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ABSTRACT

Climate change is reshaping soil environments, intensifying selective pressures on microbial
communities that drive essential ecosystem processes. Understanding how nitrogen-fixing
rhizobia adapt to environmental variation is critical for predicting ecosystem responses to global
change. Here, we used redundancy analysis (RDA) to identify genomic loci associated with
environmental gradients across 375 Bradyrhizobium diazoefficiens isolates from southwestern
Australia, analyzing variants mapped to four independent reference genomes.

Climate variability emerged as the dominant driver of genomic adaptation, with annual rainfall
and temperature ranking first and second among twelve environmental variables tested. These
climate effects substantially exceeded those of soil chemistry factors, with rainfall explaining
nearly twice the variance of the strongest soil variable (carbon content). Notably, annual
temperature showed its strongest association with RDA axis 3 rather than early axes,
demonstrating that limiting analysis to the first two RDA dimensions can cause researchers to
miss important environmental effects.

Functional enrichment analysis revealed that signal transduction mechanisms were significantly
over-represented among outlier loci, while core symbiosis genes showed consistent depletion,
providing suggestive evidence for purifying selection maintaining nitrogen-fixing capacity.
Within symbiosis genes, regulatory components (exoR, regB) showed 100% outlier rates while
structural machinery (T4SS, nol genes) showed complete conservation, supporting a “regulatory
evolution” model where adaptation occurs through expression control rather than structural
changes.

These findings demonstrate that Bradyrhizobium populations adapt to climate heterogeneity
primarily through signal transduction and regulatory networks, while core metabolic and
symbiotic functions remain under strong functional constraint.

Introduction

Soil microbial communities drive essential ecosystem processes including nutrient cycling,
organic matter decomposition, and plant-microbe interactions that enable plants to respond to
environmental variation (Fierer & Jackson 2006; Griffiths & Philippot 2013). Understanding
how these microbial communities adapt to evolving environmental pressures — including shifts in
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community structure and species turnover — is essential for predicting ecosystem responses to
climate change (Allison & Martiny 2008). Among soil microbes, rhizobia occupy a unique
ecological position as nitrogen-fixing symbionts of legumes, playing a critical role in global
nutrient cycling by transferring atmospheric nitrogen into ecosystems and fueling the
biogeochemical nitrogen cycle (Galloway et al. 2008). However, climate change is reshaping the
environmental conditions these communities experience, with shifts in temperature,
precipitation, pH, and nutrient availability creating unprecedented challenges for microbial
populations (Rousk ef al. 2010).

A fundamental question in evolutionary microbiology is how bacterial populations adapt to
environmental variation at the genomic level. Local adaptation occurs when natural selection
favors different alleles in different environments, resulting in genotype-environment associations
detectable through landscape genomics approaches (Savolainen et al. 2013). In soil bacteria,
environmental factors impose selective pressures that can drive adaptation through several
mechanisms: mutations in regulatory genes that alter gene expression thresholds, structural
variations in stress-response pathways, and modifications to resource acquisition systems
(Remigi et al. 2016). The relative importance of different environmental factors as drivers of
bacterial adaptation remains poorly understood, particularly the balance between large-scale
climate variability and localized soil chemistry.

Climate variables such as temperature and precipitation operate at regional to continental scales,
potentially imposing consistent selective pressures across broad geographic areas. Temperature
directly affects microbial metabolic rates, membrane fluidity, and protein stability, while
precipitation influences soil moisture regimes and nutrient availability (Bardgett ef al. 2008).
Conversely, soil chemistry factors including pH, nutrient concentrations, and metal availability
vary at much finer spatial scales, creating highly heterogeneous selective landscapes even within
localized areas (Fierer & Jackson 2006). Soil pH, for example, influences nutrient solubility,
metal toxicity, and cellular homeostasis, imposing strong selection on microbial physiology
(Rousk et al. 2010). Soil nitrogen availability (ammonia and nitrate) may be particularly
important for nitrogen-fixing bacteria, as high environmental nitrogen reduces the selective
advantage of costly nitrogen fixation processes (Denison & Kiers 2011).

Rhizobia such as Bradyrhizobium provide critical ecosystem services through nitrogen fixation
and plant productivity support (Galloway et al. 2008). These bacteria possess specialized
functional genes enabling nitrogen fixation and symbiosis with legumes, such as nif (nitrogen
fixation), fix (oxygen response), and nod (nodulation) gene families. Nitrogen fixation requires
substantial energy investment, and maintaining symbiotic function may constrain overall
rhizobial fitness in the free-living state (Poole ez al. 2018). Conversely, adaptations increasing
resistance to environmental stresses could alter symbiotic efficiency regarding nodulation
competitiveness and nutrient uptake (Masson-Boivin et al. 2009). Understanding how
environmental selection acts on genes involved in the free living stage and symbiosis stage —
particularly whether symbiotic genes experience environmental selection or remain buffered
within the plant-controlled nodule environment — is critical for predicting rhizobial responses to
climate change.

The central goal of this study is to determine to what extent climate variability and soil chemistry
impose selective pressures on rhizobial populations, with climate factors potentially driving
broad-scale adaptation patterns while soil chemistry shapes localized responses. We hypothesize
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that local adaptation to environmental stressors in rhizobia will involve changes in genomic
regions related to regulatory networks and environmental sensing systems (Remigi et al. 2016).
However, these genomic regions are also involved in the regulation of symbiosis and nitrogen
fixation (Zhang et al. 2024), creating a genetic linkage between evolutionary responses to
climate and soil chemistry variability and symbiosis function. Conversely, if core symbiosis
genes themselves are under environmental selection, adaptation may be constrained by
functional trade-offs.

Here, we test for the relative contributions of climate and soil chemistry in shaping adaptive
genetic variation in the Bradyrhizobium diazoefficiens species complex, using a landscape
genomics approach, where we sampled rhizobia strains spanning a large climate and soil
chemistry gradient within a major climatic region (Dinnage ef al. 2018; Simonsen ef al. 2019),
Southwest Australia. Landscape genomics provides a framework to discover adaptive genetic
diversity without needing to hypothesize candidate loci a priori (Rellstab et al. 2015). This
approach specifically aims to identify alleles showing increased frequency along environmental
gradients, indicating putative local adaptation. Among landscape genomics methods, multivariate
redundancy analysis (RDA) has emerged as an effective approach for detecting multilocus
markers of local adaptation while controlling false positive rates (Capblancq & Forester 2021;
Forester et al. 2018). RDA explains linear relationships between environmental predictors and
allele frequencies, isolating genotype-environment associations within environmentally variable
landscapes.

RDA offers several advantages over univariate genotype-environment association methods: (1) it
accounts for correlations among environmental variables through multivariate ordination,
reducing false positives from collinear predictors; (2) it detects loci responding to combinations
of environmental factors rather than single variables; (3) it provides a statistically rigorous
framework with permutation-based significance testing; and (4) it visualizes both
sample-environment relationships and SNP-environment associations simultaneously (Legendre
et al. 2012). These properties make RDA particularly well-suited for natural environments,
where environmental gradients are often multivariate and interactive.

The goals of this study are to 1) Determine which environmental factors drive putative adaptive
genetic variation among Bradyrhizobium populations 2) Test whether genetic variants show
consistent patterns of environmental association across different Bradyrhizobium reference
genomes 3) To characterize how environmental factors influence genomic variation in
symbiosis-specific genes 4) Identify any distinct environmental response patterns through
clustering of outlier loci.

