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​ABSTRACT​

​Climate change is reshaping soil environments, intensifying selective pressures on microbial​
​communities that drive essential ecosystem processes. Understanding how nitrogen-fixing​
​rhizobia adapt to environmental variation is critical for predicting ecosystem responses to global​
​change. Here, we used redundancy analysis (RDA) to identify genomic loci associated with​
​environmental gradients across 375​​Bradyrhizobium diazoefficiens​​isolates from southwestern​
​Australia, analyzing variants mapped to four independent reference genomes.​

​Climate variability emerged as the dominant driver of genomic adaptation, with annual rainfall​
​and temperature ranking first and second among twelve environmental variables tested. These​
​climate effects substantially exceeded those of soil chemistry factors, with rainfall explaining​
​nearly twice the variance of the strongest soil variable (carbon content). Notably, annual​
​temperature showed its strongest association with RDA axis 3 rather than early axes,​
​demonstrating that limiting analysis to the first two RDA dimensions can cause researchers to​
​miss important environmental effects.​

​Functional enrichment analysis revealed that signal transduction mechanisms were significantly​
​over-represented among outlier loci, while core symbiosis genes showed consistent depletion,​
​providing suggestive evidence for purifying selection maintaining nitrogen-fixing capacity.​
​Within symbiosis genes, regulatory components (exoR, regB) showed 100% outlier rates while​
​structural machinery (T4SS, nol genes) showed complete conservation, supporting a “regulatory​
​evolution” model where adaptation occurs through expression control rather than structural​
​changes.​

​These findings demonstrate that​​Bradyrhizobium​​populations​​adapt to climate heterogeneity​
​primarily through signal transduction and regulatory networks, while core metabolic and​
​symbiotic functions remain under strong functional constraint.​

​Introduction​

​Soil microbial communities drive essential ecosystem processes including nutrient cycling,​
​organic matter decomposition, and plant-microbe interactions that enable plants to respond to​
​environmental variation​​(Fierer & Jackson 2006; Griffiths & Philippot 2013)​​. Understanding​
​how these microbial communities adapt to evolving environmental pressures – including shifts in​
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​community structure and species turnover – is essential for predicting ecosystem responses to​
​climate change​​(Allison & Martiny 2008)​​. Among soil microbes, rhizobia occupy a unique​
​ecological position as nitrogen-fixing symbionts of legumes, playing a critical role in global​
​nutrient cycling by transferring atmospheric nitrogen into ecosystems and fueling the​
​biogeochemical nitrogen cycle​​(Galloway​​et al.​​2008)​​. However, climate change is reshaping the​
​environmental conditions these communities experience, with shifts in temperature,​
​precipitation, pH, and nutrient availability creating unprecedented challenges for microbial​
​populations​​(Rousk​​et al.​​2010)​​.​

​A fundamental question in evolutionary microbiology is how bacterial populations adapt to​
​environmental variation at the genomic level. Local adaptation occurs when natural selection​
​favors different alleles in different environments, resulting in genotype-environment associations​
​detectable through landscape genomics approaches​​(Savolainen​​et al.​​2013)​​. In soil bacteria,​
​environmental factors impose selective pressures that can drive adaptation through several​
​mechanisms: mutations in regulatory genes that alter gene expression thresholds, structural​
​variations in stress-response pathways, and modifications to resource acquisition systems​
​(Remigi​​et al.​​2016)​​. The relative importance of different environmental factors as drivers of​
​bacterial adaptation remains poorly understood, particularly the balance between large-scale​
​climate variability and localized soil chemistry.​

​Climate variables such as temperature and precipitation operate at regional to continental scales,​
​potentially imposing consistent selective pressures across broad geographic areas. Temperature​
​directly affects microbial metabolic rates, membrane fluidity, and protein stability, while​
​precipitation influences soil moisture regimes and nutrient availability​​(Bardgett​​et al.​​2008)​​.​
​Conversely, soil chemistry factors including pH, nutrient concentrations, and metal availability​
​vary at much finer spatial scales, creating highly heterogeneous selective landscapes even within​
​localized areas​​(Fierer & Jackson 2006)​​. Soil pH, for example, influences nutrient solubility,​
​metal toxicity, and cellular homeostasis, imposing strong selection on microbial physiology​
​(Rousk​​et al.​​2010)​​. Soil nitrogen availability (ammonia and nitrate) may be particularly​
​important for nitrogen-fixing bacteria, as high environmental nitrogen reduces the selective​
​advantage of costly nitrogen fixation processes​​(Denison & Kiers 2011)​​.​

​Rhizobia such as​​Bradyrhizobium​​provide critical ecosystem​​services through nitrogen fixation​
​and plant productivity support​​(Galloway​​et al.​​2008)​​. These bacteria possess specialized​
​functional genes enabling nitrogen fixation and symbiosis with legumes, such as​​nif​​(nitrogen​
​fixation),​​fix​​(oxygen response), and​​nod​​(nodulation)​​gene families. Nitrogen fixation requires​
​substantial energy investment, and maintaining symbiotic function may constrain overall​
​rhizobial fitness in the free-living state​​(Poole​​et al.​​2018)​​. Conversely, adaptations increasing​
​resistance to environmental stresses could alter symbiotic efficiency regarding nodulation​
​competitiveness and nutrient uptake​​(Masson-Boivin​​et al.​​2009)​​. Understanding how​
​environmental selection acts on genes involved in the free living stage and symbiosis stage –​
​particularly whether symbiotic genes experience environmental selection or remain buffered​
​within the plant-controlled nodule environment – is critical for predicting rhizobial responses to​
​climate change.​

​The central goal of this study is to determine to what extent climate variability and soil chemistry​
​impose selective pressures on rhizobial populations, with climate factors potentially driving​
​broad-scale adaptation patterns while soil chemistry shapes localized responses. We hypothesize​
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​that local adaptation to environmental stressors in rhizobia will involve changes in genomic​
​regions related to regulatory networks and environmental sensing systems​​(Remigi​​et al.​​2016)​​.​
​However, these genomic regions are also involved in the regulation of symbiosis and nitrogen​
​fixation​​(Zhang​​et al.​​2024)​​, creating a genetic linkage between evolutionary responses to​
​climate and soil chemistry variability and symbiosis function. Conversely, if core symbiosis​
​genes themselves are under environmental selection, adaptation may be constrained by​
​functional trade-offs.​

​Here, we test for the relative contributions of climate and soil chemistry in shaping adaptive​
​genetic variation in the​​Bradyrhizobium diazoefficiens​​species complex, using a landscape​
​genomics approach, where we sampled rhizobia strains spanning a large climate and soil​
​chemistry gradient within a major climatic region​​(Dinnage​​et al.​​2018; Simonsen​​et al.​​2019)​​,​
​Southwest Australia. Landscape genomics provides a framework to discover adaptive genetic​
​diversity without needing to hypothesize candidate loci​​a priori​​(Rellstab​​et al.​​2015)​​. This​
​approach specifically aims to identify alleles showing increased frequency along environmental​
​gradients, indicating putative local adaptation. Among landscape genomics methods, multivariate​
​redundancy analysis (RDA) has emerged as an effective approach for detecting multilocus​
​markers of local adaptation while controlling false positive rates​​(Capblancq & Forester 2021;​
​Forester​​et al.​​2018)​​. RDA explains linear relationships between environmental predictors and​
​allele frequencies, isolating genotype-environment associations within environmentally variable​
​landscapes.​

​RDA offers several advantages over univariate genotype-environment association methods: (1) it​
​accounts for correlations among environmental variables through multivariate ordination,​
​reducing false positives from collinear predictors; (2) it detects loci responding to combinations​
​of environmental factors rather than single variables; (3) it provides a statistically rigorous​
​framework with permutation-based significance testing; and (4) it visualizes both​
​sample-environment relationships and SNP-environment associations simultaneously​​(Legendre​
​et al.​​2012)​​. These properties make RDA particularly well-suited for natural environments,​
​where environmental gradients are often multivariate and interactive.​

​The goals of this study are to 1) Determine which environmental factors drive putative adaptive​
​genetic variation among​​Bradyrhizobium​​populations​​2)​ ​Test whether genetic variants show​
​consistent patterns of environmental association across different​​Bradyrhizobium​​reference​
​genomes 3) To characterize how environmental factors influence genomic variation in​
​symbiosis-specific genes 4) Identify any distinct environmental response patterns through​
​clustering of outlier loci.​

​Methods​

​Study Design and Environmental Sampling​

​To examine adaptive genomic diversity among​​Bradyrhizobium​​species, previous work​
​undertook a systematic sampling procedure to maximize soil and climate variability of sampling​
​sites​​(Dinnage​​et al.​​2018; Simonsen​​et al.​​2019)​​. In brief, strains that symbiotically associate​
​with an endemic species,​​Acacia acuminata​​, which only grows in Southwest Australia region,​
​were targeted. Distribution data for​​A. acuminata​​were obtained from the Atlas of Living​
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​Australia, while mean annual precipitation and temperature data were obtained from BIOCLIM​
​datasets​​(Booth​​et al.​​2014)​​. A systematic algorithmic selection procedure identified twenty​
​sampling sites that maximized climatic diversity while minimizing the often confounding​
​co-variation between temperature and precipitation gradients, and controlling for spatial​
​autocorrelation in precipitation patterns. Three soil samples were obtained from each site and​
​brought back to the lab for rhizobial isolation through inoculation trapping techniques on​​A.​
​acuminata​​seedlings. This selection method maximizes​​sampling variation attributed to climate​
​and soil chemistry, while minimizing genetic variation attributed to specialization to specific​
​Acacia​​host species. Consequently, results regarding​​adaptation to abiotic stresses such as​
​drought, salinity, and acidity are limited to rhizobia that retain symbiotic competence.​

​Isolates of a single ubiquitous rhizobia species,​​Bradyrhizobium diazoefficiens,​​that occurred​
​abundantly in all soil samples were chosen for Illumina sequencing, generating a sequenced​
​cultured collection of 380 isolates (19 sequenced isolates per site). The final dataset comprised​
​375​​Bradyrhizobium diazoefficiens​​isolates after quality​​filtering (5 contaminated samples were​
​removed from an initial set of 380),​​(Simonsen​​et al.​​2019)​​.​

