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Abstract

Climate change is intensifying drought stress in temperate forests, but its effects on tree reproduction, central to
forest regeneration and migration capability, remain poorly understood. In mast-seeding species such as European
beech (Fagus sylvatica), reproduction is regulated by temperature cues rather than current-year resource availability,
raising questions about drought sensitivity once reproduction is triggered. Here, we analyse 221 time series of beech
seed production across Europe to test whether drought, after reproduction has been initiated, reduces seed output.
We isolate drought exposure during pollination and seed maturation phases, including severe events in 2003, 2018,
and 2022. Seed production was not impaired by summer drought, and dry spring conditions were associated with
increased output, likely via enhanced pollen dispersal. Thus, once triggered, beech reproduction is not reduced by
drought. Considered alongside prior evidence that drought suppresses growth and elevates mortality, these findings
indicate that vital rates can respond in opposite directions to the same stressor—reproduction is buffered while
growth and survival decline. Such contrasts may sustain short-term regeneration during heat—drought events yet

shift demographic balance toward higher mortality and turnover as climatic extremes intensify.

Introduction

Global change is altering average climatic conditions and their variability, leading to more frequent and intense
extremes such as heatwaves and severe droughts (IPCC, 2023). Observations across continents reveal consistent
trends with increasing rates of forest disturbance, elevated tree mortality, and changing growth dynamics in adult
trees and seedlings (Johnstone et al., 2016; McDowell et al., 2020; Hartmann et al., 2022; Klesse et al., 2024;
Mantgem et al., 2009). In Europe, recent summer droughts have reached intensities without precedent in the past two
millennia (Buras et al., 2020; Biintgen et al., 2021), exerting mounting pressure on forest demography (Senf et al.,
2018; McDowell et al., 2020). For instance, tree canopy mortality trends have accelerated in response to prolonged
drying (Senf et al., 2020). The 2018-2020 European drought sharply illustrates the magnitude of current climatic
pressures: stem growth declined by approximately 40% in German forests (Thom ef al., 2023; Sachsenmaier ef al.,
2024), and widespread dieback and mortality occurred among adult trees and saplings (Schuldt et al., 2020; Beloiu
et al., 2022; Knutzen et al., 2025). Yet while there are published data on the demographic consequences of drought
through growth and mortality, much less is known about how drought influences reproduction, despite its key
importance for long-term forest dynamics (Johnstone ez al., 2016; Seidl & Turner, 2022).

The resilience of forests to disturbance, including the potential reorganisation to non-forest, depends on the
magnitude and consistency of tree reproduction and subsequent regeneration (Johnstone et al., 2016; Brodribb et al.,
2020; Seidl & Turner, 2022; Davis et al., 2023). In forests, tree reproduction is realised through seed production,
a multi-stage process from floral initiation through pollination to seed maturation, which ultimately determines
the potential for regeneration (Clark et al., 2021; Hanbury-Brown ef al., 2022; Bogdziewicz et al., 2025). Despite

its central role, our understanding of how climate extremes, particularly drought, affect reproduction remains
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fragmentary (McDowell et al., 2020; Seidl & Turner, 2022). In contrast to mortality, where extensive evidence and
mechanistic theory link drought to hydraulic failure, carbon starvation, and biotic attack (Hartmann & Trumbore,
2016; McDowell et al., 2022; Netherer et al., 2024; Leuschner, 2020), reports of reproductive responses are
sparse (Dohrenbusch ef al., 2002; Pérez-Ramos et al., 2010; Zamorano et al., 2018; Wright et al., 2021; Zhang
& Brodribb, 2017). Currently, we lack not only a physiological framework for interpretation, but also the basic
knowledge of whether drought effects on reproduction are typically positive, negative, or neutral. This uncertainty
is consequential: the direction and magnitude of reproductive responses will determine the regeneration potential
of forests under drought (Martinez-Vilalta & Lloret, 2016), the capability of trees to track moving climate envelopes
(Svenning & Skov, 2007; Nathan et al., 2011), and, through the costs of reproduction, changes in the mortality risk
to adult trees (Lauder et al., 2019).