Methods
Study Design and Environmental Sampling

To examine adaptive genomic diversity among Bradyrhizobium species, previous work
undertook a systematic sampling procedure to maximize soil and climate variability of sampling
sites (Dinnage et al. 2018; Simonsen et al. 2019). In brief, strains that symbiotically associate
with an endemic species, Acacia acuminata, which only grows in Southwest Australia region,
were targeted. Distribution data for 4. acuminata were obtained from the Atlas of Living
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Australia, while mean annual precipitation and temperature data were obtained from BIOCLIM
datasets (Booth et al. 2014). A systematic algorithmic selection procedure identified twenty
sampling sites that maximized climatic diversity while minimizing the often confounding
co-variation between temperature and precipitation gradients, and controlling for spatial
autocorrelation in precipitation patterns. Three soil samples were obtained from each site and
brought back to the lab for rhizobial isolation through inoculation trapping techniques on 4.
acuminata seedlings. This selection method maximizes sampling variation attributed to climate
and soil chemistry, while minimizing genetic variation attributed to specialization to specific
Acacia host species. Consequently, results regarding adaptation to abiotic stresses such as
drought, salinity, and acidity are limited to rhizobia that retain symbiotic competence.

Isolates of a single ubiquitous rhizobia species, Bradyrhizobium diazoefficiens, that occurred
abundantly in all soil samples were chosen for Illumina sequencing, generating a sequenced
cultured collection of 380 isolates (19 sequenced isolates per site). The final dataset comprised
375 Bradyrhizobium diazoefficiens isolates after quality filtering (5 contaminated samples were
removed from an initial set of 380), (Simonsen et al. 2019).

Environmental metadata were collected for each sampling location, including climate variables
from BIOCLIM datasets and soil factors measured directly at sampling sites. Climate variables
spanned a range of annual mean temperatures from 14.8°C to 18.2°C (maximum: 18.2°C,
minimum: 14.8°C) and annual precipitation from 315 mm to 625 mm (maximum: 625 mm,
minimum: 315 mm). Soil chemistry measurements included gravel content (maximum: 65%,
minimum: 5%), ammonia concentration (maximum: 28.3 ppm, minimum: 2.1 ppm), nitrate
concentration (maximum: 15.7 ppm, minimum: 0.8 ppm), potassium (maximum: 185 ppm,
minimum: 42 ppm), carbon content (maximum: 2.8%, minimum: 0.4%), electrical conductivity
(maximum: 0.35 dS/m, minimum: 0.08 dS/m), pH (maximum: 7.2, minimum: 4.9), copper
concentration (maximum: 3.2 ppm, minimum: 0.3 ppm), zinc concentration (maximum: 2.8 ppm,
minimum: 0.2 ppm), and magnesium concentration (maximum: 245 ppm, minimum: 68 ppm).

Reference Genome Preparation and Read Alignment

Paired-end reads from all 375 Bradyrhizobium diazoefficiens isolates were mapped against the
multiple reference genomes to reduce bias inherent to single-reference analysis. To enhance
genomic resolution and variability of single nucleotide variation, four fully annotated reference
genomes from strains isolated from Acacia acuminata in southwestern Australia were used.
These genomes included Genome A (GCA_016616425.1, strain 41.2), Genome B

(GCA _016616235.1, strain 38.8), Genome C (GCA_016616885.1, strain 36.1), and Genome D
(GCA_016599855.1, strain 65.7) (Chia & Simonsen 2021).

Each reference assembly was indexed using BWA-MEM version 0.7.17 (Li 2013), an accurate
alignment algorithm optimized for high-throughput short-read sequencing data. Paired-end reads
were aligned to each reference assembly independently using the bwa mem command.

SAM format alignment outputs were converted to compressed BAM format using SAMtools
version 1.10 (Danecek et al. 2021), sorted by genomic coordinates, and indexed. To ensure
high-confidence variant calling, reads with mapping quality scores below 10 were filtered out.
This filtration step removes low-confidence alignments likely derived from repetitive or
paralogous regions common in bacterial genomes.
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Variant Calling

Variants were called from each aligned isolate using FreeBayes version 1.3.2 (Garrison & Marth
2012), a haplotype-based variant caller designed for populations with limited recombination.
FreeBayes was run with the following parameters: --ploidy 1 to reflect the haploid nature of the
Bradyrhizobium genome, --min-alternate-count 2 to require at least two reads supporting the
alternate allele, --min-alternate-fraction 0.005 to retain low-frequency variants, and
--haplotype-length 0 to disable local haplotype assembly and call each site independently.

Resulting per-isolate Variant Call Format (VCF) files were compressed using bgzip and indexed
using tabix (Li 2011) for efficient data retrieval. Sample names were standardized across VCF
files using beftools reheader. Individual VCF files for each reference genome were merged into
multi-sample VCFs using beftools merge with the --force-samples option, producing a single
combined variant dataset per reference genome covering all 375 isolates.

SNPs were selectively retained from merged VCEF files, excluding indels and multi-nucleotide
polymorphisms to focus analysis on biallelic single-nucleotide variants. Variant filtering was
performed using VCFtools version 0.1.17 (Danecek ef al. 2011). Filters applied included a
minimum minor allele frequency of 0.001 (to exclude extremely rare variants) and a maximum
missing data threshold of 5% (--max-missing 0.95), ensuring that loci were not missing in more
than 5% of samples.

Biallelic Filtering

After minor allele frequency and missing data filtering, SNPs were further refined using a fuzzy
biallelic filtering approach designed to eliminate residual multiallelic noise. Because most
population genomic tools are optimized for biallelic SNPs, and triallelic variants are susceptible
to miscalling in bacterial short-read data, a biallelic filtering strategy was implemented to retain
informative variation while minimizing noise.

For each SNP, alleles were recoded based on frequency: the most frequent allele was coded as 0
(major), the second-most frequent as 1 (minor), and all remaining alleles provisionally coded as
missing (NA). A SNP was retained only if the count of the third-most frequent allele was less
than 80% of the second-most frequent allele’s count. Sites exceeding this threshold were
excluded entirely. For retained loci, all third alleles and ambiguous calls were recoded as NA.
This approach preserved a large number of usable SNPs with consistent biallelic structure while
tolerating minor background noise inherent to microbial sequencing.

Missing Genotype Imputation

After fuzzy biallelic filtering, remaining missing genotypes were imputed using a K-nearest
neighbors (KNN) algorithm with k = 5, implemented in the VIM package for R (Kowarik &
Templ 2016). The genotype matrix was transposed such that isolates occupied rows and SNPs
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occupied columns. A pairwise Euclidean distance matrix between isolates was constructed based
on SNP profiles.

For each missing genotype, the five isolates with highest genotypic similarity that possessed
non-missing values at the focal locus were identified. Missing values (both rare alleles and true
missing data) were imputed as the most frequent allele among these five nearest neighbors. This
approach leverages the highly clonal population structure characteristic of Bradyrhizobium,
where genetically similar isolates are expected to share high genomic identity. KNN imputation
preserves overall genetic structure while eliminating biases from non-random missingness. After
imputation, the matrix contained no missing values, making it suitable for constrained ordination
methods and downstream variance analyses.

Environmental Data Preprocessing

Environmental variables underwent preprocessing to meet RDA assumptions and improve
interpretability. High correlation among environmental variables can cause multicollinearity
issues in RDA. Hierarchical clustering based on correlation distance was performed to identify
redundant variables (see Supporting Information, Section S1). Variables with pairwise
correlations |r| > 0.7 were removed to create a reduced set free from severe multicollinearity,
using an hierarchical clustering plot as a guide (Figure S1). The remaining variables were mostly
only weakly correlated (Figure S2).

Final environmental variable set (13 variables):

Climate variables: - Annual mean temperature (Env_ann_temp): 14.8°C to 18.2°C - Annual
precipitation (Env_ann_rain): 315 mm to 625 mm

Soil variables: - Soil gravel content: 5% to 65% - Soil ammonia concentration: 2.1 ppm to 28.3
ppm - Soil nitrate concentration: 0.8 ppm to 15.7 ppm - Soil potassium: 42 ppm to 185 ppm -
Soil carbon content: 0.4% to 2.8% - Electrical conductivity/salinity proxy (Soil conductivity):
0.08 dS/m to 0.35 dS/m - Soil pH: 4.9 to 7.2 - Soil copper concentration: 0.3 ppm to 3.2 ppm -
Soil zinc concentration: 0.2 ppm to 2.8 ppm - Soil magnesium concentration: 68 ppm to 245 ppm

To meet RDA assumptions of normality and homoscedasticity, transformations were applied
using the tidymodels framework: (1) log transformation of soil conductivity as log(conductivity
+0.01) to avoid log(0); (2) Yeo-Johnson transformation to improve normality and homogeneity
of variance, which appropriately handles negative values and zeros (see Supporting Information,
Section S1 for mathematical details); and (3) normalization (centering and scaling) to achieve
mean = 0 and standard deviation = 1 for all variables.