​Environmental metadata were collected for each sampling location, including climate variables​
​from BIOCLIM datasets and soil factors measured directly at sampling sites. Climate variables​
​spanned a range of annual mean temperatures from 14.8°C to 18.2°C (maximum: 18.2°C,​
​minimum: 14.8°C) and annual precipitation from 315 mm to 625 mm (maximum: 625 mm,​
​minimum: 315 mm). Soil chemistry measurements included gravel content (maximum: 65%,​
​minimum: 5%), ammonia concentration (maximum: 28.3 ppm, minimum: 2.1 ppm), nitrate​
​concentration (maximum: 15.7 ppm, minimum: 0.8 ppm), potassium (maximum: 185 ppm,​
​minimum: 42 ppm), carbon content (maximum: 2.8%, minimum: 0.4%), electrical conductivity​
​(maximum: 0.35 dS/m, minimum: 0.08 dS/m), pH (maximum: 7.2, minimum: 4.9), copper​
​concentration (maximum: 3.2 ppm, minimum: 0.3 ppm), zinc concentration (maximum: 2.8 ppm,​
​minimum: 0.2 ppm), and magnesium concentration (maximum: 245 ppm, minimum: 68 ppm).​

​Reference Genome Preparation and Read Alignment​

​Paired-end reads from all 375​​Bradyrhizobium diazoefficiens​​isolates were mapped against the​
​multiple reference genomes to reduce bias inherent to single-reference analysis. To enhance​
​genomic resolution and variability of single nucleotide variation, four fully annotated reference​
​genomes from strains isolated from​​Acacia acuminata​​in southwestern Australia were used.​
​These genomes included Genome A (GCA_016616425.1, strain 41.2), Genome B​
​(GCA_016616235.1, strain 38.8), Genome C (GCA_016616885.1, strain 36.1), and Genome D​
​(GCA_016599855.1, strain 65.7)​​(Chia & Simonsen 2021)​​.​

​Each reference assembly was indexed using BWA-MEM version 0.7.17​​(Li 2013)​​, an accurate​
​alignment algorithm optimized for high-throughput short-read sequencing data. Paired-end reads​
​were aligned to each reference assembly independently using the​​bwa mem​​command.​

​SAM format alignment outputs were converted to compressed BAM format using SAMtools​
​version 1.10​​(Danecek​​et al.​​2021)​​, sorted by genomic coordinates, and indexed. To ensure​
​high-confidence variant calling, reads with mapping quality scores below 10 were filtered out.​
​This filtration step removes low-confidence alignments likely derived from repetitive or​
​paralogous regions common in bacterial genomes.​
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​Variant Calling​

​Variants were called from each aligned isolate using FreeBayes version 1.3.2​​(Garrison & Marth​
​2012)​​, a haplotype-based variant caller designed for populations with limited recombination.​
​FreeBayes was run with the following parameters:​​--ploidy 1​​to reflect the haploid nature of the​
​Bradyrhizobium​​genome,​​--min-alternate-count 2​​to require at least two reads supporting the​
​alternate allele,​​--min-alternate-fraction 0.005​​to retain low-frequency variants, and​
​--haplotype-length 0​​to disable local haplotype assembly​​and call each site independently.​

​Resulting per-isolate Variant Call Format (VCF) files were compressed using bgzip and indexed​
​using tabix​​(Li 2011)​​for efficient data retrieval. Sample names were standardized across VCF​
​files using​​bcftools reheader​​. Individual VCF files​​for each reference genome were merged into​
​multi-sample VCFs using​​bcftools merge​​with the​​--force-samples​​option, producing a single​
​combined variant dataset per reference genome covering all 375 isolates.​

​SNPs were selectively retained from merged VCF files, excluding indels and multi-nucleotide​
​polymorphisms to focus analysis on biallelic single-nucleotide variants. Variant filtering was​
​performed using VCFtools version 0.1.17​​(Danecek​​et al.​​2011)​​. Filters applied included a​
​minimum minor allele frequency of 0.001 (to exclude extremely rare variants) and a maximum​
​missing data threshold of 5% (​​--max-missing 0.95​​),​​ensuring that loci were not missing in more​
​than 5% of samples.​

​Biallelic Filtering​

​After minor allele frequency and missing data filtering, SNPs were further refined using a fuzzy​
​biallelic filtering approach designed to eliminate residual multiallelic noise. Because most​
​population genomic tools are optimized for biallelic SNPs, and triallelic variants are susceptible​
​to miscalling in bacterial short-read data, a biallelic filtering strategy was implemented to retain​
​informative variation while minimizing noise.​

​For each SNP, alleles were recoded based on frequency: the most frequent allele was coded as 0​
​(major), the second-most frequent as 1 (minor), and all remaining alleles provisionally coded as​
​missing (NA). A SNP was retained only if the count of the third-most frequent allele was less​
​than 80% of the second-most frequent allele’s count. Sites exceeding this threshold were​
​excluded entirely. For retained loci, all third alleles and ambiguous calls were recoded as NA.​
​This approach preserved a large number of usable SNPs with consistent biallelic structure while​
​tolerating minor background noise inherent to microbial sequencing.​

​Missing Genotype Imputation​

​After fuzzy biallelic filtering, remaining missing genotypes were imputed using a K-nearest​
​neighbors (KNN) algorithm with k = 5, implemented in the VIM package for R​​(Kowarik &​
​Templ 2016)​​. The genotype matrix was transposed such that isolates occupied rows and SNPs​
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​occupied columns. A pairwise Euclidean distance matrix between isolates was constructed based​
​on SNP profiles.​

​For each missing genotype, the five isolates with highest genotypic similarity that possessed​
​non-missing values at the focal locus were identified. Missing values (both rare alleles and true​
​missing data) were imputed as the most frequent allele among these five nearest neighbors. This​
​approach leverages the highly clonal population structure characteristic of​​Bradyrhizobium​​,​
​where genetically similar isolates are expected to share high genomic identity. KNN imputation​
​preserves overall genetic structure while eliminating biases from non-random missingness. After​
​imputation, the matrix contained no missing values, making it suitable for constrained ordination​
​methods and downstream variance analyses.​

​Environmental Data Preprocessing​

​Environmental variables underwent preprocessing to meet RDA assumptions and improve​
​interpretability. High correlation among environmental variables can cause multicollinearity​
​issues in RDA. Hierarchical clustering based on correlation distance was performed to identify​
​redundant variables (see Supporting Information, Section S1). Variables with pairwise​
​correlations |r| > 0.7 were removed to create a reduced set free from severe multicollinearity,​
​using an hierarchical clustering plot as a guide (Figure S1). The remaining variables were mostly​
​only weakly correlated (Figure S2).​

​Final environmental variable set (13 variables):​

​Climate variables:​​- Annual mean temperature (Env_ann_temp):​​14.8°C to 18.2°C - Annual​
​precipitation (Env_ann_rain): 315 mm to 625 mm​

​Soil variables:​​- Soil gravel content: 5% to 65% -​​Soil ammonia concentration: 2.1 ppm to 28.3​
​ppm - Soil nitrate concentration: 0.8 ppm to 15.7 ppm - Soil potassium: 42 ppm to 185 ppm -​
​Soil carbon content: 0.4% to 2.8% - Electrical conductivity/salinity proxy (Soil_conductivity):​
​0.08 dS/m to 0.35 dS/m - Soil pH: 4.9 to 7.2 - Soil copper concentration: 0.3 ppm to 3.2 ppm -​
​Soil zinc concentration: 0.2 ppm to 2.8 ppm - Soil magnesium concentration: 68 ppm to 245 ppm​

​To meet RDA assumptions of normality and homoscedasticity, transformations were applied​
​using the tidymodels framework: (1) log transformation of soil conductivity as log(conductivity​
​+ 0.01) to avoid log(0); (2) Yeo-Johnson transformation to improve normality and homogeneity​
​of variance, which appropriately handles negative values and zeros (see Supporting Information,​
​Section S1 for mathematical details); and (3) normalization (centering and scaling) to achieve​
​mean = 0 and standard deviation = 1 for all variables.​

​Redundancy Analysis (RDA)​

​RDA was performed using the vegan package in R. RDA performs multivariate linear regression​
​where the genotype matrix (Y) is explained by environmental predictors (X), yielding fitted​
​values representing genetic variation explained by environmental variables. Principal Component​
​Analysis (PCA) is then performed on the fitted matrix to obtain canonical axes, which are linear​
​combinations of environmental variables that explain maximal constrained variance.​



​The 13 environmental variables were selected based on their potential to influence​
​Bradyrhizobium​​physiology, genome structure, and community-level​​adaptation. Environmental​
​metadata were matched to genomic samples using sample identifiers, and samples present in​
​genotype data but lacking environmental data were excluded from RDA.​

​To determine which RDA axes represent significant genotype-environment associations,​
​permutation-based ANOVA was performed using an adaptive permutation scheme with cutoff =​
​0.1. Axes with p ≤ 0.01 were retained as “significant,” reducing false positives while retaining​
​axes with strong environmental signals. Additional by-margin permutation tests assessed the​
​independent contribution of each environmental variable.​

​Outlier Detection​

​For each SNP, loadings on significant RDA axes (p ≤ 0.01) were extracted. These loadings​
​represent the contribution of each SNP to genotype-environment associations captured by each​
​axis. To identify outlier SNPs in multivariate loading space, Mahalanobis distance was used,​
​which accounts for correlation structure among RDA axes and is more statistically rigorous than​
​examining individual axes independently (see Supporting Information, Section S2 for​
​mathematical details). Under the null hypothesis of neutral evolution, the squared Mahalanobis​
​distance follows a chi-squared distribution. P-values were calculated and a threshold of p ≤ 0.05​
​was applied.​

​Clustering of Outlier SNPs​

​Outlier SNPs sharing similar environmental associations likely respond to the same​
​environmental pressures, may be functionally related, or could represent linked variants in the​
​same genomic region. Clustering allows identification of groups of SNPs with shared​
​environmental drivers, dimensionality reduction for interpretation, and testing for functional​
​enrichment within clusters.​

