Marine Mammal Science

Review Article

Stranding-Based Demographic Inference in Marine Mammals: Best Practices for Extracting Vital Rates Despite Compound Sampling Bias

Submission ID 37e9719c-4be3-4e3e-93ac-25cfeca7a544

Submission Version Initial Submission

PDF Generation 30 Oct 2025 19:26:54 EST by Atypon ReX

Authors

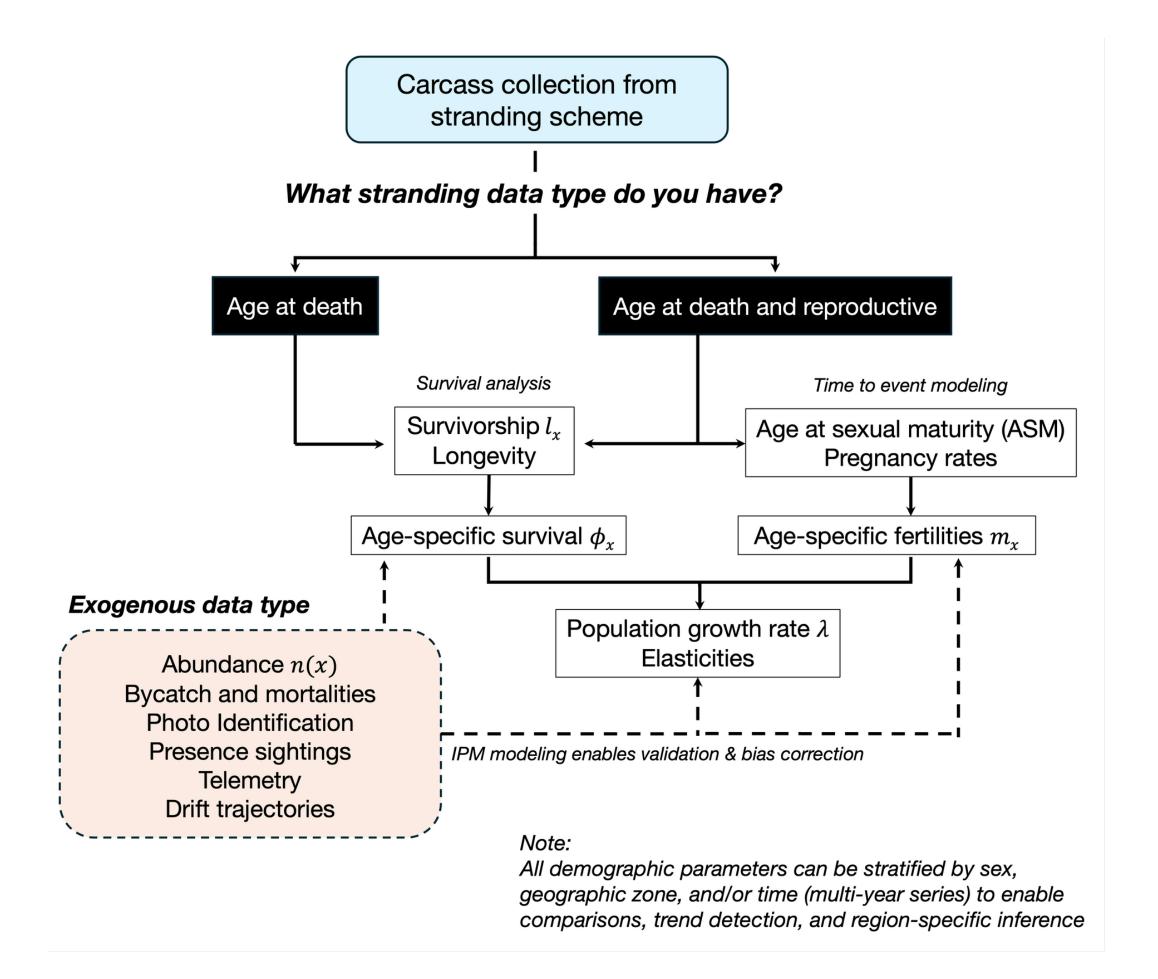
Dr. Etienne Rouby Corresponding Author Submitting Author

ORCiD

https://orcid.org/0009-0004-1049-016X

CRediT

Conceptualization, Writing - original draft, Methodology, Visualization, Writing - review & editing, Supervision, Project administration, Resources, Investigation, Validation


Affiliations

- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

Files for peer review

All files submitted by the author for peer review are listed below. Files that could not be converted to PDF are indicated; reviewers are able to access them online.

Name	Type of File	Size	Page
figure_1.png	Figure	849.3 KB	Page 3
figure_2.png	Figure	641.1 KB	Page 4
main_document.pdf	Main Document - LaTeX PDF	1.3 MB	Page 5
bibliography.bib	LaTeX Supplementary File	110.4 KB	Not converted to PDF
ecology.sty	LaTeX Supplementary File	5.4 KB	Not converted to PDF
kbordermatrix.sty	LaTeX Supplementary File	5.4 KB	Not converted to PDF

- 1 TITLE:
- 2 Stranding-Based Demographic Inference in Marine Mammals: Best Practices for
- 3 Extracting Vital Rates Despite Compound Sampling Bias
- 4 AUTHORS LIST:
- 5 Etienne Rouby^{1,2}
- 6 AUTHORS AFFILIATIONS:
- ⁷ Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
- ⁸ ²Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- 9 CORRESPONDING AUTHOR:
- 10 Etienne Rouby
- 11 CONFLICTS OF INTEREST:
- 12 The authors declare no conflicts of interest.
- 13 AUTHOR CONTRIBUTIONS:
- 14 E.R. conceptualized the review and wrote it.

15 ABSTRACT

Strandings records provide the only demographic data source for many marine mammal species. Yet they may be heavily biased. Every carcass passes through sequential filtering: mortality cause, oceanographic drift, decomposition, detection, and sampling. Each stage distorts age-specific signals. This creates a fundamental paradox: strandings are essential 19 yet appear unreliable for demographic inference. This review resolves the paradox through 20 a systematic best practices. Strandings are formalized as a six-stage filtering cascade. Three complementary approaches extract reliable signals despite bias. Design-based protocols re-22 duce sampling bias through stratified collection and standardized networks. Model-based 23 temporal analyses detect relative demographic changes when detection remains constant. Integrated population models combine strandings with auxiliary data to correct bias. The review provides decision tools that formalize when and how demographic inference from 26 strandings is defensible. Applications across harbor porpoises, common dolphins and manatees demonstrate that stranding-based monitoring reliably detects demographic changes. Three research priorities emerge from this review: quantifying age/stage-specific detection 29 probabilities, incorporating spatial population structure, and parameterizing management strategy evaluation with stranding-derived demographic rates. When properly analyzed, 31 strandings provide irreplaceable demographic surveillance for species inaccessible to other 32 methods.

34

KEYWORDS:

conservation, demography, marine mammals, mortality, population dynamics, strandings, survival, vital rates

1 Introduction

Marine mammals are characterized by slow life history strategies: long generation times, delayed sexual maturity, low reproductive output, and high adult survival probabilities (Stearns, 1976; Fowler, 1988; Read and Hohn, 1995; Eberhardt, 2002). Quantified as vital rates (i.e. survival, fecundity, and fertility), these life history traits directly translate evolutionary strate-42 gies into population dynamics (Fowler, 1988; Gaillard et al., 1998; Tuljapurkar, 2013; Caswell, 2001). Vital rates combine to determine population growth rate (λ) , the dominant eigenvalue of the population projection matrix, where $\lambda > 1$ indicates growth, $\lambda < 1$ decline, and $\lambda = 1$ 45 stability (Caswell, 2001, 2019). Population growth rate in turn determines abundance trajectories: sustained changes in λ manifest as increasing or decreasing population size over time (Nicholson, 1954; Sibly and Hone, 2002). Environmental or anthropogenic pressures thus affect observable population abundance through their impacts on vital rates (Caswell, 2000, 2001; Coulson et al., 2001). For long-lived marine mammals, adult survival dominates this demographic link: small perturbations in adult survival probabilities can drive populations toward decline due to high elasticities of λ to this parameter (Heppell et al., 1998; Fujiwara and Caswell, 2001; Gerber and Heppell, 2004; Arso Civil et al., 2019; Caswell, 2019). 53

Abundance surveys alone may not detect population declines in time for effective conservation action (Gerrodette, 1987; Taylor et al., 2007; Caughley, 1994; Reed et al., 2002; Holmes et al., 2007; Authier et al., 2020). Statistical power to detect trends from abundance estimates remains dismally low: Taylor et al. (2007) found that 72% of precipitous declines (50% decrease in 15 years) in large whales, 90% in beaked whales, 100% for pinnipeds on ice, 55% for polar bears/sea otters and 78% in dolphins would go undetected given current monitoring effort. Similarly, Authier et al. (2020) demonstrated that even well-studied populations with short time-series and high coefficients of variation lack adequate power to detect declines before reaching critically low levels. Abundance estimates suffer from wide confidence intervals, infrequent survey intervals (often 6-11 years), low detection probabilities

(Hammond, 1995; Buckland and York, 2018; Hammond et al., 2021; Gilles et al., 2023), and long time lags between demographic change and detectable abundance shifts (Taylor et al., 2007; Gerrodette, 1987; Authier et al., 2020).

68

Vital rate monitoring offers a solution through earlier detection: demographic parameters change before abundance declines become statistically detectable (Caughley, 1994; Eberhardt, 2002; Holmes et al., 2007; Caswell, 2001; Fujiwara and Caswell, 2001; Morris and Doak, 2002; Sibly and Hone, 2002; Reed et al., 2002; De Silva and Leimgruber, 2019). This early warning capacity enables proactive rather than reactive management. Moreover, vital rate estimates identify which demographic processes drive population change—whether adult survival, juvenile recruitment, or fecundity—allowing targeted interventions rather than generic conservation measures (Gaillard et al., 1998; Heppell et al., 1998; Holmes et al., 2007; Authier et al., 2017).

78

The consequences of inadequate demographic monitoring can be catastrophic. The baiji (Lipotes vexillifer), declared functionally extinct in 2006, the Caribbean monk seal (Neomonachus tropicalis), extinct by 2008, the Yangtze finless porpoise (Neophocaena 81 asiaeorientalis asiaeorientalis) with less than 500 individuals remaining, and the vaquita 82 (Phocoena sinus), now functionally extinct with fewer than 10 individuals remaining, all suffered decades of demographic decline masked by persistence of remnant individuals (Turvey et al., 2007; McClenachan and Cooper, 2008; Huang et al., 2020; Rojas-Bracho et al., 2022). More recently, North Atlantic right whales (Eubalaena glacialis) provided clear demographic warnings (declining calving rates, increased calving intervals, elevated 87 mortality from vessel strikes and entanglements) years before abundance fell below 350 88 individuals, yet insufficient management response has driven the species toward extinction (Pettis et al., 2021; Christiansen et al., 2020; Meyer-Gutbrod et al., 2021). Without robust demographic monitoring and timely intervention, even iconic species slip toward extinction

(Gerrodette, 1987; Caughley, 1994; Morris and Doak, 2002).

93

For many marine mammal species, strandings provide the only available demographic 94 This review demonstrates that despite recognized biases, modern analytical frameworks can extract reliable demographic signals from stranded carcasses. First, it traces the historical trajectory from early cross-sectional life tables through the longitudinal capture-recapture revolution, establishing why stranding data remain the only demographic data source for most marine mammal species despite recognized biases (Section 2). Second, 99 it formalizes the sequential filtering process through a novel six-stage cascade (mortality, 100 cause/location selection, drift, decomposition, detection, sampling) that identifies where age-101 specific biases enter the demographic inference and how they compound multiplicatively 102 (Section 3). Third, it presents a set of best practices that systematically matches research questions with defensible analytical approaches by evaluating available data across four di-104 mensions: biological measurements (age, reproductive status, cause of death), stratification 105 structure (temporal series, spatial regions, individual covariates), sample size adequacy, and 106 auxiliary data availability (Section 4). Examples from harbor porpoises, common dolphins 107 and manatees demonstrate how design-based and model-based with and without auxiliary 108 data enable detection of demographic change. Finally, it identifies three research priorities 109 (quantifying detection probabilities, incorporating spatial population structure, and advanc-110 ing simulation-based management tools) that will strengthen stranding networks as demo-111 graphic surveillance systems and enable proactive management tools (Section 5). This review 112 resolves the paradox of extracting reliable demographic signals from biased stranding data, providing the first comprehensive set of best practices of when and how strandings inform 114 vital rate estimation through practical decision tools. 115

Box 1: Key Demographic Terms and Notation

CORE DEMOGRAPHIC CONCEPTS

- Vital rates: Survival, fecundity, and recruitment rates determining population dynamics
- Life table: Age-specific schedule of mortality and survival probabilities
- Fecundity schedule: Age-specific reproductive output across lifespan
- Stable age distribution: Population age structure that remains proportionally constant over time
- Elasticity: Proportional sensitivity of population growth rate to parameter changes
- Cross-sectional inference: Estimating vital rates from a snapshot of carcasses
- Longitudinal inference: Estimating vital rates from repeated observations of the same individual
- Abundance: Total population size summed across all age classes
- Recruitment: Number of new individuals entering the population per time unit

LIFE HISTORY PARAMETERS

- Age at sexual maturity (ASM): Age when reproductive capability is attained
- Maximum longevity: Oldest recorded age at death in a population
- Median lifespan: Age at which 50% of a cohort has died
- Gestation length: Duration of pregnancy from conception to birth
- Calving interval: Time between successive births for an individual female

NOTATIONS

- λ : Population growth rate (dominant eigenvalue of projection matrix)
- ϕ_x : Age-specific survival probability (surviving from age x to x+1; $\phi_x=1-q_x$)
- q_x : Age-specific probability of death (discrete mortality)
- l_x : Survivorship to age x (proportion of cohort surviving)
- μ_x : Age-specific instantaneous mortality rate (hazard rate; $\mu(x) = -\frac{d[\ln(l_x)]}{dx}$)
- m_x : Age-specific fertilities (mean offspring produced at age x)
- r(x): Proportion reproductively active at age x
- e_0 : Life expectancy at birth
- T: Generation time (mean age of reproduction)
- n(x): Living population size at age x
- d(x): True number of deaths at age x in the population
- $d_{\text{obs}}(x)$: Observed number of strandings at age x
- $r_{\text{obs}}(x)$: Observed reproductively active individuals at age x among strandings

Historical Context of Demographic Inference in Ma rine Mammals

Demographic inference for marine mammals has undergone two major methodological eras.

Cross-sectional approaches dominated for over a century, extracting vital rates from carcasses

(from hunting and standing) despite ackowledged sampling biases. Longitudinal capture
recapture methods revolutionized the field by separating mortality from detection, but remain

feasible not for all species. For many marine mammals, systematic stranding networks now

represent the only viable source of demographic data.

