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Abstract35

Climate change is intensifying drought stress in temperate forests, but its effects on tree reproduction, central to36

forest regeneration and migration capability, remain poorly understood. In mast-seeding species such as European37

beech (Fagus sylvatica), reproduction is regulated by temperature cues rather than current-year resource availability,38

raising questions about drought sensitivity once reproduction is triggered. Here, we analyse 221 time series of beech39

seed production across Europe to test whether drought, after reproduction has been initiated, reduces seed output.40

We isolate drought exposure during pollination and seed maturation phases, including severe events in 2003, 2018,41

and 2022. Seed production was not impaired by summer drought, and dry spring conditions were associated with42

increased output, likely via enhanced pollen dispersal. Thus, once triggered, beech reproduction is not reduced by43

drought. Considered alongside prior evidence that drought suppresses growth and elevates mortality, these findings44

indicate that vital rates can respond in opposite directions to the same stressor—reproduction is buffered while45

growth and survival decline. Such contrasts may sustain short-term regeneration during heat–drought events yet46

shift demographic balance toward higher mortality and turnover as climatic extremes intensify.47

Introduction48

Global change is altering average climatic conditions and their variability, leading to more frequent and intense49

extremes such as heatwaves and severe droughts (IPCC, 2023). Observations across continents reveal consistent50

trends with increasing rates of forest disturbance, elevated tree mortality, and changing growth dynamics in adult51

trees and seedlings (Johnstone et al., 2016; McDowell et al., 2020; Hartmann et al., 2022; Klesse et al., 2024;52

Mantgem et al., 2009). In Europe, recent summer droughts have reached intensities without precedent in the past two53

millennia (Buras et al., 2020; Büntgen et al., 2021), exerting mounting pressure on forest demography (Senf et al.,54

2018; McDowell et al., 2020). For instance, tree canopy mortality trends have accelerated in response to prolonged55

drying (Senf et al., 2020). The 2018–2020 European drought sharply illustrates the magnitude of current climatic56

pressures: stem growth declined by approximately 40% in German forests (Thom et al., 2023; Sachsenmaier et al.,57

2024), and widespread dieback and mortality occurred among adult trees and saplings (Schuldt et al., 2020; Beloiu58

et al., 2022; Knutzen et al., 2025). Yet while there are published data on the demographic consequences of drought59

through growth and mortality, much less is known about how drought influences reproduction, despite its key60

importance for long-term forest dynamics (Johnstone et al., 2016; Seidl & Turner, 2022).61

The resilience of forests to disturbance, including the potential reorganisation to non-forest, depends on the62

magnitude and consistency of tree reproduction and subsequent regeneration (Johnstone et al., 2016; Brodribb et al.,63

2020; Seidl & Turner, 2022; Davis et al., 2023). In forests, tree reproduction is realised through seed production,64

a multi-stage process from floral initiation through pollination to seed maturation, which ultimately determines65

the potential for regeneration (Clark et al., 2021; Hanbury-Brown et al., 2022; Bogdziewicz et al., 2025). Despite66

its central role, our understanding of how climate extremes, particularly drought, affect reproduction remains67
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fragmentary (McDowell et al., 2020; Seidl & Turner, 2022). In contrast to mortality, where extensive evidence and68

mechanistic theory link drought to hydraulic failure, carbon starvation, and biotic attack (Hartmann & Trumbore,69

2016; McDowell et al., 2022; Netherer et al., 2024; Leuschner, 2020), reports of reproductive responses are70

sparse (Dohrenbusch et al., 2002; Pérez-Ramos et al., 2010; Zamorano et al., 2018; Wright et al., 2021; Zhang71

& Brodribb, 2017). Currently, we lack not only a physiological framework for interpretation, but also the basic72

knowledge of whether drought effects on reproduction are typically positive, negative, or neutral. This uncertainty73

is consequential: the direction and magnitude of reproductive responses will determine the regeneration potential74

of forests under drought (Martínez-Vilalta & Lloret, 2016), the capability of trees to track moving climate envelopes75