​A key methodological challenge is that SNP allele coding (0/1 for reference/alternate) is​
​arbitrary. Two SNPs with opposite RDA loadings may represent the same biological pattern if​
​alleles are coded differently. A hemisphere folding transformation was developed to address this​
​issue (see Supporting Information, Section S3). Before clustering, loading vectors were​
​unit-normalized and then “folded” such that vectors and their negatives map to the same point.​
​This transformation is mathematically equivalent to clustering in projective space and ensures​
​that biologically similar SNPs cluster together regardless of arbitrary allele coding.​

​Von Mises-Fisher (vMF) mixture models were applied for clustering unit vectors. Unlike​
​Euclidean clustering methods such as k-means, vMF is the appropriate distribution for​
​directional data naturally residing on a unit sphere. The concentration parameter κ has direct​
​interpretation, with higher values indicating tighter clusters (see Supporting Information, Section​
​S3 for mathematical details).​

​Bayesian Information Criterion (BIC) was evaluated across a range of cluster numbers (K = 2 to​
​K = 40). Optimal K was selected using the elbow method at 95% of total BIC improvement.​
​LOESS smoothing (span = 0.3) was applied to the BIC curve to reduce noise from convergence​
​failures. A consensus approach took the median of optimal K across all four runs, yielding K =​
​10 clusters (see Supporting Information, Section S3 for mathematical details).​



​After independent clustering in each run, cluster labels are arbitrary. An optimization algorithm​
​was used to match clusters across reference genomes based on similarity in environmental​
​projections and concentration parameters (see Supporting Information, Section S4 for details).​
​This ensures consistent cluster coloring across plots and enables cross-run comparisons.​

​COG Functional Enrichment Analysis​

​To statistically test whether specific COG functional categories were significantly enriched​
​among outlier loci, gene-level enrichment analysis was performed using the hypergeometric test.​
​This approach tests whether the proportion of outlier genes in a given functional category​
​exceeds expectation by chance. The statistical background for enrichment testing consisted of all​
​genes containing at least one SNP in the filtered dataset. This represents the set of genes that​
​could have been detected as outliers given the sampling design and sequencing coverage,​
​providing an appropriate null expectation for enrichment. COG annotations can assign multiple​
​functional categories to a single gene (e.g., “EH” indicating both amino acid metabolism and​
​coenzyme transport). Multi-category annotations were split into individual letters and tested​
​independently, allowing genes to contribute to multiple functional categories. For each of 26​
​COG functional categories, a 2×2 contingency table was constructed comparing the number of​
​outlier versus background genes within that category versus all other categories. Analysis was​
​performed independently for each of the four reference genomes.​

​Symbiosis Gene Enrichment Analysis​

​To test whether genes involved in nitrogen-fixing symbiosis were specifically associated with​
​environmental adaptation, an enrichment analysis focused on symbiosis-related gene families​
​was performed. A reference list of 164 symbiosis genes was compiled from the scientific​
​literature, including genes involved in nodulation signaling (nod/noe/nol family, 49 genes),​
​nitrogen fixation (nif family, 20 genes), oxygen response during symbiosis (fix family, 19 genes),​
​bacterial secretion systems (T3SS/T4SS, 48 genes), and effector proteins (nop family, 28 genes).​
​All SNPs in the comprehensive dataset were annotated with symbiosis gene status, according to​
​“Symbiosis_gene” (binary: 1 = symbiosis gene, 0 = non-symbiosis gene), and​
​“Symbiosis_gene_family” (gene family name or “non-symbiotic” for non-symbiosis genes).​

​Enrichment testing followed the same gene-level approach as COG enrichment: genes were​
​classified as outlier genes if they contained at least one outlier SNP (p ≤ 0.05), and the​
​background consisted of all genes with at least one SNP in the filtered dataset. For each​
​reference genome, a hypergeometric test was performed comparing the proportion of outlier​
​genes among symbiosis genes versus non-symbiosis genes.​

​Visualization​

​RDA biplots visualize sample scores (positions of isolates in environmental space),​
​environmental vectors (directions of environmental gradients), and cluster coloring (samples​
​colored by predominant cluster membership). Manhattan plots were generated in both linear and​
​circular formats showing genomic position versus Mahalanobis distance, with points colored by​
​cluster assignment. Circular parallel coordinates plots showing environmental associations for​
​each cluster were created to visualize which environmental variables drive each cluster using​
​ggplot2​​(Wickham 2016)​​. See Supplementary Section S5 for details.​
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​Results​

​Sample and SNP Summary Statistics​

​A total of 375​​Bradyrhizobium​​isolates were analyzed​​after quality filtering Variant calling and​
​filtering across four reference genomes yielded 1,859 outlier SNPs using a Mahalanobis distance​
​threshold of p ≤ 0.05 (Table 2).​

​Table 2.​​Number of outlier SNPs detected per reference​​genome using Mahalanobis distance​
​with p ≤ 0.05 threshold.​

​Genome Run​ ​Outlier SNPs​
​Genome A​ ​579​
​Genome B​ ​552​
​Genome C​ ​255​
​Genome D​ ​473​

​Redundancy Analysis Results​

​RDA models showed that environmental variables explained approximately 9-10% of total​
​genomic variation across all runs (Table 3). All models were statistically significant (F-statistics​
​> 6.3, p = 0.001 by 999 permutations).​

​Table 3.​​Variance partitioning in RDA models. Environmental​​variables explain approximately​
​9-10% of total genomic variation across all runs.​

​Run​ ​Total Inertia​ ​Constrained​ ​% Explained​
​Genome A​ ​191.87​ ​19.84​ ​10.34​
​Genome B​ ​201.30​ ​19.43​ ​9.65​
​Genome C​ ​86.98​ ​8.04​ ​9.24​
​Genome D​ ​144.22​ ​13.43​ ​9.31​

​Significant RDA Axes​

​Permutation-based ANOVA (999 permutations, adaptive cutoff = 0.1) identified exactly four​
​significant axes (p ≤ 0.01) in each run (Table 4). The first axis (RDA1) consistently explained the​
​largest proportion of constrained variance (4.54-12.03 units), with F-statistics ranging from​
​20.70 to 27.42. Subsequent axes (RDA2-RDA4) showed progressively decreasing variance and​
​F-statistics but remained highly significant. These four significant axes were used for outlier​
​detection and clustering analyses.​

​Table 4.​​Significance testing of RDA axes by permutation ANOVA (999 permutations).​
​Permutation tests were halted after p-values exceeded 0.1 for computational efficiency (indicated​
​by “-”). The four significant axes (p ≤ 0.01) per run were used for outlier detection and​
​subsequent clustering analyses.​



​Run​ ​Axis​ ​Variance​ ​F​ ​p-value​
​Genome A​ ​RDA1​ ​12.034​ ​27.42​ ​<0.001​
​Genome A​ ​RDA2​ ​5.788​ ​13.22​ ​<0.001​
​Genome A​ ​RDA3​ ​4.243​ ​9.72​ ​<0.001​
​Genome A​ ​RDA4​ ​2.765​ ​6.35​ ​<0.001​
​Genome A​ ​RDA5​ ​1.789​ ​4.12​ ​0.02​
​Genome A​ ​RDA6​ ​1.280​ ​2.96​ ​0.14​
​Genome A​ ​RDA7​ ​1.045​ ​2.38​ ​-​
​Genome B​ ​RDA1​ ​11.549​ ​25.05​ ​<0.001​
​Genome B​ ​RDA2​ ​5.690​ ​12.38​ ​<0.001​
​Genome B​ ​RDA3​ ​4.393​ ​9.58​ ​<0.001​
​Genome B​ ​RDA4​ ​3.317​ ​7.25​ ​<0.001​
​Genome B​ ​RDA5​ ​1.880​ ​4.12​ ​0.03​
​Genome B​ ​RDA6​ ​1.504​ ​3.31​ ​0.10​
​Genome B​ ​RDA7​ ​1.220​ ​2.65​ ​-​
​Genome C​ ​RDA1​ ​4.540​ ​22.33​ ​<0.001​
​Genome C​ ​RDA2​ ​2.357​ ​11.63​ ​<0.001​
​Genome C​ ​RDA3​ ​1.671​ ​8.27​ ​<0.001​
​Genome C​ ​RDA4​ ​1.107​ ​5.49​ ​0.006​
​Genome C​ ​RDA5​ ​0.681​ ​3.39​ ​0.12​
​Genome C​ ​RDA6​ ​0.624​ ​3.07​ ​-​
​Genome C​ ​RDA7​ ​0.540​ ​2.66​ ​-​
​Genome D​ ​RDA1​ ​6.943​ ​20.70​ ​<0.001​
​Genome D​ ​RDA2​ ​4.168​ ​12.46​ ​<0.001​
​Genome D​ ​RDA3​ ​3.334​ ​10.00​ ​<0.001​
​Genome D​ ​RDA4​ ​2.324​ ​6.99​ ​<0.001​
​Genome D​ ​RDA5​ ​1.248​ ​3.76​ ​0.03​
​Genome D​ ​RDA6​ ​1.043​ ​3.15​ ​0.07​
​Genome D​ ​RDA7​ ​0.802​ ​2.43​ ​0.21​

​Environmental Variable Contributions​

​By-margin permutation tests (999 permutations) assessed the independent contribution of each​
​environmental variable while accounting for all other variables (Table 5). Climate variables​
​(annual rainfall and temperature) consistently explained the largest variance across runs (mean​
​variance: 3.99 and 2.83 respectively), followed by soil carbon (2.04) and gravel content (1.95).​
​All soil nitrogen variables (ammonia, nitrate) and metal variables (zinc, copper, magnesium)​



​showed significant associations (p ≤ 0.01) in all four runs. Soil pH showed the weakest​
​associations (mean variance: 0.65, rank 12/12), with no runs reaching p ≤ 0.01 significance.​

​Table 5.​​Environmental variable contributions across​​all four runs, ranked by mean variance​
​explained. By-margin permutation tests (999 permutations) assessed each variable’s independent​
​contribution while accounting for all other variables.​

