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Abstract8

Social interactions mediate the phenotypic expression of fitness-relevant traits. The expression of9

such labile social traits includes three distinct components: an individual’s mean trait value (direct10

effect), its social responsiveness, and its social impact (indirect effects). Traditional methods, such as11

variance-partitioning or trait-based models, usually only partition individual variation into direct12

and indirect effects. However, individual variation in social responsiveness and its covariation with13

direct effects and social impact will affect responses to selection. To date, no studies have explored14

the performance of models that allow the decomposition of responsiveness from impact. Here, we15

describe a model for studying variation in phenotypic expression caused by social interactions, and16

we use simulations to explore its performance under various experimental designs. Our analyses17

show that with adequate total sample sizes (≥ 3200), variance components are estimated accurately18

across all study designs. In contrast, covariance estimation would benefit most from including more19

unique individuals, followed by more unique social partners per individual, whereas repeated20

interactions with the same partners added the least improvement to the covariance estimation. We21

also found that failing to model individual variation in responsiveness, and neglecting measurement22

error, increases bias and imprecision in trait-based approaches. Hence, disregarding individual23

variation in responsiveness would ignore a key component of social behaviour, and hamper our24

ability to acquire unbiased estimates of indirect genetic or social effects.25

Introduction26

Social interactions alter selection pressures and phenotypic expression, shaping the trajectory of27

evolutionary change in ways that are often difficult to predict (Moore et al., 1997; Wolf et al., 1998).28

Phenotypes displayed by individuals or genotypes rarely emerge in isolation; rather they arise from29

the interaction of internal regulators and external conditions (Via & Lande, 1985; West-Eberhard,30

1989). One important external factor, the social environment, consists of conspecifics that affect31

phenotypic expression through social interactions. The effects of the social environment can be far-32

reaching in traits that are solely expressed in a social context, such as cooperation, social hierarchies33
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or parental-offspring interactions (Bailey et al., 2018; Bleakley & Brodie, 2009; Kirkpatrick & Lande,34

1989; Smiseth et al., 2008; Wilson et al., 2011). Explaining (co-)variation in social traits is challenging35

because individuals often adjust their phenotype plastically in response to their partners’ traits36

(Bailey & Desjonquères, 2022; Moore et al., 1997). These socially mediated effects, when heritable,37

are termed indirect genetic effects (IGEs) (Griffing, 1967; Moore et al., 1997). The optimal phenotype38

might therefore depend on other phenotypes displayed in the social environment (Maynard-Smith39

& Price, 1973; McNamara & Weissing, 2010), where selection could also act on an individual’s40

competence to adjust their phenotype to a changing social environment (Martin & Jaeggi, 2022;41

Taborsky & Oliveira, 2012).42

An often overlooked aspect of such indirect genetic effects (IGEs) is that individuals both re-43

spond to (responsiveness) and affect (impact) the phenotype of other individuals, and individuals44

may differ in both of these traits. Following recent proposals, social phenotypes can be decomposed45

into three components of individual phenotypic variation: (i) mean trait value; (ii) social respon-46

siveness, which refers to the phenotypic response of the focal to the traits of their interacting social47

partners; and lastly (iii) social impact, which refers to the response an individual elicits in their social48

partners (Araya-Ajoy et al., 2020; de Groot et al., 2023). Previous studies in quantitative genetics49

have estimated population-level IGEs (reviewed by Bailey & Desjonquères, 2022), disregarding that50

individuals may differ in their level of social responsiveness. Common statistical models for study-51

ing social effects include the ‘variance-partitioning’ (Bĳma, 2014; Griffing, 1967) and ‘trait-based’52

approach (Kirkpatrick & Lande, 1989; McGlothlin et al., 2010; Moore et al., 1997; Wolf et al., 1999).53

The variance-partitioning approach is a type of mixed-effects model that partitions observed phe-54

notypic variation into direct individual effects and indirect individual effects, which can be further55

decomposed into additive genetic components using ‘animal models’ (Henderson, 1984; Kruuk,56

2004; Meyer, 1992; Wilson et al., 2010). The trait-based approach, mathematically equivalent to the57

variance partitioning approach under certain assumptions (McGlothlin & Brodie, 2009), applies a58

reaction norm approach to quantify social responsiveness as a slope. Both frameworks estimate the59

interaction coefficient 𝜓, which represents the population-level response and describes the mag-60

nitude and direction of phenotypic change in response to the phenotype expressed by interaction61

partners (see Bailey & Desjonquères, 2022; Bĳma, 2014). Thus, these models typically ignore the62
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possibility that individuals may differ in responsiveness. However, empirical evidence increasingly63

shows that individuals can differ in the degree to which they respond to social signals (Bailey &64

