜙)
𝑅 and via the ϕ-sector 

1

2
(𝜕𝜃)2 + 𝑈(𝜃). 

Any apparent κ(x,t,ϕ) dependence is thus mediated through the dynamics of 

ϕ(x,τ), which preserves diffeomorphism invariance and a clean Noether 

interpretation of conservation. When sensitivity to ecomorphological separation 

or evolutionary age is required, κ may depend only on scalar invariants, e.g. the 

geodesic distance 𝑑𝑔 and ecological proper time τ; in practice through U(ϕ) 

sources or boundary data for ϕ rather than as explicit coordinate dependence. 

e) Toy model (replicator). 

f) Dynamical evolution equations: 

A generalised form analogous to Einstein’s field equation might initially be written 

as: 

𝐺𝜇𝜈 = κ 𝑇𝜇𝜈 

or 

𝐺𝑖𝑗 = κ 𝑇𝑖𝑗(𝑥, 𝑡) 

where: 

 • 𝐺𝑖𝑗(𝑥, 𝑡) is a curvature tensor of the ecological space (analogous to the 

Einstein tensor), 

 • 𝑇𝑖𝑗(𝑥, 𝑡) represents the distribution and flow of species or other 

biological entities in ecological space (analogous to the energy-momentum 

tensor), 

 •  is a constant relating ecological curvature to ecological interaction 

(see Coupling structure in 5d). 

with 𝑇𝑖𝑗 and 𝑔𝑖𝑗 defined on smoothed densities as in (c). 

Yet, due to the context-dependence discussed in b), a more appropriate form may 

be: 

𝐺𝑖𝑗(𝑥, 𝑡) = κ(𝑥, 𝑡, ϕ) 𝑇𝑖𝑗(𝑥, 𝑡) 



where  is a function or operator dependent on local ecological conditions, 

temporal dynamics and possibly evolutionary state variables ϕ. Alternatively, this 

could take the form of a nested or multi-level equation in which the coupling 

evolves along with the system. A transformation of this kind is not without 

precedent. In general relativity, Einstein introduced the constant κ=8πG/c4 as a 

fixed proportionality factor linking the geometry of spacetime to the energy-

momentum content of the universe. However, in 1917, when attempting to apply 

his equations to the cosmos as a whole, under the prevailing assumption of a static 

universe, he added a new term: the cosmological constant, modifying the field 

equations to counteract gravitational collapse. After Hubble’s (1929) observations 

stated that the universe is in fact expanding, the need for such a constant 

diminished, and Einstein is famously (and perhaps apocryphally) alleged to have 

called to its introduction as the "greatest blunder" of his life (Gamow, 1956). Later 

developments in relativistic cosmology (Friedmann, 1922; Lemaître, 1927; Hubble, 

1929) reinstated the idea of an evolving, dynamic geometry, where the field 

equations themselves must accommodate large-scale historical transformations. 

The analogy here is both instructive and cautionary: in a biological context, 

ecological coupling may likewise appear constant only under restricted 

assumptions, but may in fact vary systematically across time, scale and context. 

The proposed shift from a constant κ to a functional or nested formulation is thus 

in keeping with a broader move toward historically responsive, dynamically 

modulated field equations. 

g) Incorporation of evolutionary processes: 

A theory with the characteristics of the one dealt with here would need to be 

flexible enough to accommodate both deterministic and contingent aspects of 

biological evolution and robust enough to scale from individual (or even lower-

level) interactions to ecosystem-level patterns. The framework must account for 

the temporal and historical character of biological systems. Evolution introduces 

both directional change and structural novelty, making the geometry of ecological 

space itself an evolving entity. Accordingly, the curvature–interaction coupling 

cannot be fixed. Evolutionary innovations, extinctions, migrations and 



environmental perturbations alter the effective geometry of interaction space and, 

in turn, the very rules by which such geometry responds to biological forces. This 

reinforces the need for a variable or nested form of 𝜅, one that captures not only 

spatial heterogeneity but also temporal asymmetry and path-dependence. Suitable 

mathematical tools may involve non-linear partial differential equations (PDEs), 

integro-differential equations, Fokker–Planck formulations or stochastic 

differential equations (SDEs). These tools offer the flexibility needed to model 

systems in which local interactions, feedback loops and external perturbations 

produce complex, history-dependent dynamics. For instance, non-linear PDEs 

may be used to describe the propagation of trait distributions across ecological 

space, where the diffusion term accounts for phenotypic variability and the 

reaction term incorporates local adaptation or selective pressures. Integro-

differential equations could formalise long-range ecological interactions or 

evolutionary memory effects, such as niche construction or environmental 

inheritance, by integrating over extended spatial or trait domains. Fokker–Planck 