​Variable​
​Mean​
​Variance​

​Mean​
​F​

​Min​
​p-value​ ​Runs Significant (p ≤ 0.01)​

​Climate:Rain​ ​3.988​ ​10.81​ ​<0.001​ ​4​
​Climate:Temp​ ​2.826​ ​7.69​ ​<0.001​ ​4​
​Soil:C​ ​2.037​ ​5.56​ ​<0.001​ ​4​
​Soil:Gravel​ ​1.948​ ​5.24​ ​<0.001​ ​4​
​Soil:NO₃​ ​1.295​ ​3.65​ ​<0.001​ ​4​
​Soil:Zn​ ​1.275​ ​3.54​ ​<0.001​ ​4​
​Soil:Cu​ ​1.206​ ​3.24​ ​<0.001​ ​4​
​Soil:Mg​ ​1.137​ ​3.09​ ​<0.001​ ​4​
​Soil:NH₃​ ​1.062​ ​2.93​ ​<0.001​ ​4​
​Soil:Salt​ ​1.023​ ​2.85​ ​0.002​ ​4​
​Soil:K​ ​0.816​ ​2.30​ ​0.003​ ​3​
​Soil:pH​ ​0.649​ ​1.79​ ​0.026​ ​0​

​RDA Biplots​

​RDA biplots show the relationship between isolate genotypes, environmental gradients, and​
​cluster assignments (Figure 1). Samples are positioned based on genotype projections onto​
​environmental space, with environmental vectors indicating direction and strength of​
​correlations. Clusters show varying degrees of environmental specialization, with some clusters​
​tightly grouped and others broadly dispersed across environmental space.​



​Figure 1.​​RDA biplots for all four runs showing RDA axes 1-2 (left panels) and axes 3-4 (right​
​panels). Points represent individual isolates colored by their predominant cluster membership​
​(10 clusters total). Arrows show environmental variable loadings. Clear separation of samples​
​along environmental gradients is visible, with climate variables (temperature, rainfall) often​
​driving RDA1 and soil chemistry variables (pH, nutrients, salinity) driving RDA2. Some clusters​
​show strong environmental associations with tight grouping in environmental space.​



​Genomic Distribution of Outlier SNPs​

​Circular Manhattan plots (Figure 3) display the genome-wide distribution of outlier SNPs​
​colored by cluster assignment. Outliers are distributed across the genome rather than​
​concentrated in single regions. The radial pattern shows Mahalanobis distance, with outliers​
​extending beyond the significance threshold circle.​

​Figure 3.​​Circular Manhattan plots for all four runs.​​Radial distance represents Mahalanobis​
​distance, with outliers extending beyond the significance threshold circle (innermost dashed​
​circle). Points are colored by cluster assignment (10 clusters). Non-outlier SNPs shown in grey.​
​Outliers are distributed across the genome, indicating polygenic architecture of environmental​
​adaptation.​



​Clustering of Outlier SNPs​

​BIC-based optimization using the 95% improvement threshold yielded a consensus of K = 10​
​clusters across all runs (Figure 4). This balances model complexity with biological​
​interpretability.​

​Figure 4.​​BIC curves for cluster number selection.​​Grey points show raw BIC values across​
​different numbers of clusters (K), blue line shows LOESS-smoothed curve. Vertical lines indicate​
​different selection criteria: 90% improvement (dashed), 95% improvement (solid), 99%​
​improvement (dotted), and absolute minimum (dash-dot). The 95% improvement threshold was​
​selected as optimal, yielding a consensus K = 10 clusters across runs.​

​Cluster Environmental Profiles​

​Circular parallel coordinates plots (Figure 5) display environmental associations for each of the​
​10 clusters. Each cluster shows a distinct environmental profile, with individual SNP projections​
​(colored lines) radiating from the cluster center (thick black line). The spread of SNP lines within​
​each cluster visualizes heterogeneity of environmental associations. Clusters show diverse​
​environmental response patterns. Some clusters associate strongly with climate variables​
​(temperature, rainfall), others with soil chemistry (pH, nutrients), and others with soil physical​



​properties (gravel content). Some clusters display mixed associations across multiple​
​environmental axes.​





​Figure 5.​​Environmental profiles for each of the 10​​clusters across all runs. Each subplot shows​
​individual SNP projections from one cluster as colored lines radiating from center, with the​
​cluster center shown as a thick black line. Radial distance indicates strength of association with​
​each environmental variable (labeled around the circle). Positive values (outward) indicate​
​positive correlation; negative values (inward) indicate negative correlation. The spread of​
​individual SNP lines visualizes heterogeneity within each cluster.​

​Functional Annotation of Outlier Loci​

​The majority of outlier SNPs (94.9%, 1,767/1,862) map to coding sequences, with 73.0% (1,359)​
​having assigned gene names. Outlier SNPs across all four runs map to 1,055 unique genes​
​spanning diverse functional categories (Table 7; see Table S1 for full category list). The most​
​represented categories include unknown function (328 genes), amino acid metabolism (230​
​genes), signal transduction (182 genes), ion transport (142 genes), and carbohydrate metabolism​
​(136 genes).​

​Table 7.​​Top 10 COG functional categories among outlier​​genes. Counts represent unique genes​
​containing at least one outlier SNP.​

​Rank​ ​COG​ ​Category​ ​Count​ ​Key Genes​
​1​ ​S​ ​Unknown function​ ​328​ ​Many adaptive genes lack​

​annotation​
​2​ ​E​ ​Amino acid​

​metabolism​
​230​ ​Metabolic adaptation to C/N​

​3​ ​T​ ​Signal transduction​ ​182​ ​regB, regM, tacA, chvG, feuQ​
​4​ ​P​ ​Ion transport​ ​142​ ​modAB (Mo), nikAB (Ni),​

​corB (Co/Mg)​
​5​ ​G​ ​Carbohydrate​

​metabolism​
​136​ ​Carbon source utilization​

​6​ ​C​ ​Energy production​ ​135​ ​Respiratory flexibility​
​7​ ​M​ ​Cell envelope​ ​130​ ​Membrane adaptation, EPS​
​8​ ​I​ ​Lipid metabolism​ ​117​ ​Membrane composition​
​9​ ​K​ ​Transcription​ ​100​ ​Regulatory adaptation​
​10​ ​H​ ​Coenzyme​

​metabolism​
​90​ ​Cofactor biosynthesis​

​COG Functional Enrichment​

​Hypergeometric enrichment analysis tested whether specific COG categories were​
​over-represented among outlier genes (genes containing ≥1 outlier SNP) relative to the​
​background distribution of all genes with detectable SNPs.​



​Statistical testing across 26 COG analysis revealed one category with significant enrichment at​
​FDR < 0.01: signal transduction mechanisms (COG T) in Genome A showed 1.58-fold​
​enrichment (51 outlier genes, FDR = 0.0026). One additional category showed suggestive​
​enrichment at 0.05 < FDR < 0.15 (Table 13): signal transduction mechanisms in Genome B (44​
​outlier genes, 1.41-fold enrichment, FDR = 0.129).​

​Other functional categories showing modest representation among outliers include amino acid​
​metabolism (COG E), ion transport (COG P), and energy production (COG C), though these did​
​not reach statistical significance after multiple testing corrections. The high count of unknown​
​function genes (COG S, 328 genes) among outliers likely reflects the large fraction of​
​unannotated genes in bacterial genomes rather than selective enrichment, as this category​
​showed no statistical enrichment (fold enrichment ~1.0 in all genomes).​

​Symbiosis Gene Enrichment​

​Hypergeometric enrichment analysis tested whether 164 symbiosis-related genes (nod, nif, fix,​
​T3SS/T4SS, nop families) were over-represented among outlier genes. All four genomes showed​
​fold enrichment below 1.0 (Table 14), indicating depletion rather than enrichment. Genome D​
​showed marginal significance for depletion (p = 0.075, fold enrichment 0.38×).​

​Table 14.​​Symbiosis gene enrichment test results.​​All four genomes show fold enrichment below​
​1.0, indicating depletion rather than enrichment of outliers in symbiosis genes. Note: P-values​
​calculated using two-tailed hypergeometric test, testing the appropriate tail based on direction of​
​deviation (enrichment vs. depletion).​

​Genome​
​Total​
​Genes​

​Symbiosis​
​Genes (%)​

​Outlier​
​Genes​

​Symbiosis​
​Outliers​
​(%)​

​Fold​
​Enrichment​ ​P-value​ ​Significant​

​Genome A​ ​1,561​ ​17 (1.1%)​ ​386​ ​3 (17.6%)​ ​0.71×​ ​0.362​ ​No​
​Genome B​ ​1,478​ ​13 (0.9%)​ ​358​ ​3 (23.1%)​ ​0.95×​ ​0.610​ ​No​
​Genome C​ ​868​ ​17 (2.0%)​ ​174​ ​1 (5.9%)​ ​0.29×​ ​0.115​ ​No​
​Genome D​ ​1,316​ ​21 (1.6%)​ ​327​ ​2 (9.5%)​ ​0.38×​ ​0.075​ ​Marginal​

​Breaking down symbiosis genes by functional family (Figure 7) reveals heterogeneity in outlier​
​rates. Regulatory genes (exoR, regB: 2/2 genes, 100% with outliers) and exopolysaccharide​
​genes (exo family: 3/3 genes, 100% with outliers) show complete representation among outliers.​
​In contrast, Type IV secretion (T4SS: 0/8 genes) and nodulation outer proteins (nol family: 0/2​
​genes) show complete conservation.​



​Figure 7.​​Symbiosis gene enrichment across four reference​​genomes. Bar heights represent fold​
​enrichment relative to the neutral expectation (dashed line at 1.0). All genomes show values​
​below 1.0, indicating fewer outlier SNPs in symbiosis genes than expected by chance. P-values​
​(displayed above bars) show that Genome D approaches statistical significance (p = 0.075),​
​providing evidence that depletion in core symbiosis genes reflects genuine purifying selection​
​rather than random chance.​