Zuk, 2012; Guayasamin et al., 2017; Jablonszky et al., 2022; Morand-Ferron et al., 2011; Strickland65

& Frère, 2019). Hence, researchers have suggested that 𝜓 is not fixed; instead it may vary among66

individuals and can consequently evolve (Akçay & Van Cleve, 2012; Araya-Ajoy et al., 2020; Dinge-67

manse & Araya-Ajoy, 2015; Kazancıoğlu et al., 2012; Wolf et al., 2008). Already there is experimental68

evidence that 𝜓 can evolve under different selection regimes (Chenoweth et al., 2010). Furthermore,69

the covariance of social responsiveness with the mean social trait could speed up or slow down70

evolution through a process called ’social drive’ (Bailey et al., 2021; Martin et al., 2023).71

Very little is known about the extent to which variation in𝜓 influences social interactions for two72

key reasons. First, individuals may differ in their responsiveness, yet standard quantitative genetics73

models typically assume a fixed population-level effect. This masks important individual variation74

and limits evolutionary inference. Second, the traits of social partners (to which focal individuals75

respond) are themselves phenotypically variable, introducing both among- and within-individual76

variation into an environmental covariate (Araya-Ajoy et al., 2020; Dingemanse & Araya-Ajoy,77

2015). This variability, as is also the case for measurement error, can attenuate estimates of 𝜓 and78

underestimate true social effects. To address these problems, we use a model that incorporates both79

random slopes (to capture individual variation in 𝜓) (de Groot et al., 2023; Martin & Jaeggi, 2022)80

and an ‘errors-in-variables’ approach that corrects for noisy partner trait estimates (Dingemanse81

et al., 2021; Ponzi et al., 2018), which should allow an accurate estimation of social responsiveness82

and its evolutionary consequences.83

The next challenge is to determine which study design is optimal to estimate the three com-84

ponents of individuality in social interactions. A common and effective laboratory approach for85

estimating individual differences in IGEs involves assessing individuals in pairwise assays in which86

individuals repeatedly interact with different social partners (e.g. Han et al., 2018; Lane et al., 2020;87

Santostefano et al., 2016; Wilson et al., 2009). Similar datasets have been collected through observa-88

tional studies on dyadic interactions in wild populations (e.g. Brommer & Rattiste, 2008; McLean et89

al., 2023; Moiron et al., 2020; Tuliozi et al., 2023; Wilson et al., 2011). Several data simulation studies90
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have explored the accuracy and precision of statistical models in estimating individual variation in91

labile traits (Araya-Ajoy et al., 2015; Dingemanse & Dochtermann, 2013; Martin et al., 2011; van de92

Pol, 2012). From these studies, we have learnt that there is a rapid increase in statistical power when93

more individuals are sampled, or more repeated measures per individual are taken. Furthermore,94

simulation studies show that resource allocation (more individuals with fewer observations per95

individual versus fewer individuals with more observations per individual) can matter when the96

total sample size is the limiting factor (Martin et al., 2011; van de Pol, 2012). We do not know how97

resource allocation affects the estimation of individual variation in mean social trait values, social98

impact or social responsiveness.99

Some studies have focused on optimal study designs to estimate IGEs, comparing different100

group sizes or breeding designs (Bĳma, 2010), but few have explored how well IGE models recover101

individual variation in labile traits expressed during repeated social interactions. Designing studies102

of social traits poses challenges not typically encountered for non-social traits, because social pheno-103

types must be sampled in ways that capture both the effect of the individual on its own phenotypic104

expression and its effects on others. Specifically, two design features are required to reliably estimate105

variance in social responsiveness and impact, and their covariances with mean trait value. First,106

individuals must be repeatedly observed interacting multiple times both as focal individuals and as107

social partners. This reciprocity in roles is essential to estimate covariances between how individ-108

uals behave and how they influence others (Dingemanse & Araya-Ajoy, 2015). Second, individuals109

must encounter sufficient variation in partner trait values, which is a prerequisite for estimating110

responsiveness (the slope describing the individual’s phenotypic response to partner phenotypes).111

