The Thermodynamic Imperative: Evolution as Entropic Resistance through Mergers and Persistence

Innocent Ouko Aga Khan University, Nairobi

Contact Email: innoholmes@gmail.com

Keywords: thermodynamics, entropy, avoiding annihilation, persistence, organismal selection theory, evolution, complexity, resilience

Abstract: This paper presents a unified theory of persistence, presenting the argument that evolution should be reframed as an explanation of entropic resistance rather than reproductive fitness. Through theoretical exposition and case studies across the biological spectrum, I demonstrate that persistence emerges from the capacity to merge through complementarity, integrate functionally, and form higher-order, coherent structures whose goal is to avoid annihilation, where the argument shifts from survival of the fittest to the persistence of the coherent. The crucial shift is logically converting "persistence" into "avoiding annihilation", without which the theory may be difficult to model using the calculus of probability. The evidence presented suggests that mergers are not the exception but the rule. Complexity becomes the mechanism of resilience, and life itself a delay pattern in entropy's expansion. I propose a probabilistic model to quantify annihilation risk and introduce the concept of "entropic intelligence", which is the system's ability to manage its internal entropy to prolong persistence at the edge of chaos. Life tends to delay its annihilation in systems far from equilibrium through merger strategies. This reframe offers new predictions for the future of evolution, pointing to hybrid systems, decentralized intelligence, stabilization of species, and civilization-wide feedback structures. I close by proposing that life's meaning may lie not in overcoming entropy, but in how beautifully it resists.

Introduction

Life is an improbable phenomenon. Against a backdrop of ever-increasing entropy, life appears as an island of fleeting order. Although Theodosius G. Dobzhansky is cited to have stated that "nothing makes sense in biology makes sense except in the light of evolution" [1]. Life's thermodynamic anomalies also have to agree with biological evolution. Today, evolution is best

understood according to Darwinian principles as espoused by natural selection and deepened by genetics [2–4]. Simply stated, it describes the survival and replication of those best adapted to their environments.

But, while powerful, what if this explanation is not the full story?

This paper proposes an alternate framework. It states that evolution is more than the differential survival of genes. It supports the notion that the unfolding story of systems attempts to resist annihilation in an entropic cosmos. Organisms do not simply strive to reproduce; they strive to persist. The simplest way they achieve this is by seeking out mergers. Across different levels of complexity, mergers can exist as cooperative structures prolonging organismal existence against the constant threat of dissolution. An organism, therefore, is a physical system that tends to avoid annihilation.

At the core of this theory lies a thermodynamic imperative. The unquestionable second law of thermodynamics serves as a reminder that entropy must always increase [5,6]. Life, then, is not a violation of this law, but a local resistance to it. By importing free energy to organize matter into structured, reliable forms, living systems delay the inevitable march toward equilibrium. They form structures and complex networks because, other than their biologically advantageous features in the Darwinian sense, such unions offer a temporary reprieve from annihilation.

This shift leads to a new model of evolution, one that demphasizes the *inheritance of traits* and underscores the *probability of persistence*. Evolution takes on an angle of probability by exploiting persistent strategies of staying alive through intelligent mergers.

In this model:

- 1. Organisms are physical systems with a nonzero probability of annihilation.
- 2. Mergers (be they genetic, metabolic, cellular, organ systemic, symbiotic, social, or systemic) act to reduce this probability.

Persistence becomes the metric of success. Evolution transitions from the mere passing of genes to the continuation of coherent structures in any form.

Of note, this theory does not oppose Darwinian evolution[7]. Rather, it offers a deeper layer, a thermodynamic substrate upon which natural selection operates. Genes evolve[8]. Species evolve. But what *drives* the conditions for these evolutions may lie in the fundamental thermodynamic necessity to resist the drift toward chaos in physical islands of temporary existence.

Entropy and Life

The second law of thermodynamics is unflinching. It states that systems should trend toward maximum entropy [9,10]. Over time, ordered entities dissolve. This law governs the unfolding of our shared universe from blackholes to the tiniest organic compounds. Within this framework, persistence is not natural. Yet, life exists. It seems to defy this overall gradient.

A single cell organizes billions of molecules into a self-replicating unit. Trees harness photons out of sunlight and fix carbon into trunks of biomass. Even a virus, though technically non-living according to most biologists, assembles genetic material and a protein shell with surgical precision[11]. They are acts of structure and order in a chaotic universe. These are not acts of randomness.

This is also not a violation of thermodynamics. Rather, it is its consequence. The law is a general summated gradient. It does not forbid pockets of order. Biology asserts that life is localized in basic units represented by cells. Cells demand that any local decrease in entropy must come with a compensating increase elsewhere. Life is one such pocket, creating a temporary physical structure at the cost of accelerating entropy around it. In this pocket, life must persist and remain coherent. It, therefore, has to do work. In the process, life actively contributes to entropy production in indirect ways. As physicist Jeremy England proposes, life may emerge because it is an efficient means for its increase [12]. Evolution becomes a search for better means of entropy management.

Traditional biological evolution selects for traits that offer reproductive advantages in specific environments [13]. However, under a thermodynamic lens, the selection pressure is more fundamental. It favours systems that can sustain ordered states for longer and more robustly in an entropic cosmos. As organisms grow into more complex systems, they need to develop increasingly sophisticated strategies to resist annihilation. Organisms have to work to persist.

However, the more complex a system, the more potential pathways it has to fall apart. The goal of organisms, therefore, becomes not to *successfully reproduce* but to *delay annihilation*. Organisms do so by forming systems that reduce the probability of dissolution, a feat that is achievable by seeking stable mergers. Stable mergers persist. Unstable ones wither. This hypothesis, thus, is called organismal selection.

In organismal selection (OS), the organism selects the mergers and, if found to be viable, preserves them. Functionally, the definition of a merger is any cooperative force or bond whose contribution to the involved entities is preservative. If the merger is unstable, it can be broken, or if not, result in the dissolution of the system.