​Figure 8.​​Symbiosis gene family breakdown. Stacked​​bar plot shows number of genes per family,​
​with orange indicating genes containing outlier SNPs and grey indicating non-outlier genes. The​
​nif family is most abundant in our dataset (~10 genes), while exo and regulation families show​
​100% outlier rates despite small sample sizes. T4SS genes show complete conservation (no​
​outliers), consistent with purifying selection on secretion machinery.​

​Discussion​

​Australia harbors exceptional legume diversity, with thousands of native legume species that​
​dominate many Australian landscapes​​(Barrett​​et al.​​2015)​​. These legumes thrive on the​
​continent’s nutrient-poor soils primarily through symbiotic associations with nitrogen-fixing​
​rhizobia, among which​​Bradyrhizobium​​species predominate​​(Lafay & Burdon 1998)​​.​​Acacia​
​species form highly specialized root-nodule symbioses with​​Bradyrhizobium​​, enabling survival​
​under conditions of nutrient limitation​​(Barrett​​et al.​​2015; Lafay & Burdon 1998)​​. Australia​
​faces severe climate change pressures, including increasing temperatures, intensified heatwaves,​
​and declining rainfall, with trends especially acute in southwestern Australia – a globally​
​recognized biodiversity hotspot​​(Australian Academy of Science 2021)​​. In this context,​
​Bradyrhizobium​​populations alternating between free-living​​soil stages and symbiotic stages may​
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​face strong selective pressures from both climate variability and soil chemistry gradients.​
​Southwestern Australia provides a natural laboratory for studying these selective pressures, with​
​pronounced environmental gradients in both climate and soil properties occurring within​
​relatively short geographic distances. This study employed redundancy analysis (RDA) to​
​identify genomic loci in​​Bradyrhizobium​​populations​​that show statistical associations with​
​environmental gradients. Using 375 isolates analyzed across four independent reference​
​genomes, we detected 1,859 outlier SNPs distributed across 1,628 unique genes.​

​Climate Variability as the Primary Driver​

​Climate variables emerge as the dominant environmental factors associated with genomic​
​variation in​​Bradyrhizobium​​populations. By-margin​​permutation tests revealed that annual​
​rainfall (mean variance = 3.99) and annual temperature (mean variance = 2.83) ranked first and​
​second among all 13 environmental variables tested (Table 5). These climate effects substantially​
​exceeded those of soil chemistry variables, with rainfall explaining nearly twice the variance of​
​the strongest soil factor (carbon = 2.04). This result was not context dependent on the reference​
​genome, strengthening the generality of the result.​

​Local soil chemistry is considered a more proximate factor, while larger scale climate factors are​
​considered more distal and so their effects may also be mediated through proximate effects on​
​the residing microbial community members​​(Gupta & Tiedje 2024)​​. Based on this, our initial​
​prediction was that soil chemistry was  more likely to have a stronger effect in structuring​
​putative adaptive variation. Previous analysis revealed no distinct population structure emerging​
​at site level or higher scales, indicating high rates of genetic mixing that are indicative of low​
​dispersal barriers to​​Bradyrhizobium​​(Simonsen et al. 2019)​​, further strengthening our​
​preliminary expectation on a larger effect of local soil chemistry factors. However, our results​
​show climate variables as having a strong signal in all detected outlier loci. Given that there was​
​a weak correlation between climate and soil chemistry variables, this provides a strong case on​
​Bradyrhizobium​​’s capacity to adapt to climate variation.​​In southwestern Australia-biodiversity​
​hotspot experiencing severe climate change including increasing temperatures, intensified​
​heatwaves, and declining rainfall​​(Australian Academy of Science 2021)​​- our results strongly​
​suggest that these large-scale climate gradients create persistent selective pressures on free-living​
​soil bacteria during the non-symbiotic phase of the​​Bradyrhizobium​​life cycle.​

​Soil Chemistry: Important but Secondary​

​Soil chemistry variables also show significant associations with genomic variation, though their​
​effects are generally weaker than climate factors. Among soil variables, soil carbon and gravel​
​content show the strongest associations (mean variance 2.04 and 1.95 respectively, Table 5),​
​followed by nitrate (1.30). Soil carbon likely reflects overall soil organic matter content​
​influencing microbial habitat quality and nutrient availability during the free-living phase. Gravel​
​content affects soil physical structure, water retention, and root accessibility – factors that​
​influence both bacterial survival and host plant root distribution.​

​Nitrate (ranking 5th overall among 12 variables) shows moderate but consistent associations​
​across all four reference genomes. This is biologically coherent: high soil nitrogen reduces plant​
​dependence on bacterial nitrogen fixation, potentially altering the selective advantage of​
​maintaining costly symbiotic machinery. However, this effect is substantially weaker than​
​climate variables (nitrate variance = 1.30 vs. rainfall variance = 3.99).​
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​Soil pH, despite its well-documented importance for rhizobial biology​​(Bordeleau & Prévost​
​1994)​​, and having large general influence in structuring microbial communities​​(Gupta & Tiedje​
​2024)​​, actually showed the weakest associations among all variables tested (mean variance 0.65,​
​rank 12/12, Table 5), with no significant effects at p ≤ 0.01 in any genome. This unexpected​
​finding may reflect: (1) the relatively narrow pH range in the sampling area (most southwestern​
​Australian soils are acidic to neutral) limiting selective differentiation, (2) pH effects operating​
​primarily through indirect mechanisms – metal availability, nutrient solubility – already captured​
​by other variables in the model, or (3) pH tolerance having evolved earlier in​​Bradyrhizobium​
​evolutionary history such that standing genetic variation in pH response is now limited.​

​Functional Enrichment: Signal Transduction Mechanisms​

​To test whether specific functional categories were over-represented among outlier loci, we​
​performed hypergeometric enrichment analysis on COG functional categories. Signal​
​transduction mechanisms (COG category T) showed statistically significant enrichment in​
​Genome A (FDR = 0.0026, 1.58-fold enrichment), with suggestive enrichment in Genome B​
​(FDR = 0.129, 1.41-fold enrichment). This category includes two-component regulatory systems​
​(e.g., regB/regA for oxygen response, fixL/fixJ for nitrogen fixation regulation, chvG/chvI for​
​acid tolerance) and chemotaxis machinery.​

​The enrichment of signal transduction systems is consistent with expectations of adaptive​
​variation along environmental variation: these genes represent the interface between genotype​
​and environment, where genetic variation directly translates into differential environmental​
​responses​​(Carroll 2005)​​. Unlike structural genes with conserved biochemical functions,​
​regulatory genes can evolve sensitivity thresholds and signaling outputs without disrupting core​
​cellular processes, making them prime targets for adaptation to environmental heterogeneity. In​
​the context of climate variability – the dominant selective force identified here – signal​
​transduction systems allow bacteria to sense and respond to fluctuating conditions during​
​free-living soil survival​​(Biswas​​et al.​​2007; Bridges​​et al.​​2022)​​.​

​Symbiosis Genes: Purifying Selection and Host Plant Buffering​

​Given the ecological importance of nitrogen-fixing symbiosis, we specifically tested whether​
​symbiosis-related genes showed enrichment among outliers, which would indicate if​
​environmental factors act as putative selective agents on symbiosis genes. Symbiosis genes as a​
​class showed consistent depletion across all four reference genomes (fold enrichment​
​0.29-0.95×). The near-significant depletion in Genome D (62% fewer outliers than expected) and​
​strong depletion in Genome C (71% fewer outliers) indicate this pattern reflects genuine​
​selective constraint. This depletion provides statistical evidence that some symbiosis genes, such​
​as nod (nodulation), nif (nitrogen fixation), and fix (oxygen response) genes are under purifying​
​selection, maintaining highly conserved sequences essential for the nitrogen-fixing mutualism.​
​Mutations in these genes are more likely to be deleterious than adaptive, as loss of nodulation or​
​nitrogen fixation capacity would severely disadvantage isolates in legume-dominated plant​
​communities. Despite SNPs occurring within nifHDK genes, the genes which encode the​
​subunits for the nitrogen-fixing enzyme nitrogenase, these did not show any significant​
​association with the environment (as evident by a lack of outlier loci in these regions). This​
​finding is consistent with theoretical predictions that genes providing obligate fitness benefits​
​experience strong purifying selection. The strong depletion of outliers in symbiosis genes,​
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​combined with the enrichment of signal transduction mechanisms among outliers, supports a​
​model where environmental heterogeneity shapes the free-living phase of the life cycle while the​
​symbiotic phase remains under functional constraint.​

​Cross-Genome Validation​

​The consistency of results across four independent reference genomes validates that observed​
​patterns represent biological signals rather than assembly artifacts or reference bias. Despite​
​distinct properties of each reference genome, all four showed: (1) similar levels of environmental​
​variance explained (9-10%), (2) comparable numbers of outlier loci relative to genome size, (3)​
​consistent ranking of environmental variables (climate > soil chemistry), (4) enrichment or​
​suggestive enrichment of signal transduction mechanisms, and (5) depletion of outliers in core​
​symbiosis genes.​

​The use of multiple genomes also revealed that statistical power varies with sample size:​
​Genome A (503 outlier genes) showed the strongest enrichment signals, while Genome C (241​
​outlier genes) showed weaker statistical support despite similar biological patterns. This finding​
​emphasizes the importance of the reference genome choice in influencing sample sizes for​
​detecting functional enrichment in landscape genomics studies and limitations of genotype by​
​environment association studies.​

​The application of von Mises-Fisher mixture models to cluster outlier loci by their environmental​
​associations revealed that outliers group into approximately 10 distinct environmental response​
​patterns (Figure 5). This finding suggests that adaptation involves coordinated changes in​
​functionally related genes responding to different environmental pressures, rather than​
​independent mutations scattered randomly across the genome. Some clusters show strong​
​positive associations with climate variables (temperature, rainfall), others with soil chemistry​
​(pH, nutrients), and others with soil physical properties (gravel content). This diversity of​
​environmental profiles indicates that selection acts through multiple independent environmental​
​gradients, each shaping different subsets of genomic variation.​