Drought is expected to influence tree seed production through multiple pathways. Drought can directly
constrain photosynthesis and water uptake (McDowell et al., 2008; Sevanto et al., 2014), reducing the resources
available for reproductive investment. Such resource limitation has been linked to declines in seed production in
Scots pine (Vila-Cabrera et al., 2014), and is well-documented in herbaceous systems (Sage et al., 2024). However,
the consequences for seed output depend not only on resource availability, but also on how trees allocate those
resources under stress. Reproduction can be prioritised or deprioritised under drought, relative to growth and
other functions, including defence (Hacket-Pain et al., 2017; Lauder et al., 2019; Gonzalez et al., 2023). For
example, Lauder et al. (2019) suggested that trees may respond to drought by either allocating resources toward
survival-related functions such as growth and defence, or by maintaining investment in reproduction at the potential
cost of reduced survival. In support of the latter, in Pinus ponderosa, Picea abies, and Quercus ilex, drought
strengthens the trade-off between investment in reproduction and growth/defence (Bogdziewicz et al., 2020a; Hesse
et al., 2021; Gonzalez et al., 2023). Beyond resource effects, drought can directly disrupt reproductive processes,
such as reducing pollen viability or fertilisation rates (Tushabe & Rosbakh, 2025). However, not all effects are
negative: warm and dry spring conditions may improve pollen dispersal and enhance pollination efficiency (Fleurot
et al., 2024), potentially increasing seed set under some circumstances. To improve our understanding of potential
drought effects on reproduction, long-term data covering multiple drought events, as well as extensive non-drought
periods, are required.

Here, we analyse 221 time series (5362 population-level, annual observations) of European beech reproduction
to test whether drought disrupts seed production in this widespread and socio-economically important species.
Reproduction in beech varies strongly among years (masting), largely the result of temperature cues which regulate
annual flowering effort (Vacchiano et al., 2017; Journé et al., 2024). Thus, we ask whether drought reduces
seed output in years when trees are already committed to reproduce. By explicitly modeling the temperature
cues that govern annual flowering effort, we separate cue-driven commitment from drought acting as a climatic
veto during subsequent reproductive processes. We partitioned drought exposure into two phenological phases:

flowering and pollination (April-May) and fruit maturation (June—September). We hypothesised that spring drought
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could enhance seed production by promoting pollen dispersal under dry conditions in this wind-pollinated species
(Schermer et al., 2020; Fleurot et al., 2024). In contrast, summer drought was expected to reduce seed production
if trees allocate limited resources to competing sinks such as stem or root growth or storage under stress (Lauder
et al., 2019; Chuste et al., 2020). Alternatively, reproductive output could be maintained despite summer drought
if finalising seed maturation under stress is selectively advantageous (Wiley et al., 2017). Two mechanisms could
support such selective benefits. First, a form of reproductive persistence, akin to a “flight” strategy, where trees
maintain reproduction at the expense of growth and survival-related functions (Lauder et al., 2019). Second,
reproduction may be favoured under stress as an adaptive response to environmental signals (Piovesan & Adams,
2005; Ascoli et al., 2020): drought-induced canopy opening or increased fire likelihood may signal favourable
conditions for seedling establishment (Ascoli et al., 2013; Maringer et al., 2020), thus favouring investment in
current seed maturation. In addition to a gradient-based evaluation of seed production response to drought, we also
test whether recent exceptional summer drought events in Europe (in 2003, 2018, and 2022) (Gharun et al., 2024)
were associated with declines in seed production, including in sites known to have been strongly impacted by these

events.

Results

European beech reproduction proved resilient to seasonal drought during reproduction, with no evidence that spring
or summer water deficits suppressed seed production (Fig. 1, Table 1). Once trees were committed to flowering,
as indicated by strong responses to the flowering cue (AT, i.e., the difference between June-July temperatures one
and two years before seedfall, see Methods) (Fig. 1), seed production increased under spring drought (Fig. 1). The
effect of spring drought was stronger when the AT cue was weaker (Spring CWB and AT interaction, Table 1, Fig.
1). Seed production was insensitive to summer drought conditions irrespective of the AT cue (Fig. 1). The positive
effect of AT on seed production was 27 times stronger than the effect of spring drought (climatic water balance,
CWB) (AT: B + SE = 4.00 £ 0.50; CWB spring, for average AT: -0.15 £ 0.02), underscoring that reproductive
output in beech is primarily governed by sensitivity to its masting cue. Residual analyses showed no systematic
patterns with summer drought intensity, indicating that no additional effects were overlooked at the extremes (Fig.
1f).