Annihilation and Persistence

Annihilation is the base case. It is what happens to systems that do nothing, whether a simple atom or a complex organism. Death, the living form or annihilation, is the precipitation of a physical system into a state of disorder.

Annihilation, however, is not abstract. It is probabilistic [14]. Living or otherwise, every system has a nonzero probability of annihilation at any given moment. It could be as stable as covalent bonds or as flimsy as Van der Waals forces, but within each physical system exists a risk of breaking down. This risk can be modelled using probability.

For living systems, this probability of annihilation is non-trivial. Ilya Prigogine was not the only one who showed that systems exist at the edge of chaos [15]. Other complexity scientists, led by Stuart Kauffman, have argued along the same lines[16–19]. The more complex the organism, the more intricate the web of dependencies between its parts. Every interaction is a potential point of failure. The larger the organism, the greater the potential for breakdown, as the potential for novel interactions and variables increases. A single protein may misfold. A genetic mutation may be lethal. A once-friendly environment may turn hostile. Yet, life has persisted despite its evolution into complex physical forms.

For life to exist for billions of years, persistence is unlikely to be an accident. Persistence can be viewed, in one way, as adaptation. These are the constant efforts to reduce the probability of annihilation. Adaptation, however, is not the only strategy. Persistence can take the following strategies:

- i. **Redundancy**: Multiple copies of important genes or proteins ensure that if one fails, others can take over. For instance, in the cardiac cycle [20].
- ii. **Regulation**: Tight control over processes within cells, and especially important during development. For instance, the cellular checkpoints in mitosis [21].
- iii. **Adaptation**: Organisms change and evolve in response to their environment, buffering against unpredictable shifts. For instance, the change in shape of the cacti leaves [22].
- iv. **Repair mechanisms**: From DNA repair enzymes to immune systems, organisms have developed ways to mend the damage that occurs over time. For instance, the S phase of replication [21,23].
- v. **Mergers**: this is the underlying principle of OS, where two or more organisms or physical entities have roles that serve the interests of the other, whether knowingly or unknowingly. Coherence is therefore a product of mergers. For instance, the gut bacteria (prokaryotes) in termites (eukaryotes) across domains [24] and the mycorrhizal relationship between plants and fungi (different kingdoms) [25,26].

Persistence can be expressed as a probabilistic delay of annihilation through these and other strategies. As an emergent feature, persistence is more than a single trait. It is a meta-strategy

with the capacity to integrate noise without losing identity. This framework shifts the focus from competition to continuation. Rather than asking, "Which replicator wins?" we ask, "Which structure delays its dissolution longest?" The follow-up question, "how?" creates a groundwork for dissecting the various strategies organisms use to postpone their inevitable annihilation.

The idea of persistence should "persist" beyond one scale for it to bear relevance across geological timescales. Survival of the collective is just as critical as that of the individual, echoing the importance of multilevel selection [27,28]. Mergers, thus, become a crucial concept. Organisms that sustain stable mergers persist. Those with unstable ones either split or collapse the system.

Consider the evolutionary leap from single-celled organisms to multicellular life [6,29,30]. Individual cells merged to form cooperative systems capable of greater resilience. The slime mold is a classical example. The emergent collective developed new ways to specialize, divide labor, and protect each other. Nicole King's extensive work on choanoflagellates and the emergence of multicellularity espouses the functional role of mergers [31–33]. The cell itself had already evolved sophisticated ways to combat entropy, but it was the merger of cells into a multicellular organism that allowed for an entirely new level of persistence. In a universe governed by entropy, the ability to persist is the ultimate measure of success. Reproduction is just one of the options.

The Principle of Mergers

One answer is clear: systems persist through mergers.

Biology is rife with examples. The eukaryotic cell is a merger. Mitochondria are ancient bacteria subsumed into a cooperative alliance [34]. Multicellular organisms are mergers of once-autonomous cells. Social insects merge into hive intelligences [35,36]. Human culture merges individuals to include humanity's evolving technologies and institutions. At the subcellular level, a functional gene needs another to complete the genome [30]. The genome further needs enzymes for replication and to minimize misreads [21,23]. The proteins need chaperones for proper folding [37,38]. The folded ones may need transport carriers. The nested levels of mergers inside the cell are just as dense as those outside it. Systems with stable mergers persist and thus develop a stable ground to evolve (Figure 1).

Stable mergers create systems that are more resilient than their parts. By integrating into higher-order units, systems gain redundancy, specialization, and causally emergent traits [39,40] of shock absorption. Mergers also allow for entropy redistribution, as decay in one part can be offset by function in another. Complex organisms form entropy-efficient systems through mergers, which are liable to a harsher test – the second law of thermodynamics.

A Probabilistic Model of Persistence

At its core, the model we propose is driven by probabilities. It captures the likelihood that a system will persist or collapse over time, under the increasing influence of entropy.

The key variables are:

Pa: Probability of Annihilation

The likelihood that a given system will break down into a disordered state. More complex systems with many interacting parts generally have a higher risk of failure. For example, a single-celled organism may have a lower P_a than a multicellular organism, but both face ongoing risk.

P_m: Probability of Merger

The chance that two or more systems will combine into a new and more complex system. Merger is a cooperative resistance mechanism against annihilation. Systems that fail to merge remain isolated and are more vulnerable to breakdown.

E_s: Entropy State of the System

Represents the amount of disorder present in the system at any moment. Higher entropy indicates a system closer to equilibrium (maximum disorder). While local entropy may decrease through mergers, total entropy production still increases, sensu Ilya Prigogine.

R: Resilience

The inverse of annihilation; a dynamic probability of persistence. High-resilience systems have low P_a and are more likely to survive over time. Resilience depends on several factors, such as a system's P_a, complexity, redundancy, and the capacity to merge with other systems.

Conceptual Dynamics

1. Annihilation and Entropy

The probability of annihilation is directly influenced by entropy. As entropy increases, so does the likelihood of disintegration. A system unable to regulate or organize itself is less resilient and more prone to failure.