​Conclusions and Future Work​

​This study demonstrates that​​Bradyrhizobium​​populations​​show genomic signatures consistent​
​with local adaptation to environmental gradients, with climate variability (particularly rainfall​
​and temperature) as the dominant putative selective force. Soil chemistry factors, while​
​significant, play a secondary role – with carbon and gravel content showing stronger effects than​
​nitrate, and pH showing the weakest associations. The enrichment of signal transduction genes​
​among outliers suggests that bacteria adapt to variable environments primarily through​
​regulatory tuning. The conservation of core symbiosis genes indicates that the nitrogen-fixing​
​mutualism itself is maintained by functional constraint, potentially buffered by host plant​
​regulation of the nodule microenvironment.​

​While these results strongly suggest the pivotal role climate has in structuring adaptive variation​
​in​​Bradyrhizobium​​, we also acknowledge the limit of​​this study, shared in common with other​
​correlational genotype by environment association studies. Since this work focused on single​
​nucleotide polymorphisms, we also acknowledge the importance of other genetic variation, such​
​as structural variation (i.e. large deletions, insertions and rearrangements), as previous work on​
​the​​Bradyrhizobium​​strains analyzed here also revealed​​highly prominent genome streamlining​



​and gene deletions with environmental stress​​(Simonsen 2022)​​.  Future work can consider​
​experimental validation of candidate outlier loci through reciprocal transplant experiments or​
​common garden studies, testing whether outlier genotypes confer fitness advantages in their​
​native environments.​

​These findings have implications for predicting rhizobial responses to climate change in​
​southwestern Australia and similar Mediterranean-climate regions experiencing increased​
​temperature variability and rainfall decline. The extent to which standing genetic variation in​
​regulatory loci can accommodate projected climate scenarios (2-4°C warming, 10-30% rainfall​
​reduction by 2070; Australian Academy of Science, 2021) remains unclear.​

​Supporting Information:​​Please see the Supporting​​Information file attached separately for all​
​supplementary information on methods and results.​

​Data Availability​​: The genome sequence data are available​​in GenBank under BioProject​
​accession number PRJNA669073. Metadata is available here:​​10.6084/m9.figshare.9698438​​.​
​Code will be made available upon publication.​
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​Supporting Material​
​Section S1: Environmental Variable Transformations​

​Correlation Analysis and Variable Selection​

​High correlation between environmental variables can cause multicollinearity issues in RDA. We​
​performed hierarchical clustering of variables based on correlation distance:​

​𝑑​
​𝑖𝑗​

= ​1​ − ​|​​𝑟​
​𝑖𝑗​

​|​

​where​ ​is the Pearson correlation between variables​ ​and​ ​. Variables with​​high correlation (|r|​​𝑟​
​𝑖𝑗​

​𝑖​ ​𝑗​
​> 0.7) were removed. Variables removed included soil texture (correlated with gravel), soil​
​aluminium (correlated with pH), soil pH_h (correlated with pH_c), soil potassium_t (correlated​
​with other nutrients), soil moisture (correlated with climate variables), soil iron, sulphur, sodium​
​(correlated with other metals), soil manganese, phosphorus, boron (correlated with other​
​nutrients), and soil calcium (correlated with magnesium and pH).​

​Yeo-Johnson Transformation​

​The Yeo-Johnson transformation is a generalization of the Box-Cox transformation that handles​
​negative values and zeros. The transformation is defined as:​

​The optimal​ ​parameter is determined automatically for each variable using maximum​λ
​likelihood estimation. After transformation, all variables were normalized (centered and scaled)​
​to have mean = 0 and standard deviation = 1.​

​Section S2: Mahalanobis Distance for Outlier Detection​

​To identify outlier SNPs in multivariate loading space, we used Mahalanobis distance, which​
​accounts for the correlation structure among RDA axes. The squared Mahalanobis distance is​
​defined as:​

​𝐷​​2​ = (​𝑥​ − µ)​𝑇​Σ−​1​(​𝑥​ − µ)

​where: -​ ​: SNP’s loading vector across significant RDA axes -​ ​: Mean loading vector​​across all​​𝑥​ µ
​SNPs -​ ​: Covariance matrix of loadings -​ ​: Squared Mahalanobis distance​Σ ​𝐷​​2​



​Under the null hypothesis of neutral evolution,​ ​follows a chi-squared distribution with​​𝐷​​2​

​degrees of freedom equal to the number of RDA axes:​

​𝐷​​2​ ∼ χ
​𝑑𝑓​
​2​

​P-values were calculated as:​

​𝑝​ = ​𝑃​(χ
​𝑑𝑓​
​2​ ≥ ​𝐷​​2​)

​SNPs with p ≤ 0.05 were classified as outliers.​

​Rationale for Mahalanobis distance:​​This approach​​is more statistically rigorous than​
​examining individual axes independently because it accounts for correlation structure among​
​RDA axes, provides a multivariate test statistic with known distribution, and has greater power to​
​detect coordinated responses across multiple environmental gradients.​

​Section S3: Hemisphere Folding and von Mises-Fisher Mixture Models​
​The Arbitrary Allele Coding Problem​

​SNP allele coding (0/1 for reference/alternate allele) is arbitrary. Two SNPs with opposite RDA​
​loadings (e.g., [+0.6, -0.3] vs. [-0.6, +0.3]) may actually represent the same biological pattern if​
​their alleles are coded differently. Standard clustering methods would place these in different​
​clusters despite identical environmental associations.​

​Hemisphere Folding Transformation​

​Before clustering, we transform loading vectors to account for arbitrary directionality:​

​Step 1 - Unit normalization:​​Scale each loading vector​​to unit length:​

​𝑣​
​𝑛𝑜𝑟𝑚​

= ​𝑣​
​||​​𝑣​​||​

​Step 2 - Hemisphere folding:​​If the sum of vector​​components is negative, reflect the vector:​

​𝑣​
​𝑓𝑜𝑙𝑑𝑒𝑑​

= {​𝑣​
​𝑛𝑜𝑟𝑚​

​ ​​𝑖𝑓​​ ​
​𝑖​

∑ ​𝑣​
​𝑖​

≥ ​0​​ ​ − ​𝑣​
​𝑛𝑜𝑟𝑚​

​ ​​𝑖𝑓​​ ​
​𝑖​

∑ ​𝑣​
​𝑖​

< ​0​​ ​

​This ensures that vectors​ ​and​ ​map to the same point, preserves relationships between​​𝑣​ − ​𝑣​
​environmental variables, and converts the n-sphere to a half n-sphere. This essentially removes​
​direction information, appropriate because of the arbitrariness of the 0 or 1 coding of snps.​



​von Mises-Fisher Distribution​

​The von Mises-Fisher (vMF) distribution is the appropriate probability distribution for unit​
​vectors on a sphere:​

​𝑓​(​𝑥​​|​µ, κ) = ​𝐶​
​𝑝​
(κ)​𝑒𝑥𝑝​(κµ​𝑇​​𝑥​)

​where: -​ ​: Unit vector (SNP loading) -​ ​: Mean direction (cluster center), a unit vector -​ ​:​​𝑥​ µ κ
​Concentration parameter (analogous to inverse variance) -​ ​: Normalization constant​​𝐶​

​𝑝​
(κ)

​The concentration parameter​ ​has direct interpretation: -​ ​: Uniform distribution on​​sphere​κ κ = ​0​
​(no clustering) -​ ​: Concentrated at point (perfect clustering) - Typical values:​κ → ∞

​(loose clusters) to​ ​(tight clusters)​κ = ​1​ − ​10​ κ > ​100​

​Mixture Model​

​The mixture model combines multiple vMF distributions:​

​𝑃​(​𝑥​) =
​𝑘​=​1​

​𝐾​

∑ α
​𝑘​
​𝑓​(​𝑥​​|​µ

​𝑘​
, κ

​𝑘​
)

​where​ ​are mixing proportions (sum to 1). Model parameters are estimated using the​α
​𝑘​

​Expectation-Maximization (EM) algorithm as implemented in the movMF R package.​

​Model Selection Using BIC​

​The Bayesian Information Criterion (BIC) balances model fit and complexity:​

​𝐵𝐼𝐶​ =− ​2​​𝑙𝑜𝑔𝐿​ + ​𝑘𝑙𝑜𝑔𝑛​

​where: -​ ​: Model likelihood -​ ​: Number of parameters -​ ​: Number of observations​​𝐿​ ​𝑘​ ​𝑛​

​Lower BIC indicates better model. We tested K = 2 to K = 40 and selected K using the elbow​
​method at 95% of total BIC improvement:​

​𝐾​
​𝑜𝑝𝑡​

= ​𝑎𝑟𝑔​
​𝑘​

min ​𝑘​:
​𝐵𝐼𝐶​

​𝑚𝑎𝑥​
−​𝐵𝐼𝐶​

​𝑘​

​𝐵𝐼𝐶​
​𝑚𝑎𝑥​

−​𝐵𝐼𝐶​
​𝑚𝑖𝑛​

≥ ​0​. ​95​
⎰
⎱

⎱
⎰

​LOESS smoothing (span = 0.3) was applied to reduce noise from convergence failures.​



​Section S4: Cluster Matching Across Runs Using the Hungarian Algorithm​
​The Cluster Matching Problem​

​After independent clustering in each run, cluster labels are arbitrary (Cluster 1 in Genome A ≠​
​Cluster 1 in Genome B biologically). To enable cross-run comparisons and consistent​
​visualization, we need to optimally match clusters based on similarity.​

​Cluster Feature Extraction​

​For each cluster in each run, we extract:​

​1.​ ​Environmental projection vector:​​The cluster center (mean direction​ ​) projected onto​µ
​𝑘​

​the original environmental variable space​
​2.​ ​Concentration parameter:​ ​indicating cluster tightness​κ

​𝑘​

​Distance Matrix Construction​

​We calculate a pairwise distance matrix between clusters from different runs:​

​𝐷​
​𝑖𝑗​

= ​𝑤​
​𝑒𝑛𝑣​

· ​𝑑​
​𝑐𝑜𝑠𝑖𝑛𝑒​

(​𝑒𝑛𝑣​
​𝑖​
, ​𝑒𝑛𝑣​

​𝑗​
) + ​𝑤​

κ
· ​|​κ

​𝑖​
− κ

​𝑗​
​|​

​where: -​ ​: Cosine distance between environmental projections -​ ​: Weight for​​𝑑​
​𝑐𝑜𝑠𝑖𝑛𝑒​