equations would allow modelling the time evolution of probability densities in 

systems with stochastic influences, capturing the effects of drift, mutation and 

random dispersal. Finally, stochastic differential equations may be suitable for 

simulating the trajectories of populations or species through the ecological 

hyperspace under conditions of environmental noise, demographic stochasticity 

or contingency-driven transitions such as speciation or extinction. These 

formalisms may not be mutually exclusive, and a full treatment of ecological 

relativity might require hybrid or multiscale approaches in which deterministic 

structure and stochastic variation are jointly represented. In this light, the 

variability of κ and the interface dynamics introduced in (c) are the natural 

conveyors of historical contingency across scales. 

6. Falsifiable predictions, empirical tests and cautions 

6.1. Geometric framework 

From the variational structure. The predictions below follow from the action in §5(d) 

via g, Γ, κ(ϕ) and the matter Lagrangian rather than from analogy alone. Curvature, 



anisotropy and finite propagation emerge as Euler–Lagrange consequences and are 

therefore testable. 

1) Trajectory deflection by local curvature 

Prediction. If two populations or traits move under comparable environmental 

gradients, positive sectional curvature induces convergence of trajectories whereas 

negative curvature induces divergence. 

Observable. Time evolution of the geodesic distance 𝛤1,2  between trajectories in 

eco-space. 

Data/design. Manipulated gradients in laboratory microcosms or field 

mesocosms; time series of trait or abundance vectors. 

Falsification. Systematic absence of convergence/divergence when curvature 

estimates are non-zero within confidence bounds. 

2) Hysteresis from history-dependent connection 

Prediction. If  depends on system history (e.g. niche construction), a round trip 

along the same external gradient produces a loop with non-zero enclosed area. 

Observable. Loop area in eco-space and phase lags on return paths. 

Data/design. Cyclic perturbations in microcosms or mesocosms; reciprocal 

translocation or press–release experiments. 

Falsification. Robust loop closure (area ≈ 0) after controlling for noise and drift. 

3) Directional anisotropy of response 

Prediction. If g is anisotropic, the magnitude and timescale of response depend on 

the direction of perturbation in eco-space. 

Observable. Ratios of displacement and characteristic time constants as a function 

of perturbation direction. 

Data/design. Factorial perturbations applied along orthogonal axes of the trait or 

state space. 

Falsification. Sustained isotropy after local estimation of g near the operating 

point. 

4) Local reduction to classical models 

Prediction. In sufficiently small neighbourhoods, the dynamics reduce to 

established formulations (e.g. Lotka–Volterra, Leslie) under appropriate changes 



of variables. 

Observable. Local equivalence of first-order predictions between the proposed 

flow and classical models. 

Data/design. Classical population datasets or replicated experiments near 

equilibria; local linearisation in normal coordinates. 

Falsification. Systematic local discrepancies despite reparameterisation and 

coordinate normalisation. 

A comprehensive comparison of biorelativity-based versus classic Lotka–Volterra 

models will be published separately (Vallejo & Fariña 2025). Results show 

improved performance of the biorelativity model under external environmental 

and climatic perturbations, despite the model-selection penalty for additional 

parameters (e.g. AIC/BIC). 

5) Finite-speed propagation across weakly coupled subspaces 

Prediction. With weakly coupled subspaces, disturbances propagate with delays 

that scale with effective distance induced by g, defining a finite ceco. 

Observable. Arrival times and attenuation profiles as functions of effective 

geodesic distance. 

Data/design. Spatial metacommunities on laboratory landscapes or natural 

gradients; interaction networks with measured coupling strengths. 

Falsification. Apparent instantaneous transmission or lack of dependence on 

effective distance. 

Note. These tests naturally interface with the formalism in §5: local curvature and 

geodesic deviation (1), path dependence via state- or history-dependent  (2), 

anisotropy encoded in g (3), consistency with classical limits in normal 

coordinates (4) and constraints set by a finite biological speed limit 𝑐𝑒co (5). 

6) Common-cause heuristic (Reichenbach). If two lineages display correlated 

directional changes in eco-space without direct interaction, we expect an 

unobserved common cause (empirically, a hidden source of curvature or a shared 

driver. like a limiting resource, a keystone mutualist, or an abiotic factor). Test: 

correlations should weaken or vanish after conditioning on the inferred curvature 



field or on measured proxies of the putative driver; failure to do so refutes the 

common-cause explanation. 