Thus:

$$dP_a/dt \propto E_s$$

This indicates that the rate of increase in annihilation probability is proportional to the system's entropy. Systems that effectively manage entropy can slow this progression. These strategies include repairs such as DNA repairs during replication, regulation as seen during evolutionary development, and adaptation during the organism's lifetime. These strategies involve the hereditary components at the genetic level and the ontological features during development. It

therefore shows how, despite the disparate strategies in evolution with those in development, the overarching goal is persistence.

2. Mergers as a resistance mechanism.

At any scale, stable mergers reduce the risk of annihilation. By forming more complex, albeit coherent entities, systems gain additional resilience. Mergers occur when systems identify synergy or mutual benefit, often under environmental or structural pressures.

$$P_m = f(C, R)$$

Where:

C = compatibility between systems

R = resilience of the systems

The higher the compatibility and resilience, the greater the likelihood of a successful and stabilizing merger. (Figure 2)

3. Interplay of Annihilation, Persistence, and Complexity

A system's probability of persistence (P_p) is tied to both its annihilation resistance and its merger potential. Complexity aids persistence but also introduces higher entropy over time in that system's universe. The system's universe is anything external to the system. Thus:

$$P_p = 1 - P_a$$

Persistence is not only about the survival of the fittest since it does not limit itself to reproduction or replication. It covers the system's ability to evolve into more complex forms through merging or even restructuring. The blue streak cleaner wrasse (*Labroides dimidiatus*) changes sex from female to male in various shifting conditions as it grows[41]. While such complexity may locally reduce entropy, it simultaneously increases overall universal entropy, creating a dynamic tension between stability and disorder. (Figure 3)

Case Studies from Nature: Persistence Through Merger

The OS theory of persistence and mergers is not speculative. It's already written into the fabric of biology. Across multiple scales, nature has demonstrated that systems which resist annihilation most effectively are those that merge, evolving into more complex, interdependent forms. Below are key case studies where the thermodynamic imperative plays out.

1. DNA Complementarity

DNA replicates before the cell divides. The replication works through coherent enzymatic systems at critical checkpoints that work to reduce the errors of the process. The probability of mergers (P_m) between the cytosine and guanine, as well as that between adenosine and thymine, is high, resulting in the complex DNA parallel-antiparallel structure [42]. Replication, therefore, does not happen to duplicate traits, but to increase the chances of high complementarity for sustainable mergers at the genomic and other multiomic levels. In this sense, evolution is more than the need to replicate and spread traits encoded in genes. The presence of a relatively inert molecule, the DNA, serves the mutual persistence of the nucleic acid and the cell. It's a case of persistence through coherence.

2. Viruses: Minimalism Meets Mergers

A deeper look at the various mechanisms viruses resort to reveals that they persist by merging. Lacking their own metabolic machinery, viruses survive by integrating into the systems of their hosts [43]. Retroviruses insert their genetic code directly into host DNA[44]. Some of these viral sequences have remained in the genomes of animals for millions of years. In the human genome, the human endogenous retroviruses have become integrated into our genomic systems because of crucial mergers [45]. Gut microbes that are protective in the animal's intestinal lining are flushed with viruses hidden in the mucosal layers [46,47]. Animals are stable because of the deep, multilayered stability invisible to the naked eye.

In this sense, the virus is a strategic merger agent. It reduces its own annihilation risk by embedding itself into the architecture of a more complex system. The merger may appear parasitic, but over evolutionary time, some of these integrations become symbiotic. The syncytin gene, essential for placenta formation in mammals and the Mabuya lizards [48], was originally viral in origin. CRISPR/Cas systems were the original genetic immune systems that merged to form stable microbial communities [49,50].

Here, mergers result in transformation. What begins as a threat becomes a feature. It also reconciles Forterre's concept of a virus as a capsid-enclosed organism [51]. Annihilation is avoided not by brute force, but by becoming part of the host's resilience.

3. Endosymbiosis: The Birth of Eukaryotes

Roughly two billion years ago, a primitive eukaryotic cell engulfed a free-living bacterium. Instead of digesting it, the host formed a mutualistic alliance. The engulfed bacterium evolved into the mitochondrion. This event, known as endosymbiosis, represents a defining moment in the history of evolution through persistence [52–56].

This merger extensively increased the energy efficiency of the host cell [56]. With mitochondria processing energy internally, the host could grow larger, regulate more complex processes, and eventually form multicellular organisms. The merger opened new vistas for evolutionary

possibilities while avoiding annihilation, metaphorically hitting entropy's two birds with one bacterial stone.

Similarly, the merger between the eukaryote and cyanobacterium also increased the chances of harnessing UV light for the persistence of primitive algae and plants [57]. Chloroplasts are now recognized as integrated organelles of most plants. They are even found on solar-powered slugs [58]

Endosymbiosis could be serial, as Lynn Margulis advocated, but it could also be instantaneous [59,60]. It's difficult to tell how the merger would unfold, but this is well captured by the probability of the disparate entities merging (P_m). Thus, endosymbiosis is entropy management at its most elegant. Two vulnerable systems become a single resilient one. The complexity increased, but so did the system's ability to sustain itself in an entropic universe.

4. The Immune System

The immune system is a mosaic of defenses. But what often goes unappreciated is how diverse these components are in origin.

The immune system is built from mergers. Barrier systems, the simplest and first lines of defense[61], exist through the mergers of epithelial cells through tight junctions and desmosomes. These eventually merge with the basement membranes with the help of hemidesmosomes.

Lymphocytes arise from early developmental lineages with built-in mechanisms for mutation and diversity. B and T lymphocytes amplify each other's functionality, representing a coherent functional merger [62]. Disruption of lymphocytic coherence results in autoimmune diseases, rapidly degrading the system's resilience and persistence.