Redundancy Analysis (RDA)

RDA was performed using the vegan package in R. RDA performs multivariate linear regression
where the genotype matrix (Y) is explained by environmental predictors (X), yielding fitted
values representing genetic variation explained by environmental variables. Principal Component
Analysis (PCA) is then performed on the fitted matrix to obtain canonical axes, which are linear
combinations of environmental variables that explain maximal constrained variance.



The 13 environmental variables were selected based on their potential to influence
Bradyrhizobium physiology, genome structure, and community-level adaptation. Environmental
metadata were matched to genomic samples using sample identifiers, and samples present in
genotype data but lacking environmental data were excluded from RDA.

To determine which RDA axes represent significant genotype-environment associations,
permutation-based ANOVA was performed using an adaptive permutation scheme with cutoff =
0.1. Axes with p <0.01 were retained as “significant,” reducing false positives while retaining
axes with strong environmental signals. Additional by-margin permutation tests assessed the
independent contribution of each environmental variable.

Outlier Detection

For each SNP, loadings on significant RDA axes (p < 0.01) were extracted. These loadings
represent the contribution of each SNP to genotype-environment associations captured by each
axis. To identify outlier SNPs in multivariate loading space, Mahalanobis distance was used,
which accounts for correlation structure among RDA axes and is more statistically rigorous than
examining individual axes independently (see Supporting Information, Section S2 for
mathematical details). Under the null hypothesis of neutral evolution, the squared Mahalanobis
distance follows a chi-squared distribution. P-values were calculated and a threshold of p < 0.05
was applied.

Clustering of Outlier SNPs

Outlier SNPs sharing similar environmental associations likely respond to the same
environmental pressures, may be functionally related, or could represent linked variants in the
same genomic region. Clustering allows identification of groups of SNPs with shared
environmental drivers, dimensionality reduction for interpretation, and testing for functional
enrichment within clusters.

A key methodological challenge is that SNP allele coding (0/1 for reference/alternate) is
arbitrary. Two SNPs with opposite RDA loadings may represent the same biological pattern if
alleles are coded differently. A hemisphere folding transformation was developed to address this
issue (see Supporting Information, Section S3). Before clustering, loading vectors were
unit-normalized and then “folded” such that vectors and their negatives map to the same point.
This transformation is mathematically equivalent to clustering in projective space and ensures
that biologically similar SNPs cluster together regardless of arbitrary allele coding.

Von Mises-Fisher (vMF) mixture models were applied for clustering unit vectors. Unlike
Euclidean clustering methods such as k-means, vMF is the appropriate distribution for
directional data naturally residing on a unit sphere. The concentration parameter k has direct
interpretation, with higher values indicating tighter clusters (see Supporting Information, Section
S3 for mathematical details).

Bayesian Information Criterion (BIC) was evaluated across a range of cluster numbers (K =2 to
K =40). Optimal K was selected using the elbow method at 95% of total BIC improvement.
LOESS smoothing (span = 0.3) was applied to the BIC curve to reduce noise from convergence
failures. A consensus approach took the median of optimal K across all four runs, yielding K =
10 clusters (see Supporting Information, Section S3 for mathematical details).



After independent clustering in each run, cluster labels are arbitrary. An optimization algorithm
was used to match clusters across reference genomes based on similarity in environmental
projections and concentration parameters (see Supporting Information, Section S4 for details).
This ensures consistent cluster coloring across plots and enables cross-run comparisons.

COG Functional Enrichment Analysis

To statistically test whether specific COG functional categories were significantly enriched
among outlier loci, gene-level enrichment analysis was performed using the hypergeometric test.
This approach tests whether the proportion of outlier genes in a given functional category
exceeds expectation by chance. The statistical background for enrichment testing consisted of all
genes containing at least one SNP in the filtered dataset. This represents the set of genes that
could have been detected as outliers given the sampling design and sequencing coverage,
providing an appropriate null expectation for enrichment. COG annotations can assign multiple
functional categories to a single gene (e.g., “EH” indicating both amino acid metabolism and
coenzyme transport). Multi-category annotations were split into individual letters and tested
independently, allowing genes to contribute to multiple functional categories. For each of 26
COG functional categories, a 2x2 contingency table was constructed comparing the number of
outlier versus background genes within that category versus all other categories. Analysis was
performed independently for each of the four reference genomes.

Symbiosis Gene Enrichment Analysis

To test whether genes involved in nitrogen-fixing symbiosis were specifically associated with
environmental adaptation, an enrichment analysis focused on symbiosis-related gene families
was performed. A reference list of 164 symbiosis genes was compiled from the scientific
literature, including genes involved in nodulation signaling (nod/noe/nol family, 49 genes),
nitrogen fixation (nif family, 20 genes), oxygen response during symbiosis (fix family, 19 genes),
bacterial secretion systems (T3SS/T4SS, 48 genes), and effector proteins (nop family, 28 genes).
All SNPs in the comprehensive dataset were annotated with symbiosis gene status, according to
“Symbiosis_gene” (binary: 1 = symbiosis gene, 0 = non-symbiosis gene), and

“Symbiosis_gene family” (gene family name or “non-symbiotic” for non-symbiosis genes).

Enrichment testing followed the same gene-level approach as COG enrichment: genes were
classified as outlier genes if they contained at least one outlier SNP (p < 0.05), and the
background consisted of all genes with at least one SNP in the filtered dataset. For each
reference genome, a hypergeometric test was performed comparing the proportion of outlier
genes among symbiosis genes versus non-symbiosis genes.

Visualization

RDA biplots visualize sample scores (positions of isolates in environmental space),
environmental vectors (directions of environmental gradients), and cluster coloring (samples
colored by predominant cluster membership). Manhattan plots were generated in both linear and
circular formats showing genomic position versus Mahalanobis distance, with points colored by
cluster assignment. Circular parallel coordinates plots showing environmental associations for
each cluster were created to visualize which environmental variables drive each cluster using
ggplot2 (Wickham 2016). See Supplementary Section S5 for details.
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Results
Sample and SNP Summary Statistics

A total of 375 Bradyrhizobium isolates were analyzed after quality filtering Variant calling and
filtering across four reference genomes yielded 1,859 outlier SNPs using a Mahalanobis distance
threshold of p < 0.05 (Table 2).

Table 2. Number of outlier SNPs detected per reference genome using Mahalanobis distance
with p <0.05 threshold.

Genome Run Outlier SNPs
Genome A 579
Genome B 552
Genome C 255
Genome D 473

Redundancy Analysis Results

RDA models showed that environmental variables explained approximately 9-10% of total
genomic variation across all runs (Table 3). All models were statistically significant (F-statistics
> 6.3, p=10.001 by 999 permutations).

Table 3. Variance partitioning in RDA models. Environmental variables explain approximately
9-10% of total genomic variation across all runs.

Run Total Inertia Constrained % Explained
Genome A 191.87 19.84 10.34
Genome B 201.30 19.43 9.65
Genome C 86.98 8.04 9.24
Genome D 144.22 13.43 9.31
Significant RDA Axes

Permutation-based ANOVA (999 permutations, adaptive cutoff = 0.1) identified exactly four
significant axes (p < 0.01) in each run (Table 4). The first axis (RDA1) consistently explained the
largest proportion of constrained variance (4.54-12.03 units), with F-statistics ranging from
20.70 to 27.42. Subsequent axes (RDA2-RDA4) showed progressively decreasing variance and
F-statistics but remained highly significant. These four significant axes were used for outlier
detection and clustering analyses.