2.1 Cross-Sectional Foundations (1820s–1980s)

Cross-sectional demographic analysis—inferring vital rates from age-at-death distributions 126 and reproductive status at death—emerged in the early 19th century as a foundational ap-127 proach for constructing life tables and fecundity schedules (Gompertz, 1825). Caughley (1966) formalized the theoretical framework that remains foundational today, establishing that ob-129 served mortality and reproductive patterns directly reflect population age structure when 130 four key assumptions hold: stable age distribution, time-invariant vital rates, representative age sampling, and accurate age determination. Under these conditions, age-at-death distri-132 butions yield survivorship curves (l_x) , from which age-specific survival probabilities (ϕ_x) are 133 derived. Reproductive examination establishes age at sexual maturity and pregnancy rates, which combine to provide age-specific fertility schedules (m_x) . Together, survival (ϕ_x) and 135 fertility (m_x) parameterize population projection matrices, enabling estimation of population 136 growth rate (λ) . 137

Systematic application to marine mammals emerged through mid-20th century commercial whaling, where industrial operations routinely collected biological samples enabling age

138

determination from teeth, ear plugs, or baleen, and reproductive assessment from gonadal ex-

amination (Laws, 1953, 1961). Chapman (1964) pioneered actuarial methods for whale catch 142 data, revealing fundamental cetacean life history patterns: elevated juvenile mortality, rela-143 tively constant adult survival, age-specific fecundity, and senescent declines (i.e. U-shaped 144 mortality and hazard rate curce: Reed, 2011). Similar approaches applied to pinniped har-145 vest programs provided basic demographic parameters and life history parameters for seal 146 populations (Sergeant, 1973; Fowler, 1984). As commercial whaling declined through the 1970s-1980s, stranding records emerged as alternative data sources (Gulland et al., 2025), 148 particularly for small cetaceans vulnerable to fishery by catch but rarely taken in directed 149 harvests (Perrin et al., 1994; Jefferson and Curry, 1994). Early applications followed established protocols, constructing survivorship curves, fecundity schedules and life tables 151 from stranded carcasses (Hohn et al., 1989; Perrin and Reilly, 1984; Barlow and Boveng, 152 1991; Stolen and Barlow, 2003). However, accumulating evidence revealed intractable biases: systematic underrepresentation of neonates due to rapid decomposition and size-dependent 154 detection, age-selective stranding probabilities varying by cause and location of death, vio-155 lations of stationarity assumptions, and heterogeneous recovery rates across regions (Barlow 156 and Boveng, 1991; Stolen and Barlow, 2003). Unlike whaling data where biases could be par-157 tially characterized through fishery statistics, stranding processes operated through complex, 158 poorly quantified pathways where true mortalities could not be disentangled from sampling 159 artifacts. By the 1990s, confidence in stranding-based vital rate estimation had eroded sub-160 stantially, and their use for rigorous demographic inference declined as the field recognized 161 the confounding between age-specific mortality and detection probabilities. 162

$^{\circ}$ 2.2 The Longitudinal Revolution (1980s–2000s)

Capture-mark-recapture (CMR) methods, developed in terrestrial and avian ecology (Cormack, 1964; Jolly, 1965; Seber, 1965; Pollock, 1982; or thereafter CR for capture-recatpure in the case of marine mammals), revolutionized demographic inference by estimating vital rates from repeated observations of individually identifiable animals over time (CMR uses artifical

marks, CR uses natural marks). The Cormack-Jolly-Seber (CJS) framework (Cormack, 1964; 168 Jolly, 1965; Seber, 1965; Lebreton et al., 1992) provided the foundational approach: rather 169 than assuming all deaths are observed, CMR explicitly models detection as a stochastic 170 process with estimable probability, separating true survival from sampling artifacts through 171 patterns of individual re-encounters. This directly addressed the confounding bias between 172 mortality and detection that plagued cross-sectional inference. CMR requires that marked individuals are representative of the population, marks are permanent and do not affect sur-174 vival or detectability, recapture probabilities are equal or measurable, and emigration can 175 be distinguished from mortality (Lebreton et al., 1992). By the 1990s, CMR had become the gold standard for demographic inference across taxa, yielding direct estimates of age-177 specific survival (ϕ_x) , breeding probability (ψ_x) , breeding success (ρ_x) , and fertilities (m_x) 178 with quantified precision, enabling accurate estimation of population growth rate (λ) and rigorous hypothesis testing impossible from cross-sectional data. 180

Photo-identification techniques, which emerged in the late 1970s (Würsig and Würsig, 182 1977), enabled the application of CR methods to marine mammals by using natural markings— 183 such as dorsal fin notches, fluke patterns, scarring, and pigmentation—for reliable individual 184 recognition across years or decades. While telemetry can also be used for longitudinal mon-185 itoring (McConnell et al., 2004), it is still considered inefficient for inferring demographic 186 rates (Booth et al., 2020). Landmark studies demonstrated the transformative power of 187 photo-ID approaches: Bigg et al. (1990) revealed the matrilineal structure and precise vital 188 rates of killer whales, while Fujiwara and Caswell (2001) parameterized population viability models for southern right whales using decades of photo-identification data. The Sarasota 190 Bay bottlenose dolphin photo-ID program, established in the 1970s (Wells and Scott, 2000), 191 became one of the reference model systems for cetacean demography and life history through 192 CR (Wells and Scott, 1990; Wells, 2009, 2013). Methodological extensions subsequently ex-193 panded CR capabilities, with as examples: multistate models (Arnason, 1973; Nichols and 194

181

Kendall, 1992) enabled estimation of transitions between demographic states; robust design (Pollock, 1982) improved precision; and Bayesian frameworks (Wade, 2000) accommodated sparse data while propagating uncertainty. Recent applications have quantified immigration as a demographic driver (Tenan et al., 2023), revealed kinship effects on survival and post-reproductive lifespans (Croft et al., 2017; Nattrass et al., 2019), and detected fishery impacts on demography and social structure (Jordaan et al., 2023). Despite these advances, CR remains logistically infeasible for most marine mammal species.

2.3 Strandings as the Primary Demographic Data Source

202

218

While CMR (and CR) methods have revolutionized vital rate inference for accessible pop-203 ulations with identifiable individuals, many marine mammal species (particularly oceanic 204 delphinids) remain logistically unfeasible to study using these approaches (Urian et al., 2015; 205 Hammond et al., 2021; Hupman et al., 2018; see Table 1 for a functional group assessment). 206 Oceanic delphinids lack individually distinctive dorsal fin patterns, or in some cases, lack dor-207 sal fins entirely (Weinrich et al., 2001; Hupman et al., 2018), though emerging methodologies 208 are beginning to enable photo-ID of poorly marked cetaceans (Elliser et al., 2022). These 209 species also exhibit very low recapture probabilities, and the latest deep-learning approaches 210 for photo-ID continue to struggle with low image quality, poorly pigmented animals, and 211 unusual markings (Patton et al., 2023). Similarly, harbor porpoises are notoriously difficult 212 to monitor through CR programs (Gaskin and Watson, 1985; Koopman and Gaskin, 1994; 213 Baird, 2003), although recent studies have successfully used CR to assess site fidelity (Elliser 214 et al., 2018, 2025). For beaked whales, detection probabilities are so low that vital rate 215 inference from CR remains infeasible to date (New et al., 2013; Chiquet et al., 2015; Hooker 216 et al., 2019). 217

For these species, systematic stranding networks may represent the only viable source of demographic data, from which it is possible to infer vital rates. Coordinated programs

- 221 now document mortality and stranding patterns with standardized protocols, yielding multi-
- ²²² decadal databases of age, sex, reproductive status, body condition, and cause of death (Moore
- 223 et al., 2020; Wilkin et al., 2017; Authier et al., 2014; IJsseldijk et al., 2018).

Table 1: Demographic Parameters Obtainable by Functional Group

Functional Group	Available demographic data source	Monitored demographic quantities	Key Study Examples
Cetace ans			
Coastal small cetaceans (e.g. harbor porpoise, finless porpoise, vaquita)	CR: Limited; Strandings: High	Age distribution; Reproductive schedule; Survivorship; Hierarchical survivorship; Temporal survivorship trends; Site fidelity	Read and Gaskin (1990); Hohn et al. (1996); Rouby et al. (2021); IJsseldijk et al. (2020a, 2021); Rouby et al. (2024); Elliser et al. (2018, 2025); Murphy et al. (2015); Kesselring et al. (2017)
Offshore dolphins (e.g. common, striped, spinner)	CR: Limited; Strandings: High	Age distribution; Reproductive schedule; Life tables; Survivorship; Population growth rate (absolute & relative); Temporal survivorship trends; Cause-specific mortality	Barlow (1984); Barlow and Boveng (1991); Calzada et al. (1997); Mannocci et al. (2012); Guarino et al. (2021); Roca-Monge et al. (2022); Rouby et al. (2025)

Table 1 continued from previous page

Functional Group	Available demographic data source	Monitored demographic quantities	Key Study Examples
Inshore dolphins with photo-ID (e.g. bottlenose, killer whales - resident, common dolphin - resident)	CR: Yes (some pops); Strandings: Moderate	Age-specific survival; Fecundity; Recruitment; Population growth rate; Cause-specific mortality; Health indices; Population viability	Wells (2009); Bigg et al. (1990); Elliser et al. (2022); Nelson et al. (2024); Arso Civil et al. (2019); Williams et al. (2024)
Social large odontocetes (e.g. pilot whales, false killer whales, Risso's dolphins)	CR: Yes (some pops); Strandings: Moderate to High Huntings: Low to high	Age distribution; Survivorship; Life tables; Mortality schedules; Age at sexual maturity; Maximum longevity; Population-specific vital rates (CR populations); Mass-stranding demography	Kasuya and Matsui (1984); Bloch et al. (1996); Baird and Gorgone (2005); Hartman et al. (2016); Renò et al. (2019); Betty et al. (2023)
Deep-diving large odontocetes (e.g. beaked whales, sperm whales)	CR: Yes for some species; Strandings: Low to Moderate	Age distribution; Growth patterns; Age at sexual maturity; Maximum longevity; Life history parameters; Cause-specific mortality	Evans and Hindell (2004); D'amico et al. (2009); New et al. (2013); Chiquet et al. (2015); Hooker et al. (2019); Moore et al. (2018)

Table 1 continued from previous page

Functional Group	Available demographic data source	Monitored demographic quantities	Key Study Examples
Large mysticetes with	CR: Yes (some species);	Age-specific survival; Fecundity;	Fujiwara and Caswell (2001);
photo-ID (e.g. humpback,	Strandings: Moderate	Calving intervals; Population growth	Moore et al. (2020);
right, gray whales)		rate; Body condition trends;	Christiansen et al. (2020);
		Cause-specific mortality; Connectivity	Meyer-Gutbrod et al. (2021);
			Pirotta et al. (2025)
Large mysticetes without	CR: Very limited;	Age distribution; Growth patterns;	Laws (1961); Lockyer (1993);
photo-ID (e.g. minke, fin,	Strandings: Low to	Age at sexual maturity; Reproductive	Matthews et al. (2001); Arrigoni
sei, blue whales)	Moderate	parameters; Life tables; Cause-specific	et al. (2011)
		mortality (opportunistic)	
Pinnipeds			
Phocid seals at accessible	CR and CMR/Tagging:	Age-specific survival; Fecundity;	Boyd et al. (1995); Heppell et al.
colonies (e.g. harbor,	Yes (colonies);	Recruitment; Population growth rate;	(1998); Pistorius et al. (2011);
gray, elephant seals)	Strandings: High	Offshore mortality; Disease prevalence;	Rotella et al. (2012); Mosnier
		IPM-derived vital rates	et al. (2023); Carroll et al.
			(2024); McCarthy et al. (2025)

Table 1 continued from previous page

Functional Group	Available demographic data source	Monitored demographic quantities	Key Study Examples
Phocid seals, dispersed/ice-breeding	CR: Limited; Strandings: Moderate	Age distribution; Reproductive parameters; Juvenile dispersal	Sergeant (1973); Roff and Bowen (1983); Fowler (1984);
$\begin{array}{l} \mbox{(e.g. harp, hooded, ringed} \\ \mbox{seals)} \end{array}$	Huntings: Moderate	mortality; Harvest-based vital rates; Climate impact indices	Reimer et al. (2019); Andersen et al. (2021); Nater et al. (2024)
Otariid seals (e.g. sea lions, fur seals)	CR and CMR/Tagging: Yes (colonies); Strandings: Moderate to High	Age structure; Age-specific survival; Fecundity; Pup survival; Recruitment; Cause-specific mortality; Elasticities; Population Viability	Holmes and York (2003); Holmes et al. (2007); Gerber and Heppell (2004); Heppell et al. (1998); Maniscalco et al. (2015); Harting et al. (2021); Hastings et al. (2023); Warlick et al. (2023)
Other Marine Mamma	$m{l}s$		
Sirenians (manatees, dugongs)	CR: Partial (photo-ID); Strandings: High	Age-specific survival; Fecundity; Population growth rate; Cause-specific mortality	Eberhardt and O'shea (1995); Langtimm et al. (1998, 2004); Runge et al. (2004); Hostetler et al. (2021)

Table 1 continued from previous page

Functional Group	Available demographic data source	Monitored demographic quantities	Key Study Examples
Marine mustelids (sea otters)	CR: Partial (tags); Strandings: Low	Cause-specific mortality; Mortality sensitivity; Age distribution; Reproductive parameters; Pup survival	Siniff and Ralls (1991); Bodkin et al. (2000); Monnett and Rotterman (2000); Monson et al. (2000); Estes et al. (2003); Gerber et al. (2004); Burek Huntington et al. (2021); Tinker et al. (2021)
Arctic specialists (e.g. walrus, narwhal, polar bears)	CR: Yes (some species); Strandings: Low Huntings: High	Age distribution; Reproductive parameters; Survival (harvest/telemetry-based); Connectivity/migration; Population viability	Regehr et al. (2018); Bohart et al. (2021); Regehr et al. (2021); Taylor et al. (2021); Biddlecombe and Watt (2022); Braund et al. (2022); Garde et al. (2022); Breed et al. (2024); Rode et al. (2024)

Notes: CR = Capture-recapture (photo-ID). "High" stranding data indicates well-established networks with consistent coverage. "Limited" CR feasibility indicates method works for specific applications (e.g., site fidelity) but not population-wide vital rates.

24 3 The Stranding Pathway: From Death to Demographic

Data

225

238

247

Stranding records are not random samples of population mortality. Every carcass passes
through sequential filtering stages (from death at sea through drift, decomposition, detection, and selective sampling) each introducing age-specific and condition-specific biases that
compound multiplicatively. Understanding this cascade of sampling processes is essential for
rigorous demographic inference.

3.1 The Stranding Process as Sequential Filtering

Classical life table construction from age-at-death data requires four assumptions (Caughley, 1966): (1) stable age distribution, (2) time-invariant mortality, (3) random age sampling, and (4) accurate aging. When these assumptions hold, observed age distributions directly inform vital rates (Caughley, 1977). However, stranding data systematically introduce biases at multiple sequential stages between death and dataset inclusion, resulting in compounded distortion of the true mortality signal (see Figure 1).

The stranding of dead marine mammals is inherently a multi-stage process (Peltier et al., 2012, 2013, 2016; Deslias et al., 2024). Peltier et al. 2012 first formalized this process as: $N_{stranded\,cetaceans} = p_{buoyant} \times p_{stranding} \times p_{discovery} \times N_{dead\,at\,sea}$, where $p_{buoyant}$ represents the probability that a carcass is positively buoyant and can drift, $p_{stranding}$ is the probability that a drifting carcass reaches the coast, and $p_{discovery}$ is the probability that a stranded cetacean is discovered and reported to authorities. This review expands this definition to a demographic context, where marine mammal sampling through strandings passes through six filtering stages, each introducing age-specific and condition-specific sampling biases.

Stage 1: Mortality in the Living Population. The number of deaths at age x is propor-

tional to $d(x) \propto n(x) \cdot q_x$, where n(x) is population size and q_x is the age-specific probability of death (Caughley, 1966), assuming stable demography and constant vital rates. Non-stable age distributions—in growing, declining, or recovering populations—cause declining populations to appear to have inflated mortality and expanding populations to show artificially high survival (Caughley, 1977). Temporal variation in mortality from environmental change or anthropogenic pressures yields survival estimates representing unknown historical mixtures rather than current rates (Caughley, 1977; Caswell, 2001). These violations bias inference before any stranding-specific processes occur.

257

Stage 2: Differential Mortality by Cause and Location. The stranding pathway is
already selective before any carcass enters the water: neonates dying nearshore from nutritional stress strand at vastly higher rates than healthy adults dying offshore (IJsseldijk et al.,
2020a); adults killed in fisheries may be discarded at sea, never reaching shore (Peltier et al.,
2016); senescent individuals dying far offshore may sink in deep water; sick animals may move
coastward, inflating their stranding probability. The age distribution of potentially strandable carcasses thus diverges from true population mortality before oceanographic processes
even begin.