(Svenning & Skov, 2007; Nathan et al., 2011), and, through the costs of reproduction, changes in the mortality risk76

to adult trees (Lauder et al., 2019).77

Drought is expected to influence tree seed production through multiple pathways. Drought can directly78

constrain photosynthesis and water uptake (McDowell et al., 2008; Sevanto et al., 2014), reducing the resources79

available for reproductive investment. Such resource limitation has been linked to declines in seed production in80

Scots pine (Vilà-Cabrera et al., 2014), and is well-documented in herbaceous systems (Sage et al., 2024). However,81

the consequences for seed output depend not only on resource availability, but also on how trees allocate those82

resources under stress. Reproduction can be prioritised or deprioritised under drought, relative to growth and83

other functions, including defence (Hacket-Pain et al., 2017; Lauder et al., 2019; Gonzalez et al., 2023). For84

example, Lauder et al. (2019) suggested that trees may respond to drought by either allocating resources toward85

survival-related functions such as growth and defence, or by maintaining investment in reproduction at the potential86

cost of reduced survival. In support of the latter, in Pinus ponderosa, Picea abies, and Quercus ilex, drought87

strengthens the trade-off between investment in reproduction and growth/defence (Bogdziewicz et al., 2020a; Hesse88

et al., 2021; Gonzalez et al., 2023). Beyond resource effects, drought can directly disrupt reproductive processes,89

such as reducing pollen viability or fertilisation rates (Tushabe & Rosbakh, 2025). However, not all effects are90

negative: warm and dry spring conditions may improve pollen dispersal and enhance pollination efficiency (Fleurot91

et al., 2024), potentially increasing seed set under some circumstances. To improve our understanding of potential92

drought effects on reproduction, long-term data covering multiple drought events, as well as extensive non-drought93

periods, are required.94

Here, we analyse 221 time series (5362 population-level, annual observations) of European beech reproduction95

to test whether drought disrupts seed production in this widespread and socio-economically important species.96

Reproduction in beech varies strongly among years (masting), largely the result of temperature cues which regulate97

annual flowering effort (Vacchiano et al., 2017; Journé et al., 2024). Thus, we ask whether drought reduces98

seed output in years when trees are already committed to reproduce. By explicitly modeling the temperature99

cues that govern annual flowering effort, we separate cue-driven commitment from drought acting as a climatic100

veto during subsequent reproductive processes. We partitioned drought exposure into two phenological phases:101

flowering and pollination (April–May) and fruit maturation (June–September). We hypothesised that spring drought102
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could enhance seed production by promoting pollen dispersal under dry conditions in this wind-pollinated species103

(Schermer et al., 2020; Fleurot et al., 2024). In contrast, summer drought was expected to reduce seed production104

if trees allocate limited resources to competing sinks such as stem or root growth or storage under stress (Lauder105

et al., 2019; Chuste et al., 2020). Alternatively, reproductive output could be maintained despite summer drought106

if finalising seed maturation under stress is selectively advantageous (Wiley et al., 2017). Two mechanisms could107

support such selective benefits. First, a form of reproductive persistence, akin to a “flight” strategy, where trees108

maintain reproduction at the expense of growth and survival-related functions (Lauder et al., 2019). Second,109

reproduction may be favoured under stress as an adaptive response to environmental signals (Piovesan & Adams,110

2005; Ascoli et al., 2020): drought-induced canopy opening or increased fire likelihood may signal favourable111

conditions for seedling establishment (Ascoli et al., 2013; Maringer et al., 2020), thus favouring investment in112

current seed maturation. In addition to a gradient-based evaluation of seed production response to drought, we also113

test whether recent exceptional summer drought events in Europe (in 2003, 2018, and 2022) (Gharun et al., 2024)114

were associated with declines in seed production, including in sites known to have been strongly impacted by these115

events.116

Results117

European beech reproduction proved resilient to seasonal drought during reproduction, with no evidence that spring118

or summer water deficits suppressed seed production (Fig. 1, Table 1). Once trees were committed to flowering,119

as indicated by strong responses to the flowering cue (ΔT, i.e., the difference between June-July temperatures one120

and two years before seedfall, see Methods) (Fig. 1), seed production increased under spring drought (Fig. 1). The121

effect of spring drought was stronger when the ΔT cue was weaker (Spring CWB and ΔT interaction, Table 1, Fig.122

