1 Parental care at the molecular level: the metabolic division

2 of labour between parents and offspring

3

- 4 Eleanor K. Bladon¹, Sanja M. Hakala², Rebecca M. Kilner¹ & Adria C. LeBoeuf¹
- 5 Department of Zoology, University of Cambridge, UK
 - Department of Ecology and Evolution, University of Lausanne, Switzerland

7

6

- 8 Corresponding authors: Eleanor K. Bladon (ekr23@cam.ac.uk) and Adria C.
- 9 LeBoeuf (acl79@cam.ac.uk)

10

11

Keywords

12 parental care; division of labour; metabolic labour; metabolism

13

14 **Abstract**

15 Parental care during offspring development has traditionally been viewed as a balance between cooperation and conflict. Offspring are imagined to be too helpless to find 16 resources, or build protection, or generate warmth themselves. According to this view, 17 18 the only work carried out by the offspring is through diverse acts of supplication for 19 these vital resources. These are the traits, therefore, that have become the focus for 20 analysing conflict with parents. Recent work analysing parental care at the molecular 21 and metabolic level reveals that offspring have more agency than previously supposed 22 and therefore that development should be seen as more of a shared endeavour. It 23 involves a dynamic metabolic division of labour between parents and offspring, from 24 before conception to independence, which can be precisely characterised at the 25 molecular level. We propose a framework that classifies parental care at the molecular 26 level into three broad areas: (1) resource transfer, (2) environmental buffering and 27 protection, and (3) information transfer. This metabolic division of labour framework provides a common currency for understanding when cooperation tips into conflict 28

(and vice versa) by quantifying the precise costs and benefits of specific molecular transfers. The molecular approach generates insights into the evolution of the genetic pathways that underpin parental care and how parent-offspring conflicts are resolved at the biochemical level. It allows the blending of traditional theoretical approaches for analysing care with state-of-the-art comparative methods, based on -omics technologies. It therefore offers fresh insights into how adaptive parental care functions, why it persists, how it evolves and how it continues to contribute to evolution.

Main text

Parental care during offspring development has traditionally been viewed as a balance between cooperation and conflict. On the one hand, parents are performing acts of altruism, working to promote the growth and fitness of their current offspring but at some marginal cost to their own future fitness (Clutton-Brock, 1991). On the other hand, parents and offspring have divergent evolutionary interests that lead to evolutionary conflict over the supply of parental investment (Trivers, 1974), in which offspring are selected to demand more resources than parents are selected to supply. Offspring are imagined to be too helpless to find nourishment, or build protection, or generate warmth themselves, so must seek these essentials from their parents. According to this characterisation, the only work carried out by the offspring is through diverse acts of supplication for these vital resources. These are the traits, therefore, that have become the focus for analysing conflict with parents (Kilner & Johnstone, 1997; Kilner & Hinde, 2012) because even relatively helpless offspring are capable of demanding more resources than parents are selected to provide (Kilner & Hinde, 2012).

Here we show how parental care can be reframed at the molecular level and in terms of diverse metabolic processes. When recast in this way, parental care extends back to include epigenetic modification of gametes and extends forwards to include offspring physiology and behavioural differences that can be induced by parental condition. Seen in this way, offspring are given more agency and parental care becomes more of a shared endeavour involving a dynamic metabolic division of labour from gamete to independence. Offspring take on more and more labour as they near independence. The scope for cooperation and conflict between parents and offspring

thus extends beyond traits for soliciting parental resources. Furthermore, this reframing permits the use of -omics approaches to analyse and provide fresh insights into how parental care functions, why it persists, how it evolved in the first place and how it continues to contribute to evolution.

The metabolic division of labour between parents and offspring

Offspring growth and development involve costly metabolic processes that consume resources that might be allocated to other activities. Recent research suggests that parents and their offspring share the metabolic labour involved in ensuring the offspring's successful growth and development. The work starts at gamete production, a metabolic task borne solely by parents, and ends when offspring assume full metabolic independence, by which point parents are no longer involved. The extent of parental involvement varies widely across taxa. It can be limited to the well-provisioned eggs of marine broadcast spawners (Marshall et al., 2017), for example, or extend to the highly altricial young of mammals that are supported by parental metabolism throughout lengthy pregnancies and lactation periods (Kilner & Hinde, 2012). We consider three ways, which are not mutually exclusive, in which parents can bear some of the metabolic labour involved in their offspring's successful growth and development.

- First, parents can help with the energy that offspring need to grow and develop effectively. This could be through a direct supply of energy, through egg yolk or milk for example, or it could be through more indirect means, by providing machinery to subsidise the offspring's energy needs, for example through the provisioning of ribosomes to eggs (Leesch et al., 2023).
- Second, parents compensate for survival-related traits that are under-resourced when offspring allocate metabolic resources to growth and development. For example, parents might protect their young against pathogens by providing offspring with antimicrobial proteins while offspring immune defences are still poorly developed (Cotter & Kilner, 2010; Giacomello et al., 2006; Wellman-Labadie et al., 2008).
- Finally, parents are a key source of information about risks and opportunities in the wider world to which offspring can flexibly and adaptively adjust their morphological,

physiological and behavioural development. Parents can supply this critical information at the molecular level, for example through hormones (Hinde et al., 2010) or antibodies against specific pathogens (Pullen et al., 2021), to their young while their offspring's mobility and sensory systems have not yet developed to gather information effectively themselves (Al-Shaer et al., 2016; Atherton & McCormick, 2020).