266

Stage 3: Drift and Oceanographic Transport. Buoyant carcasses must drift ashore, 267 with probability depending on distance from shore, currents, winds, carcass buoyancy, and 268 coastline configuration, factors that correlate systematically with age and body condition. 269 Juveniles drift differently than adults due to size-dependent buoyancy; carcasses with thick blubber remain buoyant longer than emaciated ones; seasonal oceanographic variation inter-271 acts with seasonal age structure of mortality. Peltier et al. (2013) demonstrated through 272 drift modeling that even under spatially uniform mortality, stranding distributions become highly heterogeneous due to physical transport processes alone, revealing biological signals 274 only after explicit oceanographic correction. 275

276

283

Stage 4: Stranding and Decomposition. Carcasses reaching shore continue to decom-277 pose (already started at sea) at age-dependent rates, with neonates and juveniles decompos-278 ing rapidly (hours to days) and causing systematic underrepresentation (Moore et al., 2021). 279 Summer strandings decompose faster than winter ones, beach substrate and scavenger access 280 affect persistence, and this detection window varies systematically with carcass size and con-281 dition, further distorting observed age distributions independent of actual mortality patterns. 282

Stage 5: Detection and Reporting. Detection probability depends on coastline accessibility, human density, monitoring effort, carcass size, and decomposition state (Peltier et al., 285 2016; Authier et al., 2014). Larger individuals are more conspicuous than small ones, and 286 temporal variation in monitoring effort confounds trend detection: apparent stranding increases may reflect improved reporting infrastructure rather than elevated mortality (ten 288 Doeschate et al., 2018). IJsseldijk et al. (2021) demonstrated that integrating near-shore 289 sightings with strandings can distinguish abundance-driven from mortality-driven stranding 290 rates—revealing genuine unusual mortality events after accounting for local population den-291 sity.

293

292

Stage 6: Sampling and Necropsy Selection. Even after detection, not all stranded 294 carcasses enter demographic datasets. Sampling protocols vary by network objectives and 295 resources: health surveillance programs prioritize fresh carcasses with intact organs for patho-296 logical examination (IJsseldijk et al., 2018), systematically excluding decomposed individuals; research-focused networks may target specific age classes or species; logistical constraints (ac-298 cessibility, storage capacity, funding) force selective sampling based on carcass condition, size, 299 or species rarity (Simeone and Moore, 2018; Gulland et al., 2025). This final filter $(p_{\text{sample}}(x))$ 300 creates systematic bias often overlooked in demographic analyses: opportunistic sampling to-301 ward well-preserved carcasses underrepresents rapidly decomposing juveniles and offshore 302

mortality, while condition-dependent selection can artificially inflate apparent health or survival of sampled individuals. The selected sample examined for age determination (Read et al., 2018) and reproductive status (Murphy et al., 2015; Kesselring et al., 2017) thus represents a non-random subset of detected strandings, further distorting the demographic signal before any analysis begins.

3.2 The Compounded Bias Problem

315

This cascade can be formalized mathematically to clarify how biases compound. The observed stranding data reflect true actual demographic processes multiplied by all detection probabilities::

$$d_{\rm obs}(x) \propto n(x) \cdot q_x \cdot \prod_i p_i(x)$$
 (1)

$$r_{\rm obs}(x) \propto n(x) \cdot r(x) \cdot q_x \cdot \prod_i p_i(x)$$
 (2)

where $d_{\text{obs}}(x)$ is the observed number of strandings at age x, $r_{\text{obs}}(x)$ is the observed number of reproductively active individuals at age x among strandings, n(x) is the living population size at age x, q_x is the true age-specific mortality probability, r(x) is the true age-specific proportion reproductively active in the population, and $\prod_i p_i(x) = p_{\text{cause}}(x) \cdot p_{\text{drift}}(x) \cdot p_{\text{strand}}(x) \cdot p_{\text{detect}}(x) \cdot p_{\text{sample}}(x)$ represents the compound age-specific probability of being observed and sampled given death has occurred.

Without independent estimates of these sampling probabilities, age-specific mortality probability q_x , age-specific survival probability ϕ_x and the proportion of reproductive individuals r(x) cannot be disentangled from detection processes: the central statistical challenge of stranding-based demography (See Box 2 for a concrete example). Age classes that appear over-represented in stranding data may reflect genuinely elevated mortality, higher stranding/detection probability, or both; conversely, under-represented age classes (particularly

neonates) may experience substantial mortality that remains invisible in stranding records.
Similarly, observed reproductive patterns may reflect true population fecundity or systematic biases in which reproductive states are sampled. Superimposed on these sampling biases,
age determination error from methodological imprecision or biological variation further blurs
age-class boundaries and attenuates survival gradients (Hohn et al., 1989; Stolen and Barlow,
2003).

328

Box 2: Example of compounding biases in stranding data

SCENARIO: Consider a dolphin population experiencing fishery bycatch mortality. Adult dolphins (ages 5–15) suffer elevated bycatch mortality nearshore, yielding genuinely high q_x for these age classes. However, the compound sampling process creates systematic distortion at every stage:

STAGE-SPECIFIC BIASES:

- Stage 2 (p_{cause}): Discarded by catch carcasses may be retained or thrown overboard depending on fishery regulations and observer presence
- Stage 3 (p_{drift}): Small juveniles and large adults drift differently due to sizedependent buoyancy
- Stage 4 (p_{strand}): Summer by catch events in warm waters lead to rapid decomposition compared to winter strandings
- Stage 5 (p_{detect}): Heavily fished regions with high human density detect more carcasses than remote coasts
- Stage 6 (p_{sample}): Field teams prioritize fresh, well-preserved carcasses for necropsy, systematically excluding decomposed individuals

RESULTING CONFOUNDS: The observed age distribution of examined strandings reflects: (1) genuine elevation of adult mortality from bycatch, confounded with (2) higher detection of nearshore adult mortality, (3) size-selective drift and decomposition, (4) spatially heterogeneous monitoring effort, and (5) condition-dependent sampling.

Key message: Disentangling demographic signal from bias artifact requires either independent quantification of each $p_i(x)$ term (rarely possible) or analytical frameworks that circumvent absolute rate estimation by focusing on relative temporal changes or spatial comparisons where biases remain constant (Rouby et al., 2024, 2025).

329

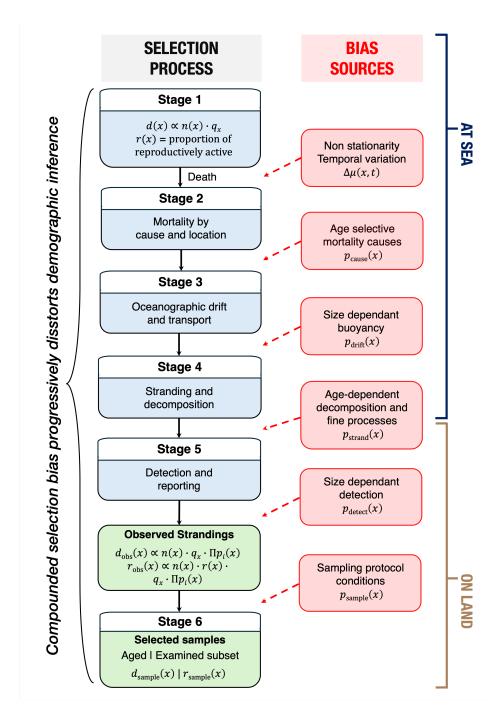


Figure 1: The stranding pathway cascade and sources of bias in demographic inference. Marine mammal deaths pass through six sequential filtering stages (left, blue boxes). Stage 1 shows true mortality $(d(x) \propto n(x) \cdot q_x)$ and proportion of reproductively active individuals (r(x)) in the living population. Observed strandings (green box) include compound sampling bias: $d_{\text{obs}}(x) \propto n(x) \cdot q_x \cdot \prod p_i(x)$, where $\prod p_i(x)$ is the product of all agespecific detection probabilities. Each bias source (right, red boxes) introduces age-specific sampling probabilities $(p_{\text{cause}}, p_{\text{drift}}, p_{\text{strand}}, p_{\text{detect}}, p_{\text{sample}})$ that compound multiplicatively. Stage 6 shows the final selected sample examined for demographic analysis.

Best Practices for Demographic Inference from Strand-4 ings

331

Section 3 formalized the compound bias problem: observed strandings reflect true demo-332 graphic processes multiplied by age-specific detection probabilities across six sequential stages 333 (Equations 1-2). Without independent estimates of $\prod p_i(x) = p_{\text{cause}}(x) \cdot p_{\text{drift}}(x) \cdot p_{\text{strand}}(x)$. 334 $p_{\text{detect}}(x) \cdot p_{\text{sample}}(x)$, absolute vital rates cannot be reliably estimated from stranding records 335 alone. However, three complementary strategies enable extraction of meaningful demographic 336 signals despite these biases: design-based approaches reduce selection bias at the final sam-337 pling stage; model-based approaches using carcasses alone detect relative temporal changes when biases remain constant; and model-based approaches combining strandings with aux-339 iliary data to implicitely remove bias terms. Together, these form a coherent set of best 340 practices for demographic inference that respects inherent limitations while maximizing information content. This set answers a fundamental question: given the research 342 objective and available stranding data, characterized by data type (age, reproduc-343 tion, covariates), stratification (temporal, spatial, individual), and sample size, which demographic parameters can be reliably estimated, and which analytical 345 approach should be used? This section presents each approach, demonstrates success-346 ful applications, and provides decision tools to match research questions with appropriate analytical methods. 348

Design-Based: Reducing Stage 6 Sampling Bias 4.1 349

Design-based methods directly address the final filtering stage—selective sampling and necropsy 350 $(p_{\text{sample}}(x))$ through systematic protocols and stratified sampling. While they cannot eliminate biases inherent to Stages 1–5 (mortality processes, oceanographic drift, decomposition, 352 and detection), standardizing sample selection substantially improves demographic inference 353 by ensuring examined carcasses represent the broader stranding distribution rather than op-354

355 portunistically selected subsets.

Stratified random sampling exemplifies this approach: by systematically sampling across decomposition states, locations, and time periods, researchers ensure representative age coverage rather than preferential selection of well-preserved individuals (Siniff and Skoog, 1964; Rouby et al., 2025). For instance, explicit stratification protocols that mandate inclusion of decomposed carcasses proportional to their detection frequencies directly correct the bias toward fresh specimens, thereby improving estimates of life history parameters and vital rates.

Beyond sample selection, standardized necropsy protocols reduce measurement variance in critical demographic assessments. Consistent procedures for age determination from tooth or ear plug reading and reproductive status assessment from gonadal histology improve precision of age-at-death, age at sexual maturity and fecundity estimates (Geraci and Lounsbury, 1999; Hohn et al., 1989).

Coordinated multi-regional networks implementing consistent sampling schemes enable spatial demographic comparisons while controlling for regional detection heterogeneity. IJs-seldijk et al. (2018) demonstrated that standardized protocols across European stranding networks revealed spatiotemporal mortality patterns in harbour porpoises that informed population structure and anthropogenic impact assessment. Quantified monitoring effort—documenting search intensity, beach coverage, and temporal consistency—enables baseline modeling that distinguishes reporting artifacts from genuine mortality changes. ten Doeschate et al. (2018) showed that effort-corrected stranding rates provide reliable anomaly detection, essential for using strandings as mortality indices in demographic models.

Design-based improvements apply universally: even when absolute vital rates remain biased by Stages 1–5, reducing Stage 6 bias enhances reliability of life history parameters (max-

imum longevity, median lifespan, growth curves) and increases precision of all downstream
demographic estimates. These improvements form the foundation upon which model-based
approaches build.

Model-Based from carcasses only: Detecting Relative Change Despite Absolute Bias

Model-based approaches, focusing on hierarchical patterns, accept that absolute vital rates may remain biased by the compound detection process but focus on detecting *relative* changes over time or *comparative* patterns across groups where biases cancel or remain constant. Building on Equations 1–2, consider a time series of strandings from years t_1, t_2, \ldots, t_{10} spanning a decade. At any time point t, observed strandings at age x follow:

$$d_{\text{obs}}(x,t) \propto n(x,t) \cdot q_x(t) \cdot \prod p_i(x,t)$$
 (3)

If the compound detection probability remains constant over time—that is, $\prod p_i(x, t_1) = \prod p_i(x, t_2) = \cdots = \prod p_i(x, t_{10}) = \prod p_i(x)$ due to consistent sampling protocols, stable oceanographic conditions, and unchanged monitoring effort—then the ratio of observed strandings
between any two time points becomes:

$$\frac{d_{\text{obs}}(x, t_2)}{d_{\text{obs}}(x, t_1)} = \frac{n(x, t_2) \cdot q_x(t_2) \cdot \prod p_i(x)}{n(x, t_1) \cdot q_x(t_1) \cdot \prod p_i(x)} = \frac{n(x, t_2) \cdot q_x(t_2)}{n(x, t_1) \cdot q_x(t_1)} \tag{4}$$

The bias terms $\prod p_i(x)$ cancel exactly, leaving the ratio of observed strandings proportional to the ratio of true mortality scaled by population size. When analyzing survivorship curves constructed from age-at-death distributions, temporal changes in observed survival probabilities $\phi_x(t)$ directly reflect changes in true survival when $\prod p_i(x)$ remains stable, even though absolute survival estimates may be biased. Validation of this assumption requires case-specific analysis of monitoring effort (Authier et al., 2014), drift conditions (Peltier et al., 2012, 2016),

396

patterns of human-induced mortalities (Peltier et al., 2013, 2021) and reporting infrastructure but cannot be prescribed universally.

405

Classical cross-sectional methods assumed time-invariant vital rates and relied on para-406 metric survivorship models (Gompertz, Weibull, Siler bathtub curves; Mannocci et al., 2012) 407 that may inadequately capture marine mammal mortality patterns (Siler, 1979; Heligman and Pollard, 1980). Modern frameworks employ flexible hazard functions—splines, generalized ad-409 ditive models, piecewise exponential distributions—that accommodate complex age-specific 410 mortality without imposing restrictive parametric assumptions (Reed, 2011). Bayesian implementations (Rouby et al., 2021, 2024) provide natural frameworks for incorporating prior 412 biological knowledge, propagating uncertainty through demographic calculations, and accom-413 modating sparse data through hierarchical structures (Moore and Read, 2008a). Critically, Bayesian frameworks enable formal comparison of models with and without temporal trends, 415 providing rigorous hypothesis testing for demographic change detection. Temporal trend de-416 tection from strandings age-at-death data remains an emerging analytical frontier, as demon-417 strated in the following application. 418

419

The Bay of Biscay common dolphin population provides a compelling demonstration of 420 early warning detection from stranding-based survival trends. Despite substantial fishery by-421 catch mortality and no detectable abundance decline from surveys conducted in 1994, 2005, 422 and 2016 (Hammond, 1995; Gilles et al., 2023), temporal analysis of 759 aged individuals from 423 2000–2017 strandings revealed a 7-year decline in median longevity over two decades (from 22.3 to 15.6 years; 95\% credible interval for decline: 5.2-9.1 years), yielding an estimated 425 2.4% cumulative reduction in population growth rate (Rouby et al., 2025). The analysis 426 combined design-based stratified random sampling to correct for sampling bias $(p_{\text{sample}}(x))$ 427 with model-based temporal trend detection, while validating that the remaining detection 428 probabilities $(\prod p_i(x))$ remained constant over the study period, allowing temporal changes 429

in observed age distributions to be attributed to genuine demographic health deterioration.

Similar model-based frameworks apply to reproductive parameters. Flexible models
(Weibull, generalized logistic) for age-at-sexual-maturity estimation implemented in Bayesian
frameworks accommodate individual variation and measurement uncertainty better than classical logistic regression, improving precision of this critical life history parameter (Kesselring
et al., 2017). Comparative analyses across sexes, regions, or time periods follow identical
logic: if sampling protocols remain consistent, observed differences reflect biological variation rather than detection artifacts.