Without these specific design properties, many components of the multivariate structure of social112

traits are non-estimable. Consequently, when studying social traits under limited time or resources,113

researchers face critical trade-offs in allocating sampling effort across individuals, the number of114

partners per individual, and the number of unique pairwise interactions. One goal of this study is115

to explore which of these sampling axes should be prioritised to maximise precision and accuracy116

in estimating social impact and responsiveness.117

In this study, we evaluate the accuracy and precision with which variance and covariance in mean118
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trait value, social impact, and social responsiveness can be estimated. The impact–responsiveness119

framework provides a general conceptual and statistical approach and can be used to study any120

system in which organisms adjust their phenotype in response to others and influence the pheno-121

types of others, including behavioural, physiological, developmental, and ecological interactions122

(see de Groot et al., 2023, for a discussion of its general applicability). Here, we focus mainly on123

labile social traits in the context of interacting phenotypes and indirect genetic effects (Bailey et al.,124

2018; Bĳma, 2010; Moore et al., 1997), and explore the statistical implementation of the framework.125

We first explore the minimally required sample size needed to obtain unbiased estimates. Next,126

we assess the difference in accuracy and precision of study designs that vary in the number of127

individuals, the number of repeated measures per individual, and the number of unique social128

partners. We further determine the consequences of not accounting for individual variation in129

responsiveness, measurement error/plasticity in partner traits, when estimating social effects. By130

combining these perspectives, our study aims to encourage empirical estimates of key components131

underlying phenotypic expression during social interactions, provide practical guidance on the132

optimal experimental designs and statistical analyses, and increase awareness of problems when133

failing to account for key sources of variation.134

Methods135

Data simulation136

We simulated realistic social interaction data where individuals differed in their mean trait value137

(intercept), social impact (effect on others), and social responsiveness (response to partner pheno-138

type). Individuals interacted pairwise, responding to a single fixed partner trait (e.g. body size)139

that was measured with error. Each dataset had a balanced design: all individuals interacted with140

the same number of partners and acted equally often as focal and partner. To answer our questions,141

we simulated and analysed the following datasets:142

1. To assess model performance as a function of the total sample size, we simulated 1000 datasets143
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per sample size, varying the number of individuals while keeping the number of interactions144

per individual constant.145

2. To evaluate the effects of sampling design on bias and precision, we simulated 1000 datasets146

with balanced designs that partitioned a fixed total number of observations among varying147

numbers of individuals, social partners per individual, and repeated interactions.148

3. To compare the performance of alternative statistical models, we simulated 1000 datasets149

using four study designs and to each we fit the full model and several reduced models lacking150

particular components.151

The main parameters of interest are two fixed effects (population intercept 𝛽0 and population slope152

𝜓̄), and six (co)variance components: the among-individual variance in mean trait value (𝑉𝛼); social153

responsiveness (𝑉𝜓); and social impact (𝑉𝜙); and their three covariances (Table S1). We assessed the154

accuracy and precision of estimated parameters. We measured accuracy as relative bias, calculated155

as: 1
𝑛
𝛴
𝜃 − 𝜃𝑖

𝜃
· 100% , where 𝜃 is the true simulated value, 𝜃𝑖 is the model estimate (posterior156

median) of the 𝑖th simulation, and 𝑛 is the number of simulations. We measured precision as relative157

dispersion (MADm: Mean Absolute Deviation of the mean), calculated as: 1
𝑛
𝛴
|𝜃̄ − 𝜃𝑖 |

𝜃̄
·100%, where158

𝜃̄ is the grand mean of the 1000 posterior median model estimates. Instead of formal power analyses159

(less common in Bayesian settings), we report performance using bias and dispersion and provide160

an open-access simulation tool "socialSim" for researchers to explore expected performance under161

their study design of choice (Wĳnhorst, 2025). The data simulation and model fitting workflow is162

summarised in Figure 1.163
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𝒆𝒊𝒋𝒌

𝒆𝒊𝒋𝒌

Symbol          Descrip�on

𝒛𝒊𝒋𝒌 The phenotype of individual i when it interac�on with j at instance k
𝜶𝒊 Mean behaviour: individual devia�on of the popula�on mean
𝝍𝒊 Social responsiveness: individual devia�on of the popula�on slope
𝝌𝒋

𝝌

True value of the phenotype to which the focal responds
𝜺𝒋 Residual impact: partner effects caused by unknown/unmeasured traits 