In short, we can classify the types of metabolic labour that parents share with offspring into three categories (Figure 1): (1) resource transfer, (2) environmental protection and buffering, and (3) information transfer.

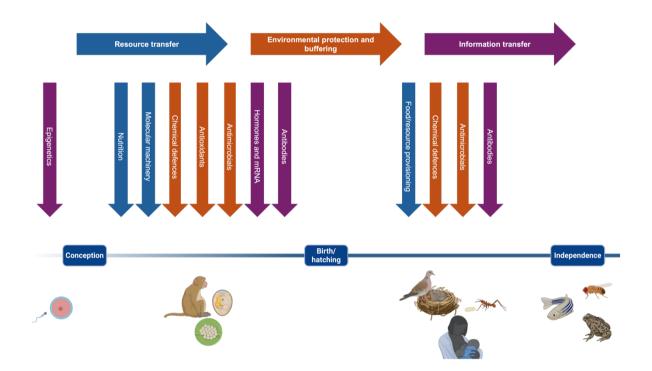


Figure 1: Examples of types of labour that are divided between parents and offspring during development. We classified these into three categories: 1) resource transfer (blue), 2) environmental protection and buffering (orange), and 3) information transfer (purple).

Resource transfer

Offspring require resources to complete growth and development successfully. Mothers provision offspring with specific metabolites, precursors, and sometimes molecular machinery (e.g. hibernating ribosomes) that save the offspring the costs of

production of relevant metabolites or the costs of producing the molecular machinery itself (Bladon, Hakala et al., 2024; Leesch et al., 2023). For example, to build a provisioned protein like a milk casein, the mother also needs to build up ribosomes for translations and acquire or produce the component amino acids, many of which have complex biosynthesis pathways involving several enzymes and cofactors. Cofactors, including several B vitamins, must also be biosynthesized or acquired from diet.

In viviparous and oviparous species, the energy and building blocks required for growth before birth or hatching are entirely provided by the mother in the form of nutrients via the placenta or yolk (Blackburn, 2021; Leesch et al., 2023; Ostrovsky et al., 2016; Safian et al., 2023). At this stage, the cells of the offspring's body begin to assume some of the labour of metabolising nutrients and in building up new molecular machinery and tissues during growth and development. After birth or hatching, parents can continue the labour of provisioning offspring with either unprocessed food or with more metabolically processed resources, such as milk, mucus, regurgitate or trophic eggs (Buckley et al., 2010; Hakala et al., 2023; Negroni & LeBoeuf, 2023; Perry & Roitberg, 2006).

Shifts in the composition and extent of parental provisioning over time reveal a change in division of labour between parent and offspring that are missed if only total provisioning levels are assessed (Galef, 1981; Mainwaring, 2016; Thornton & McAuliffe, 2006). For example, there are complex shifts in the composition of the social fluids that parents transfer to their young as offspring age and mature (Hakala et al., 2023; Morris et al., 2016; Stannard et al., 2020), with component molecules changing in their biosynthetic complexity and in their associated costs of production.

These examples illustrate one of the general advantages to be gained by focusing on care at the molecular level. Theoretical analyses of parental care mostly adopt the phenotypic gambit of quantifying care in terms of fitness gained and fitness lost (Clutton-Brock, 1991; Trivers, 1974). Although this is satisfyingly simple from a theoretical perspective, measures of fitness are notoriously difficult to quantify in reality (e.g. Merilä & Sheldon, 1999; Wolf & Wade, 2001). Measuring care at the molecular level bypasses some of these difficulties. There are at least three approaches that can offer an alternative common currency for assessing offspring and parental perspectives. Most simply, the value of the food passed between parent and offspring

can be quantified using calorimetry rather than the rougher estimate of number of food items or duration of feeding bouts, which have traditionally been reported (Gilby et al., 2011). A second, more granular approach focuses on identifying specific molecular components, including amino acids, proteins, lipids, small molecules and RNAs, and quantifying the number of enzymatic steps required to produce them (Nilsson et al., 2017). Taking such an approach reveals hidden costs borne by parents: they are not only providing nutrients to offspring but they are building custom formulas for offspring that require resource-guzzling molecular machinery to manufacture. A third approach employs bioenergetic techniques to measure the metabolic labour incurred by the different partners, such as through cellular respiration analysis (e.g. de Melo et al., 2025). It thereby tracks the cost to parents of producing particular molecules and measures their beneficial effect on offspring metabolism. Together, these three approaches provide a bridge to previous work on parental care, by generating new ways to the extent of conflict and cooperation within the family, whilst also offering new insights into the function and evolution of parental care.

Environmental protection and buffering

Many behavioural aspects of parental care function to protect the offspring from environmental or immunological threats (Beck et al., 2017; Brewster & Leon, 1980; Clutton-Brock, 1991; Ibáñez-Álamo et al., 2016; Penick & Tschinkel, 2008; Schowalter, 2016). At the molecular level, the strongest evidence is for buffering against pathogen and predation pressure. By exerting energy protecting their offspring, parents not only reduce the likelihood of offspring mortality, they also reduce the energy that offspring themselves must spend on environmental buffering and immunity.