439

431

Model-based innovations transform stranding data from static life tables into dynamic demographic surveillance systems capable of detecting population deterioration before abundance impacts manifest. The approach requires: (1) adequate sample sizes (e.g. n > 300 for survivorship temporal trends, see Rouby et al., 2021 and Rouby et al., 2024; species-specific simulation recommended), (2) multi-year time series, (3) consistent sampling protocols to avoid $p_{\text{sample}}(x)$ introduction and (4) careful validation that detected changes to ensure stable $\prod p_i(x)$. So signals reflect demography rather than evolving detection processes.

4.3 Model-Based: Quantifying Compound Bias Through Auxiliary Data

Integrated population models (IPMs) offer the current most powerful tool for stranding-based demography by directly addressing the central statistical challenge: independent quantification of the compound bias terms $\prod p_i(x)$ from Equations 1–2. IPMs combine multiple data sources (e.g. abundance surveys, mark-recapture studies, bycatch observations, oceanographic models, and strandings) within a unified statistical framework that probabilistically constrains demographic parameters across complementary datasets (Besbeas et al., 2002;
Schaub and Abadi, 2011; Zipkin and Saunders, 2018). By explicitly accounting for each

source's uncertainty and bias structure while leveraging their collective strengths (Kéry and Schaub, 2012; Abadi et al., 2010).

458

When stranding data complement photo-identification (photo-ID) studies, the synergetic integration is particularly powerful. Strandings provide age-at-death, cause-specific mortality, body condition, and reproductive status: information unavailable from photo-ID sightings alone. Photo-ID provides survival estimates and detection probabilities that validate
stranding-based parameters and correct for incomplete carcass recovery.

464

Hostetler et al. (2021) demonstrated this synergy for Florida manatees, combining aerial 465 abundance surveys, systematic carcass recovery, and photo-ID histories to reconstruct 20-466 year population dynamics ($\lambda = 1.02$; 95% CI 1.01–1.03). The integrated population model estimated age-specific carcass recovery probabilities for the first time, revealing high detec-468 tion for adults (97%; 90–100%) and subadults (95%; 87–98%) but substantially lower rates 469 for calves (67%; 48–84%), and quantified how detection varied temporally, reaching lows of 29% for calves during mortality events. This integration proved critical for assessing the 2013 471 red tide event: while 353 manatee carcasses were documented, the IPM estimated true mor-472 tality at 331 deaths (217–466), demonstrating that even with high recovery effort, raw carcass 473 counts captured most but not all mortality. Crucially, integration with photo-ID survival data revealed that detection probability varied systematically by mortality event type (lowest 475 during red tides, highest during cold events), enabling correction for age-specific and event-476 specific detection biases that would otherwise confound mortality assessments. The model also estimated previously unknown juvenile survival probabilites, filled abundance gaps for 478 non-survey years, and quantified the population-level impact of the red tide ($\lambda = 0.89$ in 479 2013), insights unattainable from any single data stream. 480

481

482

Integrated approaches like IPMs demand coordinated data collection and substantial an-

alytical investment but yield demographic insights impossible from any single data source.

Minimum requirements include: (1) at least two complementary data types (typically strandings + abundance or strandings + mark-recapture), (2) temporal overlap across datasets,

(3) explicit models linking each data type to underlying demographic parameters, and (4)

quantified uncertainty in bias terms. When these conditions are met, IPMs provide the

methodological pathway for transforming stranding data from biased samples into rigorous

demographic monitoring tools by explicitly estimating—rather than ignoring or assuming

constant—the compound detection process.

4.4 Matching Research Questions to Analytical Methods

The three frameworks above (design-based, model-based using creases only and integrated 492 model-based) address different aspects of the compound bias problem and support different 493 types of demographic inference. Selecting the appropriate framework requires matching re-494 search questions with data characteristics, available auxiliary information, and acceptable levels of inference. Questions are organized in Table 2 by inferential requirements, key as-496 sumptions, major biases, and recommended approaches, with detailed guidance on parame-497 ters and key references for each question type. The structure reflects a fundamental reality: life history parameters remain defensible despite violations of classical assumptions, vital 499 rates require careful validation, while temporal trends and comparisons can circumvent ab-500 solute bias through focus on relative changes. Users should identify their research question, 501 assess whether available data meet the stated assumptions, and select analytical approaches 502 accordingly. When assumptions are violated or biases cannot be adequately addressed, nar-503 rower questions may remain answerable under a set of reasonnable and explicitly stated assumptions. 505

Questions are grouped into five categories reflecting increasing complexity:

506

507

508

1. Life history parameters (maximum longevity, age at sexual maturity, gestation

- length, growth patterns): Relatively robust to compound bias because they describe biological characteristics rather than population-level rates. Design-based approaches suffice for most applications.
- Vital rates (age-specific survival, fecundity schedules): Require strong stationarity assumptions and are directly affected by all bias stages. Absolute estimation demands auxiliary data; relative comparisons across groups feasible with model-based methods under constant $\prod p_i(x)$.

516

517

518

519

520

521

522

523

524

525

- 3. Population metrics (population growth rate λ , generation time T): Compound multiple biased vital rate estimates, propagating uncertainty from each component. Model-based with auxiliary data essential unless inference focuses solely on direction of change.
- 4. **Temporal trends** (declining survival, changing longevity, early warning signals): Model-based approaches excel here because relative change detection circumvents absolute bias quantification. Requires consistent sampling protocols and adequate time series.
- 5. Comparisons (sex differences, regional variation, cause-specific patterns): Feasible when sampling protocols are comparable across comparison groups, allowing biases to cancel. Both model-based and design-based approaches applicable depending on question.
- 6. Integrated approaches (population viability analysis, demographic drivers): Leverage multiple data streams to validate parameters and quantify bias structure. Represent
 the frontier of stranding-based demography but require substantial data and analytical
 investment.

Table 2: Research Questions, Methods, and Limitations in Stranding-Based Demographic Analysis

Research Question	Parameter	Key Assumptions	Major Biases	Reference examples	
Life History Parameters					
Longevity?	Max age at death	Representative old-age sampling	Old animals underrepresented	(George et al., 1999; Venuto et al., 2020; Breed et al., 2024; Rouby et al., 2025)	
Mean/median lifespan?	Life expectancy (e_0)	Stationary age distribution	Age-selective stranding	(Betty et al., 2023)	
Age at sexual maturity?	Age when 50% of the sample is maturen	Stranded females representative	Sick/injured may differ and age selection	(Read and Gaskin, 1990; Hohn et al., 1996; Kesselring et al., 2017; Roca-Monge et al., 2022)	
Gestation length?	Pregnancy duration	Accurate fetal aging	Small samples; seasonal bias	(Perrin and Reilly, 1984; Barlow, 1984; Calzada et al., 1997)	

Continued on next page

Table 2 continued from previous page

Research Question	Parameter	Key Assumptions	Major Biases	Reference examples
Growth patterns?	Length/mass at-age	Representative age-size sampling	Young classes undersampled	(Calzada et al., 1997; Evans and Hindell, 2004; Venuto et al., 2020; Guarino et al., 2021)
Vital Rates				
Age-specific survival?	ϕ_x	Stationarity; no age bias; accurate aging	Nonstationarity; differential detection	(Barlow and Boveng, 1991; Stolen and Barlow, 2003; Mannocci et al., 2012; Rouby et al., 2025)
Age-specific mortality?	q_x	Stationarity; no age bias; accurate aging	Nonstationarity; differential detection	(Heligman and Pollard, 1980; Barlow and Boveng, 1991; Stolen and Barlow, 2003; Moore and Read, 2008a; Betty et al., 2023)

Continued on next page

Table 2 continued from previous page

Research Question	Parameter	Key Assumptions	Major Biases	Reference examples
Survivorship curve?	l_x	Representative mortality across ages	Neonate undersampling	(Siler, 1979; Stolen and Barlow, 2003; Arrigoni et al., 2011; Reed, 2011; Mannocci et al., 2012; Saavedra, 2018; Betty et al., 2023; Rouby et al., 2021)
Mortality hazard?	μ_x	Constant hazard within age	Bathtub shape needs flexible models	(Reed, 2011; Rouby et al., 2021)
Age-specific fecundity?	m_x	Representative females	Stress-induced abortion	(Perrin and Reilly, 1984; Murphy et al., 2015; Kesselring et al., 2017)
Population Metric	28			
Population growth?	λ (matrix model)	All vital rate assumptions valid	Compounds all biases	(Mannocci et al., 2012; Moore and Read, 2008a)
Generation time?	Mean age reproduction (T)	Stable age distribution	Biased if ASM/longevity biased	(Stolen and Barlow, 2003; Mannocci et al., 2012)

Table 2 continued from previous page

		•		
Research	Parameter	Key Assumptions	Major Biases	Reference examples
Question				
Temporal Trends				
Survival declining?	Trend in ϕ_x	Constant detection over time	Effort/drift changes	(Rouby et al., 2024, 2025)
Longevity changing?	Trend in mean/max age	Consistent protocol; stratified design	Observer effort varies	(Rouby et al., 2024, 2025)
Early warning?	Relative vital rate change	Constant selection bias	Short series lack power	(Rouby et al., 2024, 2025)
Comparisons				
Sex differences?	Sex-specific ϕ_x or l_x	Sex bias constant over time	Differential offshore mortality	(Stolen and Barlow, 2003; Betty et al., 2023)
Regional differences?	Spatial vital rate variation	Comparable sampling effort	Drift varies by region	(IJsseldijk et al., 2018, 2020b)
Cause-specific mortality?	Mortality by cause	Accurate determination	Discards underdetected	(Peltier et al., 2016; Moore et al., 2021; Peltier et al., 2021)
Integrated Approaches				

Table 2 continued from previous page

Research Question	Parameter	Key Assumptions	Major Biases	Reference examples
Population viability?	Multiple rates + λ	Integration with surveys/CMR	Reduced not eliminated	(Hostetler et al., 2021; Nelson et al., 2024)
Demographic drivers?	Limiting vital rate	IPM framework	Bias structure modeled	(Fujiwara and Caswell, 2001; Hostetler et al., 2021; Nelson et al., 2024)

Notes: This table summarizes key demographic questions addressable with stranding data, required assumptions, major sources of bias, and foundational references. ASM = Age at Sexual Maturity.

530 4.5 Practical Guide for Selecting Analytical Approaches

As a reminder, a common fundamental question arising when working with stranding data 531 is: given available samples and a specific research objective, which analytical ap-532 proach is appropriate? The answer depends on connecting research questions (Table 2) 533 with data characteristics through a decision pathway that embodies a fundamental principle: extract maximum information from available data while respecting inherent constraints with-535 out over extrapolating. Rather than abandoning inference when ideal conditions are absent, 536 the pathway guides adaptation of methods to answer narrower but still meaningful questions. 537 This logic flows from biological measurements (age, reproduction, covariates) through ana-538 lytical approaches to demographic parameters $(l_x, \phi_x, q_x, m_x, \lambda)$, as synthesized visually in 539 Figure 2. 540

542 Step 1: Assess available data. Four data characteristics determine analytical possibilities:

543

545

546

548

- Biological measurements: Age-at-death enables survivorship curves (l_x) and age-specific survival probability (ϕ_x) . Adding reproductive status enables fertilities (m_x) . Combined, ϕ_x and q_x allow population growth rate (λ) estimation (Caswell, 2001).
- Stratification structure: Temporal series enable trend detection or time period comparison. Spatial stratification enables regional comparisons. Individual time-invariant covariates (i.e., zone, sex, cause of death) enable demographic partitioning.

• Sample size: Required sample sizes depend critically on species life history (generation time, longevity, age at maturity) and analytical objectives (detecting subtle vs. precipitous declines). Simulation studies tailored to each case (using known or assumed demographic parameters and realistic bias structures) provide defensible guidance for adequacy assessment.

• Auxiliary data availability: Abundance surveys, mark-recapture studies, bycatch observations, or drift models enable integrated approaches that validate and correct bias.

Step 2: Identify the research question. Table 2 organizes demographic questions by inferential requirements (e.g. data type). Life history parameters (longevity, age at maturity)
are relatively robust to compound bias and require only design-based protocols. Vital rate estimation demands stronger assumptions and typically requires model-based approaches with
or without auxiliary data.

Step 3: Match question and data to approach. Three pathways emerge:

- Design-based protocols apply universally by reducing Stage 6 sampling bias $(p_{\text{sample}}(x))$ through stratified sampling and standardized necropsy. Essential foundation regardless of downstream analysis.
- Model-based temporal analyses from carcasses detect relative changes when (1) the question focuses on trends or comparisons, (2) sampling protocols remain consistent across strata, and (3) absolute bias quantification is unnecessary. Appropriate when $\prod p_i(x)$ can be assumed stable.
- Model-based inference with auxiliary data provide highest confidence when (1) absolute vital rates are required, (2) validation is needed, or (3) auxiliary data exist. Enable direct quantification of $\prod p_i(x)$ and formal bias correction.

Step 4: Adapt when constraints bind. When classical assumptions fail or sample sizes

are marginal, narrow the inferential target. Observed longevity may be estimated when full survivorship curves may not. Comparative analyses across sexes or regions may succeed when absolute rates remain biased. Temporal trend detection circumvents stationarity violations that would invalidate cross-sectional life tables.

580

Figure 2 synthesizes this decision pathway visually, illustrating how data types (age, reproduction, covariates) flow through analytical approaches (design-based, model-based, in-tegrated) to demographic parameters $(l_x, \phi_x, m_x, \lambda)$. This pathway embodies a fundamental principle: extract maximum information from available data while respecting inherent constraints. Rather than abandoning inference when ideal conditions are absent, adapt methods to answer narrower but still meaningful questions.

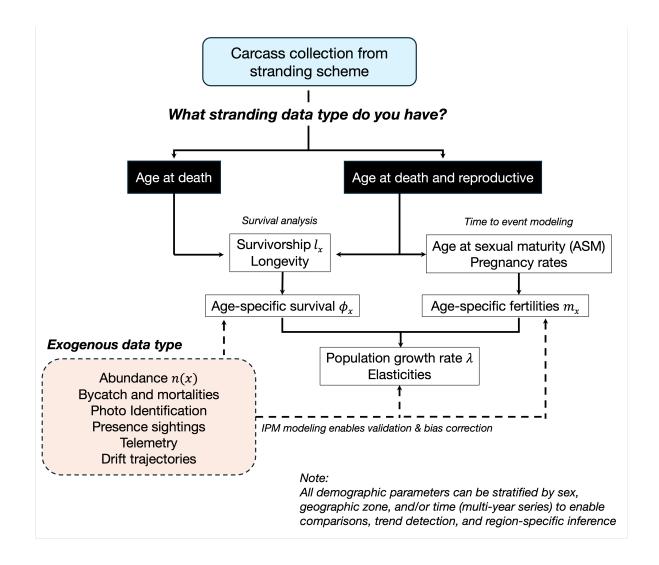


Figure 2: Decision pathway for demographic inference from stranding data. Ageat-death data enable survivorship curves (l_x) and age-specific survival (ϕ_x) through survival analysis. Adding reproductive status enables age-specific fertility (m_x) through time-to-event analysis. Complete vital rates permit estimation of population growth rate (λ) and elasticities via matrix population models. Exogenous data sources (abundance surveys, mark-recapture, bycatch observations, drift models) enable integrated population modeling for validation and bias correction. All demographic parameters can be stratified by sex, geographic zone, cause of death, or time to enable comparisons and trend detection.

587 5 The Future of Demographic Inference from Strand588 ings

The set of best practices in Section 4 demonstrates that strandings provide reliable demographic inference: temporal trend detection, comparative analyses, and integrated modeling yield robust signals of population change. These approaches succeed by focusing on relative changes and leveraging auxiliary data to estimate reliable values and patterns of vital rates. The next frontier is to directly quantify the bias terms in Equations 1–2, transforming strandings from a valuable monitoring tool into an even more powerful demographic surveillance system.