1). Seed production was insensitive to summer drought conditions irrespective of the ΔT cue (Fig. 1). The positive123

effect of ΔT on seed production was 27 times stronger than the effect of spring drought (climatic water balance,124

CWB) (ΔT: 𝛽 ± SE = 4.00 ± 0.50; CWB spring, for average ΔT: -0.15 ± 0.02), underscoring that reproductive125

output in beech is primarily governed by sensitivity to its masting cue. Residual analyses showed no systematic126

patterns with summer drought intensity, indicating that no additional effects were overlooked at the extremes (Fig.127

1f).128

A complementary analysis of extreme drought years in 2003, 2018, and 2022 corroborated these findings (Fig.129

2). These three droughts are the most severe European events of recent decades, and possibly of the last two130

millennia (Gharun et al., 2024; Büntgen et al., 2021; Buras et al., 2018; Schuldt et al., 2020). Across our network131

of sites, sites experiencing the most severe drought conditions in these years did not have lower than expected seed132

production, based on the ΔT weather cue. Indeed, in 2018 and 2022, seed production was lower than expected in133

the wettest sites, rather than the driest (negative residuals at wet sites, Fig. 2). In other words, sites that experienced134

the most severe conditions in these exceptional European summer droughts did not have lower-than-predicted seed135
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Table 1: Results of the Generalised Linear Mixed model testing for the effects of seasonal drought on
European beech reproduction. Drought in spring had a positive effect, while drought in summer had no effect.
The model included seed production (scaled between 0 and 1 at the site level) as a response, while masting cue
(ΔT, i.e., the difference between summer temperatures two and one year before flowering), spring (April-May) and
summer (June-September) climatic water balance (CWB, negative values indicate water deficit), and previous year
seed production (seeds T-1), were fixed effects. The model included siteID as a random intercept and was fitted
with a Tweedie error distribution and logit link function. Predictor variables were fitted as cubic splines to allow
for non-linear relationships.

Term Estimate SE z p

Intercept -1.71 0.26 -6.62 <0.001
ΔT 4.00 0.50 7.94 <0.001

Spring CWB -2.63 0.63 -4.16 <0.001
Summer CWB 0.08 0.15 0.53 0.599

Seeds T-1 -4.25 0.16 -26.52 <0.001
Spring CWB * ΔT 3.00 1.29 2.33 0.019

production, relative to sites in Europe that did not experience drought in those years.136

Our network included sites within the Swiss Intercantonal Forest Observation network, where predicted seed137

production was also unaffected by the 2018 drought event. The 2018 drought triggered dramatic declines in wider138

beech vitality in Switzerland, with step-changes in crown defoliation, radial growth, and mortality (Braun et al.,139

2025). For example, the annual mortality rate of beech increased four-fold in the period 2019-2024, relative to the140

1984-2018 baseline, with similar magnitude increases in crown defoliation and leaf discolouration (Braun et al.,141

2025). Despite these dramatic effects, beech reproduction was resilient to the 2018 drought, and large seed crops142

were subsequently recorded in 2020 and 2023.143

Discussion144

Our findings demonstrate that once European beech trees are committed to reproduction, following favourable145

masting cues, drought does not impair the quantity of seeds produced, even under extreme conditions. Across146

221 time series, we found no evidence that drought during fruit maturation reduced seed output. Instead, seed147

production was maintained or slightly increased, including in years of severe summer drought such as 2003, 2018148

and 2022. These patterns indicate that, once floral initiation has occurred, beech reproduction continues even at149

drought intensities that simultaneously suppress growth, trigger crown dieback, and elevate mortality (Buras et al.,150