Residual effect/nonsocial environmental effect

 -1.0 0.03

𝝌𝒛𝒊𝒋𝒌 𝜶𝒊 𝝍𝒊 𝝌𝒋 𝜺𝒋 𝒆𝒊𝒋𝒌

0.52 1 0.2 0.6 0.2 -0.8

0.25 1.2 0.5 -0.5 -0.1 -0.6

1.48 0.8 0.4 0.2 0.1 0.5

1.40 1 0.2 -1.0 -0.1 0.7

- - - - - -

Simulate study
design structure

Simulate trait values for each
individual and interac�on outcome

Simulate
measurement

error
Data analysis

Repeat
1000
�mes

Focal 𝒊 Partner 𝒋

1 2

2 3

3 1

1 4

- -

Focal 𝒊 Partner 𝒋 𝝌𝒊𝒋𝒌 𝒛𝒊𝒋𝒌

1 2 0.63 0.52

2 3 -0.57 0.25

3 1 0.22 1.48

1 4 -0.97 1.40

- - - -

x= 𝝌𝒊𝒋𝒌 𝝌𝒋 𝒆𝒊𝒋𝒌

0.63 0.6 0.03

-0.57 -0.5 -0.07

0.22 0.2 0.02

-0.97

- - -

+ ++ +=

b.a. c. d.

Measurement error or nonsocial phenotypic plas�city around the true value of χj

Figure 1: Workflow of data simulations and analyses a.) A data structure is created that contains a certain number of individuals
that interact with a fixed number of social partners in balanced designs. b.) We simulated the outcome of the social interaction (𝑧𝑖 𝑗𝑘 )
based on their simulated trait values of each individual and their partner drawn from a multivariate normal distribution plus residual
error. c.) Before we enter our observed data into the model, we assume that the fixed opponent trait is measured with error before every
social interaction. Therefore, we added or subtracted simulated measurement error to obtain the observed opponent trait 𝜒𝑖 𝑗𝑘 . d.) The
data is analysed by the model and this process is iterated a 1000 times.

Simulated effect sizes164

Effect sizes were selected to represent biologically realistic magnitudes derived from empirical165

estimates. The population response 𝜓̄ was set to 0.3, similar to the mean (0.27) of the significant166

non-reciprocal, positive estimates 𝜓̄ (obtained from Bailey & Desjonquères, 2022). The variance167

components were adjusted so that the total phenotypic variances sum to 1, with the variance168

explained by the focal individual at 0.3 (approximating the mean repeatability of animal behaviours169

of 0.37; Bell et al., 2009) and the variance explained by the social partner (variance of social impact)170

at 0.1 and residual variance 𝑉𝑒 = 0.6. This variance explained by the social partner is representative171

of partner effects, however for indirect genetic effects, the effect size is expected to be somewhat172

smaller (6% for behavioural traits and 3% for all traits; Santostefano et al., 2024). The variance of173
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social responsiveness was set to 0.1, giving an elevation-to-slope ratio of 1 : 0.5, similar to empirical174

estimates (1 : 0.65) (Brommer, 2013). The measurement error for the impact trait was set to 0.1 (10%175

of the variance in the social partner trait 𝜒𝑗). Full parameter settings are given in Supplementary176

Table S7.177

Analyses178

Total sample size179

To assess model performance as a function of total sample size, we simulated 1000 datasets of social180

interaction data. In each dataset, the number of interactions per individual was kept constant at 8.181

The smallest dataset included 50 individuals (400 observations), and the number of individuals was182

doubled at each step to a maximum of 800 individuals (6400 observations). Our aim was to identify183

the minimum sample size at which the full model for estimating impact and responsiveness (I&R184

model) yields unbiased estimates, which was used for subsequent analyses.185

Sampling design186

To determine how to best allocate limited sampling resources, we assessed how different study187

designs influence the accuracy and precision of parameter estimates. In many ecological and evo-188

lutionary studies, researchers face logistical constraints that limit the total number of observations189

that can be collected. Therefore, we examined how design choices affect parameter bias and preci-190

sion. Each observation represented a pairwise interaction, and individuals acted as both focal and191

partner. We varied sampling designs along three key axes:192

• Number of individuals (‘individuals’), which determines the total population of interacting193

individuals.194

• Number of unique social partners per focal individual (‘partners’), which reflects the variety195

of partners encountered by each individual.196

• Number of repeated interactions per dyad (‘repeats’), which controls the extent to which197
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specific focal-partner pairs are observed multiple times. A value of ‘1x’ indicates that each198

focal interacts only once with each unique social partner (i.e. no repetitions of unique dyads).199