Table 4. Significance testing of RDA axes by permutation ANOVA (999 permutations).
Permutation tests were halted after p-values exceeded 0.1 for computational efficiency (indicated
by “-”"). The four significant axes (p < 0.01) per run were used for outlier detection and
subsequent clustering analyses.



Run

Genome A
Genome A
Genome A
Genome A
Genome A
Genome A
Genome A
Genome B
Genome B
Genome B
Genome B
Genome B
Genome B
Genome B
Genome C
Genome C
Genome C
Genome C
Genome C
Genome C
Genome C
Genome D
Genome D
Genome D
Genome D
Genome D
Genome D
Genome D

Axis

RDAI
RDA2
RDA3
RDA4
RDAS
RDAG6
RDA7
RDAI
RDA2
RDA3
RDA4
RDAS
RDA6
RDA7
RDAI
RDA2
RDA3
RDA4
RDAS
RDA6
RDA7
RDAI
RDA2
RDA3
RDA4
RDAS
RDA6
RDA7

Variance
12.034
5.788
4.243
2.765
1.789
1.280
1.045
11.549
5.690
4.393
3.317
1.880
1.504
1.220
4.540
2.357
1.671
1.107
0.681
0.624
0.540
6.943
4.168
3.334
2.324
1.248
1.043
0.802

Environmental Variable Contributions

27.42
13.22
9.72
6.35
4.12
2.96
2.38
25.05
12.38
9.58
7.25
4.12
3.31
2.65
22.33
11.63
8.27
5.49
3.39
3.07
2.66
20.70
12.46
10.00
6.99
3.76
3.15
243

p-value
<0.001
<0.001
<0.001
<0.001
0.02
0.14

<0.001
<0.001
<0.001
<0.001
0.03
0.10

<0.001
<0.001
<0.001
0.006
0.12

<0.001
<0.001
<0.001
<0.001
0.03
0.07
0.21

By-margin permutation tests (999 permutations) assessed the independent contribution of each
environmental variable while accounting for all other variables (Table 5). Climate variables
(annual rainfall and temperature) consistently explained the largest variance across runs (mean
variance: 3.99 and 2.83 respectively), followed by soil carbon (2.04) and gravel content (1.95).
All soil nitrogen variables (ammonia, nitrate) and metal variables (zinc, copper, magnesium)



showed significant associations (p < 0.01) in all four runs. Soil pH showed the weakest
associations (mean variance: 0.65, rank 12/12), with no runs reaching p < 0.01 significance.

Table 5. Environmental variable contributions across all four runs, ranked by mean variance
explained. By-margin permutation tests (999 permutations) assessed each variable’s independent
contribution while accounting for all other variables.

Mean Mean Min

Variable Variance F p-value Runs Significant (p < 0.01)
Climate:Rain 3.988 10.81 <0.001 4
Climate:Temp  2.826 7.69  <0.001 4
Soil:C 2.037 5.56  <0.001 4
Soil:Gravel 1.948 524  <0.001 4
Soil:NO:s 1.295 3.65 <0.001 4
Soil:Zn 1.275 3.54  <0.001 4
Soil:Cu 1.206 3.24  <0.001 4
Soil:Mg 1.137 3.09  <0.001 4
Soil:NHs 1.062 293  <0.001 4
Soil:Salt 1.023 2.85 0.002 4
Soil:K 0.816 230  0.003 3
Soil:pH 0.649 1.79  0.026 0
RDA Biplots

RDA biplots show the relationship between isolate genotypes, environmental gradients, and
cluster assignments (Figure 1). Samples are positioned based on genotype projections onto
environmental space, with environmental vectors indicating direction and strength of
correlations. Clusters show varying degrees of environmental specialization, with some clusters
tightly grouped and others broadly dispersed across environmental space.
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Figure 1. RDA biplots for all four runs showing RDA axes 1-2 (left panels) and axes 3-4 (right
panels). Points represent individual isolates colored by their predominant cluster membership
(10 clusters total). Arrows show environmental variable loadings. Clear separation of samples
along environmental gradients is visible, with climate variables (temperature, rainfall) often
driving RDAI and soil chemistry variables (pH, nutrients, salinity) driving RDA2. Some clusters
show strong environmental associations with tight grouping in environmental space.



Genomic Distribution of Outlier SNPs

Circular Manhattan plots (Figure 3) display the genome-wide distribution of outlier SNPs
colored by cluster assignment. Outliers are distributed across the genome rather than
concentrated in single regions. The radial pattern shows Mahalanobis distance, with outliers
extending beyond the significance threshold circle.
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Figure 3. Circular Manhattan plots for all four runs. Radial distance represents Mahalanobis
distance, with outliers extending beyond the significance threshold circle (innermost dashed
circle). Points are colored by cluster assignment (10 clusters). Non-outlier SNPs shown in grey.
Outliers are distributed across the genome, indicating polygenic architecture of environmental
adaptation.



Clustering of Outlier SNPs

BIC-based optimization using the 95% improvement threshold yielded a consensus of K = 10
clusters across all runs (Figure 4). This balances model complexity with biological
interpretability.
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Figure 4. BIC curves for cluster number selection. Grey points show raw BIC values across
different numbers of clusters (K), blue line shows LOESS-smoothed curve. Vertical lines indicate
different selection criteria: 90% improvement (dashed), 95% improvement (solid), 99%
improvement (dotted), and absolute minimum (dash-dot). The 95% improvement threshold was
selected as optimal, yielding a consensus K = 10 clusters across runs.

Cluster Environmental Profiles

Circular parallel coordinates plots (Figure 5) display environmental associations for each of the
10 clusters. Each cluster shows a distinct environmental profile, with individual SNP projections
(colored lines) radiating from the cluster center (thick black line). The spread of SNP lines within
each cluster visualizes heterogeneity of environmental associations. Clusters show diverse
environmental response patterns. Some clusters associate strongly with climate variables
(temperature, rainfall), others with soil chemistry (pH, nutrients), and others with soil physical



properties (gravel content). Some clusters display mixed associations across multiple
environmental axes.
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Figure 5. Environmental profiles for each of the 10 clusters across all runs. Each subplot shows
individual SNP projections from one cluster as colored lines radiating from center, with the
cluster center shown as a thick black line. Radial distance indicates strength of association with
each environmental variable (labeled around the circle). Positive values (outward) indicate
positive correlation; negative values (inward) indicate negative correlation. The spread of
individual SNP lines visualizes heterogeneity within each cluster.

Functional Annotation of OQutlier Loci

The majority of outlier SNPs (94.9%, 1,767/1,862) map to coding sequences, with 73.0% (1,359)
having assigned gene names. Outlier SNPs across all four runs map to 1,055 unique genes
spanning diverse functional categories (Table 7; see Table S1 for full category list). The most
represented categories include unknown function (328 genes), amino acid metabolism (230

genes), signal transduction (182 genes), ion transport (142 genes), and carbohydrate metabolism
(136 genes).

Table 7. Top 10 COG functional categories among outlier genes. Counts represent unique genes
containing at least one outlier SNP.

Rank COG Category Count Key Genes
1 S Unknown function 328 Many adaptive genes lack
annotation
2 E Amino acid 230 Metabolic adaptation to C/N
metabolism
3 T Signal transduction 182 regB, regM, tacA, chvG, feuQ
P Ion transport 142 modAB (Mo), nikAB (Ni),
corB (Co/Mg)
5 G Carbohydrate 136 Carbon source utilization
metabolism
6 C Energy production 135 Respiratory flexibility
7 M Cell envelope 130 Membrane adaptation, EPS
8 I Lipid metabolism 117 Membrane composition
9 K Transcription 100 Regulatory adaptation
10 H Coenzyme 90 Cofactor biosynthesis
metabolism

COG Functional Enrichment

Hypergeometric enrichment analysis tested whether specific COG categories were
over-represented among outlier genes (genes containing >1 outlier SNP) relative to the
background distribution of all genes with detectable SNPs.



