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Abstract:

Biological systems are here reinterpreted through a geometric lens that extends the
insight of general relativity: organisms and their interactions are modelled as
deformations of a multidimensional biological hyperspace. In this view, each entity acts as
a source that locally bends a relational field defined by molecular, morphofunctional and
ecological axes, thereby altering the trajectories of others through both attractive (for
example, trophic or mutualistic) and repulsive (for example competitive or avoidance)
effects. The framework is explicitly multiscale, intending to accommodate hierarchical
organisation from genes to ecosystems, with a data-fixed ecological metric g estimated
from observations (e.g. Mahalanobis/Fisher-Rao) and updated through time, and it
incorporates evolutionary directionality, with state-dependent geometry that changes
through time. A minimal mathematical programme is outlined that links curvature,
interaction tensors and geodesic motion, together with falsifiable predictions, including
curvature-dependent convergence or divergence of trajectories, finite-speed propagation
of ecological influence with a system-dependent upper bound c.., and local reduction to
classical models. Field equations are derived from a variational principle in which the
geometric-matter coupling is carried by a scalar field ¢, so that k=k(¢); this yields
covariant conservation of the total ecological-geometric current (Noether/Bianchi). The
aim is methodological rather than doctrinal: to provide a coherent language that unifies
ecology, evolution and complexity science and to invite collaboration on a dynamic
geometry of life. If successful, this approach could inform both the interpretation of large-
scale historical events and practical ecosystem management by making explicit

constraints, couplings (via k(¢)) and distributed, porous sources.

1. Introduction



On the Name

The name Extended General Theory of Relativity (if in German, erweiterte
allgemeine Relativitdtstheorie) had been chosen in deliberate reference to
Einstein’s (1916) allgemeine Relativitdtstheorie. In that foundational paper, the
general theory is described as the most comprehensive and natural generalisation
of gravitation compatible with physical experience. If, as he suggested, this
formulation exhausted what was conceivable within that discipline, then any
further generalisation must necessarily move beyond that scientific realm: for
example, towards the domain of life, but also in all other disciplines that imply the
dynamics of complex systems. The point of departure proposed here is biology
(hence, it could for short be referred to as Biorelativity) and more specifically
evolutionary ecology. The theory is thus grounded in the long-term dynamics of
life on Earth, but its underlying logic may be extensible to other domains in which
agents co-construct environments, generate relational fields and alter one

another’s trajectories in ways that defy simple causal reduction.
Why Biology Needs New Geometry

The most formal scientific disciplines, mathematics and physics, have long
influenced biology, from the eccentric work of D’Arcy Thompson (1917) and the
energetic models of metabolism (Bauer 1935), through the statistical mechanics of
population genetics (Fisher, 1930; Haldane, 1924-34; Wright, 1931) to biomechanics
(Alexander, 1968) and catastrophe theory in biological morphogenesis (Thom 1972
- but see Sussmann, 1978). In this sense, it could be conceived that, in biology, the
presence and activity of living agents modify the very conditions under which they
persist, compete, cooperate and evolve. The environment is not a static
background, but a historically contingent, dynamically restructured field co-

created by its inhabitants.

Just as Einstein's general theory of relativity emerged from embedding special
relativity within the geometric structure of Minkowski spacetime (a four-
dimensional pseudo-Riemannian manifold where the invariant interval fuses
space and time; see Einstein & Infeld 1938), this conceptual shift in biology

proposes that ecological and evolutionary processes can be envisioned as



trajectories across a higher-dimensional, dynamically deformable biological
hyperspace. Unlike physical systems, however, biological entities are organised
hierarchically, from genes to cells to organisms to populations to ecosystems and
the whole biosphere, each level capable of influencing and being influenced by the
others (Levin, 1992). This nested structure implies that the ecological manifold is
not simply continuous in spacetime, but also stratified across organisational
scales, leading to multilevel interactions whose effects are neither additive nor
strictly local. Unlike the compact, sharply bounded sources of gravitation,
biological entities are open and porous, partly continuous with the medium that
contains and integrates them, so identity is better represented as a distributed
field with moving fuzzy interfaces rather than a discrete mass. This multiscalar,
co-constructive nature of life, where organisms and their environments are
mutually influential, requires an extended framework that accommodates
emergence, plasticity and context-dependence. While in Minkowski space all
observers agree on the form of physical laws, in the biological analogue, the very
structure of the space may vary depending on the ecological and evolutionary

history of its occupants.

Hence, I explore here the possibility of conceptualising biological systems through
the lens of geometric deformation, further generalising Einstein’s (1916) insight
that gravity is the curvature of spacetime. The core proposal is that biological
entities deform an abstract, multidimensional space that reflects their genetic,
morphological, behavioural and ecological characteristics as well as all the abiotic
factors (salinity, rainfall, substrate): the ecomorphological hyperspace (as in niche
theory; Hutchinson, 1957; cf. Grinnell’s, 1917, habitat-centred niche grounding
abiotic axes; Soberon, 2007). In this analogy, each biological entity acts as an
ecological mass-energy that locally deforms the space. Other entities respond to
this deformation by moving closer or further away, giving rise to ecological and

evolutionary dynamics.

In this theory, the analogue of inertial frames are eco-inertial frames: local charts
of eco-space, co-moving with a community’s dynamical equilibrium, in which free

dynamics without net external forcing follow geodesics and the equations take



their simplest form, that is, normal coordinates with Christoffel symbol comes to
zero (I'=0). This is an ecological reformulation of the local equivalence principle in
which, over sufficiently small space-time domains, curvature is negligible and
dynamics are approximated by a flat metric, exactly as in general relativity when
coordinates are constructed in such a way that nullify the Christoffel symbols at a
point (Carroll 2004). Operationally, the frame is identified by removing the mean
drift of the system and minimising the covariant acceleration of trajectories; this
occurs, for example, in the neighbourhood of Lotka-Volterra limit cycles (to be
discussed elsewhere, Vallejo & Farifia 2025) and near equilibria of consumer-
resource models, and in co-moving frames with environmental fronts for animal
movement where step-selection models show no residual trend (Lotka 1925;
Volterra 1926; MacArthur 1970; Tilman 1982; Fortin et al. 2005; Avgar et al. 2016).
The locality of such frames is constrained by the characteristic speed at which
ecological reconfigurations propagate, which can be bounded using reaction-
diffusion wave speeds and observed climate velocity (Fisher 1937; Kolmogorov et
al. 1937; Loarie et al. 2009). In thermodynamic terms, an eco-inertial frame is one
in which exergy and information gradients vanish to first order, so that production

and dissipation are locally balanced (Jergensen 1992).
On the Use of the Terms ‘Biological’ and ‘Ecological’

Throughout this proposal, I refer variously to biological and ecological
dimensions. While related, these terms are not interchangeable and some
clarification is warranted. By biological, I refer to organisms in interaction, either
with one another or with their environment. This relational stance is central: an
organism does not act or evolve in isolation but through entanglements with
trophic networks, competitors, symbionts and, importantly, abiotic shifts such as
climate, the uplift of a mountain range or the opening of a seaway. In this context,
biological is thus taken to be effectively equivalent to ecological in the broadest

sense.

Also, the term ecomorphological, in turn, highlights those organismal traits that
result from, or participate in, such ecological interactions, an approach that finds

its roots in niche theory (Hutchinson, 1957 - also see Grinnell’s 1917; Soberon, 2007



- abiotic niche for geographic distributions). Morphology is often the most visible
and tractable proxy for ecological function, particularly in macroorganisms such as
most animals and plants. However, it is by no means the only relevant axis:
physiology, behaviour, life history traits and even biochemical pathways may
equally define an organism’s position in ecological space. This is especially true in
the case of microorganisms, whose morphological simplicity belies their complex

physiological and ecological versatility.