​𝑤​
​𝑒𝑛𝑣​

= ​0​. ​7​
​environmental similarity -​ ​: Weight for concentration similarity - Normalized​ ​values​​𝑤​

κ
= ​0​. ​3​ κ

​to have comparable scale​

​Hungarian Algorithm​

​The Hungarian algorithm (Kuhn-Munkres algorithm) finds the optimal 1-to-1 assignment that​
​minimizes total cost:​

​Input:​​Distance matrix​ ​(Genome B clusters × Genome A clusters)​​𝐷​

​Output:​​Assignment minimizing​
​𝑖​

∑ ​𝐷​
​𝑖​,​𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡​(​𝑖​)

​Procedure:​​1. Designate Genome A as reference 2. For​​Genome B, Genome C, Genome D: -​
​Compute distance matrix between that run’s clusters and Genome A clusters - Apply Hungarian​
​algorithm to find minimum-cost assignment - Relabel clusters to match Genome A​

​Benefits:​​- Globally optimal matching (not greedy)​​- Ensures 1-to-1 correspondence - Consistent​
​cluster coloring across all plots - Enables quantitative comparison of cluster properties​

​Section S5: Supplementary Methods for Circular Parallel Coordinates Plots​

​Circular parallel coordinates plots (also called radar plots or spider plots) were used to visualize​
​environmental associations of clusters. Each environmental variable is assigned an angular​



​position around a circle. For each SNP or cluster center, the value on each environmental​
​variable is plotted as radial distance from the origin. Positive values extend outward, negative​
​values extend inward (toward center).​

​Construction:​​1. Arrange 13 environmental variables at equal angular intervals:​ ​2. For​θ
​𝑖​

= ​2​π·​𝑖​
​13​

​each SNP or cluster center with loading vector​ ​: - Project onto environmental space if needed -​​𝑣​
​Plot point at angle​ ​and radius​ ​3. Connect points to form a closed polygon 4. Overlay​θ

​𝑖​
​𝑟​

​𝑖​
= ​𝑣​

​𝑖​
​individual SNP lines (colored by cluster) and cluster centers (thick black lines)​

​Interpretation:​​-​​Shape:​​Overall pattern of environmental​​associations -​​Area:​​Magnitude of​
​environmental response (larger = stronger associations) -​​Asymmetry:​​Differential associations​
​with different environmental axes -​​Within-cluster​​spread:​​Heterogeneity of SNP responses​
​within cluster​

​Supporting Tables​
​Table S1.​​Complete COG (Clusters of Orthologous Groups)​​functional category enrichment​
​results across four​​Bradyrhizobium​​reference genomes.​

​For each genome and COG category, we report the number of outlier loci (n_outlier),​
​background loci (n_background), fold enrichment, Fisher’s exact test p-value, and false​
​discovery rate (FDR). Enrichment was tested using Fisher’s exact test comparing the proportion​
​of outlier loci in each category to the background proportion. Categories are ordered by genome​
​then p-value within genome.​

​Genome​ ​COG​ ​Category​ ​outlier​ ​background​
​Fold​
​enrichment​ ​p_value​ ​FDR​

​A​ ​T​ ​Signal​
​transduction​
​mechanisms​

​51​ ​129​ ​1.58​ ​1.20e-04​ ​2.63e-​
​03​

​A​ ​E​ ​Amino acid​
​transport and​
​metabolism​

​54​ ​257​ ​0.84​ ​6.40e-02​ ​4.75e-​
​01​

​A​ ​M​ ​Cell​
​wall/membran​
​e/envelope​
​biogenesis​

​36​ ​117​ ​1.23​ ​8.70e-02​ ​4.75e-​
​01​

​A​ ​K​ ​Transcription​ ​22​ ​112​ ​0.79​ ​1.06e-01​ ​4.75e-​
​01​

​A​ ​P​ ​Inorganic ion​
​transport and​
​metabolism​

​35​ ​116​ ​1.21​ ​1.14e-01​ ​4.75e-​
​01​



​Genome​ ​COG​ ​Category​ ​outlier​ ​background​
​Fold​
​enrichment​ ​p_value​ ​FDR​

​A​ ​D​ ​Cell cycle​
​control, cell​
​division,​
​chromosome​
​partitioning​

​3​ ​23​ ​0.52​ ​1.35e-01​ ​4.75e-​
​01​

​A​ ​U​ ​Intracellular​
​trafficking,​
​secretion, and​
​vesicular​
​transport​

​6​ ​35​ ​0.69​ ​1.89e-01​ ​4.75e-​
​01​

​A​ ​I​ ​Lipid transport​
​and​
​metabolism​

​34​ ​120​ ​1.13​ ​2.22e-01​ ​4.75e-​
​01​

​A​ ​H​ ​Coenzyme​
​transport and​
​metabolism​

​22​ ​100​ ​0.88​ ​2.80e-01​ ​4.75e-​
​01​

​A​ ​J​ ​Translation,​
​ribosomal​
​structure and​
​biogenesis​

​19​ ​87​ ​0.87​ ​2.88e-01​ ​4.75e-​
​01​

​A​ ​V​ ​Defense​
​mechanisms​

​8​ ​40​ ​0.80​ ​2.97e-01​ ​4.75e-​
​01​

​A​ ​Q​ ​Secondary​
​metabolites​
​biosynthesis,​
​transport and​
​catabolism​

​21​ ​75​ ​1.12​ ​3.12e-01​ ​4.75e-​
​01​

​A​ ​F​ ​Nucleotide​
​transport and​
​metabolism​

​10​ ​47​ ​0.85​ ​3.43e-01​ ​4.75e-​
​01​

​A​ ​G​ ​Carbohydrate​
​transport and​
​metabolism​

​38​ ​143​ ​1.06​ ​3.60e-01​ ​4.75e-​
​01​

​A​ ​N​ ​Cell motility​ ​11​ ​50​ ​0.88​ ​3.79e-01​ ​4.75e-​
​01​

​A​ ​O​ ​Posttranslation​
​al​
​modification,​
​protein​
​turnover,​
​chaperones​

​19​ ​70​ ​1.09​ ​3.83e-01​ ​4.75e-​
​01​



​Genome​ ​COG​ ​Category​ ​outlier​ ​background​
​Fold​
​enrichment​ ​p_value​ ​FDR​

​A​ ​-​ ​NA​ ​30​ ​113​ ​1.06​ ​3.85e-01​ ​4.75e-​
​01​

​A​ ​C​ ​Energy​
​production and​
​conversion​

​36​ ​152​ ​0.95​ ​3.89e-01​ ​4.75e-​
​01​

​A​ ​S​ ​Function​
​unknown​

​89​ ​348​ ​1.02​ ​4.19e-01​ ​4.85e-​
​01​

​A​ ​L​ ​Replication,​
​recombination​
​and repair​

​17​ ​72​ ​0.94​ ​4.52e-01​ ​4.98e-​
​01​

​A​ ​B​ ​Chromatin​
​structure and​
​dynamics​

​0​ ​2​ ​0.00​ ​5.62e-01​ ​5.62e-​
​01​

​A​ ​Z​ ​Cytoskeleton​ ​0​ ​2​ ​0.00​ ​5.62e-01​ ​5.62e-​
​01​

​B​ ​T​ ​Signal​
​transduction​
​mechanisms​

​44​ ​132​ ​1.41​ ​5.86e-03​ ​1.29e-​
​01​

​B​ ​C​ ​Energy​
​production and​
​conversion​

​22​ ​133​ ​0.70​ ​2.56e-02​ ​2.82e-​
​01​

​B​ ​L​ ​Replication,​
​recombination​
​and repair​

​10​ ​69​ ​0.61​ ​4.12e-02​ ​3.02e-​
​01​

​B​ ​Z​ ​Cytoskeleton​ ​2​ ​2​ ​4.22​ ​5.60e-02​ ​3.08e-​
​01​

​B​ ​V​ ​Defense​
​mechanisms​

​11​ ​31​ ​1.50​ ​9.27e-02​ ​4.08e-​
​01​

​B​ ​H​ ​Coenzyme​
​transport and​
​metabolism​

​18​ ​95​ ​0.80​ ​1.62e-01​ ​4.33e-​
​01​

​B​ ​U​ ​Intracellular​
​trafficking,​
​secretion, and​
​vesicular​
​transport​

​8​ ​46​ ​0.73​ ​2.03e-01​ ​4.33e-​
​01​

​B​ ​D​ ​Cell cycle​
​control, cell​
​division,​

​7​ ​21​ ​1.41​ ​2.10e-01​ ​4.33e-​
​01​



​Genome​ ​COG​ ​Category​ ​outlier​ ​background​
​Fold​
​enrichment​ ​p_value​ ​FDR​

​chromosome​
​partitioning​

​B​ ​K​ ​Transcription​ ​32​ ​119​ ​1.14​ ​2.27e-01​ ​4.33e-​
​01​

​B​ ​O​ ​Posttranslation​
​al​
​modification,​
​protein​
​turnover,​
​chaperones​