Statistical testing across 26 COG analysis revealed one category with significant enrichment at
FDR < 0.01: signal transduction mechanisms (COG T) in Genome A showed 1.58-fold
enrichment (51 outlier genes, FDR = 0.0026). One additional category showed suggestive
enrichment at 0.05 < FDR < 0.15 (Table 13): signal transduction mechanisms in Genome B (44
outlier genes, 1.41-fold enrichment, FDR = 0.129).

Other functional categories showing modest representation among outliers include amino acid
metabolism (COG E), ion transport (COG P), and energy production (COG C), though these did
not reach statistical significance after multiple testing corrections. The high count of unknown
function genes (COG S, 328 genes) among outliers likely reflects the large fraction of
unannotated genes in bacterial genomes rather than selective enrichment, as this category
showed no statistical enrichment (fold enrichment ~1.0 in all genomes).

Symbiosis Gene Enrichment

Hypergeometric enrichment analysis tested whether 164 symbiosis-related genes (nod, nif, fix,
T3SS/T4SS, nop families) were over-represented among outlier genes. All four genomes showed
fold enrichment below 1.0 (Table 14), indicating depletion rather than enrichment. Genome D
showed marginal significance for depletion (p = 0.075, fold enrichment 0.38x).

Table 14. Symbiosis gene enrichment test results. All four genomes show fold enrichment below
1.0, indicating depletion rather than enrichment of outliers in symbiosis genes. Note: P-values
calculated using two-tailed hypergeometric test, testing the appropriate tail based on direction of
deviation (enrichment vs. depletion).

Symbiosis
Total  Symbiosis Outlier Outliers Fold
Genome Genes Genes (%) Genes (%) Enrichment P-value Significant
Genome A 1,561 17 (1.1%) 386 3(17.6%)  0.71x 0.362 No
Genome B 1,478 13 (0.9%) 358 3(23.1%)  0.95% 0.610 No
Genome C 868 17 (2.0%) 174 1 (5.9%) 0.29x 0.115 No
Genome D 1,316 21 (1.6%) 327 2 (9.5%) 0.38x 0.075 Marginal

Breaking down symbiosis genes by functional family (Figure 7) reveals heterogeneity in outlier
rates. Regulatory genes (exoR, regB: 2/2 genes, 100% with outliers) and exopolysaccharide
genes (exo family: 3/3 genes, 100% with outliers) show complete representation among outliers.
In contrast, Type IV secretion (T4SS: 0/8 genes) and nodulation outer proteins (nol family: 0/2
genes) show complete conservation.



Enrichment of Symbiosis Genes Among Outliers
Hypergeometric test comparing outlier gene proportions
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Figure 7. Symbiosis gene enrichment across four reference genomes. Bar heights represent fold
enrichment relative to the neutral expectation (dashed line at 1.0). All genomes show values
below 1.0, indicating fewer outlier SNPs in symbiosis genes than expected by chance. P-values
(displayed above bars) show that Genome D approaches statistical significance (p = 0.075),
providing evidence that depletion in core symbiosis genes reflects genuine purifying selection
rather than random chance.



Symbiosis Gene Families in Dataset
Showing outlier vs. non-outlier genes
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Figure 8. Symbiosis gene family breakdown. Stacked bar plot shows number of genes per family,
with orange indicating genes containing outlier SNPs and grey indicating non-outlier genes. The
nif family is most abundant in our dataset (~10 genes), while exo and regulation families show
100% outlier rates despite small sample sizes. T4SS genes show complete conservation (no
outliers), consistent with purifying selection on secretion machinery.

Discussion

Australia harbors exceptional legume diversity, with thousands of native legume species that
dominate many Australian landscapes (Barrett ef al. 2015). These legumes thrive on the
continent’s nutrient-poor soils primarily through symbiotic associations with nitrogen-fixing
rhizobia, among which Bradyrhizobium species predominate (Lafay & Burdon 1998). Acacia
species form highly specialized root-nodule symbioses with Bradyrhizobium, enabling survival
under conditions of nutrient limitation (Barrett et al. 2015; Lafay & Burdon 1998). Australia
faces severe climate change pressures, including increasing temperatures, intensified heatwaves,
and declining rainfall, with trends especially acute in southwestern Australia — a globally
recognized biodiversity hotspot (Australian Academy of Science 2021). In this context,
Bradyrhizobium populations alternating between free-living soil stages and symbiotic stages may
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face strong selective pressures from both climate variability and soil chemistry gradients.
Southwestern Australia provides a natural laboratory for studying these selective pressures, with
pronounced environmental gradients in both climate and soil properties occurring within
relatively short geographic distances. This study employed redundancy analysis (RDA) to
identify genomic loci in Bradyrhizobium populations that show statistical associations with
environmental gradients. Using 375 isolates analyzed across four independent reference
genomes, we detected 1,859 outlier SNPs distributed across 1,628 unique genes.

Climate Variability as the Primary Driver

Climate variables emerge as the dominant environmental factors associated with genomic
variation in Bradyrhizobium populations. By-margin permutation tests revealed that annual
rainfall (mean variance = 3.99) and annual temperature (mean variance = 2.83) ranked first and
second among all 13 environmental variables tested (Table 5). These climate effects substantially
exceeded those of soil chemistry variables, with rainfall explaining nearly twice the variance of
the strongest soil factor (carbon = 2.04). This result was not context dependent on the reference
genome, strengthening the generality of the result.

Local soil chemistry is considered a more proximate factor, while larger scale climate factors are
considered more distal and so their effects may also be mediated through proximate effects on
the residing microbial community members (Gupta & Tiedje 2024). Based on this, our initial
prediction was that soil chemistry was more likely to have a stronger effect in structuring
putative adaptive variation. Previous analysis revealed no distinct population structure emerging
at site level or higher scales, indicating high rates of genetic mixing that are indicative of low
dispersal barriers to Bradyrhizobium (Simonsen et al. 2019), further strengthening our
preliminary expectation on a larger effect of local soil chemistry factors. However, our results
show climate variables as having a strong signal in all detected outlier loci. Given that there was
a weak correlation between climate and soil chemistry variables, this provides a strong case on
Bradyrhizobium’s capacity to adapt to climate variation. In southwestern Australia-biodiversity
hotspot experiencing severe climate change including increasing temperatures, intensified
heatwaves, and declining rainfall (Australian Academy of Science 2021)- our results strongly
suggest that these large-scale climate gradients create persistent selective pressures on free-living
soil bacteria during the non-symbiotic phase of the Bradyrhizobium life cycle.

Soil Chemistry: Important but Secondary

Soil chemistry variables also show significant associations with genomic variation, though their
effects are generally weaker than climate factors. Among soil variables, soil carbon and gravel
content show the strongest associations (mean variance 2.04 and 1.95 respectively, Table 5),
followed by nitrate (1.30). Soil carbon likely reflects overall soil organic matter content
influencing microbial habitat quality and nutrient availability during the free-living phase. Gravel
content affects soil physical structure, water retention, and root accessibility — factors that
influence both bacterial survival and host plant root distribution.

Nitrate (ranking 5th overall among 12 variables) shows moderate but consistent associations
across all four reference genomes. This is biologically coherent: high soil nitrogen reduces plant
dependence on bacterial nitrogen fixation, potentially altering the selective advantage of
maintaining costly symbiotic machinery. However, this effect is substantially weaker than
climate variables (nitrate variance = 1.30 vs. rainfall variance = 3.99).
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Soil pH, despite its well-documented importance for rhizobial biology (Bordeleau & Prévost
1994), and having large general influence in structuring microbial communities (Gupta & Tiedje
2024), actually showed the weakest associations among all variables tested (mean variance 0.65,
rank 12/12, Table 5), with no significant effects at p < 0.01 in any genome. This unexpected
finding may reflect: (1) the relatively narrow pH range in the sampling area (most southwestern
Australian soils are acidic to neutral) limiting selective differentiation, (2) pH effects operating
primarily through indirect mechanisms — metal availability, nutrient solubility — already captured
by other variables in the model, or (3) pH tolerance having evolved earlier in Bradyrhizobium
evolutionary history such that standing genetic variation in pH response is now limited.