Also, genetic information is a first-class component that constrains and is shaped
by eco-geometry. Concretely, lineages are embedded in a working phylogeny and
use phylogenetically informed covariances to estimate the ecological metric g and
its local normal coordinates, so that inheritance and shared history are explicit
rather than tacit (Felsenstein 1985; Pagel 1999). Molecular features enter the
matter fields ¥ either as slow variables or as latent modulators of the eco-coupling
k(¢p(x0)), providing a transparent path from genotype-phenotype mappings to
curvature-driven predictions (Hansen 1997; Maynard Smith & Szathmary 1995).
While a full genomic dynamics is not intended here, a tractable pipeline is
committed: assemble a published tree for a focal clade, estimate g under
phylogenetic dependence, then test whether geodesic curvature improves out-of-
sample fit for longitudinal trajectories compared with flat models. This preserves
the manuscript’s mesoscopic focus while aligning it with molecular and

comparative evidence.

It should be noted that scalar-tensor theories (e.g. Brans-Dicke) show how a
coupling can be promoted to a field; analogously a scalar eco-coupling ¢, with
k=k(¢) (see §5(d) for the variational formulation) is adopted here (Brans and

Dicke 1961).
2. From Spacetime to Ecomorphological Hyperspace/Evolutionary Time

In general relativity, matter and energy curve spacetime and this curvature governs
the motion of objects through attraction. In an analogous way, organisms could be
conceived as generating deformations in a hyperdimensional ecological space,
causing other organisms to respond, whether through attraction (e.g., predation,

mutualism) or repulsion (e.g., competition, avoidance). Crucially, interaction



signals are scale dependent: what is repulsive at the level of a species pair (for
example, exploitative competition) can, once coarse-grained over many
interactions and environmental feedbacks, act attractively at the level of the
community by promoting niche partitioning, modular cohesion and stable
resource flows. In geometric terms, renormalising micro-interactions can flip the
effective curvature so that local divergence between competitors aligns with
convergence of assemblages toward a shared attractor basin. Repulsion and
attraction (see 3) are therefore not fixed properties but scale-relative expressions

of the same underlying field, mediated by cross-level couplings.

Following Reichenbach’s (1956, 1958) distinction between mathematical geometry
(a formal calculus) and physical geometry (an empirical structure fixed by
measurement), the ecomorphological hyperspace is treated here as an example of
the latter: its metric is inferred from data and its curvature co-determined by
interacting organisms, rather than a fixed Euclidean background. This makes the

geometry itself a testable object, not merely a convenient coordinate scaffold.

Formally, the axes of this ecological space can be estimated from a trait—
environment matrix X (e.g. rows = taxa, columns = variables) using principal
component analysis; the eigenvalues quantify the variance captured by each
orthogonal axis, while distances are better computed with covariance-aware
metrics to respect trait correlations and niche geometry (Hutchinson, 1957; Jolliffe,
2002; Etherington, 2021) such as Mahalanobis or the certainly more accurate
Fisher-Rao Information Metric(Fisher, 1922; Rao, 1945), which does not imply a flat
geometric space but defines a geometry on a space of probability distributions.
Grinnell’s (1917; Soberdn, 2007) environmental niche underpins climatic axes in
this geometry. Thus, each organism, population or species is represented by a
vector in this space whose position and separation reflect both trait loadings and
correlated environmental structure. At the interaction level, ecological structure is
naturally encoded by n X n matrices (e.g. the community Jacobian, or the
adjacency/Laplacian of a network), whose eigenvalues/eigenvectors govern local
stability, modular cohesion and diffusion time-scales; thereby connecting classical

community-matrix stability theory with spectral analyses of ecological networks



(May, 1972; Chung, 1997; Bascompte and Jordano, 2007). In the present framework,
deformations of the space arise jointly from (i) covariance structure in X (axis
scaling/rotation) and (ii) the spectral properties of the interaction matrix (field

curvature across levels).

The ecological metric g is treated here as a data-fixed, physical geometry. Locally,
two complementary estimators are adopted: (i) a covariance-aware metric
(Mahalanobis) when states are represented as trait-environment vectors; (ii) the
Fisher-Rao information metric when states are probability distributions, which
directly yields a non-Euclidean geometry on the statistical manifold. In practice,
(@) local charts are estimated with PCA or related low-distortion embeddings, (b)
g is computed as X' (covariance) or as Fisher-Rao, and (c) uncertainty is
propagated into curvature estimates. This makes the geometry testable and

comparable across systems.
3. Attraction, Repulsion and Multiscale Interactions

Unlike gravity, which is only attractive, ecological interactions are both attractive
and repulsive. The analogy here aligns more closely with the vectorial nature of
electromagnetic fields (Maxwell 1865), where charges of opposite sign attract and
like charges repel. However, it is worth noting that even in physics, the
simplification of gravitational interaction as purely attractive holds only locally.
On cosmological scales, observations since the late 1990s have revealed that the
universe is undergoing accelerated expansion (Riess et al. 1998; Perlmutter et al.
1999). This suggests that the interplay between attraction and repulsion, and their
scale-dependent dominance, is not unique to biological systems. In both physics
and biology, large-scale organisation may arise from forces that are locally

attractive but globally dispersive or expansive.

Undisputably, interactions in Biology are fairly more complex: mutualisms,
parasitism and commensalism correspond to different types of ecological 'charges'.
It may therefore be necessary to develop a theory of vector fields (analogous to
electromagnetic fields) or complex tensor fields capable of representing multiple

types of interactions simultaneously.



Additionally, biological systems are inherently hierarchical. Organisms are coded
in genes, composed by molecules, cells, tissues and organs; they exist within
populations, which constitute species, which participate in communities and
ecosystems. This multilevel organisation implies that the geometry of the
biological field must be able to represent scale-dependent and nested interactions.
Each level could be understood as an additional dimension or as different scales
within ecological space, requiring formalisms capable of moving fluidly across

scales (renormalisation theories, hierarchical complex systems, fractals).

This shift from attraction to repulsion can be illustrated conceptually as a
deformation of ecological space: a prey organism, initially creating a local
depression that draws a predator toward it (Fig. 1A), may, following an
evolutionary change such as increased body size, come to generate a convex,
repelling curvature that inhibits predatory access (Fig. 1B). Note that the biological
entities are in a continuous with the fabric of the hyperspace/evolutionary time.
Such geometric transitions model the qualitative change in ecological interaction
through alterations in local curvature. Moreover, the repelled organism may not
simply remain isolated but could instead be displaced into the ecological domain
of another species, triggering a cascade of indirect effects akin to a biological
butterfly effect (Lorenz, 1963). In this way, local changes in one region of the
ecomorphological hyperspace may propagate across the system at a maximum
speed ceco similar to c in Lorentz’s equations, reshaping broader ecological

dynamics.

Given g, the Levi-Civita connection (metric-compatible, torsion-free) is adopted
as the canonical choice for inertial ecological motion (geodesics). This ensures a
clean parallel transport and well-posed geodesic deviation. Extensions with
torsion or non-metricity can encode history-dependence, but this subject is left for

future work focused on irreversible memory effects.
4. Incorporating Evolution and Time’s Arrow

The second difference is perhaps the most profound: there is a great difference
between the physical and biological domains in the unidirectionality and

historical contingency of evolution. Indeed, Gould (1987) distinguishes between



cyclical time and the arrow of time and emphasises that historical processes, such
as evolution and unlike planetary orbits, should be understood as irreversible,

characterised by unique trajectories that cannot be replicated.

Eddington’s cone and time’s arrow.

In a Minkowski spacetime, the light-cone structure fixes what can causally
influence what, even though the fundamental equations are largely time-reversal
symmetric (Minkowski, 1908-09). Eddington (1928) argued that the arrow of time
is selected by the growth of entropy, which picks out the future-directed branch of
the cone and renders macroscopic evolution irreversible. For living systems, which
are open and far from equilibrium, this asymmetry is amplified: they export
entropy while maintaining organisation via flows and feedbacks, paradigmatic
dissipative structures (Prigogine, 1977). In the present framework, causal influence
is constrained by an ecological cone with slope ceco. Beyond this kinematic bound,
causation is shaped by a non-stationary ecological metric g; and by an evolving
coupling x(¢(x,7)) mediated by the scalar eco-coupling field ¢; when sensitivity to
ecomorphological separation or evolutionary age is required, x depends only on
scalar invariants such as the geodesic distance dy and ecological proper time .

Together these features bias geodesics toward persistence.

The result is an anti-deterministic stance: given identical macrostates there
remain many admissible microhistories, and which branch is realised depends on
stochastic innovations, selection and cross-level feedbacks rather than geometry

alone (Eddington, 1928; Prigogine, 1977).