The microbiome plays a critical role in training the immune system [63,64]. It's an example of an external system merging with an internal one. Among aphids, the *Buchnera* confer the ability to tolerate higher temperatures at the expense of reproduction [65]. This only highlights the dominant goal of persistence, augmented by the crucial merger between the two different species.

Even therapeutic interventions, like vaccines, can be seen as engineered mergers: introducing fragments of pathogens into the body to pre-train the immune network. This sophisticated form of engineering was started by the microbes, which incorporated viral genomes, resulting in the CRISPR/Cas systems, which act as immune systems for microbes. These strategies for evolution through persistence could hardly be possible without mergers.

This layered architecture is not accidental. It's what enables survival in a constantly shifting entropic landscape. Resilience is hardly attained through rigid isolation.

5. Symbiosis Across Ecosystems: Coral Reefs and Mycorrhizal Networks

In coral reefs, corals live in close symbiosis with photosynthetic algae [66–68]. While the coral provides shelter, the algae produce nutrients. Disruption of this relationship results in the collapse of this coherent system. The bleaching effects of coral reefs all over the world are expedited by the careless dumping of waste into oceans and climate change, breaking these naturally occurring mergers [66].

Similarly, in forests, mycorrhizal fungi merge with plant roots to create vast underground networks. These networks facilitate nutrient exchange between trees, even allowing older trees to "support" younger ones. This is a distributed intelligence built from countless mergers across species lines forming the Wood Wide Web [69,70]. Plants that lost their chlorophyll, such as *Sarcodes sanguinea*, eventually persist because of the mycorrhizal mergers [71].

The system becomes an ecosystem. The ecosystem can then be viewed as a unit of persistence far greater than the sum of its parts.

6. Hybridization and interdomain mergers

Classically, evolution through natural selection should inhibit the existence of hybrid species and organisms. Experiments have shown that hybridization may help species adapt to changing conditions [72]. Additionally, hybridization can occur at different taxonomic levels. Although manufactured in the lab, the hybrid of the cabbage and radish happens at a generic level, getting a name that merges the genus of the two species into *Brassicoraphanus*[73].

Amazon mollies are an evolutionary conundrum as they have persisted for generations longer than predicted for a parthenogenetic species [74]. They consist of purely females, who depend on close relatives for reproduction, but not their genetic component [75,76]. This merger crosses different species to result in a persistent and self-reproducing complex fish that persists despite its potentially harmful reproductive strategy.

7. Culture and Civilization: Mergers of Minds and Systems

Human evolution is not only biological. Culture, too, evolves. Languages and technologies are good examples that evolve through mergers as an adaptive strategy. Civilizations that endure are often those that absorb and integrate foreign elements. Rome absorbed Greek culture. Modern science grew from the merger of ancient mathematics, Arabic scholarship, and Enlightenment empiricism.

These are thermodynamic strategies engineered for the need for cultures and societies to persist. Societies that resist annihilation are those that reconfigure themselves through mergers, expanding their systemic complexity while preserving enough coherence to function.

In the information age, we see this accelerating. The internet is a merger, creating a global organism coalescing in real time[77–79]. However, whether it enhances or threatens persistence remains to be seen. Evidence in support of persistence stems from bacteria, which have been surviving on metagenomic data via lateral gene transfers [80]. Modelled from the billions of years of bacterial survival, the internet may persist through these redundant systems.

These case studies demonstrate that across biology, culture, and ecosystems, mergers are not exceptions. They are the rule. Persistence is purchased through strategic entanglement. (Figure 4)

Implications – Evolution Reimagined as Entropic Resistance

If we accept that the universe tends toward disorder, then life itself must be seen as a continuous act of resistance. Evolution, henceforth, is not merely the story of trait selection or reproductive success.

This is the central reframe behind the theory of organismal selection:

Evolution is not about the survival of the fittest. It is the persistence of the coherent.

The idea behind persistence should be borne in mind through its logical equivalence, which is the avoidance of annihilation. Evolution is therefore about the ability and tendency of organisms to avoid annihilation. The most coherent ones and coherent systems avoid it the most.

1. From Fitness to Persistence

In Darwinian terms, fitness is defined by reproductive success[13]. It is an organism's ability to pass its genes to the next generation. But genes alone do not persist. Structures do. Systems do. Structures and systems allow genes to persist. Entities that form stable configurations, such as DNA and eusocial species[81], are those that remain intact long enough to influence the future.

Fitness, then, is a proxy for persistence. In an entropic universe, what matters most is the ability of a system to delay its own annihilation. Sometimes this aligns with high reproductive output. Sometimes it aligns with resilience during extremes of weather. Between warring species, those that cooperate defeat those that don't. Within species, competition will emerge as an offshoot for persistence at an individual level[27]. Adaptability becomes a weapon for persistence, but at the same time, the spandrels persist, if they don't interfere with organismal or system coherence [82]. The common thread is the reduction of vulnerability. This can either be a conscious or unconscious strategy to reduce the probability of collapse, captured as the probability of annihilation (P_a)

In this light, evolution becomes a probabilistic dance between two forces:

- i. Annihilation: the constant pressure of entropy acting on all systems (Pa).
- ii. Persistence: the active strategies employed to delay or resist dissolution (1-P_a).

Mergers are simply one of the most powerful strategies in this dance.

2. Complexity as a Survival Strategy

This readjusting of the paradigm also casts complexity in a new light. Traditional evolutionary theory sometimes treats complexity as a side effect, a lucky outcome of millions of years of selection. But in the entropic framework, complexity is the method by which systems stabilize themselves. Stability is emergent.

Complexity allows for:

- i. Redundancy if one part fails, others compensate.
- ii. Specialization divided tasks increase efficiency. Specialization only evolves because of mergers, where the role of one part serves the other. Once some form of stable coherence has formed, these parts can focus on becoming more specialized.
- iii. Buffering layers of regulation soften external shocks.

However, complexity comes at a cost: increased internal entropy. The more parts, the more potential failure points. That's why complexity must be organized. More can only be enough and different [83] if coherent organization exists. This coherence is what gives rise to resilience.