Box 2. Reframing natural selection in Biorelativity 

Definition. 

Natural selection is the statistical tendency for genotype–phenotype 

configurations that increase their effective ecological coupling, quantified as eco-

mass-energy that deforms the ecological hyperspace in favourable ways 

(attracting resources and allies, repelling threats and costs), to accrue more 

ecological proper time (greater persistence and reproduction) and to expand 

their effective volume in eco-space relative to alternatives under the same 

constraints. 

An observable eco-mass-energy density. 

Define a composite density from measurable components: 

𝜌𝑒(𝑥, 𝑡) =  𝑤𝑅𝐽𝑅 +  𝑤𝐼𝐼 +  𝑤𝐶𝐶 −  𝑤𝐾𝐾, 

where JR is resource/biomass flux (local ecological power), I is 

organisation/information (e.g. negentropy, functional redundancy/modularity), C 

is network centrality/robustness (trophic, mutualistic, habitat graphs), and K is 

aggregated cost/vulnerability; w are normalised weights. The eco-mass-energy 

over a domain Ω is 

𝑀𝑒𝑒𝑐𝑜(𝛺, 𝑡) = ∫ 𝜌𝑒
Ω

(𝐱, t) d𝑉 

Along a lineage trajectory γ(τ), selection implies (on average, relative to 

competitors in the same environment) 

Geometric–dynamic form. 

Let fitness be a functional of deformation and coupling, 

𝑓(𝑥, 𝑡) = ℱ[𝜌𝑒(𝐱, 𝑡), 𝑔𝑖𝑗(𝑥, 𝑡), 𝜅(𝐱, 𝑡, 𝜙)], 

and let the distribution of states P(x,t) evolve as 



𝜕𝑡𝑃 = −∇ ∙ (𝐛, 𝑃) +
1

2
∇ ∙ (𝐷∇𝑃) + 𝑃(𝑓 − 𝑓̇), 

so increases in 𝜌𝑒 and favourable curvature (via 𝑔ij,κ) bias drift b and growth. 

Falsifiable predictions / empirical tests. 

1. Curvature–success link. Lineages with persistently higher 𝛥𝜌𝑒 > 0 

exhibit locally more attractive curvature towards resources/mutualists 

and divergent curvature from predators/competitors; geodesic deviation 

between focal lineages and resource manifolds decreases through time. 

2. Finite influence speed. Adjustments in interaction structure propagate 

with an upper bound 𝑐eco ; shocks in one guild show delayed, distance-

dependent responses in others. 

3. Local reduction. In regimes where 𝑔𝑖𝑗 ≈ 𝛿𝑖𝑗 and κ is constant, the 

framework reduces to classical fitness (e.g. Malthusian growth, Lotka–

Volterra). 

4. Trade-off realism. Increases in I or C that raise costs K can lower 𝜌𝑒 ; 

simplification (e.g. parasitic reduction) can increase 𝜌𝑒 ; by cost 

minimisation. 

Measurement notes. 

Choose the organisational level (individual, population, species, guild) before 

computing I,C,K; harmonise units and scale weights 𝑤 ∙ by cross-validation. 

Report sensitivity of results to 𝑤 ∙ and to the spatial/temporal windows used. 

Where possible, estimate 𝑐eco from lagged cross-correlations in time-series or 

from reaction–diffusion fits on ecological networks. 

6.2. Scope and caution: lessons from applied catastrophe theory 

The aim of the present framework is methodological: to provide a minimal 

geometric notation that makes constraints, couplings and memory explicit, and 

that yields falsifiable predictions. It does not propose a biological cosmology. The 

history of applied Catastrophe Theory illustrates the risks of extrapolating 

mathematical elegance without solid empirical validation. Classic critiques 

exposed conceptual and empirical weaknesses in social and biological applications 



(Zahler and Sussmann, 1977; Sussmann and Zahler, 1978; Sussmann, 1978). In this 

work, evaluation will rest on the tests in the subsection Falsifiable predictions and 

empirical tests and on the ability to recover established models locally (see Box 1). 

7. Not a Final Theory, but a Theoretical Invitation 

This is not a complete theory, nor is it intended to replace existing ecological or 

evolutionary models. Rather, it is a conceptual invitation or a thought experiment 

meant to stimulate discussion and foster interdisciplinary collaboration. An 

extended general theory of relativity in biology would not constitute a literal 

analogue of physics, but rather a metaphorically inspired, mathematically framed 

attempt to capture the dynamic, emergent and interactive character of life in its 

many forms and scales. 

Beyond its theoretical ambition, such a framework may also hold practical value. 