A complementary analysis of extreme drought years in 2003, 2018, and 2022 corroborated these findings (Fig.
2). These three droughts are the most severe European events of recent decades, and possibly of the last two
millennia (Gharun et al., 2024; Biintgen et al., 2021; Buras et al., 2018; Schuldt et al., 2020). Across our network
of sites, sites experiencing the most severe drought conditions in these years did not have lower than expected seed
production, based on the AT weather cue. Indeed, in 2018 and 2022, seed production was lower than expected in
the wettest sites, rather than the driest (negative residuals at wet sites, Fig. 2). In other words, sites that experienced

the most severe conditions in these exceptional European summer droughts did not have lower-than-predicted seed
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Table 1: Results of the Generalised Linear Mixed model testing for the effects of seasonal drought on
European beech reproduction. Drought in spring had a positive effect, while drought in summer had no effect.
The model included seed production (scaled between 0 and 1 at the site level) as a response, while masting cue
(AT, i.e., the difference between summer temperatures two and one year before flowering), spring (April-May) and
summer (June-September) climatic water balance (CWB, negative values indicate water deficit), and previous year
seed production (seeds T-1), were fixed effects. The model included siteID as a random intercept and was fitted
with a Tweedie error distribution and logit link function. Predictor variables were fitted as cubic splines to allow
for non-linear relationships.

Term Estimate  SE z p
Intercept -1.71 026 -6.62 <0.001
AT 4.00 050 794  <0.001
Spring CWB -2.63 0.63 -4.16 <0.001
Summer CWB 0.08 0.15 053 0.599
Seeds T-1 -4.25 0.16 -26.52 <0.001

Spring CWB * AT 3.00 129 233 0.019

production, relative to sites in Europe that did not experience drought in those years.

Our network included sites within the Swiss Intercantonal Forest Observation network, where predicted seed
production was also unaffected by the 2018 drought event. The 2018 drought triggered dramatic declines in wider
beech vitality in Switzerland, with step-changes in crown defoliation, radial growth, and mortality (Braun et al.,
2025). For example, the annual mortality rate of beech increased four-fold in the period 2019-2024, relative to the
1984-2018 baseline, with similar magnitude increases in crown defoliation and leaf discolouration (Braun et al.,
2025). Despite these dramatic effects, beech reproduction was resilient to the 2018 drought, and large seed crops

were subsequently recorded in 2020 and 2023.

Discussion

Our findings demonstrate that once European beech trees are committed to reproduction, following favourable
masting cues, drought does not impair the quantity of seeds produced, even under extreme conditions. Across
221 time series, we found no evidence that drought during fruit maturation reduced seed output. Instead, seed
production was maintained or slightly increased, including in years of severe summer drought such as 2003, 2018
and 2022. These patterns indicate that, once floral initiation has occurred, beech reproduction continues even at
drought intensities that simultaneously suppress growth, trigger crown dieback, and elevate mortality (Buras ef al.,
2020; Brun et al., 2020; Schuldt et al., 2020; Braun et al., 2025), including at our study sites.

Our results suggest that drought has neutral or even positive effects on seed production in European beech.
The positive association between dry spring conditions and seed production is likely explained by enhanced pollen
dispersal and improved pollination efficiency under low humidity, as previously observed in oak populations,
where airborne pollen concentrations increased during dry conditions (Schermer et al., 2020; Fleurot et al., 2024).
This effect is strongest when the weather cues of masting are weaker. We interpret this effect as representing

greater benefits of weather-enhanced pollen dispersal in years when conspecific flowering effort is lower, and
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Figure 1: European beech reproduction is resilient to seasonal drought. Estimated effects of A) masting
cue (AT, i.e., difference between summer temperatures two and one year before flowering, see Methods), B) spring
(April-May) climatic water balance (CWB, negative values indicate water deficit), and C) summer (July-September)
CWB on population-level seed production in European beech. The dashed line at B) highlights a non-significant
effect. Points on A-C show partial residuals of a model including the AT masting cue, spring CWB, summer
CWRB and prior year seed production (see Methods). D) and E) Surface plots show estimated population-level seed
production effort across combinations of masting cue and CWB, with the convex hulls (parameter space across
which predictions are computed) defined by observations (black circles). Points show population-level annual seed
production. Surface plots at D) and E) are shown to highlight the combined effects of masting cue and drought, but
the interaction between the two was only significant for spring drought (panel D). F) The model residuals plotted
against summer CWB highlight the lack of overlooked effects at extremes. Estimates are derived from a GLMM
that included site as a random intercept (N sites = 221, N observations = 5362).

pollen limitation is otherwise greater. In beech, airborne pollen abundance has been shown to correlate with seed
production (Bogdziewicz et al., 2017; Nussbaumer et al., 2020), supporting the interpretation that dry springs may
facilitate higher reproductive success via improved pollen transfer.