​17​ ​60​ ​1.20​ ​2.36e-01​ ​4.33e-​
​01​

​B​ ​J​ ​Translation,​
​ribosomal​
​structure and​
​biogenesis​

​25​ ​92​ ​1.15​ ​2.44e-01​ ​4.33e-​
​01​

​B​ ​N​ ​Cell motility​ ​8​ ​44​ ​0.77​ ​2.51e-01​ ​4.33e-​
​01​

​B​ ​E​ ​Amino acid​
​transport and​
​metabolism​

​53​ ​242​ ​0.93​ ​2.72e-01​ ​4.33e-​
​01​

​B​ ​S​ ​Function​
​unknown​

​72​ ​324​ ​0.94​ ​2.75e-01​ ​4.33e-​
​01​

​B​ ​F​ ​Nucleotide​
​transport and​
​metabolism​

​8​ ​41​ ​0.82​ ​3.37e-01​ ​4.84e-​
​01​

​B​ ​P​ ​Inorganic ion​
​transport and​
​metabolism​

​31​ ​124​ ​1.06​ ​3.96e-01​ ​4.84e-​
​01​

​B​ ​M​ ​Cell​
​wall/membran​
​e/envelope​
​biogenesis​

​27​ ​121​ ​0.94​ ​4.06e-01​ ​4.84e-​
​01​

​B​ ​I​ ​Lipid transport​
​and​
​metabolism​

​33​ ​133​ ​1.05​ ​4.10e-01​ ​4.84e-​
​01​

​B​ ​G​ ​Carbohydrate​
​transport and​
​metabolism​

​32​ ​141​ ​0.96​ ​4.34e-01​ ​4.84e-​
​01​

​B​ ​-​ ​NA​ ​29​ ​118​ ​1.04​ ​4.43e-01​ ​4.84e-​
​01​

​B​ ​Q​ ​Secondary​
​metabolites​

​19​ ​77​ ​1.04​ ​4.62e-01​ ​4.84e-​
​01​



​Genome​ ​COG​ ​Category​ ​outlier​ ​background​
​Fold​
​enrichment​ ​p_value​ ​FDR​

​biosynthesis,​
​transport and​
​catabolism​

​B​ ​B​ ​Chromatin​
​structure and​
​dynamics​

​0​ ​2​ ​0.00​ ​5.82e-01​ ​5.82e-​
​01​

​C​ ​I​ ​Lipid transport​
​and​
​metabolism​

​9​ ​77​ ​0.56​ ​2.19e-02​ ​2.39e-​
​01​

​C​ ​M​ ​Cell​
​wall/membran​
​e/envelope​
​biogenesis​

​20​ ​62​ ​1.54​ ​2.24e-02​ ​2.39e-​
​01​

​C​ ​V​ ​Defense​
​mechanisms​

​10​ ​27​ ​1.76​ ​3.94e-02​ ​2.39e-​
​01​

​C​ ​O​ ​Posttranslation​
​al​
​modification,​
​protein​
​turnover,​
​chaperones​

​3​ ​35​ ​0.41​ ​4.35e-02​ ​2.39e-​
​01​

​C​ ​N​ ​Cell motility​ ​9​ ​28​ ​1.53​ ​1.12e-01​ ​4.12e-​
​01​

​C​ ​T​ ​Signal​
​transduction​
​mechanisms​

​19​ ​69​ ​1.31​ ​1.12e-01​ ​4.12e-​
​01​

​C​ ​H​ ​Coenzyme​
​transport and​
​metabolism​

​12​ ​45​ ​1.27​ ​2.18e-01​ ​5.60e-​
​01​

​C​ ​E​ ​Amino acid​
​transport and​
​metabolism​

​37​ ​157​ ​1.12​ ​2.26e-01​ ​5.60e-​
​01​

​C​ ​G​ ​Carbohydrate​
​transport and​
​metabolism​

​16​ ​92​ ​0.83​ ​2.29e-01​ ​5.60e-​
​01​

​C​ ​L​ ​Replication,​
​recombination​
​and repair​

​11​ ​43​ ​1.22​ ​2.79e-01​ ​5.99e-​
​01​

​C​ ​P​ ​Inorganic ion​
​transport and​
​metabolism​

​17​ ​93​ ​0.87​ ​3.01e-01​ ​5.99e-​
​01​



​Genome​ ​COG​ ​Category​ ​outlier​ ​background​
​Fold​
​enrichment​ ​p_value​ ​FDR​

​C​ ​F​ ​Nucleotide​
​transport and​
​metabolism​

​3​ ​20​ ​0.71​ ​3.67e-01​ ​5.99e-​
​01​

​C​ ​U​ ​Intracellular​
​trafficking,​
​secretion, and​
​vesicular​
​transport​

​6​ ​25​ ​1.14​ ​4.32e-01​ ​5.99e-​
​01​

​C​ ​J​ ​Translation,​
​ribosomal​
​structure and​
​biogenesis​

​12​ ​53​ ​1.08​ ​4.37e-01​ ​5.99e-​
​01​

​C​ ​K​ ​Transcription​ ​12​ ​62​ ​0.92​ ​4.45e-01​ ​5.99e-​
​01​

​C​ ​D​ ​Cell cycle​
​control, cell​
​division,​
​chromosome​
​partitioning​

​3​ ​18​ ​0.79​ ​4.58e-01​ ​5.99e-​
​01​

​C​ ​S​ ​Function​
​unknown​

​37​ ​173​ ​1.02​ ​4.80e-01​ ​5.99e-​
​01​

​C​ ​Q​ ​Secondary​
​metabolites​
​biosynthesis,​
​transport and​
​catabolism​

​9​ ​46​ ​0.93​ ​4.90e-01​ ​5.99e-​
​01​

​C​ ​-​ ​NA​ ​9​ ​45​ ​0.95​ ​5.21e-01​ ​6.04e-​
​01​

​C​ ​C​ ​Energy​
​production and​
​conversion​

​19​ ​91​ ​0.99​ ​5.51e-01​ ​6.06e-​
​01​

​C​ ​B​ ​Chromatin​
​structure and​
​dynamics​

​0​ ​1​ ​0.00​ ​7.90e-01​ ​7.90e-​
​01​

​C​ ​Z​ ​Cytoskeleton​ ​0​ ​1​ ​0.00​ ​7.90e-01​ ​7.90e-​
​01​

​D​ ​V​ ​Defense​
​mechanisms​

​13​ ​30​ ​1.76​ ​1.82e-02​ ​4.01e-​
​01​

​D​ ​C​ ​Energy​
​production and​
​conversion​

​27​ ​141​ ​0.78​ ​6.74e-02​ ​4.33e-​
​01​



​Genome​ ​COG​ ​Category​ ​outlier​ ​background​
​Fold​
​enrichment​ ​p_value​ ​FDR​

​D​ ​H​ ​Coenzyme​
​transport and​
​metabolism​

​25​ ​80​ ​1.27​ ​1.03e-01​ ​4.33e-​
​01​

​D​ ​L​ ​Replication,​
​recombination​
​and repair​

​9​ ​54​ ​0.68​ ​1.08e-01​ ​4.33e-​
​01​

​D​ ​U​ ​Intracellular​
​trafficking,​
​secretion, and​
​vesicular​
​transport​

​4​ ​29​ ​0.56​ ​1.22e-01​ ​4.33e-​
​01​

​D​ ​F​ ​Nucleotide​
​transport and​
​metabolism​

​12​ ​35​ ​1.39​ ​1.28e-01​ ​4.33e-​
​01​

​D​ ​D​ ​Cell cycle​
​control, cell​
​division,​
​chromosome​
​partitioning​

​9​ ​25​ ​1.46​ ​1.38e-01​ ​4.33e-​
​01​

​D​ ​N​ ​Cell motility​ ​11​ ​34​ ​1.31​ ​1.94e-01​ ​4.61e-​
​01​

​D​ ​M​ ​Cell​
​wall/membran​
​e/envelope​
​biogenesis​

​23​ ​108​ ​0.86​ ​2.40e-01​ ​4.61e-​
​01​

​D​ ​B​ ​Chromatin​
​structure and​
​dynamics​

​1​ ​1​ ​4.06​ ​2.46e-01​ ​4.61e-​
​01​

​D​ ​E​ ​Amino acid​
​transport and​
​metabolism​

​56​ ​210​ ​1.08​ ​2.57e-01​ ​4.61e-​
​01​

​D​ ​K​ ​Transcription​ ​21​ ​98​ ​0.87​ ​2.66e-01​ ​4.61e-​
​01​

​D​ ​Q​ ​Secondary​
​metabolites​
​biosynthesis,​
​transport and​
​catabolism​

​18​ ​63​ ​1.16​ ​2.72e-01​ ​4.61e-​
​01​

​D​ ​Z​ ​Cytoskeleton​ ​0​ ​4​ ​0.00​ ​3.22e-01​ ​5.01e-​
​01​



​Genome​ ​COG​ ​Category​ ​outlier​ ​background​
​Fold​
​enrichment​ ​p_value​ ​FDR​

​D​ ​O​ ​Posttranslation​
​al​
​modification,​
​protein​
​turnover,​
​chaperones​

​13​ ​59​ ​0.89​ ​3.84e-01​ ​5.01e-​
​01​

​D​ ​I​ ​Lipid transport​
​and​
​metabolism​

​27​ ​104​ ​1.05​ ​4.11e-01​ ​5.01e-​
​01​

​D​ ​-​ ​NA​ ​23​ ​89​ ​1.05​ ​4.35e-01​ ​5.01e-​
​01​

​D​ ​S​ ​Function​
​unknown​

​71​ ​294​ ​0.98​ ​4.49e-01​ ​5.01e-​
​01​

​D​ ​J​ ​Translation,​
​ribosomal​
​structure and​
​biogenesis​

​20​ ​85​ ​0.96​ ​4.63e-01​ ​5.01e-​
​01​

​D​ ​T​ ​Signal​
​transduction​
​mechanisms​

​25​ ​105​ ​0.97​ ​4.73e-01​ ​5.01e-​
​01​

​D​ ​G​ ​Carbohydrate​
​transport and​
​metabolism​

​29​ ​115​ ​1.02​ ​4.78e-01​ ​5.01e-​
​01​

​D​ ​P​ ​Inorganic ion​
​transport and​
​metabolism​

​24​ ​99​ ​0.98​ ​5.18e-01​ ​5.18e-​
​01​



​Supporting Figures​

​Figure S1.​​Hierarchical clustering of environmental​​variables based on absolute correlation.​
​Variables clustering together indicate high correlation. The dendrogram height represents 1 -​
​|correlation|.​



​Figure S2.​​Pairwise relationships between transformed​​environmental variables. Diagonal shows​
​density distributions, upper triangle shows Pearson correlations, lower triangle shows scatter​
​plots. All variables are normalized (mean=0, SD=1) after Yeo-Johnson transformation.​