2020; Brun et al., 2020; Schuldt et al., 2020; Braun et al., 2025), including at our study sites.151

Our results suggest that drought has neutral or even positive effects on seed production in European beech.152

The positive association between dry spring conditions and seed production is likely explained by enhanced pollen153

dispersal and improved pollination efficiency under low humidity, as previously observed in oak populations,154

where airborne pollen concentrations increased during dry conditions (Schermer et al., 2020; Fleurot et al., 2024).155

This effect is strongest when the weather cues of masting are weaker. We interpret this effect as representing156

greater benefits of weather-enhanced pollen dispersal in years when conspecific flowering effort is lower, and157
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Figure 1: European beech reproduction is resilient to seasonal drought. Estimated effects of A) masting
cue (ΔT, i.e., difference between summer temperatures two and one year before flowering, see Methods), B) spring
(April-May) climatic water balance (CWB, negative values indicate water deficit), and C) summer (July-September)
CWB on population-level seed production in European beech. The dashed line at B) highlights a non-significant
effect. Points on A-C show partial residuals of a model including the ΔT masting cue, spring CWB, summer
CWB and prior year seed production (see Methods). D) and E) Surface plots show estimated population-level seed
production effort across combinations of masting cue and CWB, with the convex hulls (parameter space across
which predictions are computed) defined by observations (black circles). Points show population-level annual seed
production. Surface plots at D) and E) are shown to highlight the combined effects of masting cue and drought, but
the interaction between the two was only significant for spring drought (panel D). F) The model residuals plotted
against summer CWB highlight the lack of overlooked effects at extremes. Estimates are derived from a GLMM
that included site as a random intercept (N sites = 221, N observations = 5362).

pollen limitation is otherwise greater. In beech, airborne pollen abundance has been shown to correlate with seed158

production (Bogdziewicz et al., 2017; Nussbaumer et al., 2020), supporting the interpretation that dry springs may159

facilitate higher reproductive success via improved pollen transfer.160

We also found no effect of summer drought on seed production. This result suggests that, once reproduction161

is initiated by weather cues, trees continue to allocate resources to seeds even under water stress. Understanding162

how carbon is partitioned among sinks, especially during stress, is an active area of investigation (Dietze et al.,163

2014; Hartmann & Trumbore, 2016; McDowell et al., 2022). However, several lines of evidence suggest how164

beech could maintain carbon supply to developing fruits, even under severe drought. Drought limits photosynthesis165

via stomatal closure, which serves to avoid hydraulic failure, but does not necessarily translate immediately into166

carbon limitation (McDowell et al., 2008; Leuschner, 2020; Chuste et al., 2020). A delayed onset of carbon167
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Figure 2: Resilience of seed production to the severe droughts in 2003, 2018, and 2022. Points on top panels
show the location of sites available in MASTREE+ and Swiss Intercantonal Forest Observation databases (N = 151
for 2003, N = 143 for 2018, and N = 127 for 2022). Bottom panels show the relationships between the residuals
from a GLMM predicting seed production as a function of masting cues and spring drought, but keeping the effect
of summer drought fixed at its median value (see Methods, Table 1), versus summer climatic water balance of each
site in a given year (CWB). Negative residuals show reproduction was lower than predicted based on cues and
spring drought conditions.
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limitation may especially be the case in anisohydric species such as beech, as stomata tend to remain open for168

longer under drought, increasing hydraulic risk, but allowing continued gas exchange under stress (McDowell et al.,169

2008; Leuschner, 2020). Furthermore, trees possess substantial non-structural carbon reserves (Hoch et al., 2003;170

Hartmann et al., 2020; Trugman & Anderegg, 2025), and there is little evidence that single-year droughts cause171

acute carbon limitation (McDowell et al., 2008; Hartmann & Trumbore, 2016; Leuschner, 2020; Chuste et al.,172