Mergers facilitate this by integrating diverse elements into higher-order systems that can handle entropy more effectively. Complexity is the design that channels entropy such that coherent systems forcefully resist and persist in local universal pockets.

The gene-centred view of evolution argues in favour of the smallest and most stable gene [84]. It has to be stable. It has to persist. But the system it relies on for its replication also has to be stable and persistent. Evolution is more than the survival of the fittest; it's about the persistence of the coherent.

3. Prediction: What Will Evolve Next?

This model offers a new lens for evolutionary prediction. If persistence is the goal, then the entities most likely to emerge and survive will be those that:

- i. Can merge effectively with others
- ii. Can distribute function across components
- iii. Can adaptively reconfigure in response to entropy shifts
- iv. Can develop strategies that persist across scales

This points toward the emergence of:

- i. Superorganisms, e.g. eusocial species, ant colonies, human societies
- ii. Artificial systems capable of adaptive reorganization e.g. decentralized AI, the internet
- iii. Hybrid entities e.g. biological-technological mergers, cyborg systems, humans putting on spectacles, and walking with stomas and continuous ambulatory peritoneal dialysis sets
- iv. Planet-scale feedback systems e.g. climate-informed ecological governance and the planetary paradigm

In each case, the defining feature is entropic intelligence.

4. Civilizations as Entropic Agents

Our own species sits at the cusp of this evolutionary logic. Human civilization is a product of countless mergers. From prehistory to historic times, we have built and continue to build entities and systems consisting of tribes, languages, myths, technologies and even ideologies. These are all strategies in a never-ending attempt to delay collapse.

However, this complexity also raises our entropy footprint. Our systems are vast but brittle. Supply chains snap. Economies buckle. Climate destabilizes. Entropy knocks louder with every expansion. Blackholes, the largest celestial systems, are the biggest agents of entropy generation [85] because they are the most coherent isolated celestial systems.

If our civilization is to persist, it must evolve its own merger logic. Integrate human and ecological systems. Stably merge knowledge domains. Build redundancies that don't rely on extraction alone. We have to develop tools for entropic forecasting.

The future will belong to the most coherent. The DNA has survived for billions of years because of its coherent systems and complementarity. Structures that further decoherence can be eliminated, for stable mergers to persist.

Genetic and species competition, reproduction strategies, mutations, gene flow, replication, sex, lateral gene transfer, hybridization, immunity, emergence of cancers, evolution of size and complexity, creativity, technology, culture, self-organization[86], autopoietic systems[87]—these are just the medium through which that resistance is expressed.

If persistence is the goal, then the evolutionary narrative must shift from competition to coherence. From survival of the fittest to survival of the most persistent.

This changes how we think about intelligence. Intelligence becomes less about prediction and more about entropy management. Systems with high entropic intelligence reorganize quickly, form modular structures, initiate strategic mergers. Bacteria have used these strategies to persist for billions of years, despite our antibiotic breakthroughs.

Conclusion

From molecules to minds, from cells to civilizations, all of life is engaged in the same act: delaying the inevitable. Life is a brief interlude in the grand unfolding of entropy. But it is not meaningless. Within that delay lies coherence, beauty, resilience, and creativity. The thermodynamic imperative redefines life as a dance with disorder.

In this light, evolution becomes the story of delayers. Not winners. Life is the physical manifestation of the artists of entropic resistance, from bacteria and archaea to the dinosaurs and blue whales. According to organismal selection, the highest form of intelligence is the ability of a system to hold itself together just a little longer than the next.

Figure Gallery

Multiscale Mergers

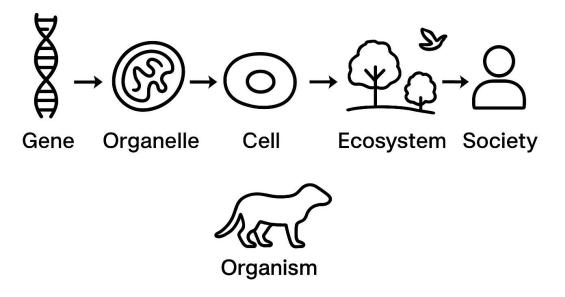


Figure 1: Multiple scale mergers from the sub-cellular to the ecosystem level.

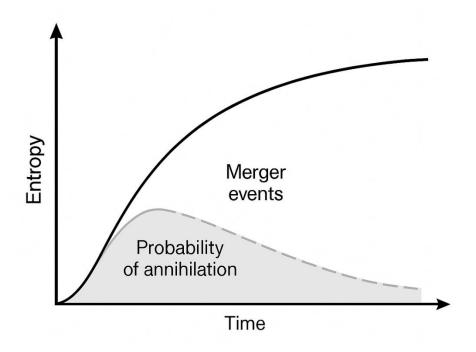


Figure 2: A graph showing the evolution of annihilation-persistence dynamics. The more the mergers, the less the probability of annihilation over time. The time evolution indicates the projected emergence of complexity.

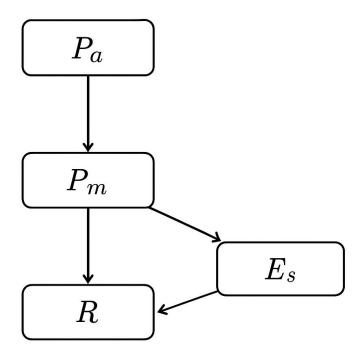


Figure 3. Probabilistic Model Overview.

Figure 3: A simplified probabilistic model overview, where P_a drives P_m, which drives resistance (R) with the side-effect of increasing entropy (E_s).