We also found no effect of summer drought on seed production. This result suggests that, once reproduction
is initiated by weather cues, trees continue to allocate resources to seeds even under water stress. Understanding
how carbon is partitioned among sinks, especially during stress, is an active area of investigation (Dietze et al.,
2014; Hartmann & Trumbore, 2016; McDowell et al., 2022). However, several lines of evidence suggest how
beech could maintain carbon supply to developing fruits, even under severe drought. Drought limits photosynthesis
via stomatal closure, which serves to avoid hydraulic failure, but does not necessarily translate immediately into

carbon limitation (McDowell et al., 2008; Leuschner, 2020; Chuste et al., 2020). A delayed onset of carbon
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Figure 2: Resilience of seed production to the severe droughts in 2003, 2018, and 2022. Points on top panels
show the location of sites available in MASTREE+ and Swiss Intercantonal Forest Observation databases (N = 151
for 2003, N = 143 for 2018, and N = 127 for 2022). Bottom panels show the relationships between the residuals
from a GLMM predicting seed production as a function of masting cues and spring drought, but keeping the effect
of summer drought fixed at its median value (see Methods, Table 1), versus summer climatic water balance of each
site in a given year (CWB). Negative residuals show reproduction was lower than predicted based on cues and

spring drought conditions.
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limitation may especially be the case in anisohydric species such as beech, as stomata tend to remain open for
longer under drought, increasing hydraulic risk, but allowing continued gas exchange under stress (McDowell et al.,
2008; Leuschner, 2020). Furthermore, trees possess substantial non-structural carbon reserves (Hoch e al., 2003;
Hartmann et al., 2020; Trugman & Anderegg, 2025), and there is little evidence that single-year droughts cause
acute carbon limitation (McDowell et al., 2008; Hartmann & Trumbore, 2016; Leuschner, 2020; Chuste et al.,
2020; Peltier et al., 2023). Growth reduction under short-term drought is thought to result from low water potential
and turgor-driven inhibition of cell expansion, alongside hormonal signalling that suppresses cambial activity—not
from a lack of available carbon (Buras et al., 2018; Cabon et al., 2020; Chuste et al., 2020). In fact, increased
concentration of secondary metabolites (defences) may follow drought, likely due to decreased growth sink activity
(Hartmann & Trumbore, 2016). Under such conditions, trees may draw on stored reserves to sustain seed maturation
(Wiley et al., 2017), especially if doing so offers a selective advantage. Continued investment in seeds may thus
reflect both the low immediate cost of reproduction under short-term drought and the potential long-term benefit
of successful recruitment in drought-disturbed environments (Ascoli et al., 2015; Vacchiano et al., 2021).

Similar responses have been documented in other species. In Quercus ilex, Pinus ponderosa, and Picea
abies, drought has been shown to intensify trade-offs between growth and reproduction, with reproductive effort
maintained despite reductions in growth (Dohrenbusch et al., 2002; Bogdziewicz et al., 2020a; Gonzalez et al.,
2023), but see Le Roncé et al. (2021). While negative effects of drought on seed production have been reported in
several systems (Clark et al., 2011; Rowland er al., 2018), including Pinus sylvestris (Vila-Cabrera et al., 2014),
and Mediterranean oaks (Pérez-Ramos et al., 2010; Gavinet et al., 2019), positive or neutral responses have also
emerged. For example, Wright et al. (2021) found that seed production in fir and pine species in the Sierra Nevada
was not negatively affected by drought (Pinus), and in some cases even increased (Abies). Reduced rainfall was
linked to enhanced reproductive output in Sorbus aucuparia (Zywiec et al., 2012; Zamorano et al., 2018), and
seed production in tropical communities also showed resilience to drought (O’Brien ef al., 2018). These findings
point to a broader pattern where reproduction may be buffered against short-term drought stress. Future studies
combining drought manipulations with carbon budget tracking and reproductive monitoring are needed to clarify
the mechanisms (Gavinet et al., 2019; Le Roncé et al., 2021). This will include understanding how the resilience
of seed production to drought varies among species, and how this fits within broader physiological and ecological
drought strategies (McDowell et al., 2022). Whether reproductive investment remains stable under multi-year
droughts also remains unclear, including the potential for chronic drought or more frequent or recurrent climatic
extremes to gradually erode internal carbon reserves (Chuste et al., 2020; Peltier et al., 2023).