596

597

599

600

602

603

604

605

Three research priorities will expand current capabilities: (1) systematic estimation of age/stage-specific detection probabilities enables direct conversion of observed strandings into absolute mortality probabilities by quantifying $\prod p_i(x)$ empirically; (2) incorporating spatial structure through genetics and isotopes partitions observed mortality by demographic unit, revealing fine-scale population dynamics currently aggregated; (3) bias-corrected vital rates parameterize age-structured simulation models for proactive management evaluation, moving beyond reactive abundance-based control rules. Together, these advances represent the evolution from detecting demographic change to predicting population responses under alternative management scenarios.

5.1 Quantifying Stage/Age-Specific Detection Probabilities

The central statistical challenge (confounding between true age-specific mortality probability q_x and compound detection $\prod p_i(x)$; see Equations 1–2) can only be resolved by independently estimating each bias term. We must treat each probability component as an estimable parameter rather than an acknowledged but unquantified bias (Hart et al., 2006; Authier et al., 2014). This requires coordinated investment in drift modeling infrastructure, dedicated de-

tection studies, and systematic data collection.

Drift modeling. GPS-tracked carcass experiments and validated transport models must systematically quantify $p_{\text{drift}}(x)$ across species, age classes, and oceanographic regimes (Peltier
et al., 2012; Tavares et al., 2023; Deslias et al., 2024). Current regional applications (Peltier
et al., 2013) must expand to correct observed stranding distributions for physical processes
before demographic analysis. Controlled releases with satellite tracking provide empirical
drift trajectories that constrain model predictions (Tavares et al., 2023).

Age-specific buoyancy and decomposition. Controlled experiments measuring carcass persistence times by size class, body condition, and season would parameterize $p_{\text{strand}}(x)$ (Moore et al., 2020). These empirical correction factors are currently absent from all demographic frameworks. Decomposition rates, gas production, and refloating potential vary dramatically with carcass size and environmental conditions (Moore et al., 2020), yet to date no studies provide age-structured estimates.

Systematic coastal observer programs. Standardized beach surveys with known effort must quantify $p_{\text{detect}}(x)$, analogous to seabird carcass surveys (Huggins et al., 2015). Comparing detected strandings against survey intensity directly estimates detection probability by carcass size and condition (Hart et al., 2006). Survey design (including observer training, transect protocols, and temporal coverage) determines whether stranding data can support demographic inference (Authier et al., 2014).

Bycatch observer programs. These programs provide the gold standard for estimating $p_{\text{cause}}(x)$ (Peltier et al., 2016, 2021; Moore et al., 2021). Comparing total fishery mortality against stranded bycatch carcasses reveals which mortality sources enter the stranding pathway. Observer coverage must be designed to ensure representative sampling across fleet segments and seasons (Authier et al., 2021).

5.2 Incorporating Spatial Population Structure and Movement

Marine mammal demography faces a fundamental challenge: classically it is assumed closed 637 populations, yet marine mammals routinely violate this through complex spatial structure, 638 seasonal migrations, and metapopulation dynamics. Classical cross-sectional methods assume 639 all observed deaths come from a single, demographically independent population. However, stranding locations reflect the convolution of population distribution, habitat-specific mor-641 talities, and oceanographic transport. 642 Bias from movement. Ignoring immigration and emigration biases vital rate estimates. Observed age distributions represent a mixture of residents and transients with potentially different demographic trajectories. CMR studies explicitly estimate immigration through 645 recapture probabilities across space (Tenan et al., 2023), but stranding-based frameworks 646 lack this capacity. Without quantifying movement, demographic inference conflates local dynamics with spatial redistribution: a critical blind spot. 648 Genetic assignment tests. These tools offer a direct solution. Multilocus genotyping of stranded individuals using microsatellites or SNPs enables probabilistic assignment to source populations (Paetkau et al., 1997; Rannala and Mountain, 1997). The method identifies 651 immigrants whose genotypes differ from local residents. Recent applications in marine mam-652 mals demonstrate that SNP panels can detect fine-scale population structure and improve assignment accuracy (Foote et al., 2016; Parsons et al., 2024). Population genomic surveys must define demographic independence to enable this approach (Fietz et al., 2016; McCarthy 655 et al., 2025). 656 Stable isotope analysis. Tissue preserve complementary information on geographic origin 657 and movement history. Isotopic signatures reflect foraging location and distinguish residents 658 from dispersers (Newsome et al., 2010; Hobson, 1999; Matthews and Ferguson, 2016). Combining genetic population structure with isotopic provenance enables partitioning of stranding records by demographic unit (Brotons et al., 2019; IJsseldijk et al., 2020b). This reveals 661

whether observed mortality represents local population decline or dispersal mortality from

662

663 distant sources.

675

Spatially explicit demographic models. Integration transforms spatially aggregated 664 stranding data into population-specific vital rate estimates. Models must combine genetic 665 structure (Liggins et al., 2013; Riginos et al., 2016; François et al., 2010), oceanographic drift 666 probabilities (Cowen et al., 2006; Paris et al., 2013; Treml et al., 2015), and regional abun-667 dance (Jacobson et al., 2020; Nelson et al., 2024). Current aggregated approaches cannot separate these factors (IJsseldijk et al., 2020a; Rouby et al., 2025). This requires coordinated 669 sampling: systematic genetic and isotopic analysis (Newsome et al., 2010; Troina et al., 2021) 670 of strandings across regions, coupled with population genomic surveys. Spatial genetics can eliminate this blind spot (Alvarado-Serrano and Knowles, 2016; Selkoe et al., 2016). 672

5.3 Advancing Beyond Abundance-Based Control Rules: Demographic Management Strategy Evaluation

Traditional marine mammal conservation relies on control rules applied to abundance estimates—

Potential Biological Removal (PBR), the Removals Limit Algorithm (RLA), and the Anthro-676 pogenic Removals Threshold (ART), to set allowable anthropogenic mortality thresholds 677 (Wade, 1998; Genu et al., 2021; Ouzoulias et al., 2024). However, PBR is not a population 678 model but a decision rule. It combines abundance, productivity, and recovery factors into a 679 mortality limit designed to maintain populations at optimum sustainable levels, yet operates 680 independently of the demographic processes generating population responses (Taylor et al., 681 2000; Lonergan, 2011). 682 **Demographic operating models.** Stranding-based vital rate estimates enable the transi-683 tion to Management Strategy Evaluation (MSE) frameworks (Punt et al., 2016; Cooke, 1994; Butterworth, 2007). MSE explicitly models population dynamics through operating models 685 parameterized by stranding-derived survivorship curves, fecundity schedules, and age struc-686 ture (Moore and Read, 2008b; Saavedra, 2018; Stolen and Barlow, 2003). These frameworks 687 simulate population trajectories under alternative control rules (PBR with varying recov-

ery factors, RLA, or ART) and test their performance against conservation objectives over 689 policy-relevant timescales of 50-100 years (Genu et al., 2021; Ouzoulias et al., 2024; Punt 690 et al., 2020; Taylor et al., 2000). MSE accommodates both parametric uncertainty in vital 691 rates and structural uncertainty in population models. 692 Age-structured implementation. Age-structured models become essential when age-693 specific mortality varies (Mannocci et al., 2012). Sensitivity analyses must identify which vital rate uncertainties most affect management outcomes (Punt et al., 2018; Brandon et al., 695 2017). Stranding data offer a unique advantage: they enable estimation of anthropogenic 696 versus natural mortality components, which proves critical for evaluating whether proposed by catch reductions achieve specified recovery probabilities (Moore and Read, 2008b; Saave-698 dra, 2018). 699 Available tools. Integrated software now exists to implement MSE for data-limited species. The RLA package (Genu et al., 2021) transform stranding-derived vital rates from descriptive 701 statistics into forward-looking conservation strategies. These tools test management actions 702 before implementation, completing the paradigm shift from retrospective trend detection to 703 simulation-based decision support (Punt et al., 2016, 2020). 704

Conclusion Conclusion

Collecting stranding-based demographic data is the first step of demographic inference. Minimizing sampling bias through stratified protocols and standardized networks is essential for
reliable parameter estimation. Based on the research question and data availability, practitioners should select the appropriate analytical framework: design-based for life history
parameters, model-based temporal analyses with relative comparisons, or integrated population models when auxiliary data exist. Once obtained, vital rates inform conservation policies
directly.

713

Three research priorities will expand current capabilities. Systematic quantification of age/stage-specific detection probabilities through drift modeling, controlled decomposition experiments, and coastal observer programs transforms compound bias $\prod p_i(x)$ into measurable parameters. Genetic assignment and stable isotope analysis partition stranded individuals by demographic unit, revealing spatial population structure currently obscured by aggregated analyses. Bias-corrected vital rates parameterize age-structured simulation models for management strategy evaluation, enabling proactive conservation planning rather than reactive responses to abundance declines.

722

714

715

716

717

718

719

720

721

The conservation stakes are high. Baiji, Caribbean monk seals, Yangtze porpoises and 723 Vaquitas declined to extinction while abundance monitoring failed to detect deterioration 724 in time for intervention. North Atlantic right whales provided clear demographic warnings years before abundance surveys showed decline, yet insufficient response continues. For 726 beaked whales, offshore dolphins, porpoises, and other populations inaccessible to photo-727 identification or artificial marking, strandings provide the only demographic window available. 728 Critically, this window tracks adult survival, the vital rate with highest elasticity in longlived species. Adult survival dominates population dynamics in long-lived marine mammals, 730 and stranding-based vital rate monitoring detects declines years before abundance impacts 731 become statistically detectable. The best practices synthesized here: the six-stage filtering, 732 decision tools, and analytical approaches enable extraction of meaningful demographic signals 733 from inherently biased samples. When analyzed appropriately, demographic data obtained 734 from stranding networks represent irreplaceable early warning systems that can prevent the next extinction rather than document it.

37 6 ACKNOWLEDGMENTS

I thank all the mentors and close colleagues I have had for discussions that shaped my thinking on demographic inference and for fostering my development as a quantitative ecologist: Matthieu Authier, Floriane Plard, Vincent Ridoux, Jérôme Spitz, Stéphanie Jenouvrier, Joanie Van de Walle, Francesco Ventura, Mathieu Genu, Willy Dabin, Christophe Barbraud, 741 Karine Delord, Cassandra Brooks, Henri Weimerskirch, Florence Caurant, Timothée Bonnet, 742 and Olivier Gimenez. I thank Joseph Geraci, David St. Aubin, Bill Perrin, and Sam Ridgway for laying the foundations for stranding response. I thank all the people involved in the global 744 network of stranding responders, coordinators, and veterinarians whose dedication to marine 745 mammal conservation generates the data that make demographic assessments possible. This review benefited from discussions with members of the Society for Marine Mammalogy, the 747 Ecological Society of America, and stranding network coordinators in Europe, North America, 748 Asia, Oceania, and Africa. It also benefited from discussions with colleagues at the Observatoire Pelagis, Centre d'Études Biologiques de Chizé, Woods Hole Oceanographic Institution, 750 and University of Colorado Boulder. Finally, I thank all funding organizations that provide 751 key financial support for marine mammal stranding networks worldwide. 752

References

- Abadi, F., Gimenez, O., Ullrich, B., Arlettaz, R., and Schaub, M. (2010). Estimation of immigration rate using integrated population models. *Journal of Applied Ecology*, 47(2):393–400.
- Alvarado-Serrano, D. F. and Knowles, L. L. (2016). Spatially explicit summary statistics for historical population genetic inference. *Methods in Ecology and Evolution*, 7(3):418–427.
- Andersen, M., Kovacs, K. M., and Lydersen, C. (2021). Stable ringed seal (pusa hispida)
 demography despite significant habitat change in svalbard, norway. *Polar Research*, 40.

- Arnason, A. N. (1973). The estimation of population size, migration rates and survival in a stratified population. Researches on Population Ecology, 15(1):1–8.
- Arrigoni, M., Manfredi, P., Panigada, S., Bramanti, L., and Santangelo, G. (2011). Life-
- history tables of the mediterranean fin whale from stranding data. Marine Ecology, 32:1–9.
- Arso Civil, M., Cheney, B., Quick, N. J., Islas-Villanueva, V., Graves, J. A., Janik, V. M.,
- Thompson, P. M., and Hammond, P. S. (2019). Variations in age-and sex-specific survival
- rates help explain population trend in a discrete marine mammal population. Ecology and
- Evolution, 9(1):533-544.
- Authier, M., Galatius, A., Gilles, A., and Spitz, J. (2020). Of power and despair in cetacean
- conservation: estimation and detection of trend in abundance with noisy and short time-
- series. *PeerJ*, 8:e9436.
- Authier, M., Peltier, H., Dorémus, G., Dabin, W., Van Canneyt, O., and Ridoux, V. (2014).
- How much are stranding records affected by variation in reporting rates? A case study of
- small delphinids in the Bay of Biscay. *Biodiversity and Conservation*, 23(10):2591–2612.
- Authier, M., Rouby, E., and Macleod, K. (2021). Estimating cetacean bycatch from non-
- representative samples (I): a simulation study with regularized multilevel regression and
- post-stratification. Frontiers in Marine Science, 8:719956.
- Authier, M., Spitz, J., Blanck, A., and Ridoux, V. (2017). Conservation science for marine
- megafauna in europe: historical perspectives and future directions. Deep Sea Research
- Part II: Topical Studies in Oceanography, 141:1–7.
- Baird, R. (2003). Update cosewic status report on the harbour porpoise phocoena phocoena
- (pacific ocean population) in canada. COSEWIC assessment and update status report on
- the harbour porpoise Phocoena phocoena (Pacific Ocean population) in Canada. Ottawa,
- pages 1–22.

- Baird, R. W. and Gorgone, A. M. (2005). False killer whale dorsal fin disfigurements as
- a possible indicator of long-line fishery interactions in hawaiian waters1. Pacific Science,
- 59(4):593-601.
- Barlow, J. (1984). Reproductive seasonality in pelagic dolphins (Stenella spp.): Implications
- for measuring rates. In Perrin, W. F., Brownell, R. L., and DeMaster, D. P., editors,
- Reproduction in Whales, Dolphins and Porpoises, Report of the International Whaling
- Commission, Special Issue 6, pages 191–198. International Whaling Commission, Cam-
- bridge, UK.
- Barlow, J. and Boveng, P. (1991). Modeling age-specific mortality for marine mammal
- populations. Marine Mammal Science, 7(1):50–65.
- Besbeas, P., Freeman, S. N., Morgan, B. J. T., and Catchpole, E. A. (2002). Integrating
- mark-recapture-recovery and census data to estimate animal abundance and demographic
- parameters. Biometrics, 58(3):540-547.
- Betty, E. L., Stockin, K. A., Hinton, B., Bollard, B. A., Orams, M. B., and Murphy, S.
- 798 (2023). Age-and sex-specific survivorship of the southern hemisphere long-finned pilot
- whale (globicephala melas edwardii). Journal of Mammalogy, 104(1):39–48.
- Biddlecombe, B. A. and Watt, C. A. (2022). Modeling population trajectory and probabil-
- ity of decline in northern hudson bay narwhals (monodon monoceros). Marine Mammal
- Science, 38(4):1357-1370.
- 803 Bigg, M. A., Olesiuk, P. F., Ellis, G. M., Ford, J. K. B., and Balcomb, K. C. (1990). Social
- organization and genealogy of resident killer whales (Orcinus orca) in the coastal waters of
- British Columbia and Washington State. Report of the International Whaling Commission,
- soe Special Issue 12:383–405.
- Bloch, D., Desportes, G., Zachariassen, M., and Christensen, I. (1996). The northern bot-
- tlenose whale in the faroe islands, 1584-1993. Journal of Zoology, 239(1):123-140.