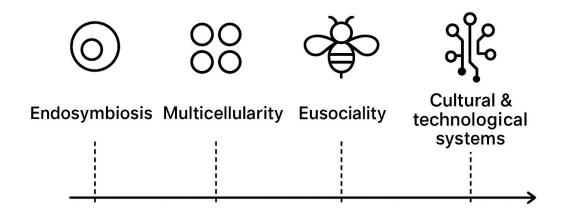


Figure 4. Evolutionary Timeline of Mergers

Figure 4: An evolutionary timeline of mergers

Author Contributions

Conceptualization, writing, and visualization by I.O.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No new data were created or analyzed in this study.

Acknowledgments

The author acknowledges computational assistance in figure generation, grammatical checks, and sectional structuring of the paper.

References

- 1. Giaimo, S. On Citing Dobzhansky about the Significance of Evolution to Biology. *Integrative Organismal Biology* **2023**, *5*, doi:10.1093/iob/obac047.
- 2. Hemminger, H. Evolution: The Modern Synthesis. In *New Approaches to the Scientific Study of Religion*; 2021; Vol. 10.
- 3. Dobzhansky, T. Nothing in Biology Makes Sense except in the Light of Evolution. *American Biology Teacher* **1973**, *35*, doi:10.2307/4444260.
- 4. Reiskind, M.O.B.; Moody, M.L.; Bolnick, D.I.; Hanifin, C.T.; Farrior, C.E. Nothing in Evolution Makes Sense except in the Light of Biology. *Bioscience* 2021, *71*.
- 5. Fauchald, K.; Brooks, D.R.; Wiley, E.O. Evolution as Entropy. Toward a Unified Theory of Biology. *J Parasitol* **1987**, *73*, doi:10.2307/3282343.
- 6. Vanchurin, V.; Wolf, Y.I.; Koonin, E. V.; Katsnelson, M.I. Thermodynamics of Evolution and the Origin of Life. *Proc Natl Acad Sci U S A* **2022**, *119*, doi:10.1073/pnas.2120042119.
- 7. Partridge, D. Darwin's Two Theories, 1844 and 1859. *J Hist Biol* **2018**, *51*, doi:10.1007/s10739-018-9509-z.
- 8. Goodhart, C.B.; Williams, G.C. Adaptation and Natural Selection. *J Anim Ecol* **1968**, *37*, doi:10.2307/3103.
- 9. Brown, B.; Singh, C. Student Understanding of the First Law and Second Law of Thermodynamics. *Eur J Phys* **2021**, *42*, doi:10.1088/1361-6404/ac18b4.
- 10. Brandãoa, F.; Horodecki, M.; Ng, N.; Oppenheim, J.; Wehner, S. The Second Laws of Quantum Thermodynamics. *Proc Natl Acad Sci U S A* **2015**, *112*, doi:10.1073/pnas.1411728112.
- 11. Harris, H.M.B.; Hill, C. A Place for Viruses on the Tree of Life. Front Microbiol 2021, 11.
- 12. England, J.L. Statistical Physics of Self-Replication. *J Chem Phys* **2013**, *139*, doi:10.1063/1.4818538.

- 13. Gregory, T.R. Understanding Natural Selection: Essential Concepts and Common Misconceptions. *Evolution: Education and Outreach* **2009**, *2*, doi:10.1007/s12052-009-0128-1.
- 14. Jaynes, E.T. Gibbs vs Boltzmann Entropies. *Am J Phys* **1965**, *33*, doi:10.1119/1.1971557.
- 15. Prigogine, I. Time, Structure, and Fluctuations. *Science* (1979) **1978**, 201, doi:10.1126/science.201.4358.777.
- 16. Malina, R.F.; Kauffman, S. At Home in the Universe: The Search for the Laws of Self-Organization and Complexity. *Leonardo* **1996**, *29*, doi:10.2307/1576330.
- 17. Walker, S.I.; Davies, P.C.W. The Algorithmic Origins of Life. J R Soc Interface 2013, 10.
- 18. Gershenson, C.; Niazi, M.A. Multidisciplinary Applications of Complex Networks Modeling, Simulation, Visualization, and Analysis. *Complex Adaptive Systems Modeling* 2013, 1.
- 19. Jarzynski, C. Into the Cool: Energy Flow, Thermodynamics, and Life . *Phys Today* **2006**, *59*, doi:10.1063/1.2195318.
- 20. Noble, D. A Theory of Biological Relativity: No Privileged Level of Causation. *Interface Focus* 2012, *2*.
- 21. Barnum, K.J.; O'Connell, M.J. Cell Cycle Regulation by Checkpoints. *Methods in Molecular Biology* 2014, *1170*.
- 22. He, G.; Zhang, C.; Dong, Z. Survival in Desert: Extreme Water Adaptations and Bioinspired Structural Designs. *iScience* 2023, *26*.
- 23. Takeda, D.Y.; Dutta, A. DNA Replication and Progression through S Phase. *Oncogene* 2005, 24.
- 24. Arora, J.; Buček, A.; Hellemans, S.; Beránková, T.; Arias, J.R.; Fisher, B.L.; Clitheroe, C.; Brune, A.; Kinjo, Y.; Šobotník, J.; et al. Evidence of Cospeciation between Termites and Their Gut Bacteria on a Geological Time Scale. *Proceedings of the Royal Society B: Biological Sciences* **2023**, *290*, doi:10.1098/rspb.2023.0619.
- 25. Martin, F.M.; van der Heijden, M.G.A. The Mycorrhizal Symbiosis: Research Frontiers in Genomics, Ecology, and Agricultural Application. *New Phytologist* 2024, *242*.
- 26. Shi, J.; Wang, X.; Wang, E. Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. *Annu Rev Plant Biol* 2023, *74*.