At large temporal scales, it may offer a novel lens through which to interpret major 

transitions in Earth’s biological history, such as the appearance of the biosphere. 

At shorter timescales, in an era of pronounced ecological agency on the part of 

Homo sapiens and an unprecedented anthropogenic reshaping of the biosphere 

(to be discussed elsewhere), this framework might contribute to more rational 

ecosystem management by helping to identify, model and perhaps even quantify 

the consequences of ecological interventions. A geometry of biological interaction 

could, in principle, inform not only scientific understanding but also 

environmental governance. 

It is worth acknowledging, on a more personal note, that while Einstein published 

his General Theory of Relativity as a solitary author, the complexity of 

contemporary science renders such individual endeavours increasingly rare. The 

theoretical ambition outlined here, as modest as it may be in comparison, requires 

a collaborative spirit from the very outset. If this framework is to mature into 

something formally viable, it will need the combined insights of mathematicians, 

physicists, ecologists, philosophers and other scholars willing to engage with ideas 

that fall between disciplinary boundaries. Einstein’s extraordinary genius reminds 

us not only of the heights to which a single mind can ascend, but also of the 



shoulders upon which we must collectively stand if we are to be worthy of that 

legacy. 

8. Conclusion 

Could life be understood not merely as a set of reactions in space, but as a sculptor 

of its own multidimensional field? If so, the geometry of life must be richer than 

any static Euclidean space, but one that bends, shifts and co-evolves with its 

inhabitants. Developing such a framework is a monumental task, requiring 

insights from physics, mathematics, philosophy and the life sciences. 

This essay marks only a conceptual starting point. I invite readers from diverse 

disciplines to help formalise and challenge this idea, so that we may together 

imagine a geometry worthy of the biosphere. Moreover, while this proposal has 

been developed in the context of biological systems, the underlying approach may 

be extensible to other domains of knowledge. As said above, any field in which 

agents interact, modify their environment and alter the trajectories of others, 

whether in the geology, human sciences, environmental (and otherwise) politics, 

psychology, linguistics, economics, climate science, collective sports, all 

transdisciplines, epistemology itself or any communicative endeavour could, in 

principle, be modelled as a system of local deformations in a multidimensional 

relational space given the appropriate hyperspace and the relevant variables. The 

generalised relativistic framework envisioned here thus invites a broader reflection 

on how structure, interaction and historical contingency might coalesce in a 

unified, geometrically informed theory of complex systems. 
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Table 1. Comparison of coupling formulations in Biorelativity, showing the two 

main alternatives for the coupling term κ in the proposed theory. 

 

Formulation Equation Coupling 

term (κ) 

Biological 

interpretation 

Flexibility Analytical 

implications 

Fixed 

coupling 

(Einstein 

analogue) 

𝐺𝑖𝑗(𝑥, 𝑡)

= 𝜅  𝑇𝑖𝑗(𝑥, 𝑡) 

Universal 

constant 

(disputed 

in modern 

cosmology) 

Assumes 

uniform 

relationship 

between 

ecological 

interaction and 

curvature 

Low - does 

not 

accommodate 

contingency 

or feedback 

Simpler to 

analyse but 

biologically 

rigid. 

Dynamic 

coupling 

(proposed 

ecological 

extension) 

𝐺𝑖𝑗  (𝑥, 𝑡)

= 𝜅𝜏 𝑇𝑖𝑗  (𝑥, 𝜏) 

 

Context-

dependent 

function or 

operator 

Allows for 

variation due to 

evolutionary 

history, local 

densities, 

trophic 

asymmetries 

and 

environmental 

feedback 

High- 

accounts for 

plasticity and 

historical 

contingency 

Mathematically 

complex; 

nested or 

multi-scale 

formulation 

required. 

 

 

  



Figures 

Figure 1. Curvature and trajectory deviation. A) convergence due to local positive 

curvature. B) divergence due to negative curvature or effective gradients that 

induce avoidance. In both cases the underlying manifold remains continuous; 

attraction and repulsion are encoded in the metric g and the connection Γ, not in 

changes to the topology of the substrate.

 

Figure 2. A single sphere moves forward in time (as in evolution) through a 

deformable ecological surface, simplified here again as a two-dimensional elastic 

mesh. It leaves behind a deep trailing depression and generating a forward 



elevation and lateral distortion. The shape and displacement of the surface 

illustrate the temporal dynamics of ecological interaction: the depression behind 

the sphere implies an attractive effect on other organisms or ecological entities, 

while the raised front region indicates repulsive or exclusionary effects due to the 

evolving position or properties of the focal organism. This asymmetric 

deformation represents how organisms and other biological entities, as they 

change over time, simultaneously reshape their ecological surroundings, 

attracting some components of the system while repelling others. 