- Bodkin, J. L., Burdin, A. M., and Ryazanov, D. A. (2000). Age-and sex-specific mortality and population structure in sea otters. *Marine Mammal Science*, 16(1):201–219.
- Bohart, A. M., Lunn, N. J., Derocher, A. E., and McGeachy, D. (2021). Migration dynamics of polar bears (ursus maritimus) in western hudson bay. *Behavioral Ecology*, 32(3):440–451.
- Booth, C. G., Sinclair, R. R., and Harwood, J. (2020). Methods for monitoring for the population consequences of disturbance in marine mammals: a review. Frontiers in Marine Science, 7:115.
- Boyd, I., Croxall, J., Lunn, N., and Reid, K. (1995). Population demography of antarctic fur seals: the costs of reproduction and implications for life-histories. *Journal of Animal Ecology*, pages 505–518.
- Brandon, J. R., Punt, A. E., Moreno, P., and Reeves, R. R. (2017). Toward a tier system
 approach for calculating limits on human-caused mortality of marine mammals. *ICES*Journal of Marine Science, 74(3):877–887.
- Braund, S. R., Lawrence, P. B., Sears, E. G., and Regehr, E. V. (2022). Literature review and method development for incorporating indigenous knowledge into an integrated population model for the southern and northern beaufort sea polar bear subpopulations.
- Breed, G. A., Vermeulen, E., and Corkeron, P. (2024). Extreme longevity may be the rule not the exception in balaenid whales. *Science Advances*, 10(51):eadq3086.
- Brotons, J. M., Islas-Villanueva, V., Alomar, C., Tor, A., Fernández, R., and Deudero, S. (2019). Genetics and stable isotopes reveal non-obvious population structure of bottlenose dolphins (*Tursiops truncatus*) around the Balearic Islands. *Hydrobiologia*, 842:233–247.
- Buckland, S. T. and York, A. E. (2018). Abundance estimation. In *Encyclopedia of marine*mammals, pages 1–6. Elsevier.

- Burek Huntington, K. A., Gill, V. A., Berrian, A. M., Goldstein, T., Tuomi, P., Byrne, B. A.,
- Worman, K., and Mazet, J. (2021). Causes of mortality of northern sea otters (enhydra
- lutris kenyoni) in alaska from 2002 to 2012. Frontiers in Marine Science, 8:630582.
- Butterworth, D. S. (2007). Why a management procedure approach? some positives and
- negatives. ICES Journal of Marine Science, 64(4):613–617.
- ⁸³⁷ Calzada, N., Aguilar, A., Grau, E., and Lockyer, C. (1997). Patterns of growth and physical
- maturity in the western mediterranean striped dolphin, stenella coeruleoalba (cetacea:
- Odontoceti). Canadian journal of zoology, 75(4):632–637.
- Carroll, E. L., Härkönen, T., Aguilar, A., Angerbjörn, A., Harding, K. C., and Olsen, M. T.
- (2024). 120-years of ecological monitoring data shows that the risk of overhunting is in-
- creased by environmental degradation for an isolated marine mammal population: the
- Baltic grey seal. Journal of Animal Ecology, 93(3):299–313.
- caswell, H. (2000). Prospective and retrospective perturbation analyses: their roles in con-
- servation biology. *Ecology*, 81(3):619–627.
- ⁸⁴⁶ Caswell, H. (2001). Matrix Population Models: Construction, Analysis, and Interpretation.
- Sinauer Associates, Sunderland, Massachusetts, 2nd edition.
- 848 Caswell, H. (2019). Sensitivity analysis: matrix methods in demography and ecology. Springer
- Nature.
- 850 Caughley, G. (1966). Mortality patterns in mammals. Ecology, 47(6):906–918.
- ⁸⁵¹ Caughley, G. (1977). Analysis of Vertebrate Populations. John Wiley & Sons, New York.
- 852 Caughley, G. (1994). Directions in conservation biology. Journal of animal ecology, pages
- 853 215–244.

- Chapman, D. G. (1964). The estimation of biological populations. In Carr-Saunders, A. J.,
- editor, Animal Populations in Relation to Their Food Resources, pages 177–204. Blackwell,
- 856 Oxford.
- ⁸⁵⁷ Chiquet, R. A., Montgomery, T., Ma, B., and Ackleh, A. S. (2015). A matrix population
- model of beaked whales. Neural, Parallel, and Scientific Computations, 23:179–192.
- Christiansen, F., Dawson, S. M., Durban, J. W., Fearnbach, H., Miller, C. A., Bejder, L.,
- Uhart, M., Sironi, M., Corkeron, P., Rayment, W., et al. (2020). Population comparison
- of right whale body condition reveals poor state of the north atlantic right whale. Marine
- Ecology Progress Series, 640:1–16.
- Cooke, J. G. (1994). The management of whaling. Aquatic Mammals, 20:129–135.
- 864 Cormack, R. M. (1964). Estimates of survival from the sighting of marked animals.
- Biometrika, 51(3-4):429-438.
- ⁸⁶⁶ Coulson, T., Catchpole, E. A., Albon, S. D., Morgan, B. J. T., Pemberton, J. M., Clutton-
- Brock, T. H., Crawley, M. J., and Grenfell, B. T. (2001). Age, sex, density, winter weather,
- and population crashes in Soay sheep. Science, 292(5521):1528–1531.
- Cowen, R. K., Paris, C. B., and Srinivasan, A. (2006). Scaling of connectivity in marine
- populations. *Science*, 311(5760):522–527.
- 871 Croft, D. P., Brent, L. J. N., Franks, D. W., and Cant, M. A. (2017). The evolution of
- prolonged life after reproduction. Trends in Ecology & Evolution, 32(6):407–416.
- D'amico, A., Gisiner, R. C., Ketten, D. R., Hammock, J. A., Johnson, C., Tyack, P. L., and
- Mead, J. (2009). Beaked whale strandings and naval exercises.
- De Silva, S. and Leimgruber, P. (2019). Demographic tipping points as early indicators of
- vulnerability for slow-breeding megafaunal populations. Frontiers in Ecology and Evolution,
- 7:171.

- Deslias, C., Daniel, P., López, A., Martínez-Cedeira, J., Ridoux, V., and Peltier, H. (2024).
- Predicting the drift of small cetaceans stranded along the atlantic coast of the iberian
- peninsula: Parametrization of the mothy drift model. *PloS one*, 19(12):e0315593.
- Eberhardt, L. (2002). A paradigm for population analysis of long-lived vertebrates. *Ecology*,
- 83(10):2841-2854.
- Eberhardt, L. and O'shea, T. (1995). Integration of manatee life-history data and population
- modeling. Population biology of the Florida manatee, pages 269–279.
- Elliser, C. R., MacIver, K. H., and Green, M. (2018). Group characteristics, site fidelity,
- and photo-identification of harbor porpoises, phocoena phocoena, in burrows pass, fidalgo
- island, washington. Marine Mammal Science, 34(2):365–384.
- Elliser, C. R., van der Linde, K., and MacIver, K. (2022). Adapting photo-identification
- methods to study poorly marked cetaceans: a case study for common dolphins and harbor
- porpoises. *Mammalian Biology*, 102(3):811–827.
- Elliser, C. R., White, K. H., and Hansen, M. C. (2025). Resident harbor porpoises (phocoena
- phocoena vomerina) in the salish sea: Photo-identification shows long-term site fidelity,
- natal philopatry, and provides insights into longevity and behavior. In *Oceans*, volume 6,
- page 9. MDPI.
- Estes, J., Hatfield, B. B., Ralls, K., and Ames, J. (2003). Causes of mortality in california
- sea otters during periods of population growth and decline. Marine Mammal Science,
- 19(1):198–216.
- Evans, K. and Hindell, M. A. (2004). The age structure and growth of female sperm whales
- (physeter macrocephalus) in southern australian waters. Journal of Zoology, 263(3):237–
- 900 250.
- Fietz, K., Graves, J. A., Olsen, M. T., Russello, M. A., Moura, A. E., Natoli, A., Gunnlaugs-
- son, T., Víkingsson, G., MacLeod, C., Thomas, L., Hall, A. J., and Hoelzel, A. R. (2016).

- Spatially explicit analysis of genome-wide SNPs detects subtle population structure in a mobile marine mammal, the harbor porpoise. *PLoS ONE*, 11(10):e0162792.
- Foote, A. D., Thomsen, P. F., Sveegaard, S., Wahlberg, M., Kielgast, J., Kyhn, L. A., Salling,
- A. B., Galatius, A., Orlando, L., and Gilbert, M. T. P. (2016). Spatially explicit analysis
- of genome-wide SNPs detects subtle population structure in a mobile marine mammal, the
- 908 harbor porpoise. *PLOS ONE*, 11(10):e0162792.
- Fowler, C. W. (1984). Density dependence in cetacean populations. Report of the International Whaling Commission, Special Issue 6:373–379.
- Fowler, C. W. (1988). Population dynamics as related to rate of increase per generation.

 Evolutionary Ecology, 2(3):197–204.
- François, O., Currat, M., Ray, N., Han, E., Excoffier, L., and Novembre, J. (2010). Spatially explicit Bayesian clustering models in population genetics. *Molecular Ecology Resources*, 10(5):773–784.
- Fujiwara, M. and Caswell, H. (2001). Demography of the endangered North Atlantic right whale. *Nature*, 414:537–541.
- Gaillard, J.-M., Festa-Bianchet, M., and Yoccoz, N. G. (1998). Population dynamics of large herbivores: variable recruitment with constant adult survival. *Trends in ecology & evolution*, 13(2):58–63.
- Garde, E., Tervo, O. M., Sinding, M.-H. S., Nielsen, N. H., Cornett, C., and Heide-Jørgensen,
 M. P. (2022). Biological parameters in a declining population of narwhals (monodon
 monoceros) in scoresby sound, southeast greenland. Arctic Science, 8(2):329–348.
- Gaskin, D. E. and Watson, A. (1985). The harbor porpoise, phocoena phocoena, in fish harbour, new brunswick, canada: Occupancy, distribution, and movements. *Fishery Bulletin*, 83(3):427–442.

- 927 Genu, M., Gilles, A., Hammond, P. S., Macleod, K., Paillé, J., Paradinas, I., Smout, S.,
- Winship, A. J., and Authier, M. (2021). Evaluating strategies for managing anthropogenic
- mortality on marine mammals: An R implementation with the package RLA. Frontiers
- in Marine Science, 8:795953.
- 931 George, J. C., Bada, J., Zeh, J., Scott, L., Brown, S. E., O'Hara, T., and Suydam, R.
- 932 (1999). Age and growth estimates of bowhead whales (balaena mysticetus) via aspartic
- acid racemization. Canadian Journal of Zoology, 77(4):571–580.
- 934 Geraci, J. R. and Lounsbury, V. J. (1999). Marine Mammals Ashore: A Field Guide for
- 935 Strandings. Texas A&M University Sea Grant College Program, 2nd edition.
- 936 Gerber, L. R. and Heppell, S. S. (2004). The use of demographic sensitivity analysis in
- marine species conservation planning. Biological Conservation, 120(1):121–128.
- Gerber, L. R., Tinker, M. T., Doak, D. F., Estes, J. A., and Jessup, D. A. (2004). Mortality
- sensitivity in life-stage simulation analysis: a case study of southern sea otters. Ecological
- Applications, 14(5):1554-1565.
- Gerrodette, T. (1987). A power analysis for detecting trends. *Ecology*, 68(5):1364–1372.
- 942 Gilles, A., Authier, M., Ramirez-Martinez, N., Araújo, H., Blanchard, A., Carlström, J.,
- Eira, C., Dorémus, G., Fernández-Maldonado, C., Geelhoed, S., et al. (2023). Estimates of
- cetacean abundance in european atlantic waters in summer 2022 from the scans-iv aerial
- and shipboard surveys.
- Gompertz, B. (1825). On the nature of the function expressive of the law of human mor-
- tality, and on a new mode of determining the value of life contingencies. *Philosophical*
- Transactions of the Royal Society of London, 115:513–583.
- Guarino, F., Di Nocera, F., Galiero, G., Iaccarino, D., Giglio, S., Madeo, E., Pollaro, F.,
- Mezzasalma, M., Iavarone, I., Odierna, G., et al. (2021). Age estimation and growth of

- striped dolphins stenella coeruleoalba stranded along the coasts of south-western italy. The
- $European\ Zoological\ Journal,\ 88(1):417-424.$
- Gulland, F. M., Asmutis-Silvia, R., Boehm, J., DiGiovanni Jr, R. A., Goertz, C. E., Huggins,
- J. L., Lovewell, G. N., Moore, K. M., and West, K. (2025). Marine mammal stranding
- networks in the 21st century: Whence and whither? Marine Mammal Science, page
- e70016.
- 957 Hammond, P. (1995). Estimating the abundance of marine mammals: a north atlantic
- perspective. In *Developments in Marine Biology*, volume 4, pages 3–12. Elsevier.
- 959 Hammond, P. S., Francis, T. B., Heinemann, D., Long, K. J., Moore, J. E., Punt, A. E.,
- Reeves, R. R., Sepúlveda, M., Sigurðsson, G. M., Siple, M. C., et al. (2021). Estimating
- the abundance of marine mammal populations. Frontiers in Marine Science, 8:735770.
- Hart, K. M., Mooreside, P., and Crowder, L. B. (2006). Systematic survey effort effects on
- regional population estimates of marine mammals. Marine Mammal Science, 22(3):683-
- 964 694.
- Harting, A. L., Barbieri, M. M., Baker, J. D., Mercer, T. A., Johanos, T. C., Robinson, S. J.,
- Littnan, C. L., Colegrove, K. M., and Rotstein, D. S. (2021). Population-level impacts of
- natural and anthropogenic causes-of-death for hawaiian monk seals in the main hawaiian
- islands. Marine Mammal Science, 37(1):235–250.
- Hartman, K. L., Wittich, A., Cai, J. J., Van Der Meulen, F. H., and Azevedo, J. M. (2016).
- Estimating the age of risso's dolphins (grampus griseus) based on skin appearance. Journal
- of Mammalogy, 97(2):490–502.
- Hastings, K. K., Gelatt, T. S., Maniscalco, J. M., Jemison, L. A., Towell, R., Pendleton,
- G. W., and Johnson, D. S. (2023). Reduced survival of steller sea lions in the gulf of alaska
- following marine heatwave. Frontiers in Marine Science, 10:1127013.

- Heligman, L. and Pollard, J. H. (1980). The age pattern of mortality. *Journal of the Institute* of Actuaries, 107(1):49–80.
- Heppell, S. S., Crowder, L. B., and Crouse, D. T. (1998). Models to evaluate headstarting as a management tool for long-lived turtles. *Ecological Applications*, 8(3):705–715.
- Hobson, K. A. (1999). Tracing origins and migration of wildlife using stable isotopes: a review. *Oecologia*, 120(3):314–326.
- Hohn, A., Read, A., Fernandez, S., Vidal, O., and Findley, L. (1996). Life history of the
 vaquita, phocoena sinus (phocoenidae, cetacea). Journal of Zoology, 239(2):235–251.
- Hohn, A. A., Scott, M. D., Wells, R. S., Sweeney, J. C., and Irvine, A. B. (1989). Growth layers in teeth from known-age, free-ranging bottlenose dolphins. *Marine Mammal Science*, 5(4):315–342.
- Holmes, E., Fritz, L., York, A., and Sweeney, K. (2007). Age-structured modeling reveals
 long-term declines in the natality of western steller sea lions. *Ecological Applications*,
 17(8):2214–2232.
- Holmes, E. and York, A. (2003). Using age structure to detect impacts on threatened populations: a case study with steller sea lions. *Conservation Biology*, 17(6):1794–1806.
- Hooker, S. K., De Soto, N. A., Baird, R. W., Carroll, E. L., Claridge, D., Feyrer, L., Miller,
 P. J., Onoufriou, A., Schorr, G., Siegal, E., et al. (2019). Future directions in research on
 beaked whales. Frontiers in marine Science, 5:514.
- Hostetler, J. A., Martin, J., Edwards, H. H., Schrader, A. M., Sabo, A. L., Harmak, C. W.,
 Mezich, A. M., and de Wit, M. (2021). Integrated population models provide the first
 evidence for management effects on Manatee mortality rates and population size in Florida.
- Ecological Applications, 31(3):e02227.