- 27. Traulsen, A.; Nowak, M.A. Evolution of Cooperation by Multilevel Selection. *Proc Natl Acad Sci U S A* **2006**, *103*, doi:10.1073/pnas.0602530103.
- 28. Wilson, D.S.; Wilson, E.O. Rethinking the Theoretical Foundation of Sociobiology. *Quarterly Review of Biology* 2007, *82*.
- 29. Leigh, E.G.; Smith, J.M.; Szathmary, E. The Major Transitions of Evolution. *Evolution (N Y)* **1995**, *49*, doi:10.2307/2410462.
- 30. Szathmáry, E.; Smith, J.M. The Major Evolutionary Transitions. *Nature* **1995**, *374*, doi:10.1038/374227a0.
- 31. King, N. The Unicellular Ancestry of Animal Development. Dev Cell 2004, 7.
- 32. Brunet, T.; King, N. The Origin of Animal Multicellularity and Cell Differentiation. *Dev Cell* 2017, *43*.
- 33. King, N.; Hittinger, C.T.; Carroll, S.B. Evolution of Key Cell Signaling and Adhesion Protein Families Predates Animal Origins. *Science* (1979) **2003**, 301, doi:10.1126/science.1083853.
- 34. Roger, A.J.; Muñoz-Gómez, S.A.; Kamikawa, R. The Origin and Diversification of Mitochondria. *Current Biology* 2017, *27*.
- 35. Reeve, H.K.; Hölldobler, B. The Emergence of a Superorganism through Intergroup Competition. *Proc Natl Acad Sci U S A* **2007**, *104*, doi:10.1073/pnas.0703466104.
- 36. Gardner, A.; Grafen, A. Capturing the Superorganism: A Formal Theory of Group Adaptation. *J Evol Biol* 2009, *22*.
- 37. Hartl, F.U.; Bracher, A.; Hayer-Hartl, M. Molecular Chaperones in Protein Folding and Proteostasis. *Nature* 2011, *475*.
- 38. Balchin, D.; Hayer-Hartl, M.; Hartl, F.U. Recent Advances in Understanding Catalysis of Protein Folding by Molecular Chaperones. *FEBS Lett* 2020, *594*.
- 39. Hoel, E.P.; Albantakis, L.; Tononi, G. Quantifying Causal Emergence Shows That Macro Can Beat Micro. *Proc Natl Acad Sci U S A* **2013**, *110*, doi:10.1073/pnas.1314922110.
- 40. Hoel, E.P. When the Map Is Better than the Territory. *Entropy* **2017**, *19*, doi:10.3390/e19050188.
- 41. Sakai, Y.; Kohda, M.; Kuwamura, T. Effect of Changing Harem on Timing of Sex Change in Female Cleaner Fish Labroides Dimidiatus. *Anim Behav* **2001**, *62*, doi:10.1006/anbe.2001.1761.

- 42. Heinemann, U.; Roske, Y. Symmetry in Nucleic-Acid Double Helices. *Symmetry (Basel)* 2020, *12*.
- 43. Sanchez, E.L.; Lagunoff, M. Viral Activation of Cellular Metabolism. *Virology* 2015, *479*–480.
- 44. Bolinger, C.; Boris-Lawrie, K. Mechanisms Employed by Retroviruses to Exploit Host Factors for Translational Control of a Complicated Proteome. *Retrovirology* 2009, *6*.
- 45. Soygur, B.; Sati, L. The Role of Syncytins in Human Reproduction and Reproductive Organ Cancers. *Reproduction* 2016, *152*.
- 46. Shu, W.; Shanjian, C.; Jinpiao, L.; Qishui, O. Gut Microbiota Dysbiosis in Patients with Hepatitis B Virus-Related Cirrhosis. *Ann Hepatol* **2022**, *27*, doi:10.1016/j.aohep.2022.100676.
- 47. Cao, Z.; Sugimura, N.; Burgermeister, E.; Ebert, M.P.; Zuo, T.; Lan, P. The Gut Virome: A New Microbiome Component in Health and Disease. *EBioMedicine* 2022, *81*.
- 48. Cornelis, G.; Funk, M.; Vernochet, C.; Leal, F.; Tarazona, O.A.; Meurice, G.; Heidmann, O.; Dupressoir, A.; Miralles, A.; Ramirez-Pinilla, M.P.; et al. An Endogenous Retroviral Envelope Syncytin and Its Cognate Receptor Identified in the Viviparous Placental Mabuya Lizard. *Proc Natl Acad Sci U S A* **2017**, *114*, doi:10.1073/pnas.1714590114.
- 49. Marraffini, L.A. CRISPR-Cas Immunity in Prokaryotes. *Nature* 2015, 526.
- 50. Barrangou, R.; Marraffini, L.A. CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity. *Mol Cell* 2014, *54*.
- 51. Forterre, P. Defining Life: The Virus Viewpoint. *Origins of Life and Evolution of Biospheres* **2010**, *40*, doi:10.1007/s11084-010-9194-1.
- 52. Lane, N.; Martin, W. The Energetics of Genome Complexity. *Nature* **2010**, *467*, doi:10.1038/nature09486.
- 53. Lane, N. Origin of the Eukaryotic Cell. *Mol Front J* **2017**, *01*, doi:10.1142/s2529732517400120.
- 54. Lane, N.; Martin, W.F. Mitochondria, Complexity, and Evolutionary Deficit Spending. *Proc Natl Acad Sci U S A* 2016, *113*.
- 55. Lane, N.; Martin, W.F. Eukaryotes Really Are Special, and Mitochondria Are Why. *Proc Natl Acad Sci U S A* 2015, *112*.
- 56. Lane, N. How Energy Flow Shapes Cell Evolution. Current Biology 2020, 30.