 

 

 

 

  



Appendix A. Minimal Illustrative Model of Ecological Curvature Dynamics 

To demonstrate the potential behaviour of ecological curvature fields as a function 

of evolving organismal traits, a simplified one-dimensional model is proposed. 

Consider a prey species 𝑆1 with a single evolving trait 𝑚1(𝑡) (e.g. body size), and a 

predator species 𝑆2 that responds to ecological curvature 𝐺(𝑥, 𝑡) induced by 𝑆1 in 

ecomorphological space. 

The curvature field is defined as: 

𝐺(𝑥, 𝑡) = 𝜅(𝑥, 𝑡) ⋅ 𝑇(𝑥, 𝑡) 

where: 

• x is a position along an ecological trait axis, 

• T(x,t) is a constant interaction intensity (T=1), 

• 𝜅(𝑥, 𝑡) =  𝑒−𝛼(𝑥−𝑚𝑖(𝑡))2
 is a Gaussian-like field that reflects the local influence 

of the evolving trait. 

This formulation creates a deformable ecological landscape where the curvature 

‘well’ induced by the prey changes location and steepness as its trait evolves. As 

shown in Fig. A1, increases in m1 shift the attractor in ecological space, potentially 

repelling or decoupling the predator's effective interaction. 

 

Appendix B. Eco‑hyper spacetime with hierarchical dimensions 

(Minkowski‑style formalism) 

This appendix outlines a minimal Minkowski‑style formalism for an evolutionary 

eco‑hyper spacetime with hierarchical levels. It provides working definitions and 

equations in a compact form suitable for subsequent formal development and for 

Word equation entry. 

B.1 Coordinates and state variables 

Let t denote oriented evolutionary time and let the ecomorphological hyperspace 

be stratified into Lmax hierarchical levels (e.g. organism, population, community 

and ecosystem). Let ξ^(L) ∈ ℝ𝑛𝐿 be the coordinates at level L. Define the extended 

coordinate vector: 

𝑋𝐴 = (𝑐eco · 𝑡, 𝜉(1), 𝜉(2), … , 𝜉(𝐿𝑚𝑎𝑥)). 



B.2 Minimal eco‑interval and speed limit 

A biological speed limit 𝑐eco is postulated that bounds feasible rates of change in 

eco‑space. A minimal eco‑relativistic interval with block‑diagonal structure is: 

𝑠𝑒𝑐𝑜
2 = c𝑒𝑐𝑜

2 ∙ dt2 −  ∑ 𝑤𝐿(𝑋) ∙ || dξ(L)||2𝐿𝑚𝑎𝑥
𝐿=1 . 

Here 𝑤𝐿(𝑋) ≥ 0 are hierarchical weights that encode characteristic response times, 

for example 𝑤𝐿 = 𝜏𝐿
−2 with 𝜏𝐿 the typical timescale of level L. The proper eco‑time 

along a trajectory is given by 𝑠𝑒𝑐𝑜
2 =  𝑐𝑒𝑐𝑜

2 ·  𝑑𝜏2 

The corresponding four‑velocity and normalisation read: 

𝑈𝐴 =
dXA

dτ
 ,  𝑔(𝐴𝐵)𝑈𝐴𝑈𝐵 = 𝑐𝑒𝑐𝑜

2  

A Lorentz‑type factor emerges as: 

γeco = (1 −
1

𝑐𝑒𝑐𝑜
2

𝑔𝑖𝑗𝜉𝑖𝜉𝑗̇ )
−1 2⁄

 

B.3 Coupled metric with multilevel interactions 

To represent cross‑level interactions and historical deformation, allow the metric 

to depend on state and include off‑diagonal blocks: 

𝑠𝑒𝑐𝑜
2 = 𝛼(𝑋) 𝑐𝑒𝑐𝑜

2 𝑑𝑡2 − ∑ 𝑑𝜉(𝐿)⊤𝐌(𝐿)(𝑋) 𝑑𝜉(𝐿) − 2 ∑ 𝑑𝜉(𝐿)⊤𝐂(𝐿𝑀)(𝑋) 𝑑𝜉(𝑀)

𝐿<𝑀𝐿

 

Here α(X) > 0 sets temporal orientation, 𝑀(𝐿)(𝑋) are symmetric positive matrices 

that weight directions of change within level L and 𝐶(𝐿𝑀)(𝑋) are cross‑level 

coupling blocks that transmit feedbacks between levels. 