The ecomorphological space itself is not static: it is constantly reshaped by
evolutionary innovations, extinctions and environmental change from external
sources. Evolution introduces irreversible directionality, unpredictability and
historical contingency, in contrast to the relative stability and predictability of

classical physical laws.

Whereas Fig. 1 shows the simplest case (i.e., similar to gravity interactions of
general relativity), in Fig. 2, a single sphere moves forward in time (as in evolution)
through a deformable ecological surface, simplified here again as a two-

dimensional elastic mesh. It leaves behind a deep trailing depression and



generating a forward elevation and lateral distortion. The shape and displacement
of the surface illustrate the temporal dynamics of ecological interaction: the
depression behind the sphere implies an attractive effect on other organisms or
ecological entities, while the raised front region indicates repulsive or exclusionary
effects due to the evolving position or properties of the focal organism. This
asymmetric deformation represents how organisms and other biological entities,
as they change over time, simultaneously reshape their ecological surroundings,

attracting some components of the system while repelling others.

As a consequence of the above discussed issues, any generalised geometric theory
for biology must go beyond the static manifolds of classical physics and embrace
evolving topologies, singularities, bifurcations and path dependence. Concepts
from dynamical systems theory, stochastic processes and non-equilibrium
thermodynamics may be indispensable. This could be modelled using non-
stationary dynamic geometries (spaces that change over time), which would
require advanced mathematical theory such as dynamic differential geometry,
chaos theory and non-linear dynamics, bifurcation theory (catastrophes),
stochastic processes, Bayesian methods and, when needed, possibly new

developments.

In line with Reichenbach’s (1956, 1958) causal theory of time, temporal order is
grounded in causal order. Within the present framework, evolutionary change
causes deformations of the ecological geometry, and those deformations in turn
constrain subsequent trajectories; the geometry thus acts as a record of causal
history. The evolutionary arrow is therefore not imposed externally but emerges
from the directed accumulation of causal constraints in the evolving metric-

connection pair (g, T’).

On the ecological speed bound. c.., is treated as a system-dependent upper
bound on the propagation of ecological reconfiguration, not as a universal
constant. Operationally, it is bracketed by reaction-diffusion wave speeds and
climate velocity in the focal system; estimates enter causal cones and delay kernels

accordingly.

5. Toward a Formal Theory



Background

The conceptual framework proposed here seeks to extend the principle of
relativity beyond its physical origins, offering a dynamic, geometric perspective on
biological systems and their interactions. However, in doing so, it is essential to
acknowledge and evaluate the theoretical landscapes that precede and, to some
extent, inform this approach. Rather than reinvent existing frameworks, the
present proposal aims to integrate and generalise their insights within a unified,

relational geometry of life.

Several prior models are particularly relevant. First among them is ecological niche
theory, particularly as formulated by Grinnell (1917) and Hutchinson (1957), who
conceptualised species as occupying positions within a multidimensional
ecological space. This notion of a hypervolume prefigures the idea of an
ecomorphological hyperspace, albeit without a dynamic geometry or explicit

interaction fields.

Darwin (1859) envisaged evolution as a historically contingent and branching
process, comparable to a tree, where lineages diverge and cannot return to
ancestral states. This vision anticipates the idea of adaptive landscapes as
introduced by Wright (1932) and later expanded by Simpson (1944), in which
fitness surfaces guide evolutionary trajectories. While powerful as a metaphor,
these landscapes are typically scalar and static and lack the capacity to represent
mutual deformation among interacting agents. In contrast, the present framework
imagines a relational geometry in which all organisms are both shaping and being

shaped by the hyperspace itself.

A related and independent attempt to import relativistic thinking into
evolutionary theory is Greenstein’s (2015) General Relativistic Biology, which
recasts natural selection via an equality between statistical and causal perspectives
on fitness and proposes a Newtonian-style relation N = f's (where N is natural
selection, f'is fitness and s is struggle) under a general principle of biological
relativity. The approach presented here differs in offering an explicit differential-
geometric formalism: a dynamically deformable ecomorphological manifold with

metric g;;, curvature G;;, interaction tensors T;; and a context-dependent coupling

j»



k, alongside a special-relativistic analogue with c,,, rest eco-mass and geodesic
dynamics across hierarchical levels. In this sense, Greenstein (2015) motivates the
relativistic reframing, whereas here a field-theoretic and tensorial structure aimed

at analysis and testable modelling is provided.

For the action

S = TG 5 R+ Leco (P, VW3 9) = 5 gU0160; — U(@)] aV,

the scalar eco-coupling equation reads

0¢ — U'(¢) —5x(®) R = 0.

Conservation. By diffeomorphism invariance and the contracted Bianchi
identity, the total ecological-geometric current is covariantly conserved, so that
any apparent non-conservation at the ecological sector is balanced by exchange
with the ¢-field; in closed, time-independent limits, Noether’s theorem yields

conservation of the eco-Hamiltonian.

The emerging fields of ecological network theory and complex network theory
offer powerful tools for analysing the structure and dynamics of multispecies
systems. These approaches highlight the importance of indirect effects,
modularity and feedbacks, features that any relational geometry of life must

ultimately accommodate.

In addition, the proposal resonates with the principles of complex adaptive
systems theory, as developed in part through the work of the Santa Fe Institute
(see Kauffman 1993; Levin 1998; Cowan, Pines & Meltzer 1994). Those models
emphasise self-organisation, emergence and non-linear dynamics in hierarchical
systems, key attributes of the biological world that a generalised theory of

ecological relativity must be capable of capturing.

A complementary line of work is the Principle of Biological Relativity (Noble et al.
2019), which argues that, a priori, there is no privileged level of causation in

multiscale biological systems, and that circular but asymmetric causality links



levels: upward causation is captured by the dynamics (e.g., differential equations)
of lower-level processes, whereas downward causation is best represented as the
setting of initial and boundary conditions determined by higher-level organisation
and environmental context. This view aligns with the present framework’s
emphasis on multilevel constraints and historical dependence. Again, this
contribution differs by introducing an explicit differential-geometric formalism, a

deformable ecological manifold with metric g;;, curvature G;;, interaction tensors

j»
T;; and a state-dependent coupling x(¢(x,t)), together with a special-relativistic

analogue c,,, rest eco-mass) for modelling feasible trajectories.

Finally, the field of macroecology provides a large-scale empirical and theoretical
context in which to situate this proposal. Macroecology seeks to understand broad
patterns of diversity, distribution and interaction across space and time and may
serve both as a testbed and as an arena for application of the proposed geometric

formalism.

In sum, the framework outlined here is not constructed in opposition to these
existing paradigms but seeks to unify and extend them through a novel
mathematical and conceptual language inspired by the geometry of relativistic
physics.

Mathematical Challenges

This theory aims to unify these approaches within a broader geometric-dynamic
perspective, connecting evolution, ecology, morphology, and environment
through an advanced mathematical formulation inspired by theoretical physics.

At present, the proposal includes only the draft of a precise mathematical

formalism. However, potential avenues include:
e Defining a dynamic manifold or fibre bundle for the ecological hyperspace.

o Constructing ecological interaction tensors analogous to the Einstein

tensor.

o Describing interaction fields (e.g., attraction/repulsion) using vector

calculus or differential geometry.



e Modelling species trajectories through geodesics influenced by other

organisms’ warping effects.

o Introducing evolutionary perturbations through stochastic deformation

terms or field fluctuations.

Many classical models reappear as local or coordinate limits of a state space
endowed with a time-varying metric g, connection I' and context-dependent
coupling k. This provides a bridge between the proposed geometry and familiar

dynamics and offers routes for parameter estimation.
- dN N
Logistic growth: = =TN (1 — E)

Local 1D flow on a flat metric. The vector field can be written as gradient flow in a

suitable potential ®(N) or as geodesic motion with non-zero drift.

Lotka-Volterra predator-prey (see Vallejo & Farifa 2025): % = (a — fy)x,
dy _
— = (6x=y)y

Local 2D dynamics in normal coordinates (/"= o at equilibrium, g = I). Interaction
coefficients map into entries of T;; and the local Jacobian.