2020; Peltier et al., 2023). Growth reduction under short-term drought is thought to result from low water potential173

and turgor-driven inhibition of cell expansion, alongside hormonal signalling that suppresses cambial activity—not174

from a lack of available carbon (Buras et al., 2018; Cabon et al., 2020; Chuste et al., 2020). In fact, increased175

concentration of secondary metabolites (defences) may follow drought, likely due to decreased growth sink activity176

(Hartmann & Trumbore, 2016). Under such conditions, trees may draw on stored reserves to sustain seed maturation177

(Wiley et al., 2017), especially if doing so offers a selective advantage. Continued investment in seeds may thus178

reflect both the low immediate cost of reproduction under short-term drought and the potential long-term benefit179

of successful recruitment in drought-disturbed environments (Ascoli et al., 2015; Vacchiano et al., 2021).180

Similar responses have been documented in other species. In Quercus ilex, Pinus ponderosa, and Picea181

abies, drought has been shown to intensify trade-offs between growth and reproduction, with reproductive effort182

maintained despite reductions in growth (Dohrenbusch et al., 2002; Bogdziewicz et al., 2020a; Gonzalez et al.,183

2023), but see Le Roncé et al. (2021). While negative effects of drought on seed production have been reported in184

several systems (Clark et al., 2011; Rowland et al., 2018), including Pinus sylvestris (Vilà-Cabrera et al., 2014),185

and Mediterranean oaks (Pérez-Ramos et al., 2010; Gavinet et al., 2019), positive or neutral responses have also186

emerged. For example, Wright et al. (2021) found that seed production in fir and pine species in the Sierra Nevada187

was not negatively affected by drought (Pinus), and in some cases even increased (Abies). Reduced rainfall was188

linked to enhanced reproductive output in Sorbus aucuparia (Żywiec et al., 2012; Zamorano et al., 2018), and189

seed production in tropical communities also showed resilience to drought (O’Brien et al., 2018). These findings190

point to a broader pattern where reproduction may be buffered against short-term drought stress. Future studies191

combining drought manipulations with carbon budget tracking and reproductive monitoring are needed to clarify192

the mechanisms (Gavinet et al., 2019; Le Roncé et al., 2021). This will include understanding how the resilience193

of seed production to drought varies among species, and how this fits within broader physiological and ecological194

drought strategies (McDowell et al., 2022). Whether reproductive investment remains stable under multi-year195

droughts also remains unclear, including the potential for chronic drought or more frequent or recurrent climatic196

extremes to gradually erode internal carbon reserves (Chuste et al., 2020; Peltier et al., 2023).197

Although drought does not disrupt seed production once reproductive commitment has occurred, this resilience198

does not imply that beech reproduction is broadly resistant to climate change. Other pathways threaten reproduction,199

particularly the increasing frequency of masting cues under warming (Bogdziewicz et al., 2021). Warmer summers200

induce flowering more often, but frequent reproduction can outpace resource accumulation (Kelly et al., 2025;201

Hacket-Pain et al., 2025), reducing reproductive efficiency and growth (Bogdziewicz et al., 2020b; Hacket-Pain202
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et al., 2025). In the UK, the resulting breakdown of masting has lowered flowering synchrony, pollination success,203

and increased seed predation, cutting viable seed output by over 50% despite mean reproductive effort slightly204

increasing (Bogdziewicz et al., 2023). Similar declines in variability are emerging elsewhere across the range205

(Foest et al., 2024). Thus, the absence of further drought effects is encouraging, but does not indicate resilience of206

seed production to climate change overall.207

Moreover, reproductive resilience at the seed production stage does not guarantee successful regeneration208