B.4 Geodesics (inertial change) and ecological forces 

In the absence of external drivers, inertial trajectories follow geodesics of 𝑔{𝐴𝐵}: 

𝑑2𝑋𝐴

𝑑𝜏2
+ Γ𝐴

𝐵𝐶(𝑋)
𝑑𝑋𝐵

𝑑𝜏

𝑑𝑋𝐶

𝑑𝜏
= 0 

Selection, management and stochastic drivers enter as forces 𝐹𝐴: 

𝑑2𝑋𝐴

𝑑𝜏2
+ Γ𝐴

𝐵𝐶(𝑋)
𝑑𝑋𝐵

𝑑𝜏

𝑑𝑋𝐶

𝑑𝜏
= 𝐹𝐴(𝑋, 𝑡) 



A potential‑driven representation uses 𝐹 =  −𝛻𝑋𝛷(𝑋, 𝑡) +  𝜂(𝑡), where η denotes 

demographic or environmental noise. 

B.5 Special‑relativistic quantities in eco‑space 

Define eco‑momentum and eco‑force as 𝑝𝑒𝑐𝑜 =  𝑚0𝑒𝑐𝑜 ·  𝛾𝑒𝑐𝑜 ·  (
𝑑𝑋

𝑑𝑡
) and 𝐹𝑒𝑐𝑜 =

𝑑𝑝𝑒𝑐𝑜

𝑑𝑡
, where 𝑚0𝑒𝑐𝑜 quantifies intrinsic resistance to change, arising from 

developmental and genetic constraints, network embedding and energetic costs of 

maintaining low local entropy. The eco‑energy reads 𝐸𝑒𝑐𝑜 =  𝛾𝑒𝑐𝑜 ·  𝑚0𝑒𝑐𝑜 ·  𝑐{𝑒𝑐𝑜}
2 +

 𝛷(𝑋, 𝑡). In the slow‑change limit ||
𝑑𝑋

𝑑𝑡
|| ≪  𝑐𝑒𝑐𝑜 one recovers a Newtonian‑type 

relation 𝐹𝑒𝑐𝑜 ≈  𝑚0𝑒𝑐𝑜 ·
𝑑2𝑋

𝑑𝑡2 . 

B.6 Notes on calibration and hierarchy 

• Calibrating 𝑐𝑒𝑐𝑜: use empirical upper bounds of phenotypic rates (e.g. haldanes) 

across clades and timescales as lower‑bound estimates, with expected dependence 

on generation time and metabolic scaling. 

• Weights and matrices: 𝑤𝐿 or 𝑀𝐿 implement temporal hierarchy, making higher 

levels costlier to move. Cross‑level couplings 𝐶𝐿𝑀 encode feedbacks, producing 

state‑dependent geometry and path dependence. 

• Directionality: irreversibility can be represented by explicit time dependence 

𝑔{𝐴𝐵}(𝑡)) or by introducing torsion or non‑metricity to reflect history dependence. 

B.7 Summary of Novel Formulations Proposed by the Biorelativity theory 

The following equations constitute the specific, novel definitions required by the 

Biorelativity theory framework.  

Eco-morphological coordinates 

𝑋𝐴 = (𝑐𝑒𝑐𝑜 ∙  𝜏, 𝜉(1), 𝜉(2), … , 𝜉(𝐿𝑚𝑎𝑥)) 

𝑋𝐴: Represents a point (coordinate) in the proposed eco-morphological 

hyperspace, which combines evolutionary time and spatial/trait axes across 

different biological levels. The index A ranges over all dimensions. 



𝑐𝑒𝑐𝑜: A postulated biological speed limit, analogous to the speed of light c. It 

bounds the maximum rate of propagation of ecological reconfigurations or 

influences. 

: Oriented evolutionary time. 

𝜉(𝐿): Represents the coordinates within a specific hierarchical level L (e.g., L=1 for 

organism traits, L=2 for population densities). Each 𝜉(𝐿) can be a vector. 

𝐿𝑚𝑎𝑥: The maximum hierarchical level considered in the model. 

Implication: This equation defines the arena. It fuses time, traits and population 

levels into a single geometric object (a manifold) upon which the dynamics will 

unfold. 