Although drought does not disrupt seed production once reproductive commitment has occurred, this resilience
does not imply that beech reproduction is broadly resistant to climate change. Other pathways threaten reproduction,
particularly the increasing frequency of masting cues under warming (Bogdziewicz et al., 2021). Warmer summers
induce flowering more often, but frequent reproduction can outpace resource accumulation (Kelly et al., 2025;

Hacket-Pain et al., 2025), reducing reproductive efficiency and growth (Bogdziewicz et al., 2020b; Hacket-Pain
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et al., 2025). In the UK, the resulting breakdown of masting has lowered flowering synchrony, pollination success,
and increased seed predation, cutting viable seed output by over 50% despite mean reproductive effort slightly
increasing (Bogdziewicz et al., 2023). Similar declines in variability are emerging elsewhere across the range
(Foest et al., 2024). Thus, the absence of further drought effects is encouraging, but does not indicate resilience of
seed production to climate change overall.

Moreover, reproductive resilience at the seed production stage does not guarantee successful regeneration
(Rodman et al., 2020; Davis et al., 2023). Recruitment processes, including seed viability, seedling establishment
and survival, are sensitive to moisture availability and are likely to be strongly affected by climate extremes (Andrus
et al., 2018; Conlisk et al., 2018; Davis et al., 2019; Pawlowski et al., 2024). Extreme droughts can eliminate
seedling banks, sharply reducing future recruitment potential (Schuldt ez al., 2020). Evidence from other forest
systems shows that seed availability alone is insufficient to ensure regeneration: when soil moisture falls below
critical thresholds, recruitment may fail even if seeds are available (Davis et al., 2019). These effects are species-
specific. Experimental heating crossed with watering in North American forests demonstrated strong contrasts:
seedling survival of Picea engelmanii declined drastically under warming, whereas Pinus flexilis showed little
response, resulting in simulated rapid range contraction of the former but not the latter (Kueppers et al., 2017;
Conlisk et al., 2017). Water additions ameliorated these effects, highlighting the pivotal role of drought. How
these dynamics operate in beech and European forests more broadly remains poorly understood, and further work
is needed to assess the sensitivity of recruitment to drought (Leuschner, 2020) and the interaction between seed
supply and post-dispersal climatic conditions.

Our analysis isolates the response of seed production to summer drought during the seed maturation phase and
demonstrates that once flowering has been triggered, European beech maintains reproductive output even under
extreme water deficits. While our data prevents analysis of spatial variation in fecundity, differences across moisture
regimes may exist and could reflect local adaptation of reproductive strategies to prevailing hydrological conditions
(Felton et al., 2022; Stemkovski et al., 2025). Identifying such patterns could help clarify whether reproductive
resilience is uniform across the species’ range or shaped by long-term environmental constraints, with implications
for predicting demographic responses under future climates (Perret et al., 2024; Stemkovski et al., 2025). Likewise,
while our study focuses on short-term drought events, understanding how beech reproduction responds to chronic
or multi-year water stress remains an important next step. Evidence from other systems indicates that prolonged
drought can depress reproductive output over time (Wion er al., 2025). With climate projections indicating
increasing frequency and severity of dry periods, assessing reproductive responses to long-term stress should
be a research priority (Serra-Maluquer et al., 2025). Notably, our dataset includes well-characterised episodes of
extreme drought, including the record European droughts of 2003, 2018, 2022, with summer climatic water balances
deficits below —200 mm and abundant evidence of strong effects on tree physiology and forest functioning (Fig. 2)
(Buras et al., 2020; Braun et al., 2025; Gharun et al., 2024; Schuldt et al., 2020), ensuring that our results reflect

tree responses under genuine drought conditions. In sum, our findings show that European beech reproduction is
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resilient to even severe summer drought once reproductive development is initiated, highlighting a potential buffer
in the reproductive cycle against short-term climate extremes. However, this resilience of reproduction potentially
comes at the cost of increased drought-related mortality, if sustained reproduction speeds up carbon depletion
(Martinez-Vilalta et al., 2016; Hacket-Pain et al., 2025). Further work is needed to assess responses under chronic
drought, variation across moisture regimes, and the demographic consequences of sustained reproduction under

stress.