(Rodman et al., 2020; Davis et al., 2023). Recruitment processes, including seed viability, seedling establishment209

and survival, are sensitive to moisture availability and are likely to be strongly affected by climate extremes (Andrus210

et al., 2018; Conlisk et al., 2018; Davis et al., 2019; Pawłowski et al., 2024). Extreme droughts can eliminate211

seedling banks, sharply reducing future recruitment potential (Schuldt et al., 2020). Evidence from other forest212

systems shows that seed availability alone is insufficient to ensure regeneration: when soil moisture falls below213

critical thresholds, recruitment may fail even if seeds are available (Davis et al., 2019). These effects are species-214

specific. Experimental heating crossed with watering in North American forests demonstrated strong contrasts:215

seedling survival of Picea engelmanii declined drastically under warming, whereas Pinus flexilis showed little216

response, resulting in simulated rapid range contraction of the former but not the latter (Kueppers et al., 2017;217

Conlisk et al., 2017). Water additions ameliorated these effects, highlighting the pivotal role of drought. How218

these dynamics operate in beech and European forests more broadly remains poorly understood, and further work219

is needed to assess the sensitivity of recruitment to drought (Leuschner, 2020) and the interaction between seed220

supply and post-dispersal climatic conditions.221

Our analysis isolates the response of seed production to summer drought during the seed maturation phase and222

demonstrates that once flowering has been triggered, European beech maintains reproductive output even under223

extreme water deficits. While our data prevents analysis of spatial variation in fecundity, differences across moisture224

regimes may exist and could reflect local adaptation of reproductive strategies to prevailing hydrological conditions225

(Felton et al., 2022; Stemkovski et al., 2025). Identifying such patterns could help clarify whether reproductive226

resilience is uniform across the species’ range or shaped by long-term environmental constraints, with implications227

for predicting demographic responses under future climates (Perret et al., 2024; Stemkovski et al., 2025). Likewise,228

while our study focuses on short-term drought events, understanding how beech reproduction responds to chronic229

or multi-year water stress remains an important next step. Evidence from other systems indicates that prolonged230

drought can depress reproductive output over time (Wion et al., 2025). With climate projections indicating231

increasing frequency and severity of dry periods, assessing reproductive responses to long-term stress should232

be a research priority (Serra-Maluquer et al., 2025). Notably, our dataset includes well-characterised episodes of233

extreme drought, including the record European droughts of 2003, 2018, 2022, with summer climatic water balances234

deficits below –200 mm and abundant evidence of strong effects on tree physiology and forest functioning (Fig. 2)235

(Buras et al., 2020; Braun et al., 2025; Gharun et al., 2024; Schuldt et al., 2020), ensuring that our results reflect236

tree responses under genuine drought conditions. In sum, our findings show that European beech reproduction is237
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resilient to even severe summer drought once reproductive development is initiated, highlighting a potential buffer238

in the reproductive cycle against short-term climate extremes. However, this resilience of reproduction potentially239

comes at the cost of increased drought-related mortality, if sustained reproduction speeds up carbon depletion240

(Martínez-Vilalta et al., 2016; Hacket-Pain et al., 2025). Further work is needed to assess responses under chronic241

drought, variation across moisture regimes, and the demographic consequences of sustained reproduction under242

stress.243

Methods244

Data245

Seed production Annual observations of European beech seed production were obtained from MASTREE+,246

an open-access database of annual records of population-level reproductive effort (Hacket-Pain et al., 2022; Foest247

et al., 2024). We selected European beech because its masting cues are well studied and consistently linked to248

the summer solstice (Journé et al., 2024), providing a clear temporal reference point that facilitates alignment249

of reproductive cues with climatic drivers across populations throughout the species’ range. Only continuous250

time series longer than 5 years and beginning in 1952 or later were included, ensuring both sufficient length and251

overlap with climatic records. Pollen-based, ordinal, and regional-scale records were excluded. For several sites252

with ongoing monitoring, we supplemented MASTREE+ records with additional observations, extending coverage253

beyond 2019. Additionally, we added 105 sites from the Swiss Intercantonal Forest Observation network, where254

annual fruit production is estimated using fruit counts and fruit scars (Braun et al., 2025). Thus, in total, our dataset255

included 221 series, with an average length of 24 years and a total of 5362 observations (Fig. 3).256