Ecological Interval ("Eco-Interval") 

𝑠𝑒𝑐𝑜
2 = 𝑐𝑒𝑐𝑜

2 ∙ 𝑑2 − ∑ 𝑤𝐿(𝑋)

𝐿𝑚𝑎𝑥

𝐿=1

∙ ‖𝑑𝜉𝐿‖2 

𝑠𝑒𝑐𝑜
2 : The square of the infinitesimal eco-interval, analogous to the spacetime 

interval ds2 in relativity. It defines the metric structure (geometry) of the eco-

spacetime. 

wL(X): Hierarchical weights that may depend on position X in the hyperspace. 

They encode the relative importance or characteristic response times (L) of 

different levels. 

‖𝑑𝜉𝐿‖2: Square of the infinitesimal displacement (distance) within the coordinate 

space of level L. 

Implication: This defines a simplified (block-diagonal) metric. It measures the 

distance between infinitesimally close states, combining temporal separation with 

weighted spatial/trait separation. It implies that proper time  (𝑑𝜏2 = 𝑑𝑠2/𝑐𝑒𝑐𝑜
2 ) is 

affected by movement through the trait/population space. 

Ecological Gamma Factor ("Eco-Lorentz factor") 

𝛾𝑒𝑐𝑜 =
1

√1 −
1

𝑐𝑒𝑐𝑜
2 ∑ 𝑤𝐿|𝑑𝜉(𝐿) 𝑑𝑡⁄ |2

𝐿

 



𝛾𝑒𝑐𝑜: The ecological Lorentz factor, analogous to  in special relativity. 

|𝑑𝜉(𝐿) 𝑑𝑡⁄ |
2
: The squared velocity of change at level L with respect to evolutionary 

time. 

Implication: A direct consequence of the interval. If a system changes very fast 

(denominator approaches 0), 𝛾𝑒𝑐𝑜 becomes large. This would imply "time dilation" 

(proper time  passes slower than coordinate time t) and mass-energy increases 

(see Eeco). It is a relativistic correction for rapid ecological change. 

Coupled Hierarchical Eco-Interval 

𝑠𝑒𝑐𝑜
2 = 𝛼(𝑋)𝑐𝑒𝑐𝑜

2 𝑑𝑡2 − ∑ 𝑑𝜉(𝐿)𝑇𝑀(𝐿)(𝑋)

𝐿

𝑑𝜉(𝐿) − 2 ∑ 𝑑𝜉(𝐿)𝑇𝐶(𝐿𝑀)(𝑋)

𝐿<𝑀

𝑑𝜉𝑀 

(X): A position-dependent temporal scaling factor (> 0), allowing for local 

variations in the ow of evolutionary time (analogous to g00 in GR). 

𝑀(𝐿)(𝑋): Position-dependent matrices defining the metric structure within each 

level L. (Note: T denotes transpose). 

C(LM)(X): Position-dependent cross-level coupling matrices. They explicitly 

represent interactions and feedbacks between different hierarchical levels L and 

M. 

Implication: This provides a more general and flexible metric. The geometry is 

complex, non-diagonal, and state-dependent (X). It is designed to explicitly model 

hierarchical feedbacks (e.g., how population density affects trait selection) as part 

of the geometry itself. 

Ecological Lagrangian 

ℒ𝑒𝑐𝑜(Ψ, Ψ; 𝑔) =  
1

2

̇
𝑔𝑎𝑏(𝑝)𝑝̇𝑎𝑝̇𝑏 − 𝑉(𝑝) 

ℒ𝑒𝑐𝑜: The Lagrangian density for ecological matter fields Ψ. This defines the 

dynamics of the system's state variables. 

gab(p): The ecological metric on the state space, exemplied here by the 

Shahshahani metric for frequencies pa. 



1

2
𝑔𝑎𝑏(𝑝)𝑝̇𝑎𝑝̇𝑏: The kinetic energy term, as defined using the ecological metric. 

V (p): A potential function representing ecological interactions (e.g., related to 

average payoff in game theory). 

Implication: This recasts standard evolutionary dynamics as a classical mechanics 

problem: a particle (the system state) moving on a curved manifold (the simplex 

with the Shahshahani metric) under a potential (V). This Lagrangian is the source 

term Leco for the Hilbert stress-energy tensor 𝑇ij
eco. 

Eco-Hamiltonian 

𝜀 =
1

2
𝑔𝑎𝑏𝑝̇𝑎𝑝̇𝑏 + 𝑉(𝑝) 

: The ecological Hamiltonian or eco-energy, corresponding to the Lagrangian 

ℒ𝑒𝑐𝑜. 

Implication: Represents the total conserved eco-energy (Kinetic + Potential) for 

closed, time-independent systems described by ℒ𝑒𝑐𝑜. 