For example, parents assist their offspring with defence from microscopic and chemical threats (Rutkowski et al., 2023), although the precise form of protection changes as offspring develop. Initially, it might involve antioxidants, small molecules and proteins transferred in the egg, which function to protect it against oxidative stress or pathogens. In the freshwater snail *Biomphalaria glabrata*, for example, parents transmit a bactericidal permeability-increasing protein that protects the egg against pathogenic water moulds (Baron et al., 2013). After laying, defence can include

parents spreading antimicrobial or antipredation substances on eggs or nests (Berasategui et al., 2022; Boos et al., 2014; D'Alba & Shawkey, 2015; Duarte et al., 2018; Estes et al., 2013). After hatching, parents of some species transfer antimicrobial substances and beneficial substances directly into the mouths of offspring through trophallaxis or indirectly by depositing substances onto the environment in which the offspring are developing (Diehl et al., 2015; Hakala et al., 2023; Potticary et al., 2024). Parents can also defend offspring from predators using chemical defences. For example, poison frog *Oophaga pumilio* mothers provision their offspring with alkaloids, which protect against spider predation (Stynoski et al., 2014). In many birds, for example great tits *Parus major*, mothers deposit carotenoids into their eggs that buffer embryos against oxidative stress (Watson et al., 2018). The transition from the mother assuming full labour for protecting offspring from pathogenic challenges in utero or in an egg, to assuming some responsibility by improving the microbial environment for offspring in a nest, to relinquishing all responsibility once the offspring disperses, is a clear example of how parental care represents a dynamic division of labour between parents and offspring.

Big data molecular techniques are especially valuable for assessing relative parent and offspring contributions to immune defence. Pairing transcriptomic and proteomic tools can dissociate production from presence of specific molecules such as antimicrobial peptides and lysozymes (Jacobs et al., 2016; Murakami et al., 2005; Reavey et al., 2014; Torati et al., 2017; Xiao et al., 2023). These can be paired with activity assays, for example, turbidity assays, to assess their function by determining the antimicrobial or enzymatic activity of fluids that are produced (Bladon et al., 2024; Cotter & Kilner, 2010; Duarte et al., 2021). Employing these methods at different stages during offspring development means we can elucidate when the division of labour tips from being parentally-biased to offspring-biased as development progresses, by comparing like with like. The common molecular currency facilitates detailed comparisons among families, among populations within species, and among species too. In species where parental care is facultatively supplied, they also make it possible to compare the metabolic load of offspring developing with and without parental care to measure the amount of labour undertaken by parents when they are present (Bladon, Hakala et al., 2024).

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

Information transfer

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

At every stage of offspring development, parents are information capacitors. They are a store of information about the wider world, which they may then release to their young in many ways, including at the molecular level. From the perspective of metabolic division of labour, parental information takes two main forms: direct provisioning and conditional cues.

Firstly, parents have valuable information about the world offspring may live in, and sometimes can support offspring by transferring such knowledge. In vertebrates, antibodies of the adaptive immune system prepare offspring for the specific viruses that they may encounter. In placental species, this immune priming begins as early as in utero, when maternal antibodies can transfer to the foetus via the placenta. In species where the placenta does not allow antibody transfer, ingestion of colostrum after birth serves the same function (Alonso-Alvarez & Velando, 2012; Chucri et al., 2010). In non-placental vertebrates, antibodies can be transferred via the egg. In birds. maternal immunoglobulins are transferred directly into the embryo's blood via the egg yolk (Boulinier & Staszewski, 2008). Maternally-derived antibodies help the offspring's body recognise and mount a response against infection by specific pathogens that the mother has encountered. Without these, the offspring might mount a much less precise innate immune response or else get infected by the new virus and develop its own antibodies, risking serious illness (Grindstaff, 2008). In a study in humans, infants breastfed for longer than 2 weeks had fewer enterovirus infections than those not breastfed, and breastfed infants whose mothers had higher enterovirus IgA levels in their breastmilk had fewer enterovirus infections before the age of 1 year than infants of mothers with lower levels (Sadeharju et al., 2007). Maternal antibodies are important for the offspring until it has the ability to mount its own immune response and produce its own antibodies (the timing of which varies greatly depending on body size and metabolism) (Grindstaff et al., 2003). Thus, antibody provisioning represents a metabolic division of labour whereby neonates can rely on their mothers' costly experiences of viral illness, immune memory and antibody production (Boulinier & Staszewski, 2008) until they are developed enough to protect themselves against viruses and build their own immunological catalogue of enemies.

As well as receiving direct help from their parents in defence against attack, offspring can gain information about likely threat through the condition of their parents. Shifting conditions often result in changes in the materials that parents transfer to their offspring which, in turn, have been shown to induce different offspring phenotypes. There are two ways in which parental condition can be a source of information to offspring, which differ in the extent of labour involved by parents. The least labourintensive from the parent's perspective occurs when parental condition acts as a cue (so-called 'Condition-dependent effects'). The information transferred to offspring is then simply a by-product of parental condition, perhaps stemming from physiological constraints. For example, if parents are in poor condition they might transfer fewer resources to offspring, which could act as a cue that induces a more 'frugal' phenotype in their young. In Caenorhabditis elegans the offspring of starved parents inherit small RNAs that target genes involved in nutrition, for instance (Rechavi et al., 2014). An alternative way of transferring information to offspring involves a greater level of investment by parents through the pro-active inclusion of additional metabolic compounds in the materials transferred to offspring (so-called 'Adaptive or anticipatory effects'). In this scenario, the compounds are not merely by-products of parental condition but instead have evolved to function as signals that encode environmental information for optimising offspring development.