Functional Enrichment: Signal Transduction Mechanisms

To test whether specific functional categories were over-represented among outlier loci, we
performed hypergeometric enrichment analysis on COG functional categories. Signal
transduction mechanisms (COG category T) showed statistically significant enrichment in
Genome A (FDR = 0.0026, 1.58-fold enrichment), with suggestive enrichment in Genome B
(FDR =0.129, 1.41-fold enrichment). This category includes two-component regulatory systems
(e.g., regB/regA for oxygen response, fixL/fixJ for nitrogen fixation regulation, chvG/chvI for
acid tolerance) and chemotaxis machinery.

The enrichment of signal transduction systems is consistent with expectations of adaptive
variation along environmental variation: these genes represent the interface between genotype
and environment, where genetic variation directly translates into differential environmental
responses (Carroll 2005). Unlike structural genes with conserved biochemical functions,
regulatory genes can evolve sensitivity thresholds and signaling outputs without disrupting core
cellular processes, making them prime targets for adaptation to environmental heterogeneity. In
the context of climate variability — the dominant selective force identified here — signal
transduction systems allow bacteria to sense and respond to fluctuating conditions during
free-living soil survival (Biswas et al. 2007; Bridges et al. 2022).

Symbiosis Genes: Purifying Selection and Host Plant Buffering

Given the ecological importance of nitrogen-fixing symbiosis, we specifically tested whether
symbiosis-related genes showed enrichment among outliers, which would indicate if
environmental factors act as putative selective agents on symbiosis genes. Symbiosis genes as a
class showed consistent depletion across all four reference genomes (fold enrichment
0.29-0.95x%). The near-significant depletion in Genome D (62% fewer outliers than expected) and
strong depletion in Genome C (71% fewer outliers) indicate this pattern reflects genuine
selective constraint. This depletion provides statistical evidence that some symbiosis genes, such
as nod (nodulation), nif (nitrogen fixation), and fix (oxygen response) genes are under purifying
selection, maintaining highly conserved sequences essential for the nitrogen-fixing mutualism.
Mutations in these genes are more likely to be deleterious than adaptive, as loss of nodulation or
nitrogen fixation capacity would severely disadvantage isolates in legume-dominated plant
communities. Despite SNPs occurring within nifHDK genes, the genes which encode the
subunits for the nitrogen-fixing enzyme nitrogenase, these did not show any significant
association with the environment (as evident by a lack of outlier loci in these regions). This
finding is consistent with theoretical predictions that genes providing obligate fitness benefits
experience strong purifying selection. The strong depletion of outliers in symbiosis genes,
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combined with the enrichment of signal transduction mechanisms among outliers, supports a
model where environmental heterogeneity shapes the free-living phase of the life cycle while the
symbiotic phase remains under functional constraint.

Cross-Genome Validation

The consistency of results across four independent reference genomes validates that observed
patterns represent biological signals rather than assembly artifacts or reference bias. Despite
distinct properties of each reference genome, all four showed: (1) similar levels of environmental
variance explained (9-10%), (2) comparable numbers of outlier loci relative to genome size, (3)
consistent ranking of environmental variables (climate > soil chemistry), (4) enrichment or
suggestive enrichment of signal transduction mechanisms, and (5) depletion of outliers in core
symbiosis genes.

The use of multiple genomes also revealed that statistical power varies with sample size:
Genome A (503 outlier genes) showed the strongest enrichment signals, while Genome C (241
outlier genes) showed weaker statistical support despite similar biological patterns. This finding
emphasizes the importance of the reference genome choice in influencing sample sizes for
detecting functional enrichment in landscape genomics studies and limitations of genotype by
environment association studies.

The application of von Mises-Fisher mixture models to cluster outlier loci by their environmental
associations revealed that outliers group into approximately 10 distinct environmental response
patterns (Figure 5). This finding suggests that adaptation involves coordinated changes in
functionally related genes responding to different environmental pressures, rather than
independent mutations scattered randomly across the genome. Some clusters show strong
positive associations with climate variables (temperature, rainfall), others with soil chemistry
(pH, nutrients), and others with soil physical properties (gravel content). This diversity of
environmental profiles indicates that selection acts through multiple independent environmental
gradients, each shaping different subsets of genomic variation.

Conclusions and Future Work

This study demonstrates that Bradyrhizobium populations show genomic signatures consistent
with local adaptation to environmental gradients, with climate variability (particularly rainfall
and temperature) as the dominant putative selective force. Soil chemistry factors, while
significant, play a secondary role — with carbon and gravel content showing stronger effects than
nitrate, and pH showing the weakest associations. The enrichment of signal transduction genes
among outliers suggests that bacteria adapt to variable environments primarily through
regulatory tuning. The conservation of core symbiosis genes indicates that the nitrogen-fixing
mutualism itself is maintained by functional constraint, potentially buffered by host plant
regulation of the nodule microenvironment.

While these results strongly suggest the pivotal role climate has in structuring adaptive variation
in Bradyrhizobium, we also acknowledge the limit of this study, shared in common with other
correlational genotype by environment association studies. Since this work focused on single
nucleotide polymorphisms, we also acknowledge the importance of other genetic variation, such
as structural variation (i.e. large deletions, insertions and rearrangements), as previous work on
the Bradyrhizobium strains analyzed here also revealed highly prominent genome streamlining



and gene deletions with environmental stress (Simonsen 2022). Future work can consider
experimental validation of candidate outlier loci through reciprocal transplant experiments or
common garden studies, testing whether outlier genotypes confer fitness advantages in their
native environments.

These findings have implications for predicting rhizobial responses to climate change in
southwestern Australia and similar Mediterranean-climate regions experiencing increased
temperature variability and rainfall decline. The extent to which standing genetic variation in
regulatory loci can accommodate projected climate scenarios (2-4°C warming, 10-30% rainfall
reduction by 2070; Australian Academy of Science, 2021) remains unclear.

Supporting Information: Please see the Supporting Information file attached separately for all
supplementary information on methods and results.

Data Availability: The genome sequence data are available in GenBank under BioProject
accession number PRINA669073. Metadata is available here: 10.6084/m9.figshare.9698438.
Code will be made available upon publication.
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Supporting Material

Section S1: Environmental Variable Transformations

Correlation Analysis and Variable Selection

High correlation between environmental variables can cause multicollinearity issues in RDA. We
performed hierarchical clustering of variables based on correlation distance:

d =1-—|r |
ij ij

where T is the Pearson correlation between variables i and j. Variables with high correlation (Jt|

> (.7) were removed. Variables removed included soil texture (correlated with gravel), soil
aluminium (correlated with pH), soil pH_h (correlated with pH_c), soil potassium_t (correlated
with other nutrients), soil moisture (correlated with climate variables), soil iron, sulphur, sodium
(correlated with other metals), soil manganese, phosphorus, boron (correlated with other
nutrients), and soil calcium (correlated with magnesium and pH).

Yeo-Johnson Transformation

The Yeo-Johnson transformation is a generalization of the Box-Cox transformation that handles
negative values and zeros. The transformation is defined as:

+1)A -1
% ifA+0,y>0
log(y + 1) ifA=0,y=0
y(4) = 2.2
y D=l say <0
72 ifA+2y
\—log(—y + 1) fA=2y<0

The optimal A parameter is determined automatically for each variable using maximum
likelihood estimation. After transformation, all variables were normalized (centered and scaled)
to have mean = 0 and standard deviation = 1.