Generalised LV competition: N = N © (r — AN).

Near operating points the flow matches the proposed form with T capturing
pairwise effects and g shaping anisotropic response.

MacArthur consumer-resource: N, = N; (X4 Ciq Rq — Mi), Ry = Sq — dgRy —
2i Cia Ni R

Provides a mechanistic T via resources. After adiabatic elimination of R, an
effective interaction tensor consistent with k is obtained.

Replicator dynamics: ¥, = x;[(4Ax); — x - Ax]

Gradient flow under the Shahshahani metric on the simplex: a canonical example
where the choice of metric determines the dynamics, aligning with the present
emphasis on g.

Ornstein-Uhlenbeck trait evolution: dv = — — fvdt + V2DdW,;



Linear well in a flat metric with stochastic forcing; local SDE limit for traits.

. . o ] a2
Fisher-KPP reaction-diffusion: a—f =k ﬁ +mp(1—p)
Spatiotemporal extension where diffusion acts as 4 if the substrate carries a

metric g; front speed can bound c,,.

Wright-Fisher diffusion / Fokker-Planck: % = — Zi£ (A; P) +

1 02

220 30, (Bi;P)

Links to information geometry and natural gradients, again highlighting the role
of a non-Euclidean metric. Geometric fitness is a functional of the interaction

metric g;;, curvature G;j, interaction tensors T;; and a state-dependent coupling

'E
k(¢ (x,t)), together with a replicator/Fokker-Planck-type equation for the state
distribution P, where fincreases with growing p, and with the curvature of the
space such that desirable trajectories (resources/allies) converge while threats

diverge.
Leslie matrix / McKendrick-von Foerster: n,,; = Ln; 9d;n + d,n = —pu(a) n
provide structured axes and constraints that can be encoded in block metrics and

cross-level couplings C143,

Networked reaction-diffusion on graphs: x = F(x) — Lx with graph Laplacian £.

A special case of Ay on discrete geometries. Useful to estimate anisotropy and

effective distances induced by g.
Technical box: Eco-inertial frames and geodesic motion

Definition. An eco-inertial frame at (x*,t*) is a local chart of the ecological state
manifold (M, g) that is co-moving with the system’s mean drift, such that normal

coordinates satisfy I}lk x* = 0 and the free motion of the focal system is geodesic:

Dut  d?xH p dx¥ dxt

dt dt? VA dr dr

=0,

. dxt . : : .
with u# = %. Here g is a data-derived ecological metric.

Operational detection.

(i) Construct the state vector



z=(abundances, resources, traits, information, habitat)

(ii) Estimate g from an ecological similarity kernel or as the Hessian of a potential
function.

(iii) Compute normal coordinates via the Riemannian exponential-logarithm
around (z\*, t\*)

(iv) Choose the co-moving chart that minimises || % | on short time windows.

(v) Diagnose ecoevolutionary forces as departures from geodesic motion in that

chart.

Local validity. The frame is valid while the ecological curvature scale p ~
Il R I71/2 greatly exceeds the observational scale L, and while reconfiguration

speeds are below a context-dependent bound. Two practical bounds are:

« Reaction-diffusion propagation: Fisher-KPP dynamics u, = DV?u +
ru(1 — u), where u, ) is the local population density, r denotes time, D is
the diffusion coefficient representing dispersal and r is the intrinsic growth
rate; the minimum wave speed is ¢, = 24/rD.

o Climate velocity: the instantaneous speed required to track isotherms

provides an empirical upper bound on environmental forcing speed.

See Carroll (2004) for normal coordinates in General relativity, Fisher (1937) and
Kolmogorov et al. (1937) for wave speeds and Loarie et al. (2009) for climate

velocity.

Thermodynamic characterisation. In an eco-inertial frame, net exergy and
information fluxes cancel to first order at the focal scale, yielding zero local
gradient of these potentials. This follows the exergy formalism in ecosystems

(Jorgensen 1992).
Box 1. Classical models as local limits of the geometric framework

Given the conceptual ambition of the framework, it may ultimately require not
only the application of existing mathematical tools but also the creation of new
ones. Newton developed his method of fluxions, a form of differential calculus, to
describe motion and change, and this formed the mathematical foundation for his

formulation of classical mechanics in the Principia (1687). Hence, a genuinely



extended theory of biological relativity may demand a corresponding expansion of
mathematical language, capable of handling systems in which causality is
distributed, feedback is ubiquitous and the geometry itself evolves under the
influence of historical interactions. Such a development would lie beyond the
scope of this initial proposal, but its necessity should not be excluded a priori.
Apart from such unpredictable needs, this theory will require a robust and

sophisticated mathematical formulation, which may involve:
a) Formal definition of ecological space (n-dimensional hyperspace):
e Avector space or differentiable manifold of dimension n.

o Each species i is described by a state vector whose coordinates correspond

to ecological variables.
b) Tensor fields representing interactions:

e An ecological metric tensor that describes how each organism locally

modifies the ecological space.

o Vector or tensor fields to represent attraction-repulsion interactions

(analogous to the electromagnetic tensor).

Interaction fields would need to capture not only the presence of relationships
among organisms but also their magnitude, directionality and context-
dependence. These could take the form of ecological interaction tensors (e.g.
predation, competition, mutualism), analogous in structure to the energy-
momentum tensor in general relativity. However, unlike in the physical case, the
coupling between interaction and curvature is unlikely to be governed by a
universal constant. Instead, the ecological analogue of Einstein's field equation
may require a context-sensitive coupling mechanism (possibly a dynamic operator
or a nested system of equations - see ¢) modulated by trophic asymmetries,
environmental feedbacks, local densities and historical constraints. This reflects

the plastic and historically contingent nature of ecological interactions.

¢) Porous boundaries and distributed sources



Unlike point sources, biological entities are open systems with fuzzy interfaces
(Levin 1992; Allen & Starr 1982; Deacon 2011); we therefore represent identity as
distributed fields (phase-/level-set), letting Tj; and g;j depend on smoothed

densities and evolving interfaces.

Formally, the porous, partly continuous nature of biological entities suggests
replacing point sources by distributed identities. Each entity i can be represented
by a smooth phase-field, with membership constrained to the unit interval;
alternatively, a level-set field may be used whose zero-level gives the moving

interface.

Phase-field range
Xxi(xt) € [0,1]
Level-set interface
Interface: {x: ¢;(x,t) = 0}
Interaction and curvature depend on smoothed densities and interface geometry:

Smoothed density

p(xt) = (Ks *xx)(x,t) = f Ks(x—y) xi(y, ) dy

Interaction tensor

Tij(x,7) = Z w;i(x,t) 0;x; Ojx; + Z.Bik(x: 7) (Ky * xi) (Kg * Xx)
7 Tk

Metric response

gij(x,t) = g (x) + Z ai(x, t) dixi 0Xi
i

The effect of distributed sources is represented through a scalar eco-coupling
field ¢\phid and write the coupling as k(x,7)=x (¢(x,7)). The field ¢ aggregates

non-local inputs via a kernel defined on (M, g),



$(r,7) = po(x) + J}, Ko (dg(x,)) F(x(3,), V9 x(3, 7)) dVs,
so that

k(x,7) = K(P(x,7))

with dg the geodesic distance, V8 the metric gradient, and dV, the Riemannian

volume element.