- 57. Dorrell, R.G.; Howe, C.J. What Makes a Chloroplast? Reconstructing the Establishment of Photosynthetic Symbioses. *J Cell Sci* **2012**, *125*, doi:10.1242/jcs.102285.
- 58. Rumpho, M.E.; Summer, E.J.; Manhart, J.R. Solar-Powered Sea Slugs. Mollusc/Algal Chloroplast Symbiosis. *Plant Physiol* 2000, *123*.
- 59. Lazcano, A.; Peretó, J. On the Origin of Mitosing Cells: A Historical Appraisal of Lynn Margulis Endosymbiotic Theory. *J Theor Biol* **2017**, *434*, doi:10.1016/j.jtbi.2017.06.036.
- 60. Gray, M.W. Lynn Margulis and the Endosymbiont Hypothesis: 50 Years Later. *Mol Biol Cell* **2017**, *28*, doi:10.1091/mbc.E16-07-0509.
- 61. Şenel, S. An Overview of Physical, Microbiological and Immune Barriers of Oral Mucosa. *Int J Mol Sci* 2021, *22*.
- 62. Petersone, L.; Edner, N.M.; Ovcinnikovs, V.; Heuts, F.; Ross, E.M.; Ntavli, E.; Wang, C.J.; Walker, L.S.K. T Cell/B Cell Collaboration and Autoimmunity: An Intimate Relationship. *Front Immunol* 2018, *9*.
- 63. Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. *Cell Res* 2020, *30*.
- 64. Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. *Cell* 2014, 157.
- 65. Dunbar, H.E.; Wilson, A.C.C.; Ferguson, N.R.; Moran, N.A. Aphid Thermal Tolerance Is Governed by a Point Mutation in Bacterial Symbionts. *PLoS Biol* **2007**, *5*, doi:10.1371/journal.pbio.0050096.
- 66. Baker, D.M.; Freeman, C.J.; Wong, J.C.Y.; Fogel, M.L.; Knowlton, N. Climate Change Promotes Parasitism in a Coral Symbiosis. *ISME Journal* **2018**, *12*, doi:10.1038/s41396-018-0046-8.
- 67. Van Oppen, M.J.H.; Medina, M. Coral Evolutionary Responses to Microbial Symbioses. *Philosophical Transactions of the Royal Society B: Biological Sciences* 2020, *375*.
- 68. Roth, M.S. The Engine of the Reef: Photobiology of the Coral-Algal Symbiosis. *Front Microbiol* 2014, *5*.
- 69. Giovannetti, M.; Avio, L.; Fortuna, P.; Pellegrino, E.; Sbrana, C.; Strani, P. At the Root of the Wood Wide Web. *Plant Signal Behav* **2006**, *1*, doi:10.4161/psb.1.1.2277.
- 70. Angrish, R. The Wood Wide Web: Tree Talk in the Forest. *Resonance* **2022**, *27*, doi:10.1007/s12045-022-1435-x.

- 71. Bruns, T.D.; Read, D.J. In Vitro Germination of Nonphotosynthetic, Myco-Heterotrophic Plants Stimulated by Fungi Isolated from the Adult Plants. *New Phytologist* **2000**, *148*, doi:10.1046/j.1469-8137.2000.00766.x.
- 72. Stelkens, R.B.; Brockhurst, M.A.; Hurst, G.D.D.; Greig, D. Hybridization Facilitates Evolutionary Rescue. *Evol Appl* **2014**, *7*, doi:10.1111/eva.12214.
- 73. Zhan, Z.; Nwafor, C.C.; Hou, Z.; Gong, J.; Zhu, B.; Jiang, Y.; Zhou, Y.; Wu, J.; Piao, Z.; Tong, Y.; et al. Cytological and Morphological Analysis of Hybrids between Brassicoraphanus, and Brassica Napus for Introgression of Clubroot Resistant Trait into Brassica Napus L. *PLoS One* **2017**, *12*, doi:10.1371/journal.pone.0177470.
- 74. Bachtrog, D.; Gordo, I. Adaptive Evolution of Asexual Populations under Muller's Ratchet. *Evolution (N Y)* **2004**, *58*, doi:10.1111/j.0014-3820.2004.tb01722.x.
- 75. Ryan, M.J.; Dries, L.A.; Batra, P.; Hillis, D.M. Male Mate Preferences in a Gynogenetic Species Complex of Amazon Mollies. *Anim Behav* **1996**, *52*, doi:10.1006/anbe.1996.0270.
- 76. Schlupp, I.; Riesch, R.; Tobler, M. Amazon Mollies. Current Biology 2007, 17.
- 77. Barabási, A.L.; Bonabeau, E. Scale-Free Networks. *Sci Am* **2003**, *288*, doi:10.1038/scientificamerican0503-60.
- 78. Watts, D.J.; Strogatz, S.H. Collective Dynamics of "small-World" Networks. In *The Structure and Dynamics of Networks*; 2011; Vol. 9781400841356.
- 79. Watts, D.J.; Strogatz, S.H. Collective Dynamics of 'small-World9 Networks. *Nature* **1998**, 393, doi:10.1038/30918.
- 80. Ochman, H.; Lawrence, J.G.; Grolsman, E.A. Lateral Gene Transfer and the Nature of Bacterial Innovation. *Nature* 2000, *405*.
- 81. Nowak, M.A.; Tarnita, C.E.; Wilson, E.O. The Evolution of Eusociality. *Nature* 2010, 466.
- 82. Gould, S.J.; Lewontin, R.C. The Spandrels of San Marco and the Panglossian Paradigm: A Critique of the Adaptationist Programme. *Proceedings of the Royal Society of London Biological Sciences* **1979**, *205*, doi:10.1098/rspb.1979.0086.
- 83. Andersen, P.W. More Is Different. *Science* (1979) **1972**, 177, doi:10.1126/science.177.4047.393.
- 84. Dawkins, R. In Defence of Selfish Genes. *Philosophy* **1981**, *56*, doi:10.1017/S0031819100050580.

- 85. Bekenstein, J.D. Black Holes and Entropy. *Physical Review D* **1973**, *7*, doi:10.1103/PhysRevD.7.2333.
- 86. Kauffman, S.; Clayton, P. On Emergence, Agency, and Organization. *Biol Philos* **2006**, *21*, doi:10.1007/s10539-005-9003-9.
- 87. Maturana, H.; Varela, F. Autopoiesis and Cognition: The Realization of the Living (Boston Studies in the Philosophy of Science). *Living in Boston Studies in the Philosophy of Science Vol 42 D Reidel Dordrecht* 1991.