Current evidence suggests that condition-dependent effects are more common than adaptive anticipatory effects, with meta-analyses finding mixed or weak support for adaptive anticipatory parental effects across taxa (Uller et al., 2013). However, there are instances of adaptive effects operating through epigenetic mechanisms through both sperm and eggs (Chang et al., 2021; Lind et al., 2020; Sun et al., 2018; Weyrich et al., 2016). Whether information can also be transmitted adaptively to offspring after this stage is less clear. In humans, there is some evidence that information about nutrition can be transferred to the offspring *in utero* and during lactation. A review found that maternal diet during these periods influenced infant flavour preferences during infancy. However, whether this was adaptive, and led to beneficial weight outcomes in offspring, remains unclear (Ventura et al., 2021). In many studies to date, it is difficult to assess whether parents take on additional costs to encode information that offspring use. This metabolic division of labour framework may allow future researchers to identify these costs, if they exist.

We have described three functions linked to the metabolic division of labour and, thus far, have treated them as processes that are broadly independent. In reality, they can of course co-occur. For example, viviparity encompasses all three types of labour simultaneously. Through internal gestation, viviparous species integrate resource transfer (via placental or pseudo-placental structures), environmental buffering (through maternal thermoregulation, osmoregulation, and physical protection), and information transfer (through the parent's nervous system interacting with the environment). Viviparity has evolved independently more than 150 times across vertebrate lineages (Whittington et al., 2022), from poeciliid fishes (Furness et al., 2021) to sharks (Blackburn & Hughes, 2024) to mammals (Wildman et al., 2006). In contrast to oviparity, where parents front-load resources and hand over all metabolic labour to their offspring, viviparity's integrated management of all three metabolic division of labour categories may explain its repeated convergent evolution across the vertebrate tree of life. Furthermore, transitions to viviparous development have increased diversification rates in sharks (Mull et al., 2024) and influenced selection patterns in fish (Pollux et al., 2014). Perhaps the capacity to share metabolic labour with offspring, enabled by viviparity, has underpinned further evolutionary innovations.

Future prospects

Much of our current understanding of parental care results from successfully taking the phenotypic gambit to understand adaptive trait evolution. This approach has helped us understand why care persists, who provides care and how its supply is affected by cooperation and conflict. Now new tools for analysing care at the molecular level can provide more precise ways to measure variation in care, and can provide the empirical scope to make like-for-like comparisons among individuals, populations and species. This resolution at the molecular level draws organisms into scope that were previously thought to exhibit no 'caring behaviours' at all (e.g. broadcast spawners) and reveals the extent to which care is a metabolic division of labour between parents and offspring, with parallels to other animal societies that divide tasks among their members (cf Cooper & West, 2018). Offspring are shown to be active participants in this joint enterprise at an earlier stage than previously appreciated, while the effects of parents can linger longer into the offspring's life than previously realised, due to

304305306	mechanisms that can potentially reach across the generations. The stage is thus set for a new generation of work that focuses on function, mechanism and evolution, whilst building on the existing adaptive framework for understanding parental care.
307	
308	Author contributions
309 310 311	All authors made significant contributions to the conceptual development of the manuscript. EKB drafted the initial manuscript. All authors contributed to later versions of the manuscript.
312	
313	Funding
314315316317	EKB was supported by post-doctoral funding to RMK from the Department of Zoology, University of Cambridge. ACL received a Human Frontier Science Programme Grant (RGP0023/2022).
318	References
319	Alonso-Alvarez, C., & Velando, A. (2012). Benefits and costs of parental care. In M. Kölliker,
320	N. J. Royle, & P. T. Smiseth (Eds.), The Evolution of Parental Care (p. 0). Oxford
321	University Press. https://doi.org/10.1093/acprof:oso/9780199692576.003.0003
322	Al-Shaer, L., Paciorek, T., Carroll, Z., & Itzkowitz, M. (2016). The fish that cried wolf: The
323	role of parental care in novel predator recognition in juvenile convict cichlids
324	(Amatitlania siquia). Behaviour, 153(8), 963–980. https://doi.org/10.1163/1568539X-
325	00003381
326	Atherton, J. A., & McCormick, M. I. (2020). Parents know best: Transgenerational predator
327	recognition through parental effects. PeerJ, 8(e9340).
328	https://doi.org/10.7717/peerj.9340
329	Baron, O. L., van West, P., Industri, B., Ponchet, M., Dubreuil, G., Gourbal, B., Reichhart, J