We kept total observations constant while trading off two axes at a time, allowing us to assess how200

these factors influence estimation accuracy and precision.201

Model comparison202

To evaluate how different statistical modelling choices influence the estimation of social parameters,203

we compare several models used in the study of indirect genetic effects (IGEs) and social trait204

evolution. Specifically, to investigate the consequences of not accounting for certain sources of205

variation, we compare the full impact and responsiveness model (I&R) to incomplete models (i.e.206

models that lack certain parameters, Table 1). As such, I&R is compared to two reduced models,207

the variance-partitioning model (V-P) and the trait-based approach (Trait). Secondly, we modify208

the trait-based approach to include random slopes or an errors-in-variables correction to identify209

which missing component causes increased bias or imprecision. For this, we compare the full210

I&R model (equivalent to Trait+RS+EIV) against two reduced models: one including an errors-in-211

variable correction (Trait+EIV) and one including random slopes (Trait+RS) for individual social212

responsiveness. Below, we describe the models in increasing order of model completeness.213

Variance-partitioning model (V-P):214

The variance partitioning approach can be described as:215

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + 𝜙 𝑗 + 𝑒𝑖 𝑗𝑘 , (1)

where 𝑧𝑖 𝑗𝑘 denotes the phenotype of individual 𝑖 after interacting with social partner 𝑗 at instance 𝑘.216

The fixed intercept 𝛽0 represents the population mean phenotype. The random effect 𝛼𝑖 represents217

the deviation of individual 𝑖’s mean trait value from the population mean. The variance of these218

deviations (𝑉𝛼) quantifies among-individual variance, which may arise from direct genetic effects219

(DGEs) and permanent environmental influences. The random partner effect 𝜙 𝑗 represents the220
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deviation associated with social partner 𝑗, that is, the extent to which partner 𝑗 influences the221

phenotype of others. The variance of these deviations (𝑉𝜙) quantifies variation in social impact,222

which may arise from indirect genetic effects (IGEs) as well as non-genetic partner effects. The223

residual term 𝑒𝑖 𝑗𝑘 represents unexplained deviations at the observation level. The residual variance224

(𝑉𝑒 ) captures within-individual variation that is not attributable to focal identity or repeatable225

partner effects. When individuals interact both as focal and partner (as is common in social226

interaction datasets), the model can also be used to estimate the covariance (Cov𝛼𝜙) between an227

individual’s mean trait value and its social impact (Wilson et al., 2009):228


𝛼

𝜙

 ∼ MVN(0,𝛺), 𝛺 =


𝑉𝛼 Cov𝛼𝜙

Cov𝛼𝜙 𝑉𝜙

 , 𝑒 ∼ N(0, 𝑉𝑒). (2)

The covariance between focals’ mean trait value and social impact (Cov𝛼𝜙) is critical for predicting229

evolutionary change in social traits. When decomposed into genetic and environmental compo-230

nents, it corresponds to the DGE–IGE covariance, which can accelerate or constrain evolutionary231

responses depending on its sign and magnitude (Bĳma et al., 2007; Wilson et al., 2009; Wolf et al.,232

1998). The V-P model is commonly used in IGE studies to estimate the variance attributable to social233

partners without explicitly modelling the partner traits through which those effects are mediated.234

While the model provides an estimate of the total variance of social impact (𝑉𝜙), it does not identify235

trait-based pathways or quantify individual differences in responsiveness.236

Trait-based (Trait) model:237

The trait-based model can be described as:238

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + 𝜓̄𝜒𝑖 𝑗𝑘 + 𝜖 𝑗 + 𝑒𝑖 𝑗𝑘 . (3)

The trait-based model adopts a reaction norm framework (Dingemanse & Araya-Ajoy, 2015; Kirk-239

patrick & Lande, 1989; McGlothlin et al., 2010; Moore et al., 1997; Wolf et al., 1999), modelling240

the focal phenotype as a function of a measured trait of the social partner, 𝜒𝑖 𝑗𝑘 (e.g. body size).241

The response is estimated through 𝜓̄, the interaction coefficient or slope that represents the mean242
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response of the population to the trait values of the social partners. To account for unexplained243

social effects not captured by the measured trait, we include a partner identity effect 𝜖 𝑗 . Although244

this addition is not conventional in trait-based models, it ensures mathematical equivalence to the245

variance-partitioning model. The total variance in social impact can then be expressed as:246