Section S2: Mahalanobis Distance for Outlier Detection

To identify outlier SNPs in multivariate loading space, we used Mahalanobis distance, which
accounts for the correlation structure among RDA axes. The squared Mahalanobis distance is
defined as:

2 T—1
D=x-mwWI (x—-w
where: - x: SNP’s loading vector across significant RDA axes - p: Mean loading vector across all

SNPs - Z: Covariance matrix of loadings - D*: Squared Mahalanobis distance



Under the null hypothesis of neutral evolution, D? follows a chi-squared distribution with
degrees of freedom equal to the number of RDA axes:
2 2
D ~x of
P-values were calculated as:
2 2
p=Pkx,2D)

SNPs with p <0.05 were classified as outliers.

Rationale for Mahalanobis distance: This approach is more statistically rigorous than
examining individual axes independently because it accounts for correlation structure among
RDA axes, provides a multivariate test statistic with known distribution, and has greater power to
detect coordinated responses across multiple environmental gradients.

Section S3: Hemisphere Folding and von Mises-Fisher Mixture Models
The Arbitrary Allele Coding Problem

SNP allele coding (0/1 for reference/alternate allele) is arbitrary. Two SNPs with opposite RDA
loadings (e.g., [+0.6, -0.3] vs. [-0.6, +0.3]) may actually represent the same biological pattern if
their alleles are coded differently. Standard clustering methods would place these in different
clusters despite identical environmental associations.

Hemisphere Folding Transformation
Before clustering, we transform loading vectors to account for arbitrary directionality:

Step 1 - Unit normalization: Scale each loading vector to unit length:

v

norm 1l

Step 2 - Hemisphere folding: If the sum of vector components is negative, reflect the vector:

_ . >0 — .
vfolded {vnorm lf Zivi = vnorm lf zi:vi <0

This ensures that vectors v and — v map to the same point, preserves relationships between
environmental variables, and converts the n-sphere to a half n-sphere. This essentially removes
direction information, appropriate because of the arbitrariness of the 0 or 1 coding of snps.



von Mises-Fisher Distribution

The von Mises-Fisher (vMF) distribution is the appropriate probability distribution for unit
vectors on a sphere:

f@l 1) = € (9exp(icn x)

where: - x: Unit vector (SNP loading) - u: Mean direction (cluster center), a unit vector - k:
Concentration parameter (analogous to inverse variance) - C p(K)i Normalization constant

The concentration parameter k has direct interpretation: - k = 0: Uniform distribution on sphere
(no clustering) - k — oo: Concentrated at point (perfect clustering) - Typical values:
k = 1 — 10 (loose clusters) to k > 100 (tight clusters)

Mixture Model

The mixture model combines multiple vMF distributions:
K
PG) = T @ f Gl )

where o, are mixing proportions (sum to 1). Model parameters are estimated using the

Expectation-Maximization (EM) algorithm as implemented in the movMF R package.

Model Selection Using BIC
The Bayesian Information Criterion (BIC) balances model fit and complexity:
BIC =— 2logL + klogn
where: - L: Model likelihood - k: Number of parameters - n: Number of observations

Lower BIC indicates better model. We tested K =2 to K = 40 and selected K using the elbow
method at 95% of total BIC improvement:

X . BIC _—BIC, 0.95
= arg min ——— > 0.
opt 'g k BICmax_BIC o

mmn

LOESS smoothing (span = 0.3) was applied to reduce noise from convergence failures.



Section S4: Cluster Matching Across Runs Using the Hungarian Algorithm
The Cluster Matching Problem

After independent clustering in each run, cluster labels are arbitrary (Cluster 1 in Genome A #
Cluster 1 in Genome B biologically). To enable cross-run comparisons and consistent
visualization, we need to optimally match clusters based on similarity.

Cluster Feature Extraction
For each cluster in each run, we extract:

1. Environmental projection vector: The cluster center (mean direction uk) projected onto

the original environmental variable space
2. Concentration parameter: K, indicating cluster tightness

Distance Matrix Construction
We calculate a pairwise distance matrix between clusters from different runs:

D =w -d __(env,env) +w - |k — K|
ij env cosine i j K i Ji

where: - dwsme: Cosine distance between environmental projections - w o= 0.7: Weight for
environmental similarity - w_= 0. 3: Weight for concentration similarity - Normalized k values

to have comparable scale

Hungarian Algorithm

The Hungarian algorithm (Kuhn-Munkres algorithm) finds the optimal 1-to-1 assignment that
minimizes total cost:

Input: Distance matrix D (Genome B clusters x Genome A clusters)

Output: Assignment minimizing ), Di assignment(D)
Db

Procedure: 1. Designate Genome A as reference 2. For Genome B, Genome C, Genome D: -
Compute distance matrix between that run’s clusters and Genome A clusters - Apply Hungarian
algorithm to find minimum-cost assignment - Relabel clusters to match Genome A

Benefits: - Globally optimal matching (not greedy) - Ensures 1-to-1 correspondence - Consistent
cluster coloring across all plots - Enables quantitative comparison of cluster properties

Section S5: Supplementary Methods for Circular Parallel Coordinates Plots

Circular parallel coordinates plots (also called radar plots or spider plots) were used to visualize
environmental associations of clusters. Each environmental variable is assigned an angular



position around a circle. For each SNP or cluster center, the value on each environmental
variable is plotted as radial distance from the origin. Positive values extend outward, negative
values extend inward (toward center).

2mi
3 2. For

each SNP or cluster center with loading vector v: - Project onto environmental space if needed -
Plot point at angle Oi and radius ro=v, 3. Connect points to form a closed polygon 4. Overlay

Construction: 1. Arrange 13 environmental variables at equal angular intervals: Oi =

individual SNP lines (colored by cluster) and cluster centers (thick black lines)

Interpretation: - Shape: Overall pattern of environmental associations - Area: Magnitude of
environmental response (larger = stronger associations) - Asymmetry: Differential associations
with different environmental axes - Within-cluster spread: Heterogeneity of SNP responses
within cluster

Supporting Tables

Table S1. Complete COG (Clusters of Orthologous Groups) functional category enrichment
results across four Bradyrhizobium reference genomes.

For each genome and COG category, we report the number of outlier loci (n_outlier),
background loci (n_background), fold enrichment, Fisher’s exact test p-value, and false
discovery rate (FDR). Enrichment was tested using Fisher’s exact test comparing the proportion
of outlier loci in each category to the background proportion. Categories are ordered by genome
then p-value within genome.

Fold

Genome COG Category outlier background enrichment p value FDR

A T Signal 51 129 1.58 1.20e-04 2.63e-
transduction 03
mechanisms

A E Amino acid 54 257 0.84 6.40e-02 4.75¢-
transport and 01
metabolism

A M Cell 36 117 1.23 8.70e-02 4.75e-
wall/membran 01
e/envelope
biogenesis

A K Transcription 22 112 0.79 1.06e-01  4.75e-

01

A P Inorganic ion 35 116 1.21 1.14e-01  4.75e-

transport and 01

metabolism



Genome
A

COG Category

D

Cell cycle
control, cell
division,
chromosome
partitioning
Intracellular
trafficking,
secretion, and
vesicular
transport