M., & Coustau, C. (2013). Parental Transfer of the Antimicrobial Protein LBP/BPI

331	Protects Biomphalaria glabrata Eggs against Oomycete Infections. PLOS Pathogens,
332	9(12), e1003792. https://doi.org/10.1371/journal.ppat.1003792
333	Beck, K. B., Loretto, MC., Ringler, M., Hödl, W., & Pašukonis, A. (2017). Relying on known
334	or exploring for new? Movement patterns and reproductive resource use in a tadpole-
335	transporting frog. PeerJ, 5, e3745. https://doi.org/10.7717/peerj.3745
336	Berasategui, A., Breitenbach, N., García-Lozano, M., Pons, I., Sailer, B., Lanz, C.,
337	Rodríguez, V., Hipp, K., Ziemert, N., Windsor, D., & Salem, H. (2022). The leaf beetle
338	Chelymorpha alternans propagates a plant pathogen in exchange for pupal
339	protection. Current Biology, 32(19), 4114-4127.e6.
340	https://doi.org/10.1016/j.cub.2022.07.065
341	Blackburn, D. G. (2021). Functional morphology, diversity, and evolution of yolk processing
342	specializations in embryonic reptiles and birds. Journal of Morphology, 282(7), 995-
343	1014. https://doi.org/10.1002/jmor.21267
344	Blackburn, D. G., & Hughes, D. F. (2024). Phylogenetic analysis of viviparity, matrotrophy,
345	and other reproductive patterns in chondrichthyan fishes. Biological Reviews, 99(4),
346	1314-1356. https://doi.org/10.1111/brv.13070
347	Bladon, E., Hakala, S., Kilner, R., & LeBoeuf, A. (2024). Plasticity and evolution of metabolic
348	division of labour within families. bioRxiv, 2024.06.18.599519.
349	https://doi.org/10.1101/2024.06.18.599519
350	Bladon, E. K., Pascoal, S., & Kilner, R. M. (2024). Can recent evolutionary history promote
351	resilience to environmental change? Behavioral Ecology, 35(6), arae074.
352	https://doi.org/10.1093/beheco/arae074
353	Boos, S., Meunier, J., Pichon, S., & Kölliker, M. (2014). Maternal care provides antifungal
354	protection to eggs in the European earwig. Behavioral Ecology, 25(4), 754–761.
355	https://doi.org/10.1093/beheco/aru046
356	Boulinier, T., & Staszewski, V. (2008). Maternal transfer of antibodies: Raising immuno-
357	ecology issues. Trends in Ecology & Evolution, 23(5), 282–288.
358	https://doi.org/10.1016/j.tree.2007.12.006

359	Brewster, J., & Leon, M. (1980). Relocation of the site of mother-young contact: Maternal
360	transport behavior in Norway rats. Journal of Comparative and Physiological
361	Psychology, 94(1), 69-79. https://doi.org/10.1037/h0077644
362	Buckley, J., Maunder, R. J., Foey, A., Pearce, J., Val, A. L., & Sloman, K. A. (2010).
363	Biparental mucus feeding: A unique example of parental care in an Amazonian
364	cichlid. Journal of Experimental Biology, 213(22), 3787–3795.
365	https://doi.org/10.1242/jeb.042929
366	Chang, S. L., Lee, WS., & Munch, S. B. (2021). Separating Paternal and Maternal
367	Contributions to Thermal Transgenerational Plasticity. Frontiers in Marine Science,
368	Volume 8-2021. https://www.frontiersin.org/journals/marine-
369	science/articles/10.3389/fmars.2021.734318
370	Chucri, T. M., Monteiro, J. M., Lima, A. R., Salvadori, M. L. B., Junior, J. R. K., & Miglino, M.
371	A. (2010). A review of immune transfer by the placenta. Journal of Reproductive
372	Immunology, 87(1), 14–20. https://doi.org/10.1016/j.jri.2010.08.062
373	Clutton-Brock, T. H. (1991). The Evolution of Parental Care (Vol. 64). Princeton University
374	Press; JSTOR. https://doi.org/10.2307/j.ctvs32ssj
375	Cooper, G. A., & West, S. A. (2018). Division of labour and the evolution of extreme
376	specialization. Nature Ecology & Evolution, 2(7), 1161–1167.
377	https://doi.org/10.1038/s41559-018-0564-9
378	Cotter, S., & Kilner, R. M. (2010). Sexual division of antibacterial resource defence in
379	breeding burying beetles, Nicrophorus vespilloides. Journal of Animal Ecology, 79(1)
380	35-43. https://doi.org/10.1111/j.1365-2656.2009.01593.x
381	D'Alba, L., & Shawkey, M. D. (2015). Mechanisms of antimicrobial defense in avian eggs.
382	Journal of Ornithology, 156(1), 399–408. https://doi.org/10.1007/s10336-015-1226-1
383	de Melo, J. M. L., Blond, M. B., Jensen, V. H., Pedersen, H., Clemmensen, K. K. B., Jensen,
384	M. M., Færch, K., Quist, J. S., & Størling, J. (2025). Time-restricted eating in people
385	at high diabetes risk does not affect mitochondrial bioenergetics in peripheral blood