- 998 Huang, J., Mei, Z., Chen, M., Han, Y., Zhang, X., Moore, J. E., Zhao, X., Hao, Y., Wang,
- ⁹⁹⁹ K., and Wang, D. (2020). Population survey showing hope for population recovery of the
- critically endangered yangtze finless porpoise. *Biological Conservation*, 241:108315.
- Huggins, J. L., Oliver, J., Lambourn, D. M., Calambokidis, J., Diehl, B., and Jeffries, S.
- 1002 (2015). Dedicated beach surveys along the Central Washington coast reveal a high propor-
- tion of unreported marine mammal strandings. Marine Mammal Science, 31(1):336–348.
- Hupman, K., Stockin, K. A., Pollock, K., Pawley, M. D., Dwyer, S. L., Lea, C., and Tezanos-
- Pinto, G. (2018). Challenges of implementing mark-recapture studies on poorly marked
- gregarious delphinids. *PloS one*, 13(7):e0198167.
- 1007 IJsseldijk, L. L., Camphuysen, K. C., Keijl, G. O., Troost, G., and Aarts, G. (2021). Predict-
- ing harbor porpoise strandings based on near-shore sightings indicates elevated temporal
- mortality rates. Frontiers in Marine Science, 8:668038.
- ¹⁰¹⁰ IJsseldijk, L. L., Camphuysen, K. C. J., Keijl, G. O., Smeenk, C., and Brownlow, A. (2020a).
- Spatiotemporal mortality and demographic trends in a small cetacean: Strandings to in-
- form conservation management. Biological Conservation, 249:108733.
- ¹⁰¹³ IJsseldijk, L. L., ten Doeschate, M. T. I., Brownlow, A., Davison, N. J., Deaville, R., Galatius,
- A., Gilles, A., Haelters, J., Jepson, P. D., Keijl, G. O., Kinze, C. C., Olsen, M. T., Siebert,
- U., Thøstesen, C. B., van den Broek, J., Gröne, A., and Heesterbeek, H. (2020b). Spa-
- tiotemporal mortality and demographic trends in a small cetacean: strandings to inform
- conservation management. Biological Conservation, 249:108733.
- 1018 IJsseldijk, L. L., ten Doeschate, M. T. I., Brownlow, A., Davison, N. J., Deaville, R., Galatius,
- A., Gilles, A., Haelters, J., Jepson, P. D., Keijl, G. O., Kinze, C. C., Olsen, M. T., Siebert,
- U., Victims, J., Stephan, E., and Tiedemann, R. (2018). Spatiotemporal mortality patterns
- in harbour porpoises reveal structure in populations and mortality sources. Journal of Sea
- none Research, 133:27–39.

- Jacobson, E. K., Linden, D. W., Peltier, H., Dabin, W., Meyers, J. M., and Spitz, J. (2020).
- 1024 Comparing capture-recapture and stranding data for demographic inference in a data-
- deficient dolphin population. Marine Ecology Progress Series, 656:229–240.
- Jefferson, T. A. and Curry, B. E. (1994). A global review of porpoise (cetacea: Phocoenidae)
- mortality in gillnets. *Biological Conservation*, 67(2):167–183.
- Jolly, G. M. (1965). Explicit estimates from capture-recapture data with both death and
- immigration-stochastic model. *Biometrika*, 52(1-2):225–247.
- Jordaan, R. K., Oosthuizen, W. C., Reisinger, R. R., and de Bruyn, P. J. N. (2023). The effect
- of prey abundance and fisheries on the survival, reproduction, and social structure of killer
- whales (Orcinus orca) at subantarctic marion island. Ecology and Evolution, 13(6):e10144.
- 1033 Kasuya, T. and Matsui, S. (1984). Age determination and growth of the short-finned pilot
- whale off the pacific coast of japan. Scientific reports of the whales research institute,
- 35(35):57-91.
- 1036 Kesselring, T., Viquerat, S., Brehm, R., and Siebert, U. (2017). Coming of age: Do female
- harbour porpoises (*Phocoena phocoena*) from the German Bight reach sexual maturity
- earlier? *PLoS ONE*, 12(10):e0186951.
- Koopman, H. N. and Gaskin, D. (1994). Individual and geographical variation in pigmen-
- tation patterns of the harbour porpoise, phocoena phocoena (l.). Canadian Journal of
- Zoology, 72(1):135–143.
- 1042 Kéry, M. and Schaub, M. (2012). Bayesian Population Analysis using WinBUGS: A Hierar-
- chical Perspective. Academic Press, Boston.
- Langtimm, C., O'shea, T., Pradel, R., and Beck, C. (1998). Estimates of annual survival
- probabilities for adult florida manatees (trichechus manatus latirostris). Ecology, 79(3):981-
- 1046 997.

- Langtimm, C. A., Beck, C. A., Edwards, H. H., Fick-Child, K. J., Ackerman, B. B., Barton,
- S. L., and Hartley, W. C. (2004). Survival estimates for florida manatees from the photo-
- identification of individuals. Marine Mammal Science, 20(3):438–463.
- Laws, R. M. (1953). A new method of age determination in mammals with special reference
- to the elephant seal (mirounga leonina, linn.). Proceedings of the Zoological Society of
- London, 123(3):451–479.
- Laws, R. M. (1961). Reproduction, Growth and Age of Southern Fin Whales, volume 31 of
- 1054 Discovery Reports. Cambridge University Press, Cambridge.
- Lebreton, J. D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992). Modeling survival
- and testing biological hypotheses using marked animals: a unified approach with case
- studies. Ecological Monographs, 62(1):67–118.
- Liggins, L., Treml, E. A., and Riginos, C. (2013). Seascape genetics: Populations, individuals,
- and genes marooned and adrift. Geography Compass, 7(3):197–216.
- Lockyer, C. (1993). Seasonal changes in body fat condition of northeast Atlantic pilot whales,
- and their biological significance. Report of the International Whaling Commission, Special
- 1062 Issue 14:325–350.
- Lonergan, M. (2011). Potential biological removal and other currently used management
- rules for marine mammal populations: A comparison. *Marine Policy*, 35(4):584–589.
- Maniscalco, J. M., Springer, A. M., Adkison, M. D., and Parker, P. (2015). Population trend
- and elasticities of vital rates for steller sea lions (eumetopias jubatus) in the eastern gulf
- of alaska: a new life-history table analysis. *PLoS One*, 10(10):e0140982.
- Mannocci, L., Dabin, W., Augeraud-Véron, E., Dupuy, J.-F., Barbraud, C., and Ridoux, V.
- (2012). Assessing the impact of bycatch on dolphin populations: The case of the common
- dolphin in the Bay of Biscay. *PLoS ONE*, 7(2):e32615.

- Matthews, C. J. R. and Ferguson, S. H. (2016). Dentine oxygen isotopes (δ^{18} o) as a proxy for odontocete distributions and movements. *Ecology and Evolution*, 6(13):4643–4653.
- Matthews, J., Steiner, L., Gordon, J., et al. (2001). Mark-recapture analysis of sperm whale
- 1074 (physeter macrocephalus) photo-id data from the azores (1987-1995). J. Cetacean Res.
- Manage., 3(3):219-226.
- McCarthy, M. L., Lehman, N., Peart, C. R., Carroll, E. L., Brasseur, S. M. J. M., Culloch,
- R. M., Hall, A. J., Hammill, M. O., Henriksen, ., Karlsson, O., Kovacs, K. M., Lonergan,
- M., Lucas, Z. N., McCallum, M., Nilssen, K. T., Russell, D. J. F., Sanderson, C. E., Smout,
- S., Stenson, G. B., Thomas, L., Walton, M., Wolf, J. B. W., Wood, S. A., and Hoelzel,
- A. R. (2025). Range-wide genomic analysis reveals regional and meta-population dynamics
- of decline and recovery in the grey seal. *Molecular Ecology*.
- McClenachan, L. and Cooper, A. B. (2008). Extinction rate, historical population struc-
- ture and ecological role of the Caribbean monk seal. Proceedings of the Royal Society B:
- 1084 Biological Sciences, 275(1641):1351–1358.
- McConnell, B., Beaton, R., Bryant, E., Hunter, C., Lovell, P., and Hall, A. (2004). Phoning
- home-a new gsm mobile phone telemetry system to collect mark-recapture data. Marine
- 1087 Mammal Science, 20(2):274–283.
- Meyer-Gutbrod, E. L., Greene, C. H., Davies, K. T., and Johns, D. G. (2021). Ocean
- regime shift is driving collapse of the north atlantic right whale population. Oceanography,
- 1090 34(3):22–31.
- Monnett, C. and Rotterman, L. M. (2000). Survival rates of sea otter pups in alaska and
- california. Marine Mammal Science, 16(4):794–810.
- Monson, D. H., Estes, J. A., Bodkin, J. L., and Siniff, D. B. (2000). Life history plasticity
- and population regulation in sea otters. Oikos, 90(3):457–468.

- Moore, J. E. and Read, A. J. (2008a). A bayesian uncertainty analysis of cetacean demog-
- raphy and bycatch mortality using age-at-death data. Ecological Applications, 18(8):1914–
- 1097 1931.
- Moore, J. E. and Read, A. J. (2008b). A Bayesian uncertainty analysis of cetacean demog-
- raphy and bycatch mortality using age-at-death data. Ecological Applications, 18(8):1914—
- 1100 1931.
- Moore, K. M., Simeone, C. A., and Brownell Jr, R. L. (2018). Strandings. In Encyclopedia
- of marine mammals, pages 945–951. Elsevier.
- Moore, M. J., Rowles, T. K., Gulland, F. M. D., Brederlau, B., Barco, S. G., Pabst, D. A.,
- McLellan, W. A., and Jensen, E. D. (2020). Assessing north atlantic right whale health:
- threats, and development of tools critical for conservation of the species. Diseases of
- 1106 Aquatic Organisms, 143:205–226.
- Moore, M. J., van der Hoop, J. M., Barco, S. G., Costidis, A. M., Gulland, F. M., Jepson,
- P. D., Moore, K. T., Raverty, S., and McLellan, W. A. (2021). Criteria and case definitions
- for serious injury and death of pinnipeds and cetaceans caused by anthropogenic trauma.
- Diseases of Aquatic Organisms, 103:229–247.
- Morris, W. F. and Doak, D. F. (2002). Quantitative conservation biology: Theory and
- practice of population viability analysis.
- Mosnier, A., Measures, L. N., Hammill, M. O., Lebeuf, M., and Gosselin, J. F. (2023).
- Demographic responses of harbour seals to environmental changes in the St. Lawrence
- Estuary. Ecological Indicators, 150:110216.
- Murphy, S., Barber, J. L., Learmonth, J. A., Read, F. L., Deaville, R., Perkins, M. W.,
- Brownlow, A., Davison, N., Penrose, R., Pierce, G. J., et al. (2015). Reproductive failure
- in uk harbour porpoises phocoena phocoena: legacy of pollutant exposure? PLoS One,
- 10(7):e0131085.

- Nater, C. R., Lydersen, C., Andersen, M., and Kovacs, K. M. (2024). Harvest sustainability
- assessments need rethinking under climate change: A ringed seal case study from svalbard,
- norway. Ecosphere, 15(10):e70020.
- Nattrass, S., Croft, D. P., Ellis, S., Cant, M. A., Weiss, M. N., Wright, B. M., Stredulin-
- sky, E., Doniol-Valcroze, T., Ford, J. K. B., Balcomb, K. C., and Franks, D. W. (2019).
- Postreproductive killer whale grandmothers improve the survival of their grandoffspring.
- 1126 Proceedings of the National Academy of Sciences, 116(52):26669–26673.
- Nelson, B. W., Schwarz, L. K., Durban, J., Ellifrit, D., Fearnbach, H., Hanson, M. B., Olson,
- J. K., Ward, E. J., and Wasser, S. K. (2024). A state-space integrated population model
- for Southern Resident killer whales reveals drivers of survival and fecundity. *Ecosphere*,
- 1130 15(2):e4773.
- New, L. F., Moretti, D. J., Hooker, S. K., Costa, D. P., and Simmons, S. E. (2013). Using
- energetic models to investigate the survival and reproduction of beaked whales (family
- ziphiidae). *PloS one*, 8(7):e68725.
- Newsome, S. D., Clementz, M. T., and Koch, P. L. (2010). Using stable isotope biogeochem-
- istry to study marine mammal ecology. Marine Mammal Science, 26(3):509–572.
- Nichols, J. D. and Kendall, W. L. (1992). The use of multi-state capture-recapture models to
- address questions in evolutionary ecology. Journal of Applied Statistics, 22(5-6):835–846.
- Nicholson, A. J. (1954). An outline of the dynamics of animal populations. Australian journal
- of Zoology, 2(1):9-65.
- Ouzoulias, F., Bousquet, N., Genu, M., Gilles, A., Spitz, J., and Authier, M. (2024). Develop-
- ment of a new control rule for managing anthropogenic removals of protected, endangered
- or threatened species in marine ecosystems. *PeerJ*, 12:e16688.

- Paetkau, D., Waits, L. P., Clarkson, P. L., Craighead, L., and Strobeck, C. (1997). An empir-
- ical evaluation of genetic distance statistics using microsatellite data from bear (Ursidae)
- populations. Genetics, 147(4):1943-1957.
- Paris, C. B., Helgers, J., van Sebille, E., and Srinivasan, A. (2013). Connectivity Modeling
- System: A probabilistic modeling tool for the multi-scale tracking of biotic and abiotic
- variability in the ocean. Environmental Modelling & Software, 42:47–54.
- Parsons, K. M., May, S. A., Pearce, C., Leslie, M., Olsen, M., Taylor, B. L., Archer, F. I.,
- Lang, A. R., Bickham, J. W., Withrow, D., Martien, K. K., and Morin, P. A. (2024). Using
- eDNA to supplement population genetic analyses for cryptic marine species: identifying
- population boundaries for Alaska harbour porpoises. *Molecular Ecology*, 34(5):e17563.
- Patton, P. T., Cheeseman, T., Abe, K., Yamaguchi, T., Reade, W., Southerland, K., Howard,
- A., Oleson, E. M., Allen, J. B., Ashe, E., et al. (2023). A deep learning approach to photo-
- identification demonstrates high performance on two dozen cetacean species. Methods in
- $ecology \ and \ evolution, \ 14(10):2611-2625.$
- Peltier, H., Authier, M., Deaville, R., Dabin, W., Jepson, P. D., van Canneyt, O., Daniel, P.,
- and Ridoux, V. (2016). Small cetacean by catch as estimated from stranding schemes: The
- common dolphin case in the Northeast Atlantic. Environmental Science & Policy, 63:7–18.
- Peltier, H., Authier, M., Dorémus, G., van Canneyt, O., Laran, S., and Ridoux, V. (2021).
- Small cetacean by catch as estimated from stranding schemes: The common dolphin case
- in the Northeast Atlantic. Scientific Reports, 11:4009.
- Peltier, H., Dabin, W., Daniel, P., Van Canneyt, O., Dorémus, G., Huon, M., and Ridoux,
- V. (2012). The significance of stranding data as indicators of cetacean populations at sea:
- modelling the drift of cetacean carcasses. *Ecological Indicators*, 18:278–290.
- Peltier, H., Dabin, W., Daniel, P., Van Canneyt, O., Dorémus, G., Huon, M., and Ridoux,

- V. (2013). The stranding anomaly as population indicator: The case of harbour porpoise
- Phocoena phocoena in North-Western Europe. PLoS ONE, 8(4):e62180.
- Perrin, W. F., Donovan, G. P., and Barlow, J. (1994). Gillnets and cetaceans: Incorporating
- the proceedings of the symposium and workshop on the mortality of cetaceans in passive
- fishing nets and traps. In Report of the International Whaling Commission, Special Issue
- 15, pages 1–629. International Whaling Commission, Cambridge.
- Perrin, W. F. and Reilly, S. B. (1984). Reproductive parameters of dolphins and small
- whales of the family delphinidae. In Perrin, W. F., Brownell, R. L., and DeMaster, D. P.,
- editors, Reproduction in Whales, Dolphins and Porpoises, Report of the International
- Whaling Commission (Special Issue 6), pages 97–134. International Whaling Commission,
- 1177 Cambridge, UK.
- Pettis, H. M., Pace, R. M., and Hamilton, P. K. (2021). North Atlantic right whale consor-
- tium 2020 annual report card. Technical report, North Atlantic Right Whale Consortium,
- Boston, MA.
- Pirotta, E., New, L., Fernandez Ajó, A., Bierlich, K., Bird, C. N., Buck, C. L., Hildebrand,
- L., Hunt, K. E., Calambokidis, J., and Torres, L. G. (2025). Body size, nutritional state
- and endocrine state are associated with calving probability in a long-lived marine species.
- Journal of Animal Ecology.
- Pistorius, P. A., De Bruyn, P., and Bester, M. N. (2011). Population dynamics of southern
- elephant seals: a synthesis of three decades of demographic research at marion island.
- 1187 African Journal of Marine Science, 33(3):523–534.
- Pollock, K. H. (1982). A capture-recapture design robust to unequal probability of capture.
- Journal of Wildlife Management, 46(3):752–757.
- Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A., and Haddon, M. (2016).
- Management strategy evaluation: best practices. Fish and Fisheries, 17(2):303–334.