Interfaces evolve under Allen-Cahn/Cahn-Hilliard-type dynamics:

ay 5F
a—t— —M%+g(x,t)

Free energy functional in analogy to classical density functional theory (Mermin

1973; Evans 1979):

Frio P, 1); 91 (x, ), $ (%, D] = Fene[p] + Finelo, 9] + JM Veco (5, D)p(x,7) AV
Here p(x, ) denotes the density of biological or ecological states (such as
abundances, biomass or genetic diversity), g;;(x, t) is the eco-relativistic metric
that curves the hyperspace of possibilities,and x(¢(x,t)) represents coupling
factors dependent on spatial position, time and the phase of the life or
evolutionary cycle. The term F,,;(p) accounts for entropic contributions

associated with the diversity of states:

Fent(P) = kpioTeco f dx p(x,t) [ln (Agcop(x, t)) — 1]

Where T,, is an effective ecological temperature reflecting environmental
variability and A,., a characteristic scale such as generation time or dispersal

amplitude. Interactions between entities are encoded in

Fine = [ dx dxX'p()W (x,x"; g;j, 1) p(x),



where W is an eco-relativistic interaction kernel (competition, predation,
symbiosis). Finally, V., (x, t) plays the role of an external potential, representing
the abiotic template (climate, soils, hydrology) and external perturbations such as
invasions or anthropogenic impacts. Minimisation of this functional yields the
stable distributions of ecological states, while fluctuations around the minimum
may be described by Fokker-Planck- or replicator-type equations (cf. Hofbauer &
Sigmund 1998; Traulsen & Hauert 2009), where the metric g;; enters as a diffusion
tensor in niche hyperspace. This construction highlights how the irreversibility
and contingency of evolutionary trajectories can be formulated in a variational
framework formally analogous to free energy but constrained by biorelativistic

geodesics (Prigogine & Stengers 1984; Ulanowicz 1997).
d) Action principle and field equations:

In scalar-tensor extensions of general relativity (e.g. Brans-Dicke), the
gravitational coupling becomes dynamical via a scalar field ¢ (Brans and Dicke
1961). In the present framework, the ecological coupling plays the analogous role:
we write k=k(¢), with ¢ mediating how interactions deform the ecological

geometry.

Coordinative definitions. In Reichenbach’s (1956, 1958) sense, we adopt explicit
coordinative definitions linking theory to observation: (i) axes of the ecological
state space are fixed by a declared statistical procedure (e.g. trait-environment
PCA with covariance-aware distances), and (ii) eco-inertial frames are defined
operationally by removing mean drift and minimising covariant acceleration in
local charts. These conventions are not empirical claims by themselves; they
license the empirical content of the theory by making subsequent predictions
falsifiable within a transparent measurement protocol.

Ecological matter Lagrangian. On the probability simplex A,-, with
Shahshahani metric g,;, (p) = % — 1, it is taken

\ 1 i
Leco(W,¥; 9) = Egab(p)papb - V(p),

where V encodes interaction structure. For frequency-dependent selection with

payoff matrix A, choose V(p) = —f (p) with f(p) =p7Ap. Euler-Lagrange with the



simplex constraint (plus Rayleigh dissipation) yields the replicator dynamics;
thus V captures competition/mutualism/games and g captures
inheritance/information geometry. Analogous forms obtain for Lotka-Volterra
and consumer-resource models by taking ¥ as densities and V as a smooth eco-
potential on a Riemannian chart.

Remark. Other ecological systems (e.g. resource—consumer or Lotka-Volterra - to
be discussed elsewhere: Vallejo & Farifia 2025) admit analogous forms by choosing
¥ as densities and V as a smooth eco-potential (e.g. logistic or MacArthur resource
potentials) on a Riemannian chart of M; dissipation accounts for open-system

fluxes.

Conservation.

From diffeomorphism invariance of the total action and the Bianchi identity we

obtain covariant conservation of the total current
i N
r{ k@) + T = 0,

so that apparent non-conservation at the ecological level is balanced by exchange
with the coupling field ¢. In closed, time-independent conditions (no external
drive, fixed g, fixed V), Noether’s theorem for time translations implies

conservation of the eco-Hamiltonian

1 . .
€="2 gap p*P* +V(p),

interpretable as kinetic plus potential eco-energy. Biologically, this yields a precise
balance: in the absence of external fluxes the total eco-energy is conserved,

whereas in open systems deviations V'T5** # 0 quantify regulated exchange of

biomass, diversity or information with ¢ or the environment.

An ecological state manifold (M, g) is considered on which “ecological matter”
fields ¥ (e.g., densities, frequencies, trait fields) evolve. Let ¢ be a scalar eco-

coupling field that modulates the geometry-matter interaction. The total action is

S[9. %, 91 = [1g1 [32 R + Leco (¥, VY3 9) = 3 910,60, — U($)] V.




Stationarity of S under independent variations yields:

(i) variation in g;;:

Gy = K@(TE° +T) + V9, (355) = 950 (555)

with

Teco d

20 = —ﬁagu (V191 Leco) and TE = 8;0;¢p — §gij(a¢>)2 — 9:;U(¢);

ii) variation in W: the ecological Euler-Lagrange equations;

(iii) variation in ¢:
¢ — U'(¢) + 1 ($)e($) 2R = 0.

Because V'G; ; = 0 (Bianchi identity), the total ecological-geometric current is

covariantly conserved:
j 1 —
vi{k(@) (T + 1)} =0,

so that any apparent non-conservation at the ecological level is balanced by
exchange with the coupling field ¢. In the limit k(¢) = k, and U'(¢p) = 0, these
equations reduce to the standard Einstein-type relation G;; = k,T;; . Free motion
in eco-inertial frames follows geodesics of g; non-geodesic terms represent

external or cross-scale interactions encoded in £,,.

Let n = 2 with payoffs

A=Ilo, B, [y, 8]], and f(p) =p" Ap,
and p = (p, 1-p). With g(p) = 1/(p(1-p)) and V(p) = — f(p), the matter Lagrangian
reads

Loco =% - (0)?/ (p(L—p)) + f(p).
The field equations with dissipation recover p = p(1 —p)[(Ap)1 — (A p),].
Embedding this subsystem in (M, g), the sectional curvature near a fixed point p*
is governed by the Hessian of V pulled back by g. Negative curvature (destabilising
games) predicts divergence of nearby ecological trajectories, while positive
curvature (stabilising interactions) predicts convergence, providing a concrete,
falsifiable link between interaction structure and geodesic behaviour. This

operationalises the curvature-trajectory prediction without leaving the



action-based framework.

Coupling structure. The geometric-matter coupling is carried by a scalar field ¢

1
2K(¢)

so that k=k(¢(x,7)) enters the action as R and via the ¢-sector % (00)? + U(0).

Any apparent x(x,t,¢) dependence is thus mediated through the dynamics of
¢(x,7), which preserves diffeomorphism invariance and a clean Noether
interpretation of conservation. When sensitivity to ecomorphological separation
or evolutionary age is required, k may depend only on scalar invariants, e.g. the
geodesic distance d,; and ecological proper time ; in practice through U(¢)
sources or boundary data for ¢ rather than as explicit coordinate dependence.

e) Toy model (replicator).

f) Dynamical evolution equations:

A generalised form analogous to Einstein’s field equation might initially be written

as:

or
Gij = KT,:j(x, t)

where:

G;j(x, t) is a curvature tensor of the ecological space (analogous to the
Einstein tensor),

T;;(x, t) represents the distribution and flow of species or other
biological entities in ecological space (analogous to the energy-momentum
tensor),

+ kisa constant relating ecological curvature to ecological interaction

(see Coupling structure in 5d).
with T;; and g;; defined on smoothed densities as in (c).

Yet, due to the context-dependence discussed in b), a more appropriate form may

be:

Gij (x, t) = K(X, t, d)) Tl] (X, t)



where «is a function or operator dependent on local ecological conditions,
temporal dynamics and possibly evolutionary state variables ¢. Alternatively, this
could take the form of a nested or multi-level equation in which the coupling
evolves along with the system. A transformation of this kind is not without
precedent. In general relativity, Einstein introduced the constant k=8nG/c* as a
fixed proportionality factor linking the geometry of spacetime to the energy-
momentum content of the universe. However, in 1917, when attempting to apply
his equations to the cosmos as a whole, under the prevailing assumption of a static
universe, he added a new term: the cosmological constant, modifying the field
equations to counteract gravitational collapse. After Hubble’s (1929) observations
stated that the universe is in fact expanding, the need for such a constant
diminished, and Einstein is famously (and perhaps apocryphally) alleged to have
called to its introduction as the "greatest blunder" of his life (Gamow, 1956). Later
developments in relativistic cosmology (Friedmann, 1922; Lemaitre, 1927; Hubble,
1929) reinstated the idea of an evolving, dynamic geometry, where the field
equations themselves must accommodate large-scale historical transformations.
The analogy here is both instructive and cautionary: in a biological context,
ecological coupling may likewise appear constant only under restricted
assumptions, but may in fact vary systematically across time, scale and context.
The proposed shift from a constant x to a functional or nested formulation is thus
in keeping with a broader move toward historically responsive, dynamically

modulated field equations.
g) Incorporation of evolutionary processes:

A theory with the characteristics of the one dealt with here would need to be
flexible enough to accommodate both deterministic and contingent aspects of
biological evolution and robust enough to scale from individual (or even lower-
level) interactions to ecosystem-level patterns. The framework must account for
the temporal and historical character of biological systems. Evolution introduces
both directional change and structural novelty, making the geometry of ecological
space itself an evolving entity. Accordingly, the curvature-interaction coupling

cannot be fixed. Evolutionary innovations, extinctions, migrations and



environmental perturbations alter the effective geometry of interaction space and,
in turn, the very rules by which such geometry responds to biological forces. This
reinforces the need for a variable or nested form of k, one that captures not only
spatial heterogeneity but also temporal asymmetry and path-dependence. Suitable
mathematical tools may involve non-linear partial differential equations (PDEs),
integro-differential equations, Fokker-Planck formulations or stochastic
differential equations (SDEs). These tools offer the flexibility needed to model
systems in which local interactions, feedback loops and external perturbations
produce complex, history-dependent dynamics. For instance, non-linear PDEs
may be used to describe the propagation of trait distributions across ecological
space, where the diffusion term accounts for phenotypic variability and the
reaction term incorporates local adaptation or selective pressures. Integro-
differential equations could formalise long-range ecological interactions or
evolutionary memory effects, such as niche construction or environmental
inheritance, by integrating over extended spatial or trait domains. Fokker-Planck
equations would allow modelling the time evolution of probability densities in
systems with stochastic influences, capturing the effects of drift, mutation and
random dispersal. Finally, stochastic differential equations may be suitable for
simulating the trajectories of populations or species through the ecological
hyperspace under conditions of environmental noise, demographic stochasticity
or contingency-driven transitions such as speciation or extinction. These
formalisms may not be mutually exclusive, and a full treatment of ecological
relativity might require hybrid or multiscale approaches in which deterministic
structure and stochastic variation are jointly represented. In this light, the
variability of k and the interface dynamics introduced in (c) are the natural

conveyors of historical contingency across scales.
6. Falsifiable predictions, empirical tests and cautions
6.1. Geometric framework

From the variational structure. The predictions below follow from the action in §5(d)

via g, I', k(¢) and the matter Lagrangian rather than from analogy alone. Curvature,



anisotropy and finite propagation emerge as Euler-Lagrange consequences and are

therefore testable.

1) Trajectory deflection by local curvature

Prediction. If two populations or traits move under comparable environmental
gradients, positive sectional curvature induces convergence of trajectories whereas
negative curvature induces divergence.

Observable. Time evolution of the geodesic distance I, between trajectories in
eco-space.

Data/design. Manipulated gradients in laboratory microcosms or field
mesocosms; time series of trait or abundance vectors.

Falsification. Systematic absence of convergence/divergence when curvature

estimates are non-zero within confidence bounds.

2) Hysteresis from history-dependent connection

Prediction. If 7"depends on system history (e.g. niche construction), a round trip
along the same external gradient produces a loop with non-zero enclosed area.
Observable. Loop area in eco-space and phase lags on return paths.

Data/design. Cyclic perturbations in microcosms or mesocosms; reciprocal
translocation or press-release experiments.

Falsification. Robust loop closure (area = 0) after controlling for noise and drift.

3) Directional anisotropy of response

Prediction. If g is anisotropic, the magnitude and timescale of response depend on
the direction of perturbation in eco-space.

Observable. Ratios of displacement and characteristic time constants as a function
of perturbation direction.

Data/design. Factorial perturbations applied along orthogonal axes of the trait or
state space.

Falsification. Sustained isotropy after local estimation of g near the operating

point.

4) Local reduction to classical models
Prediction. In sufficiently small neighbourhoods, the dynamics reduce to

established formulations (e.g. Lotka-Volterra, Leslie) under appropriate changes



of variables.

Observable. Local equivalence of first-order predictions between the proposed
flow and classical models.

Data/design. Classical population datasets or replicated experiments near
equilibria; local linearisation in normal coordinates.

Falsification. Systematic local discrepancies despite reparameterisation and

coordinate normalisation.

A comprehensive comparison of biorelativity-based versus classic Lotka-Volterra
models will be published separately (Vallejo & Farifia 2025). Results show
improved performance of the biorelativity model under external environmental
and climatic perturbations, despite the model-selection penalty for additional

parameters (e.g. AIC/BIC).

5) Finite-speed propagation across weakly coupled subspaces

Prediction. With weakly coupled subspaces, disturbances propagate with delays
that scale with effective distance induced by g, defining a finite ceco.

Observable. Arrival times and attenuation profiles as functions of effective
geodesic distance.

Data/design. Spatial metacommunities on laboratory landscapes or natural
gradients; interaction networks with measured coupling strengths.
Falsification. Apparent instantaneous transmission or lack of dependence on

effective distance.

Note. These tests naturally interface with the formalism in §5: local curvature and
geodesic deviation (1), path dependence via state- or history-dependent 77(2),
anisotropy encoded in g (3), consistency with classical limits in normal

coordinates (4) and constraints set by a finite biological speed limit c,¢, (5).

6) Common-cause heuristic (Reichenbach). If two lineages display correlated
directional changes in eco-space without direct interaction, we expect an
unobserved common cause (empirically, a hidden source of curvature or a shared
driver. like a limiting resource, a keystone mutualist, or an abiotic factor). Test:

correlations should weaken or vanish after conditioning on the inferred curvature



field or on measured proxies of the putative driver; failure to do so refutes the

common-cause explanation.
Box 2. Reframing natural selection in Biorelativity

Definition.

Natural selection is the statistical tendency for genotype-phenotype
configurations that increase their effective ecological coupling, quantified as eco-
mass-energy that deforms the ecological hyperspace in favourable ways
(attracting resources and allies, repelling threats and costs), to accrue more
ecological proper time (greater persistence and reproduction) and to expand
their effective volume in eco-space relative to alternatives under the same

constraints.

An observable eco-mass-energy density.

Define a composite density from measurable components:
pe(x,t) = wrJg + wil + weC — wiK,

where Jr is resource/biomass flux (local ecological power), I is
organisation/information (e.g. negentropy, functional redundancy/modularity), C
is network centrality/robustness (trophic, mutualistic, habitat graphs), and K is
aggregated cost/vulnerability; w are normalised weights. The eco-mass-energy

over a domain Q is

Meeo (0, 8) = f po (%,8) AV
Q

Along a lineage trajectory y(z), selection implies (on average, relative to

competitors in the same environment)

Geometric-dynamic form.

Let fitness be a functional of deformation and coupling,

fx, ) = Flp.(x,1), g;(x, 1), k (%, £, p)],

and let the distribution of states P(x,t) evolve as



9P = =V- (b,P) + V- (DVP) + P(f - f),

so increases in p, and favourable curvature (via gj;,k) bias drift b and growth.
Falsifiable predictions / empirical tests.

1. Curvature-success link. Lineages with persistently higher 4p, > 0
exhibit locally more attractive curvature towards resources/mutualists
and divergent curvature from predators/competitors; geodesic deviation
between focal lineages and resource manifolds decreases through time.

2. Finite influence speed. Adjustments in interaction structure propagate
with an upper bound c,, ; shocks in one guild show delayed, distance-
dependent responses in others.

3. Local reduction. In regimes where g;; ~ §;; and « is constant, the
framework reduces to classical fitness (e.g. Malthusian growth, Lotka-
Volterra).

4. Trade-off realism. Increases in I or C that raise costs K can lower p, ;
simplification (e.g. parasitic reduction) can increase p,, ; by cost

minimisation.

Measurement notes.

Choose the organisational level (individual, population, species, guild) before
computing I,C,K; harmonise units and scale weights w - by cross-validation.
Report sensitivity of results to w - and to the spatial/temporal windows used.
Where possible, estimate cq., from lagged cross-correlations in time-series or

from reaction-diffusion fits on ecological networks.