386	mononuclear cells and platelets. Scientific Reports, 15(1), 10175.
387	https://doi.org/10.1038/s41598-025-94652-4
388	Diehl, J. M., Körner, M., Pietsch, M., & Meunier, J. (2015). Feces production as a form of
389	social immunity in an insect with facultative maternal care. BMC Evolutionary
390	Biology, 15(1), 40. https://doi.org/10.1186/s12862-015-0330-4
391	Duarte, A., Rebar, D., Hallett, A. C., Jarrett, B. J. M., & Kilner, R. M. (2021). Evolutionary
392	change in the construction of the nursery environment when parents are prevented
393	from caring for their young directly. Proceedings of the National Academy of
394	Sciences, 118(48), e2102450118. https://doi.org/10.1073/pnas.2102450118
395	Duarte, A., Welch, M., Swannack, C., Wagner, J., & Kilner, R. M. (2018). Strategies for
396	managing rival bacterial communities: Lessons from burying beetles. Journal of
397	Animal Ecology, 87(2), 414–427. https://doi.org/10.1111/1365-2656.12725
398	Estes, A. M., Hearn, D. J., Snell-Rood, E. C., Feindler, M., Feeser, K., Abebe, T., Dunning
399	Hotopp, J. C., & Moczek, A. P. (2013). Brood ball-mediated transmission of
400	microbiome members in the dung beetle, Onthophagus taurus (Coleoptera:
401	Scarabaeidae). PLOS ONE, 8(11), e79061.
402	https://doi.org/10.1371/journal.pone.0079061
403	Furness, A. I., Avise, J. C., Pollux, B. J. A., Reynoso, Y., & Reznick, D. N. (2021). The
404	evolution of the placenta in poeciliid fishes. Current Biology, 31(9), 2004-2011.e5.
405	https://doi.org/10.1016/j.cub.2021.02.008
406	Galef, B. G. (1981). The Ecology of Weaning. In D. J. Gubernick & P. H. Klopfer (Eds.),
407	Parental Care in Mammals (pp. 211–241). Springer US. https://doi.org/10.1007/978
408	1-4613-3150-6_6
409	Giacomello, E., Marchini, D., & Rasotto, M. B. (2006). A male sexually dimorphic trait
410	provides antimicrobials to eggs in blenny fish. Biology Letters, 2(3), 330–333.
411	https://doi.org/10.1098/rsbl.2006.0492

412	Gilby, A. J., Mainwaring, M. C., Rollins, L. A., & Griffith, S. C. (2011). Parental care in wild
413	and captive zebra finches: Measuring food delivery to quantify parental effort. Anima
414	Behaviour, 81(1), 289–295. https://doi.org/10.1016/j.anbehav.2010.10.020
415	Grindstaff, J. L. (2008). Maternal antibodies reduce costs of an immune response during
416	development. Journal of Experimental Biology, 211(5), 654–660.
417	https://doi.org/10.1242/jeb.012344
418	Grindstaff, J. L., Brodie, E. D., & Ketterson, E. D. (2003). Immune function across
419	generations: Integrating mechanism and evolutionary process in maternal antibody
420	transmission. Proceedings of the Royal Society B: Biological Sciences, 270, 2309-
421	2319. https://doi.org/10.1098/rspb.2003.2485
422	Hakala, S. M., Fujioka, H., Gapp, K., De Gasperin, O., Genzoni, E., Kilner, R. M., Koene, J.
423	M., König, B., Linksvayer, T. A., Meurville, MP., Negroni, M. A., Palejowski, H.,
424	Wigby, S., & LeBoeuf, A. C. (2023). Socially transferred materials: Why and how to
425	study them. Trends in Ecology & Evolution, 38(5), 446–458.
426	https://doi.org/10.1016/j.tree.2022.11.010
427	Hinde, C. A., Johnstone, R. A., & Kilner, R. M. (2010). Parent-offspring conflict and
428	coadaptation. Science, 327(5971), 1373–1376.
429	https://doi.org/10.1126/science.1186056
430	Ibáñez-Álamo, J. D., Ruiz-Raya, F., Rodríguez, L., & Soler, M. (2016). Fecal sacs attract
431	insects to the nest and provoke an activation of the immune system of nestlings.
432	Frontiers in Zoology, 13(1), 3. https://doi.org/10.1186/s12983-016-0135-3
433	Jacobs, C. G. C., Steiger, S., Heckel, D. G., Wielsch, N., Vilcinskas, A., & Vogel, H. (2016).
434	Sex, offspring and carcass determine antimicrobial peptide expression in the burying
435	beetle. Scientific Reports, 6, 25409.
436	Kilner, R., & Johnstone, R. A. (1997). Begging the question: Are offspring solicitation
437	behaviours signals of need? Trends in Ecology & Evolution, 12(1), 11–15.
438	https://doi.org/10.1016/S0169-5347(96)10061-6

439 Kilner, R. M., & Hinde, C. A. (2012). Parent-offspring conflict. In N. J. Royle, P. T. Smiseth, & 440 M. Kölliker (Eds.), The Evolution of Parental Care (pp. 119–133). Oxford University 441 Press. Leesch, F., Lorenzo-Orts, L., Pribitzer, C., Grishkovskaya, I., Roehsner, J., Chugunova, A., 442 443 Matzinger, M., Roitinger, E., Belačić, K., Kandolf, S., Lin, T.-Y., Mechtler, K., 444 Meinhart, A., Haselbach, D., & Pauli, A. (2023). A molecular network of conserved factors keeps ribosomes dormant in the egg. Nature, 613(7945), 712–720. 445 446 https://doi.org/10.1038/s41586-022-05623-y Lind, M. I., Zwoinska, M. K., Andersson, J., Carlsson, H., Krieg, T., Larva, T., & Maklakov, A. 447 448 A. (2020). Environmental variation mediates the evolution of anticipatory parental 449 effects. Evolution Letters, 4(4), 371–381. https://doi.org/10.1002/evl3.177 450 Mainwaring, M. C. (2016). The transition from dependence to independence in birds. 451 Behavioral Ecology and Sociobiology, 70(9), 1419–1431. 452 https://doi.org/10.1007/s00265-016-2186-z 453 Marshall, D., McAlister, J., Reitzel, A., Carrier, T., Reitzel, A., & Heyland, A. (Eds.). (2017). 454 Evolutionary Ecology of Parental Investment and Larval Diversity. In Evolutionary 455 Ecology of Marine Invertebrate Larvae (p. 0). Oxford University Press. 456 https://doi.org/10.1093/oso/9780198786962.003.0003 457 Merilä, J., & Sheldon, B. C. (1999). Genetic architecture of fitness and nonfitness traits: 458 Empirical patterns and development of ideas. Heredity, 83(2), 103–109. 459 https://doi.org/10.1046/j.1365-2540.1999.00585.x Morris, K. M., O'Meally, D., Zaw, T., Song, X., Gillett, A., Molloy, M. P., Polkinghorne, A., & 460 461 Belov, K. (2016). Characterisation of the immune compounds in koala milk using a 462 combined transcriptomic and proteomic approach. Scientific Reports, 6(1), 35011. 463 https://doi.org/10.1038/srep35011 464 Mull, C. G., Pennell, M. W., Yopak, K. E., & Dulvy, N. K. (2024). Maternal investment 465 evolves with larger body size and higher diversification rate in sharks and rays. 466 Current Biology, 34(12), 2773-2781.e3. https://doi.org/10.1016/j.cub.2024.05.019