Climate We extracted daily climate data for each study site from the corresponding 0.1° grid cell of the E-257

OBS dataset (Cornes et al., 2018). From these records, we derived daily temperature and precipitation. Climatic258

water balance (CWB) was calculated as monthly precipitation sum minus potential evapotranspiration, summed259

for April–May (spring) and June–September (summer). Potential evapotranspiration was estimated using the260

Thornthwaite method. Vapour pressure deficit (VPD) was calculated from daily mean temperature and relative261

humidity following Duursma (2015), and aggregated to monthly means for the same seasonal windows.262

Analysis To test the effects of drought on annual seed production, we fitted a generalised linear mixed model263

(GLMM) with a Tweedie distribution and logit link, including site ID as a random intercept. The Tweedie264

distribution was chosen because it accommodates zero-inflation and overdispersion, both of which are common265

features of seed production data. The response variable was annual, site-level observations of population seed266

production. To account for differences in monitoring methods among sites in MASTREE+, seed production values267
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Figure 3: Map of study sites. Locations of the 221 time series of annual seed production of European beech
(Fagus sylvatica) used in this study (N = 5362, average N per site = 24, see the inset plot for how sample size was
distributed across sites). Size of points is scaled to the number of observations at the focal site. The shaded area
highlights the species range, based on EUFORGEN (Caudullo et al., 2017).

were standardised within each site to range between 0 and 1 (Journé et al., 2024, 2025).268

Fixed effects included spring climatic water balance (CWB; April–May), summer CWB (June–September), and269

the difference in mean maximum summer temperatures between the year one and two years prior to seedfall (ΔT).270

The latter captures the established cueing system of European beech reproduction: low June–July temperatures271

two years before seedfall (T2) followed by high temperatures one year before seedfall (T1) (Kelly et al., 2025).272

Because these cues are anchored to the summer solstice and are consistent across the species’ range (Journé et al.,273

2024), ΔT provides a parsimonious representation of masting drivers, combining T1 and T2 into a single parameter274

(Szymkowiak et al., 2024). We included previous-year seed production to account for legacy effects associated275

with resource depletion (Crone et al., 2009). We tested for interactions between ΔT and spring and summer CWB,276

and removed non-significant interactions final model. All predictors were included as natural cubic splines to allow277

non-linear effects.278

To ensure comparability across sites and to separate within-site temporal variation from among-site spatial279

differences, all predictors were standardised by subtracting their site-level mean and dividing by the site-level280

standard deviation (z-transformation) (Buras et al., 2018). Working with anomalies provides the advantage of281

accounting for local adaptation and acclimation, as site-specific means capture baseline climatic conditions while282

highlighting deviations relevant to physiological responses. However, using standardised anomalies of CWB283

risk misclassifying observations from sites that normally experience high water surplus as drought-affected, if284

anomalies fall below conventional thresholds even while absolute CWB remains positive (Buras et al., 2020).285

Thus, we additionally tested an alternative approach, in which CWB was entered as observed, and supplemented286

11



with site-level mean CWB to avoid mixing within- and among-site level variation (van de Pol & Wright, 2009).287

Results were consistent, so we report only the z-transformed models. Models using vapour pressure deficit (VPD)288

instead of CWB produced qualitatively similar outcomes; we therefore present results based on CWB. Residual289

spatial autocorrelation was checked and was absent.290

In a complementary analysis, we examined the effects of extreme summer droughts (2003, 2018, and 2022) by291

comparing observed seed production to model predictions holding summer drought at each site’s median conditions.292

We examined how model residuals varied with local summer CWB to test if seed production was overestimated in293

sites experiencing drought in these years, in comparisons to sites that did not experience drought.294

We conducted our analysis in R version 4.2.3 (R Core Team, 2024), using glmmTMB package to fit the model295

(Brooks et al., 2017), SPEI package to calculate climatic water balance (Beguería & Vicente-Serrano, 2023), and296

plantecophys package to calculate vapour pressure deficit (Duursma, 2015).297
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