6.2. Scope and caution: lessons from applied catastrophe theory

The aim of the present framework is methodological: to provide a minimal
geometric notation that makes constraints, couplings and memory explicit, and
that yields falsifiable predictions. It does not propose a biological cosmology. The
history of applied Catastrophe Theory illustrates the risks of extrapolating
mathematical elegance without solid empirical validation. Classic critiques

exposed conceptual and empirical weaknesses in social and biological applications



(Zahler and Sussmann, 1977; Sussmann and Zahler, 1978; Sussmann, 1978). In this
work, evaluation will rest on the tests in the subsection Falsifiable predictions and

empirical tests and on the ability to recover established models locally (see Box 1).
7. Not a Final Theory, but a Theoretical Invitation

This is not a complete theory, nor is it intended to replace existing ecological or
evolutionary models. Rather, it is a conceptual invitation or a thought experiment
meant to stimulate discussion and foster interdisciplinary collaboration. An
extended general theory of relativity in biology would not constitute a literal
analogue of physics, but rather a metaphorically inspired, mathematically framed
attempt to capture the dynamic, emergent and interactive character of life in its

many forms and scales.

Beyond its theoretical ambition, such a framework may also hold practical value.
At large temporal scales, it may offer a novel lens through which to interpret major
transitions in Earth’s biological history, such as the appearance of the biosphere.
At shorter timescales, in an era of pronounced ecological agency on the part of
Homo sapiens and an unprecedented anthropogenic reshaping of the biosphere
(to be discussed elsewhere), this framework might contribute to more rational
ecosystem management by helping to identify, model and perhaps even quantify
the consequences of ecological interventions. A geometry of biological interaction
could, in principle, inform not only scientific understanding but also

environmental governance.

It is worth acknowledging, on a more personal note, that while Einstein published
his General Theory of Relativity as a solitary author, the complexity of
contemporary science renders such individual endeavours increasingly rare. The
theoretical ambition outlined here, as modest as it may be in comparison, requires
a collaborative spirit from the very outset. If this framework is to mature into
something formally viable, it will need the combined insights of mathematicians,
physicists, ecologists, philosophers and other scholars willing to engage with ideas
that fall between disciplinary boundaries. Einstein’s extraordinary genius reminds

us not only of the heights to which a single mind can ascend, but also of the



shoulders upon which we must collectively stand if we are to be worthy of that

legacy.
8. Conclusion

Could life be understood not merely as a set of reactions in space, but as a sculptor
of its own multidimensional field? If so, the geometry of life must be richer than
any static Euclidean space, but one that bends, shifts and co-evolves with its
inhabitants. Developing such a framework is a monumental task, requiring

insights from physics, mathematics, philosophy and the life sciences.

This essay marks only a conceptual starting point. [ invite readers from diverse
disciplines to help formalise and challenge this idea, so that we may together
imagine a geometry worthy of the biosphere. Moreover, while this proposal has
been developed in the context of biological systems, the underlying approach may
be extensible to other domains of knowledge. As said above, any field in which
agents interact, modify their environment and alter the trajectories of others,
whether in the geology, human sciences, environmental (and otherwise) politics,
psychology, linguistics, economics, climate science, collective sports, all
transdisciplines, epistemology itself or any communicative endeavour could, in
principle, be modelled as a system of local deformations in a multidimensional
relational space given the appropriate hyperspace and the relevant variables. The
generalised relativistic framework envisioned here thus invites a broader reflection
on how structure, interaction and historical contingency might coalesce in a

unified, geometrically informed theory of complex systems.
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Table 1. Comparison of coupling formulations in Biorelativity, showing the two

main alternatives for the coupling term « in the proposed theory.

Formulation Equation Coupling Biological Flexibility Analytical
term (x) | interpretation implications
Fixed Gij(x, t) Universal Assumes Low - does Simpler to
coupling =k T;(x,t) constant uniform not analyse but
(Einstein (disputed relationship accommodate | biologically
analogue) in modern | between contingency | rigid.
cosmology) | ecological or feedback

interaction and

curvature
Dynamic Gij (x,t) Context- Allows for High- Mathematically
coupling =kt T;; (x,7) | dependent | variation dueto | accounts for | complex;
(proposed function or | evolutionary plasticity and | nested or
ecological operator history, local historical multi-scale
extension) densities, contingency | formulation

trophic required.

asymmetries

and

environmental

feedback




Figures

Figure 1. Curvature and trajectory deviation. A) convergence due to local positive
curvature. B) divergence due to negative curvature or effective gradients that
induce avoidance. In both cases the underlying manifold remains continuous;
attraction and repulsion are encoded in the metric g and the connection I', not in

changes to the topology of the substrate.

A

Figure 2. A single sphere moves forward in time (as in evolution) through a
deformable ecological surface, simplified here again as a two-dimensional elastic

mesh. It leaves behind a deep trailing depression and generating a forward



elevation and lateral distortion. The shape and displacement of the surface
illustrate the temporal dynamics of ecological interaction: the depression behind
the sphere implies an attractive effect on other organisms or ecological entities,
while the raised front region indicates repulsive or exclusionary effects due to the
evolving position or properties of the focal organism. This asymmetric
deformation represents how organisms and other biological entities, as they
change over time, simultaneously reshape their ecological surroundings,

attracting some components of the system while repelling others.




Appendix A. Minimal Illustrative Model of Ecological Curvature Dynamics

To demonstrate the potential behaviour of ecological curvature fields as a function
of evolving organismal traits, a simplified one-dimensional model is proposed.
Consider a prey species S; with a single evolving trait m, (t) (e.g. body size), and a
predator species S, that responds to ecological curvature G (x, t) induced by S; in
ecomorphological space.

The curvature field is defined as:

G(x,t) = k(x,t) - T(x,t)

where:

e xisa position along an ecological trait axis,

e T(x,t) is a constant interaction intensity (7=1),

e k(x,t)= e~ C-mi()? j¢ 3 Gaussian-like field that reflects the local influence

of the evolving trait.

This formulation creates a deformable ecological landscape where the curvature
‘well” induced by the prey changes location and steepness as its trait evolves. As
shown in Fig. A1, increases in mu shift the attractor in ecological space, potentially

repelling or decoupling the predator's effective interaction.

Appendix B. Eco-hyper spacetime with hierarchical dimensions

(Minkowski-style formalism)

This appendix outlines a minimal Minkowski-style formalism for an evolutionary
eco-hyper spacetime with hierarchical levels. It provides working definitions and
equations in a compact form suitable for subsequent formal development and for

Word equation entry.
B.1 Coordinates and state variables

Let t denote oriented evolutionary time and let the ecomorphological hyperspace
be stratified into Lnax hierarchical levels (e.g. organism, population, community
and ecosystem). Let £ (L) € R™ be the coordinates at level L. Define the extended

coordinate vector:

X4 = (Ceco - t, E(l),f(z), . f(Lmax)).



B.2 Minimal eco-interval and speed limit

A biological speed limit ce, is postulated that bounds feasible rates of change in
eco-space. A minimal eco-relativistic interval with block-diagonal structure is:
L
Sezco = Cgco - dt? — Zernilx Wrx) || dE(L)“Z-

Here wy,(y) = o0 are hierarchical weights that encode characteristic response times,
for example w;, = 772 with 7, the typical timescale of level L. The proper eco-time
along a trajectory is given by sZ., = cZ,, - dt?

The corresponding four-velocity and normalisation read:

UA = dxA UAUB = (2
~ a4t 9B = Ceco

A Lorentz-type factor emerges as:

-1/2

- gijfl'f]>

Yeco = (1 -
eco Cgco
B.3 Coupled metric with multilevel interactions

To represent cross-level interactions and historical deformation, allow the metric

to depend on state and include off-diagonal blocks:

koo = €00 epldt? = ) AEDTMO (D) dg® — 2 dgDTCEx) dg ™)
L

L<M

Here a(X) > o sets temporal orientation, M®®) are symmetric positive matrices
that weight directions of change within level L and ¢ “™®) are cross-level

coupling blocks that transmit feedbacks between levels.
B.4 Geodesics (inertial change) and ecological forces

In the absence of external drivers, inertial trajectories follow geodesics of g;sp):

Selection, management and stochastic drivers enter as forces F4:

x4 dx®dx¢
grr e g gr = FID




A potential-driven representation uses F = —Vy®(X,t) + n(t), where np denotes

demographic or environmental noise.