467 Murakami, M., Dorschner, R. A., Stern, L. J., Lin, K. H., & Gallo, R. L. (2005). Expression 468 and Secretion of Cathelicidin Antimicrobial Peptides in Murine Mammary Glands and 469 Human Milk. Pediatric Research. 57(1), 10-15. 470 https://doi.org/10.1203/01.PDR.0000148068.32201.50 471 Negroni, M. A., & LeBoeuf, A. C. (2023). Metabolic division of labor in social insects. Current 472 Opinion in Insect Science, 59, 101085. https://doi.org/10.1016/j.cois.2023.101085 Nilsson, A., Mardinoglu, A., & Nielsen, J. (2017). Predicting growth of the healthy infant 473 474 using a genome scale metabolic model. Npj Systems Biology and Applications, 3(1), 475 3. https://doi.org/10.1038/s41540-017-0004-5 476 Ostrovsky, A. N., Lidgard, S., Gordon, D. P., Schwaha, T., Genikhovich, G., & Ereskovsky, 477 A. V. (2016). Matrotrophy and placentation in invertebrates: A new paradigm. 478 Biological Reviews, 91(3), 673–711. https://doi.org/10.1111/brv.12189 479 Penick, C. A., & Tschinkel, W. R. (2008). Thermoregulatory brood transport in the fire ant, 480 Solenopsis invicta. *Insectes Sociaux*, 55(2), 176–182. 481 https://doi.org/10.1007/s00040-008-0987-4 482 Perry, J. C., & Roitberg, B. D. (2006). Trophic egg laying: Hypotheses and tests. Oikos, 483 112(3), 706-714. https://doi.org/10.1111/j.0030-1299.2006.14498.x 484 Pollux, B. J. A., Meredith, R. W., Springer, M. S., Garland, T., & Reznick, D. N. (2014). The 485 evolution of the placenta drives a shift in sexual selection in livebearing fish. Nature, 486 513(7517), 233–236. https://doi.org/10.1038/nature13451 487 Potticary, A. L., Belk, M. C., Creighton, J. C., Ito, M., Kilner, R., Komdeur, J., Royle, N. J., 488 Rubenstein, D. R., Schrader, M., Shen, S.-F., Sikes, D. S., Smiseth, P. T., Smith, R., 489 Steiger, S., Trumbo, S. T., & Moore, A. J. (2024). Revisiting the ecology and 490 evolution of burying beetle behavior (Staphylinidae: Silphinae). Ecology and 491 Evolution, 14(8), e70175. https://doi.org/10.1002/ece3.70175 492 Pullen, K. M., Atyeo, C., Collier, A.-R. Y., Gray, K. J., Belfort, M. B., Lauffenburger, D. A., 493 Edlow, A. G., & Alter, G. (2021). Selective functional antibody transfer into the