Methods

Data

Seed production Annual observations of European beech seed production were obtained from MASTREE+,
an open-access database of annual records of population-level reproductive effort (Hacket-Pain ef al., 2022; Foest
et al., 2024). We selected European beech because its masting cues are well studied and consistently linked to
the summer solstice (Journé et al., 2024), providing a clear temporal reference point that facilitates alignment
of reproductive cues with climatic drivers across populations throughout the species’ range. Only continuous
time series longer than 5 years and beginning in 1952 or later were included, ensuring both sufficient length and
overlap with climatic records. Pollen-based, ordinal, and regional-scale records were excluded. For several sites
with ongoing monitoring, we supplemented MASTREE+ records with additional observations, extending coverage
beyond 2019. Additionally, we added 105 sites from the Swiss Intercantonal Forest Observation network, where
annual fruit production is estimated using fruit counts and fruit scars (Braun et al., 2025). Thus, in total, our dataset

included 221 series, with an average length of 24 years and a total of 5362 observations (Fig. 3).

Climate We extracted daily climate data for each study site from the corresponding 0.1° grid cell of the E-
OBS dataset (Cornes et al., 2018). From these records, we derived daily temperature and precipitation. Climatic
water balance (CWB) was calculated as monthly precipitation sum minus potential evapotranspiration, summed
for April-May (spring) and June—September (summer). Potential evapotranspiration was estimated using the
Thornthwaite method. Vapour pressure deficit (VPD) was calculated from daily mean temperature and relative

humidity following Duursma (2015), and aggregated to monthly means for the same seasonal windows.

Analysis To test the effects of drought on annual seed production, we fitted a generalised linear mixed model
(GLMM) with a Tweedie distribution and logit link, including site ID as a random intercept. The Tweedie
distribution was chosen because it accommodates zero-inflation and overdispersion, both of which are common
features of seed production data. The response variable was annual, site-level observations of population seed

production. To account for differences in monitoring methods among sites in MASTREE+, seed production values
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Figure 3: Map of study sites. Locations of the 221 time series of annual seed production of European beech
(Fagus sylvatica) used in this study (N = 5362, average N per site = 24, see the inset plot for how sample size was
distributed across sites). Size of points is scaled to the number of observations at the focal site. The shaded area
highlights the species range, based on EUFORGEN (Caudullo et al., 2017).

were standardised within each site to range between 0 and 1 (Journé et al., 2024, 2025).

Fixed effects included spring climatic water balance (CWB; April-May), summer CWB (June—September), and
the difference in mean maximum summer temperatures between the year one and two years prior to seedfall (AT).
The latter captures the established cueing system of European beech reproduction: low June—July temperatures
two years before seedfall (T2) followed by high temperatures one year before seedfall (T1) (Kelly et al., 2025).
Because these cues are anchored to the summer solstice and are consistent across the species’ range (Journé et al.,
2024), AT provides a parsimonious representation of masting drivers, combining T1 and T2 into a single parameter
(Szymkowiak et al., 2024). We included previous-year seed production to account for legacy effects associated
with resource depletion (Crone et al., 2009). We tested for interactions between AT and spring and summer CWB,
and removed non-significant interactions final model. All predictors were included as natural cubic splines to allow
non-linear effects.

To ensure comparability across sites and to separate within-site temporal variation from among-site spatial
differences, all predictors were standardised by subtracting their site-level mean and dividing by the site-level
standard deviation (z-transformation) (Buras et al., 2018). Working with anomalies provides the advantage of
accounting for local adaptation and acclimation, as site-specific means capture baseline climatic conditions while
highlighting deviations relevant to physiological responses. However, using standardised anomalies of CWB
risk misclassifying observations from sites that normally experience high water surplus as drought-affected, if
anomalies fall below conventional thresholds even while absolute CWB remains positive (Buras et al., 2020).

Thus, we additionally tested an alternative approach, in which CWB was entered as observed, and supplemented
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with site-level mean CWB to avoid mixing within- and among-site level variation (van de Pol & Wright, 2009).
Results were consistent, so we report only the z-transformed models. Models using vapour pressure deficit (VPD)
instead of CWB produced qualitatively similar outcomes; we therefore present results based on CWB. Residual
spatial autocorrelation was checked and was absent.

In a complementary analysis, we examined the effects of extreme summer droughts (2003, 2018, and 2022) by
comparing observed seed production to model predictions holding summer drought at each site’s median conditions.
We examined how model residuals varied with local summer CWB to test if seed production was overestimated in
sites experiencing drought in these years, in comparisons to sites that did not experience drought.

We conducted our analysis in R version 4.2.3 (R Core Team, 2024), using glmmTMB package to fit the model
(Brooks et al., 2017), SPEI package to calculate climatic water balance (Begueria & Vicente-Serrano, 2023), and

plantecophys package to calculate vapour pressure deficit (Duursma, 2015).
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