B.5 Special-relativistic quantities in eco-space

dx
Define eco-momentum and eco-force as poco = MO0,co * Veco * (E) and F,., =

d e e : ..
%, where m0,., quantifies intrinsic resistance to change, arising from

developmental and genetic constraints, network embedding and energetic costs of

maintaining low local entropy. The eco-energy reads E.cp = Veco * M0gco * C{Zeco} +

@ (X, t). In the slow-change limit

ax .
|E|| &K Cqco ONe recovers a Newtonian-type

. dZX
relation F,., ® m0,, =
B.6 Notes on calibration and hierarchy

« Calibrating c,,: use empirical upper bounds of phenotypic rates (e.g. haldanes)
across clades and timescales as lower-bound estimates, with expected dependence

on generation time and metabolic scaling.

* Weights and matrices: w;, or ML implement temporal hierarchy, making higher
levels costlier to move. Cross-level couplings C™ encode feedbacks, producing

state-dependent geometry and path dependence.

* Directionality: irreversibility can be represented by explicit time dependence

9rapy(t)) or by introducing torsion or non-metricity to reflect history dependence.
B.7 Summary of Novel Formulations Proposed by the Biorelativity theory

The following equations constitute the specific, novel definitions required by the

Biorelativity theory framework.
Eco-morphological coordinates
XA = (Ceco - T, 5(1), 5(2), " f(Lmax))

X4: Represents a point (coordinate) in the proposed eco-morphological
hyperspace, which combines evolutionary time and spatial/trait axes across

different biological levels. The index A ranges over all dimensions.



Ceco: A postulated biological speed limit, analogous to the speed of light c. It
bounds the maximum rate of propagation of ecological reconfigurations or

influences.
7. Oriented evolutionary time.

&) Represents the coordinates within a specific hierarchical level L (e.g., L=1 for

organism traits, L=2 for population densities). Each £ can be a vector.
Lynax: The maximum hierarchical level considered in the model.

Implication: This equation defines the arena. It fuses time, traits and population
levels into a single geometric object (a manifold) upon which the dynamics will

unfold.

Ecological Interval ("Eco-Interval")

Lmax

oo = Cleo - d? = D wi(0) - A
L=1

s&.,: The square of the infinitesimal eco-interval, analogous to the spacetime
interval ds? in relativity. It defines the metric structure (geometry) of the eco-

spacetime.

wi(X): Hierarchical weights that may depend on position X in the hyperspace.
They encode the relative importance or characteristic response times (7.) of

different levels.

||dé%]|2: Square of the infinitesimal displacement (distance) within the coordinate

space of level L.

Implication: This defines a simplified (block-diagonal) metric. It measures the
distance between infinitesimally close states, combining temporal separation with
weighted spatial/trait separation. It implies that proper time 7 (dt? = ds?/c2.,) is

affected by movement through the trait/population space.

Ecological Gamma Factor ("Eco-Lorentz factor”)

1

)/eCO 1
Jl ~ Ly wldew de)?

2
Ceco




Yeco: The ecological Lorentz factor, analogous to yin special relativity.

lage®/ dt|2: The squared velocity of change at level L with respect to evolutionary

timer.

Implication: A direct consequence of the interval. If a system changes very fast
(denominator approaches o), y,., becomes large. This would imply "time dilation”
(proper time 7 passes slower than coordinate time t) and mass-energy increases

(see Eeco). It is a relativistic correction for rapid ecological change.

Coupled Hierarchical Eco-Interval

oo = A(X)epdt? = ) dEDTMB(X) dE® —2 ) dEBTCHNY) dg™
L

L<M

a(X): A position-dependent temporal scaling factor (> o), allowing for local

variations in the ow of evolutionary time (analogous to go. in GR).

M®(X): Position-dependent matrices defining the metric structure within each

level L. (Note: T denotes transpose).

CUIM(X): Position-dependent cross-level coupling matrices. They explicitly
represent interactions and feedbacks between different hierarchical levels L and

M.

Implication: This provides a more general and flexible metric. The geometry is
complex, non-diagonal, and state-dependent (X). It is designed to explicitly model
hierarchical feedbacks (e.g., how population density affects trait selection) as part

of the geometry itself.

Ecological Lagrangian

1 .
Leco(W,¥; 9) = Egab(p)papb - V(p)

Lco: The Lagrangian density for ecological matter fields W. This defines the

dynamics of the system's state variables.

gab(p): The ecological metric on the state space, exemplied here by the

Shahshahani metric for frequencies p°.



% Japr (@)D%PP: The kinetic energy term, as defined using the ecological metric.
V (p): A potential function representing ecological interactions (e.g., related to

average payoff in game theory).

Implication: This recasts standard evolutionary dynamics as a classical mechanics
problem: a particle (the system state) moving on a curved manifold (the simplex
with the Shahshahani metric) under a potential (V). This Lagrangian is the source

term Leco for the Hilbert stress-energy tensor T;;°.

Eco-Hamiltonian

1 5a.5b
€=29ab P’ +V(p)
&: The ecological Hamiltonian or eco-energy, corresponding to the Lagrangian
[’eco .

Implication: Represents the total conserved eco-energy (Kinetic + Potential) for

closed, time-independent systems described by L,
Geodesic Equation with "Ecological Force"

d?x4 dXBdx¢
grz * e g g = FI0D

[4.: Christoffel symbols derived from the eco-metric ga. This term encapsulates
the fictitious force (like gravity) that comes from the curvature of the eco-

spacetime.

FA: An ecological force term representing non-inertial influences like selection,

external drivers or stochasticity not already encoded in the metric.

Implication: This is the equation of motion. It states that an organism's trajectory
deviates from a straight line for two reasons: 1) the eco-spacetime is curved (the "
term, the equivalent of gravity), and 2) other ecological forces are pushing it (the

FA term).
Ecological Energy (Eco-energy)

Eeco =Veco" mOecngco + (D(X' t)



Eeco: Total Ecological Energy.

Moeco: Ecological rest mass, the intrinsic inertia of a biological entity.
Yeco - M0¢gcoCeo: The relativistic energy term.

®(X,t): An ecological potential energy, analogous to electric potential.

Implication: Defines the energy of an entity. Rapid change (high 7o) increases this

energy, just as rapid movement increases relativistic mass-energy.
Eco-mass-energy Density
Pe(x,t) = wgJg + Wi I + weC — wgK
pe: The proposed observable density of eco-mass-energy. This is the source term
for the curvature.
Jr: Flux of resources or biomass (ecological power).
I: Measure of organisation or information (e.g., negentropy).
C: Measure of network centrality or robustness.
K: Measure of aggregated cost or vulnerability.
w... Normalised weights.

Implication: This is a key hypothesis. It states that curvature is not just from
mass/biomass, but also from information, network structure and costs. A highly
organised node in a food web curves the eco-spacetime around it more than an

isolated organism of the same mass.

Eco-coupling Field Definition

$(x,7) = po(x) + f Ko (dy(e,3)) F(x(3,7),99 x(y,7))dV,
M
#(x;7): The scalar eco-coupling field that determines the strength x(¢) of the
geometry-interaction coupling.
#o (x): A background value of the field.

Ko(dy(x,y)): A kernel function depending on the geodesic distance dg(x,y),

modelling non-local influence that decays with distance.



F(x, V9 y: A source function dependent on the state () and gradient (V9y) of

biological entities.

Implication: This equation is highly non-local. It states that the strength of physics
(the coupling «) at one point x depends on an integral of the state of the entire rest

of the ecosystem, weighted by geometric distance.

Bio-Free Energy Functional

FoiolpCa, 0 ] = Fonelp] + || d di’ pCW (3,25 g1y )p (6 + [ Veco . pdy

Fpio: The Bio-Free Energy functional for the ecological system.
Fentlp]: The entropic component (favours diversity/spread).

W(x, x': gi s K)Z An eco-relativistic interaction kernel between states at x and x,. It

depends on the eco-metric g;; and coupling .
Veco: An external potential representing abiotic factors.

Implication: This provides a statistical-mechanical view. The system will evolve to
minimise this free energy. This connects the geometric framework (gj, «) to

thermodynamic principles and population-level dynamics (p).