494	breastmilk after SARS-CoV-2 infection. Cell Reports, 37(6).
495	https://doi.org/10.1016/j.celrep.2021.109959
496	Reavey, C. E., Beare, L., & Cotter, S. C. (2014). Parental care influences social immunity in
497	burying beetle larvae. Ecological Entomology, 39(3), 395–398.
498	Rechavi, O., Houri-Ze'evi, L., Anava, S., Goh, W. S. S., Kerk, S. Y., Hannon, G. J., & Hobert
499	O. (2014). Starvation-Induced Transgenerational Inheritance of Small RNAs in
500	C. elegans. Cell, 158(2), 277–287. https://doi.org/10.1016/j.cell.2014.06.020
501	Rutkowski, NA. J., McNamara, K. B., Jones, T. M., & Foo, Y. Z. (2023). Trans-generational
502	immune priming is not mediated by the sex of the parent primed: A meta-analysis of
503	invertebrate data. Biological Reviews, 98(4), 1100–1117.
504	https://doi.org/10.1111/brv.12946
505	Sadeharju, K., Knip, M., Virtanen, S. M., Savilahti, E., Tauriainen, S., Koskela, P., Åkerblom,
506	H. K., Hyöty, H., & and the Finnish TRIGR Study Group. (2007). Maternal Antibodies
507	in Breast Milk Protect the Child From Enterovirus Infections. Pediatrics, 119(5), 941-
508	946. https://doi.org/10.1542/peds.2006-0780
509	Safian, D., Ahmed, M., van Kruistum, H., Furness, A. I., Reznick, D. N., Wiegertjes, G. F., &
510	Pollux, B. J. A. (2023). Repeated independent origins of the placenta reveal
511	convergent and divergent organ evolution within a single fish family (Poeciliidae).
512	Science Advances, 9(34), eadf3915. https://doi.org/10.1126/sciadv.adf3915
513	Schowalter, T. D. (2016). Chapter 4—Resource Allocation. In T. D. Schowalter (Ed.), Insect
514	Ecology (Fourth Edition) (pp. 107–137). Academic Press.
515	https://doi.org/10.1016/B978-0-12-803033-2.00004-2
516	Stannard, H. J., Miller, R. D., & Old, J. M. (2020). Marsupial and monotreme milk—A review
517	of its nutrient and immune properties. PeerJ, 8, e9335.
518	https://doi.org/10.7717/peerj.9335
519	Stynoski, J. L., Shelton, G., & Stynoski, P. (2014). Maternally derived chemical defences are
520	an effective deterrent against some predators of poison frog tadpoles (Oophaga
521	pumilio). <i>Biology Letters</i> , <i>10</i> (5), 20140187. https://doi.org/10.1098/rsbl.2014.0187

522	Sun, BJ., Wang, Y., Wang, Y., Lu, HL., & Du, WG. (2018). Anticipatory parental effects
523	in a subtropical lizard in response to experimental warming. Frontiers in Zoology,
524	15(1), 51. https://doi.org/10.1186/s12983-018-0296-3
525	Thornton, A., & McAuliffe, K. (2006). Teaching in Wild Meerkats. Science, 313(5784), 227-
526	229. https://doi.org/10.1126/science.1128727
527	Torati, L. S., Migaud, H., Doherty, M. K., Siwy, J., Mullen, W., Mesquita, P. E. C., & Albalat,
528	A. (2017). Comparative proteome and peptidome analysis of the cephalic fluid
529	secreted by Arapaima gigas (Teleostei: Osteoglossidae) during and outside parenta
530	care. PLOS ONE, 12(10), e0186692. https://doi.org/10.1371/journal.pone.0186692
531	Trivers, R. L. (1974). Parent-Offspring Conflict. American Zoologist, 14(1), 249–264.
532	https://doi.org/10.1093/icb/14.1.249
533	Ventura, A. K., Phelan, S., & Silva Garcia, K. (2021). Maternal Diet During Pregnancy and
534	Lactation and Child Food Preferences, Dietary Patterns, and Weight Outcomes: A
535	Review of Recent Research. Current Nutrition Reports, 10(4), 413–426.
536	https://doi.org/10.1007/s13668-021-00366-0
537	Watson, H., Salmón, P., & Isaksson, C. (2018). Maternally derived yolk antioxidants buffer
538	the developing avian embryo against oxidative stress induced by hyperoxia. Journal
539	of Experimental Biology, 221(13), jeb179465. https://doi.org/10.1242/jeb.179465
540	Wellman-Labadie, O., Picman, J., & Hincke, M. T. (2008). Antimicrobial activity of the
541	Anseriform outer eggshell and cuticle. Comparative Biochemistry and Physiology
542	Part B: Biochemistry and Molecular Biology, 149(4), 640–649.
543	https://doi.org/10.1016/j.cbpb.2008.01.001
544	Weyrich, A., Lenz, D., Jeschek, M., Chung, T. H., Rübensam, K., Göritz, F., Jewgenow, K.,
545	& Fickel, J. (2016). Paternal intergenerational epigenetic response to heat exposure
546	in male Wild guinea pigs. Molecular Ecology, 25(8), 1729–1740.
547	https://doi.org/10.1111/mec.13494
548	Whittington, C. M., Van Dyke, J. U., Liang, S. Q. T., Edwards, S. V., Shine, R., Thompson,
549	M. B., & Grueber, C. E. (2022). Understanding the evolution of viviparity using

550	intraspecific variation in reproductive mode and transitional forms of pregnancy.
551	Biological Reviews, 97(3), 1179–1192. https://doi.org/10.1111/brv.12836
552	Wildman, D. E., Chen, C., Erez, O., Grossman, L. I., Goodman, M., & Romero, R. (2006).
553	Evolution of the mammalian placenta revealed by phylogenetic analysis. Proceedings
554	of the National Academy of Sciences, 103(9), 3203–3208.
555	https://doi.org/10.1073/pnas.0511344103
556	Wolf, J. B., & Wade, M. J. (2001). On the assignment of fitness to parents and offspring:
557	Whose fitness is it and when does it matter? Journal of Evolutionary Biology, 14(2),
558	347-356. https://doi.org/10.1046/j.1420-9101.2001.00277.x
559	Xiao, W., Gu, N., Zhang, B., Liu, Y., Zhang, Y., Zhang, Z., Qin, G., & Lin, Q. (2023).
560	Characterization and expression patterns of lysozymes reveal potential immune
561	functions during male pregnancy of seahorse. Developmental & Comparative
562	Immunology, 142, 104654. https://doi.org/10.1016/j.dci.2023.104654
563	