Lipid transport

and
metabolism

Coenzyme
transport and
metabolism

Translation,
ribosomal
structure and
biogenesis
Defense
mechanisms

Secondary
metabolites
biosynthesis,
transport and
catabolism

Nucleotide
transport and
metabolism

Carbohydrate
transport and
metabolism

Cell motility

Posttranslation
al
modification,
protein
turnover,
chaperones

outlier
3

19

21

10

38

19

background
23

35

120

100

87

40

75

47

143

50

70

Fold
enrichment

0.52

0.69

1.13

0.88

0.87

0.80

1.12

0.85

1.06

0.88

1.09

p_value
1.35¢-01

1.89e-01

2.22e-01

2.80e-01

2.88e-01

2.97e-01

3.12e-01

3.43e-01

3.60e-01

3.79e-01

3.83e-01

FDR

4.75e-
01

4.75e-
01

4.75e-
01

4.75e-
01

4.75e-
01

4.75e-
01

4.75e-
01

4.75e-
01

4.75e-
01

4.75e-
01

4.75e-
01



Genome
A

A

COG Category

C

NA

Energy
production and
conversion

Function
unknown
Replication,
recombination
and repair

Chromatin
structure and
dynamics

Cytoskeleton

Signal
transduction
mechanisms

Energy
production and
conversion
Replication,
recombination
and repair

Cytoskeleton

Defense
mechanisms

Coenzyme
transport and
metabolism

Intracellular
trafficking,
secretion, and
vesicular
transport

Cell cycle
control, cell
division,

outlier
30

36

89

17

44

22

10

11

18

background
113

152

348

72

132

133

69

31

95

46

21

Fold
enrichment

1.06

0.95

1.02

0.94

0.00

0.00

1.41

0.70

0.61

4.22

1.50

0.80

0.73

1.41

p_value
3.85¢-01

3.89¢-01

4.19e-01

4.52e-01

5.62e-01

5.62e-01

5.86e-03

2.56e-02

4.12e-02

5.60e-02
9.27e-02

1.62e-01

2.03e-01

2.10e-01

FDR

4.75e-
01

4.75e-
01

4.85¢-
01

4.98e-
01

5.62e-
01

5.62e-
01

1.29¢-
01

2.82e-
01

3.02e-
01

3.08e-
01

4.08e-
01

4.33e-
01

4.33e-
01

4.33e-
01



Genome

COG Category

chromosome
partitioning

Transcription

Posttranslation
al
modification,
protein
turnover,
chaperones

Translation,
ribosomal
structure and
biogenesis

Cell motility

Amino acid
transport and
metabolism

Function
unknown

Nucleotide
transport and
metabolism

Inorganic ion
transport and
metabolism

Cell
wall/membran
e/envelope
biogenesis
Lipid transport
and
metabolism

Carbohydrate
transport and
metabolism

NA

Secondary
metabolites

outlier

17

25

53

72

31

27

32

29

19

background

119

60

92

44

242

324

41

124

121

133

141

118

77

Fold
enrichment

1.14

1.20

1.15

0.77

0.93

0.94

0.82

1.06

0.94

1.05

0.96

1.04

1.04

p_value

2.27e-01

2.36e-01

2.44e-01

2.51e-01

2.72e-01

2.75e-01

3.37e-01

3.96e-01

4.06e-01

4.10e-01

4.34e-01

4.43e-01

4.62e-01

FDR

4.33e-
01

4.33e-
01

4.33e-
01

4.33e-
01

4.33e-
01

4.33e-
01

4.84e¢-
01

4.84e-
01

4.84¢-
01

4.84¢-
01

4.84e-
01

4.84¢-
01

4.84¢-
01



Fold

Genome COG Category outlier background enrichment p value FDR
biosynthesis,
transport and
catabolism

B B Chromatin 0 2 0.00 5.82e-01 5.82e¢-
structure and 01
dynamics

C I Lipid transport 9 77 0.56 2.19e-02  2.39e-
and 01
metabolism

C M Cell 20 62 1.54 2.24e-02  2.39e-
wall/membran 01
e/envelope
biogenesis

C \Y% Defense 10 27 1.76 3.94e-02  2.39e-
mechanisms 01

C O Posttranslation 3 35 0.41 4.35e-02  2.39e-
al 01
modification,
protein
turnover,
chaperones

C N Cell motility 9 28 1.53 1.12e-01  4.12e-

01

C T Signal 19 69 1.31 1.12e-01  4.12e-
transduction 01
mechanisms

C H Coenzyme 12 45 1.27 2.18e-01  5.60e-
transport and 01
metabolism

C E Amino acid 37 157 1.12 2.26e-01  5.60e-
transport and 01
metabolism

C G Carbohydrate 16 92 0.83 2.29e-01  5.60e-
transport and 01
metabolism

C L Replication, 11 43 1.22 2.79¢-01  5.99e-
recombination 01
and repair

C P Inorganicion 17 93 0.87 3.01e-01  5.99e-
transport and 01

metabolism



Fold

Genome COG Category outlier background enrichment p value FDR
C F Nucleotide 3 20 0.71 3.67e-01 5.99e-
transport and 01
metabolism
C U Intracellular 6 25 1.14 4.32e¢-01 5.99e-
trafficking, 01
secretion, and
vesicular
transport
C J Translation, 12 53 1.08 437e-01 5.99e-
ribosomal 01
structure and
biogenesis
C K Transcription 12 62 0.92 4.45¢-01  5.99e-
01
C D Cell cycle 3 18 0.79 4.58e-01 5.99e-
control, cell 01
division,
chromosome
partitioning
C S Function 37 173 1.02 4.80e-01  5.99¢-
unknown 01
C Q Secondary 9 46 0.93 4.90e-01 5.99e-
metabolites 01
biosynthesis,
transport and
catabolism
C - NA 9 45 0.95 5.21e-01  6.04e¢-
01
C C Energy 19 91 0.99 5.51e-01  6.06¢-
production and 01
conversion
C B Chromatin 0 1 0.00 7.90e-01  7.90¢-
structure and 01
dynamics
C Z Cytoskeleton 0 1 0.00 7.90e-01  7.90e-
01
D A% Defense 13 30 1.76 1.82¢-02 4.01e-
mechanisms 01
D C Energy 27 141 0.78 6.74¢-02  4.33e¢-
production and 01

conversion



Genome
D

COG

H

Category

Coenzyme
transport and
metabolism
Replication,
recombination
and repair

Intracellular
trafficking,
secretion, and
vesicular
transport

Nucleotide
transport and
metabolism

Cell cycle
control, cell
division,
chromosome
partitioning
Cell motility

Cell
wall/membran
e/envelope
biogenesis
Chromatin
structure and
dynamics

Amino acid
transport and
metabolism

Transcription

Secondary
metabolites
biosynthesis,
transport and
catabolism

Cytoskeleton

outlier
25

12

11

23

56

21

18

background
80

54

29

35

25

34

108

210

98

63

Fold
enrichment

1.27

0.68

0.56

1.39

1.46

1.31

0.86

4.06

1.08

0.87

1.16

0.00

p_value
1.03¢-01

1.08e-01

1.22e-01

1.28e-01

1.38e-01

1.94e-01

2.40e-01

2.46e-01

2.57e-01

2.66e-01

2.72e-01

3.22e-01

FDR

4.33e-
01

4.33e-
01

4.33e-
01

4.33e-
01

4.33e-
01

4.61e-
01

4.61e-
01

4.61e-
01

4.61e-
01

4.61e-
01

4.61e-
01

5.0le-
01



Fold

Genome COG Category outlier background enrichment p value FDR

D O Posttranslation 13 59 0.89 3.84e-01 5.0le-
al 01
modification,
protein
turnover,
chaperones

D I Lipid transport 27 104 1.05 4.11e-01 5.01e-
and 01
metabolism

D - NA 23 89 1.05 4.35e-01 5.0le-

01

D S Function 71 294 0.98 4.49¢-01 5.0le-
unknown 01

D J Translation, 20 85 0.96 4.63¢-01 5.0le-
ribosomal 01
structure and
biogenesis

D T Signal 25 105 0.97 4.73e-01 5.0le-
transduction 01
mechanisms

D G Carbohydrate 29 115 1.02 4.78e-01 5.0le-
transport and 01
metabolism

D P Inorganic ion 24 99 0.98 5.18e-01 5.18e-
transport and 01

metabolism



Supporting Figures

Figure S1.Hierarchical clustering of environmental variables based on absolute correlation.

Variables clustering together indicate high correlation. The dendrogram height represents 1 -

|correlation|.
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Figure S2. Pairwise relationships between transformed environmental variables. Diagonal shows
density distributions, upper triangle shows Pearson correlations, lower triangle shows scatter
plots. All variables are normalized (mean=0, SD=1) after Yeo-Johnson transformation.
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