Geodesic Equation with "Ecological Force" 

𝑑2𝑋𝐴

𝑑𝜏2
+ Γ𝐵𝐶

𝐴 (𝑋)
𝑑𝑋𝐵

𝑑𝜏

𝑑𝑋𝐶

𝑑𝜏
= 𝐹𝐴(𝑋, 𝑡) 

Γ𝐵𝐶
𝐴 : Christoffel symbols derived from the eco-metric gAB. This term encapsulates 

the fictitious force (like gravity) that comes from the curvature of the eco-

spacetime. 

FA: An ecological force term representing non-inertial influences like selection, 

external drivers or stochasticity not already encoded in the metric. 

Implication: This is the equation of motion. It states that an organism's trajectory 

deviates from a straight line for two reasons: 1) the eco-spacetime is curved (the  

term, the equivalent of gravity), and 2) other ecological forces are pushing it (the 

FA term). 

Ecological Energy (Eco-energy) 

𝐸𝑒𝑐𝑜  = 𝛾𝑒𝑐𝑜 ∙ 𝑚0𝑒𝑐𝑜𝑐𝑒𝑐𝑜
2 + Φ(𝑋, 𝑡)  



Eeco: Total Ecological Energy. 

m0eco: Ecological rest mass, the intrinsic inertia of a biological entity. 

𝛾𝑒𝑐𝑜 ∙ 𝑚0𝑒𝑐𝑜𝑐𝑒𝑐𝑜
2 : The relativistic energy term. 

Φ(𝑋, 𝑡): An ecological potential energy, analogous to electric potential. 

Implication: Defines the energy of an entity. Rapid change (high eco) increases this 

energy, just as rapid movement increases relativistic mass-energy. 

Eco-mass-energy Density 

𝜌𝑒(𝑥, 𝑡) = 𝑤𝑅𝐽𝑅 + 𝑤𝐼𝐼 + 𝑤𝐶𝐶 − 𝑤𝐾𝐾 

𝜌𝑒: The proposed observable density of eco-mass-energy. This is the source term 

for the curvature. 

JR: Flux of resources or biomass (ecological power). 

I: Measure of organisation or information (e.g., negentropy). 

C: Measure of network centrality or robustness. 

K: Measure of aggregated cost or vulnerability. 

w... Normalised weights. 

Implication: This is a key hypothesis. It states that curvature is not just from 

mass/biomass, but also from information, network structure and costs. A highly 

organised node in a food web curves the eco-spacetime around it more than an 

isolated organism of the same mass. 

Eco-coupling Field Definition 

𝜙(𝑥, 𝜏) = 𝜙0(𝑥) + ∫ 𝐾𝜎
𝑀

(𝑑𝑔(𝑥, 𝑦)) 𝐹(𝜒(𝑦, 𝜏), ∇𝑔 𝜒(𝑦, 𝜏))𝑑𝑉𝑔 

(x;): The scalar eco-coupling field that determines the strength () of the 

geometry-interaction coupling. 

0 (x): A background value of the field. 

K0(dg(x,y)): A kernel function depending on the geodesic distance dg(x,y), 

modelling non-local influence that decays with distance. 



𝐹(𝜒, ∇𝑔𝜒: A source function dependent on the state (χ) and gradient (∇𝑔𝜒) of 

biological entities. 

Implication: This equation is highly non-local. It states that the strength of physics 

(the coupling ) at one point x depends on an integral of the state of the entire rest 

of the ecosystem, weighted by geometric distance. 

Bio-Free Energy Functional 

ℱ𝑏𝑖𝑜[𝜌(𝑥, 𝜏); … ] = ℱ𝑒𝑛𝑡[𝜌] + ∬ 𝑑𝑥 𝑑𝑥′ 𝜌(𝑥)𝑊(𝑥, 𝑥′: 𝑔𝑖𝑗 , 𝜅)𝜌(𝑥′) + ∫ 𝑉𝑒𝑐𝑜 … 𝜌𝑑𝑉
𝑀

 

ℱ𝑏𝑖𝑜: The Bio-Free Energy functional for the ecological system. 

ℱ𝑒𝑛𝑡[𝜌]: The entropic component (favours diversity/spread). 

𝑊(𝑥, 𝑥′: 𝑔𝑖𝑗 , 𝜅): An eco-relativistic interaction kernel between states at x and x0. It 

depends on the eco-metric gij and coupling . 

Veco: An external potential representing abiotic factors. 

Implication: This provides a statistical-mechanical view. The system will evolve to 

minimise this free energy. This connects the geometric framework (gij, ) to 

thermodynamic principles and population-level dynamics (). 