- Punt, A. E., Moreno, P., Brandon, J. R., and Mathews, M. A. (2018). Conserving and recovering vulnerable marine species: a comprehensive evaluation of the US approach for
- marine mammals. ICES Journal of Marine Science, 75(5):1813–1831.
- Punt, A. E., Siple, M. C., Sigourney, D. B., Maunder, M. N., Stevenson, D., Shelden, K.,
- Crance, J., and Jacobson, E. K. (2020). Robustness of potential biological removal to
- monitoring, environmental change, and various assumptions about cetacean populations.
- 1198 ICES Journal of Marine Science, 77(7-8):2491–2507.
- Rannala, B. and Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. *Proceedings of the National Academy of Sciences USA*, 94(17):9197–9201.
- Read, A. j. and Gaskin, D. E. (1990). Changes in growth and reproduction of harbour porpoises, phocoena phocoena, from the bay of fundy. *Canadian Journal of Fisheries and Aquatic Sciences*, 47(11):2158–2163.
- Read, A. J. and Hohn, A. A. (1995). Life in the fast lane: the life history of harbor porpoises from the gulf of maine. *Marine Mammal Science*, 11(4):423–440.
- Read, F. L., Hohn, A. A., and Lockyer, C. H. (2018). A review of age estimation methods in marine mammals with special reference to monodontids.
- Reed, J. M., Mills, L. S., Dunning Jr, J. B., Menges, E. S., McKelvey, K. S., Frye, R.,
- Beissinger, S. R., Anstett, M.-C., and Miller, P. (2002). Emerging issues in population
- viability analysis. Conservation biology, 16(1):7–19.
- Reed, W. J. (2011). A flexible parametric survival model which allows a bathtub-shaped hazard rate function. *Journal of Applied Statistics*, 38(8):1665–1680.
- Regehr, E. V., Hostetter, N. J., Wilson, R. R., Rode, K. D., Martin, M. S., and Converse,
- S. J. (2018). Integrated population modeling provides the first empirical estimates of vital
- rates and abundance for polar bears in the Chukchi Sea. Scientific Reports, 8:16780.

- Regehr, E. V., Runge, M. C., Von Duyke, A., Wilson, R. R., Polasek, L., Rode, K. D., Hostet-
- ter, N. J., and Converse, S. J. (2021). Demographic risk assessment for a harvested species
- threatened by climate change: polar bears in the chukchi sea. *Ecological Applications*,
- 31(8):e02461.
- Reimer, J. R., Caswell, H., Derocher, A. E., and Lewis, M. A. (2019). Ringed seal demography
- in a changing climate. Ecological Applications, 29(3):e01855.
- Renò, V., Dimauro, G., Labate, G., Stella, E., Fanizza, C., Cipriano, G., Carlucci, R., and
- Maglietta, R. (2019). A sift-based software system for the photo-identification of the risso's
- dolphin. Ecological informatics, 50:95–101.
- Riginos, C., Crandall, E. D., Liggins, L., Bongaerts, P., and Treml, E. A. (2016). Navigating
- the currents of seascape genomics: how spatial analyses can augment population genomic
- studies. Current Zoology, 62(6):581–601.
- Roca-Monge, K., González-Barrientos, R., Suárez-Esquivel, M., Palacios-Alfaro, J. D.,
- Castro-Ramírez, L., Jiménez-Soto, M., Cordero-Chavarría, M., García-Párraga, D., Bar-
- ratclough, A., Moreno, E., et al. (2022). Age and sexual maturity estimation of stranded
- striped dolphins, stenella coeruleoalba, infected with brucella ceti. In *Oceans*, volume 3,
- pages 494–508. MDPI.
- Rode, K. D., Wilson, R. R., Crawford, J. A., and Quakenbush, L. T. (2024). Identifying
- indicators of polar bear population status. *Ecological Indicators*, 159:111638.
- Roff, D. A. and Bowen, W. D. (1983). Population dynamics and management of the north-
- west atlantic harp seal (phoca groenlandica). Canadian Journal of Fisheries and Aquatic
- Sciences, 40(7):919-932.
- Rojas-Bracho, L., Taylor, B. L., Booth, C., Thomas, L., Jaramillo-Legorreta, A. M., Nieto-
- Garcia, E., Cárdenas-Hinojosa, G., Barlow, J., Mesnick, S. L., Ver Hoef, J. M., De Master,

- D., Olson, P. A., Brownell Jr., R. L., and Vidal, O. (2022). More vaquita porpoises survive than expected. *Endangered Species Research*, 48:225–234.
- Rotella, J. J., Link, W. A., Chambert, T., Stauffer, G. E., and Garrott, R. A. (2012). Eval-
- uating the demographic buffering hypothesis with vital rates estimated for weddell seals
- from 30 years of mark-recapture data. Journal of Animal Ecology, 81(1):162–173.
- Rouby, E., Authier, M., Cam, E., Peltier, H., and Ridoux, V. (2021). Estimating demographic
- parameters in a small cetacean using mark-recapture data. Marine Mammal Science,
- 37(4):1279-1295.
- Rouby, E., Authier, M., Dabin, W., Dorémus, G., Peltier, H., and Ridoux, V. (2025).
- Longevity decline in common dolphins: detecting early warning signals of population
- change from stranding data. Marine Mammal Science. In press.
- Rouby, E., Duigou, T., Authier, M., Peltier, H., and Ridoux, V. (2024). Detecting temporal
- trends from age-at-death distributions in stranded cetaceans. Marine Ecology Progress
- 1253 Series, 736:183–196.
- Runge, M. C., Langtimm, C. A., and Kendall, W. L. (2004). A stage-based model of manatee
- population dynamics. Marine Mammal Science, 20(3):361–385.
- Saavedra, C. (2018). strandCet: R package for estimating natural and non-natural mortality-
- at-age of cetaceans from age-structured strandings. *PeerJ*, 6:e5768.
- Schaub, M. and Abadi, F. (2011). Integrated population models: a novel analysis framework
- for deeper insights into population dynamics. Journal of Ornithology, 152(1):227–237.
- Seber, G. A. F. (1965). A note on the multiple-recapture census. *Biometrika*, 52(1-2):249–259.
- Selkoe, K. A., D'Aloia, C. C., Crandall, E. D., Iacchei, M., Liggins, L., Puritz, J. B., von der
- Heyden, S., and Toonen, R. J. (2016). A decade of seascape genetics: contributions to
- basic and applied marine connectivity. Marine Ecology Progress Series, 554:1–19.

- Sergeant, D. E. (1973). Biology of white whales (Delphinapterus leucas) in western Hudson
- Bay. Journal of the Fisheries Research Board of Canada, 30(8):1065–1090.
- Sibly, R. M. and Hone, J. (2002). Population growth rate and its determinants: an overview.
- Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences,
- 357(1425):1153-1170.
- Siler, W. (1979). A competing-risk model for animal mortality. Ecology, 60(4):750–757.
- Simeone, C. A. and Moore, K. M. (2018). Stranding response. In CRC handbook of marine
- mammal medicine, pages 3–18. CRC Press.
- Siniff, D. B. and Ralls, K. (1991). Reproduction, survival and tag loss in california sea otters.
- $Marine\ Mammal\ Science,\ 7(3):211-299.$
- Siniff, D. B. and Skoog, R. O. (1964). Aerial censusing of caribou using stratified random
- sampling. Journal of Wildlife Management, 28(2):391–401.
- Stearns, S. C. (1976). Life-history tactics: a review of the ideas. Quarterly Review of Biology,
- 51(1):3-47.
- Stolen, M. K. and Barlow, J. (2003). A model life table for bottlenose dolphins (Tursiops
- truncatus) from the Indian River Lagoon system, Florida, U.S.A. Marine Mammal Science,
- 19(4):630-649.
- Tavares, M., Alvares, D. J., Moreira, S. C., Matushima, E. R., Batista, E. M., Botta, S.,
- Bugoni, L., Castro, B. M., Reis, R. N., Shimabukuro, M., Souza, C. E. L., Uhart, M. M.,
- Valle, C. M., and Borges-Martins, M. (2023). Tracking marine tetrapod carcasses using
- a low-cost mixed methodology with GPS trackers, passive drifters and citizen science.
- Methods in Ecology and Evolution, 14(9):2333–2345.
- Taylor, B. L., Martinez, M., Gerrodette, T., Barlow, J., and Hrovat, Y. N. (2007). Lessons

- from monitoring trends in abundance of marine mammals. *Marine Mammal Science*, 23(1):157–175.
- Taylor, B. L., Wade, P. R., De Master, D. P., and Barlow, J. (2000). Incorporating uncertainty into management models for marine mammals. *Conservation Biology*, 14(5):1243–1252.
- Taylor, R. L., Udevitz, M. S., Jay, C. V., Fischbach, A. S., Beatty, W. S., Garlich-Miller,

 J. L., Quakenbush, L. T., and Snyder, J. A. (2021). Demography of the Pacific walrus
- (Odobenus rosmarus divergens): 1974–2006. Marine Mammal Science, 37(4):1317–1337.
- ten Doeschate, M. T. I., Brownlow, A. C., Davison, N. J., and Thompson, P. M. (2018).
- Dead useful: methods for quantifying baseline variability in stranding rates to improve
- the ecological value of the strandings record as a monitoring tool. Journal of the Marine
- Biological Association of the United Kingdom, 98(6):1205–1209.
- Tenan, S., Moulins, A., Tepsich, P., Bocconcelli, A., Verga, A., Ballardini, M., Nani, B., Papi,
- D., Motta, G., Sanz-Aguilar, A., and Rosso, M. (2023). Immigration as the main driver of
- population dynamics in a cryptic cetacean. *Ecology and Evolution*, 13(2):e9806.
- Tinker, M. T., Carswell, L. P., Tomoleoni, J. A., Hatfield, B. B., Harris, M. D., Miller, M. A.,
- Moriarty, M. E., Johnson, C. K., Young, C., Henkel, L. A., et al. (2021). An integrated
- population model for southern sea otters. Technical report, US Geological Survey.
- 1304 Treml, E. A., Ford, J. R., Black, K. P., and Swearer, S. E. (2015). Identifying the key
- biophysical drivers, connectivity outcomes, and metapopulation consequences of larval
- dispersal in the sea. Movement Ecology, 3(1):17.
- Troina, G. C., Riekenberg, P., van der Meer, M. T., Botta, S., Dehairs, F., and Secchi, E. R.
- 1308 (2021). Combining isotopic analysis of bulk-skin and individual amino acids to investigate
- the trophic position and foraging areas of multiple cetacean species in the western south
- atlantic. Environmental Research, 201:111610.

- Tuljapurkar, S. (2013). Population dynamics in variable environments, volume 85. Springer
- Science & Business Media.
- Turvey, S. T., Pitman, R. L., Taylor, B. L., Barlow, J., Akamatsu, T., Barrett, L. A., Zhao,
- X., Reeves, R. R., Stewart, B. S., Wang, K., Wei, Z., Zhang, X., Pusser, L. T., Richlen,
- M., Brandon, J. R., and Wang, D. (2007). First human-caused extinction of a cetacean
- species? Biology Letters, 3(5):537-540.
- Urian, K., Gorgone, A., Read, A., Balmer, B., Wells, R. S., Berggren, P., Durban, J.,
- Eguchi, T., Rayment, W., and Hammond, P. S. (2015). Recommendations for photo-
- identification methods used in capture-recapture models with cetaceans. Marine Mammal
- science, 31(1):298–321.
- Venuto, R., Botta, S., Barreto, A. S., Secchi, E. R., and Fruet, P. F. (2020). Age structure
- of strandings and growth of lahille's bottlenose dolphin (tursiops truncatus gephyreus).
- 1323 Marine Mammal Science, 36(3):813–827.
- Wade, P. R. (1998). Calculating limits to the allowable human-caused mortality of cetaceans
- and pinnipeds. Marine Mammal Science, 14(1):1–37.
- Wade, P. R. (2000). Bayesian methods in conservation biology. Conservation Biology,
- 1327 14(5):1308–1316.
- Warlick, A. J., Johnson, D. S., Sweeney, K. L., Gelatt, T. S., and Converse, S. J. (2023).
- Examining the effect of environmental variability on the viability of endangered steller sea
- lions using an integrated population model. Endangered Species Research, 52:343–361.
- Weinrich, M. T., Belt, C. R., and Morin, D. (2001). Behavior and ecology of the atlantic white-
- sided dolphin (lagenorhynchus acutus) in coastal new england waters. Marine Mammal
- Science, 17(2):231-248.
- Wells, R. S. (2009). Learning from nature: bottlenose dolphin care and husbandry. Zoo
- Biology, 28(6):635–651.

- Wells, R. S. (2013). Social structure and life history of bottlenose dolphins near sarasota bay,
- florida: insights from four decades and five generations. In Primates and cetaceans: Field
- research and conservation of complex mammalian societies, pages 149–172. Springer.
- Wells, R. S. and Scott, M. D. (1990). Estimating bottlenose dolphin population parameters
- from individual identification and capture-release techniques. Reports of the International
- Whaling Commission, 12:407–415.
- Wells, R. S. and Scott, M. D. (2000). Bottlenose dolphin Tursiops truncatus (montagu, 1821).
- 1343 Handbook of Marine Mammals, 6:137–182.
- Wilkin, S. M., Cordaro, J., Gulland, F., and Frey, E. (2017). Marine mammal response
- operations during the Deepwater Horizon oil spill. Endangered Species Research, 33:107–
- 1346 118.
- Williams, R., Lacy, R. C., Ashe, E., Barrett-Lennard, L., Brown, T. M., Gaydos, J. K.,
- Gulland, F., MacDuffee, M., Nelson, B. W., Nielsen, K. A., et al. (2024). Warning sign of an
- accelerating decline in critically endangered killer whales (orcinus orca). Communications
- Earth & Environment, 5(1):173.
- Würsig, B. and Würsig, M. (1977). The photographic determination of group size, composi-
- tion, and stability of coastal porpoises (Tursiops truncatus). Science, 198(4318):755–756.
- ¹³⁵³ Zipkin, E. F. and Saunders, S. P. (2018). Synthesizing multiple data types for biological
- conservation using integrated population models. Biological Conservation, 217:240–250.