𝑉𝜙 = 𝜓̄2𝑉𝜒 +𝑉𝜖 + 2𝜓̄Cov𝜒𝜖 . (4)

Subsequently, we can again estimate the covariance matrix, the same as we derive from the V-P247

approach.248

Trait-based model with random slopes (Trait+RS):249

The trait-based model can be extended to estimate social responsiveness:250

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + (𝜓̄ + 𝜓𝑖)𝜒𝑖 𝑗𝑘 + 𝜖 𝑗 + 𝑒𝑖 𝑗𝑘 . (5)

This extension of the trait-based model includes random slopes 𝜓𝑖 , which represent individual-251

specific deviations from the population slope 𝜓̄. This allows individuals to differ in their respon-252

siveness to partner traits. The model therefore estimates a 3×3 covariance matrix that includes mean253

trait value (𝑉𝛼), social responsiveness (𝑉𝜓), and residual partner effects (𝑉𝜖), and their covariances.254

Trait-based model with measurement error correction (Trait+EIV):255

To account for measurement error or labile variation in the partner trait, we supplement the trait-256

based model with an error correction:257

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + 𝜓̄𝜒𝑗 + 𝜖 𝑗 + 𝑒𝑖 𝑗𝑘 , (6)

where the latent trait value 𝜒𝑗 is estimated by:258

𝜒𝑖 𝑗𝑘 = 𝛽0𝜒 + 𝜒𝑗 + 𝑒𝑖 𝑗𝑘𝜒 . (7)
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This model is an extension of the Trait model, where 𝜒𝑖 𝑗𝑘 denotes the trait value of the social partner259

𝑗 as observed when interacting with focal 𝑖 at instance 𝑘. We partition this observed value into two260

components: a partner-specific effect 𝜒𝑗 and a residual term 𝑒𝑖 𝑗𝑘𝜒. In the context of measurement261

error, 𝑒𝑖 𝑗𝑘𝜒 represents random error around the true partner trait value 𝜒𝑗 . More generally, this262

same structure can also be interpreted as a decomposition of the partner trait into genetic and263

environmental components: 𝜒𝑗 can be viewed as the heritable additive genetic contribution to the264

partner trait, whereas 𝑒𝑖 𝑗𝑘𝜒 represents non-heritable influences (environmental or transient effects).265

Thus, the measurement-error model provides a framework that can be applied both to correct for266

error in trait measurements or to allow inference about the genetic basis of social impact through267

partner traits, thereby linking directly to IGE theory (McGlothlin & Brodie, 2009). This model also268

estimates a 3 × 3 covariance matrix that includes mean trait value (𝑉𝛼), partner impact trait (𝑉𝜒),269

and residual partner effects (𝑉𝜖), and their covariances.270

Impact and responsiveness model (I&R):271

The complete model to estimate individual mean trait values, social responsiveness, and social272

impact is described as:273

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + (𝜓̄ + 𝜓𝑖)𝜒𝑗 + 𝜖 𝑗 + 𝑒𝑖 𝑗𝑘 , (8)
274

𝜒𝑖 𝑗𝑘 = 𝛽0𝜒 + 𝜒𝑗 + 𝑒𝑖 𝑗𝑘𝜒 . (9)

This model extends the trait-based approach by combining two components: random slopes and275

the error-correction framework. This complete model yields a 4 × 4 covariance matrix that esti-276

mates the variances and covariances of mean trait value (𝑉𝛼), the partner impact trait (𝑉𝜒), social277

responsiveness (𝑉𝜓), and residual partner effects (𝑉𝜖). From these estimates, we can derive the joint278

covariance structure of mean trait value (𝛼), social impact (𝜙), and social responsiveness (𝜓) (see279

Supplementary Equations S1, S2, S3, S4 for details):280


αi

ψj

ϕi


∼ MVN(0,𝛺) : 𝛺=


𝑉𝛼 Cov𝛼𝜓 Cov𝛼𝜙

Cov𝛼𝜓 𝑉𝜓 Cov𝜓𝜙

Cov𝛼𝜙 Cov𝜓𝜙 𝑉𝜙


[𝑒] ∼ MVN(0, 𝑉𝑒) . (10)
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Table 1: Overview of the variance components estimated in each model. Total social impact variance is estimated either directly
(𝑉𝜙) or via a combination of the variance in impact trait and residual impact (𝜓̄2𝑉𝜒 +𝑉𝜖). The two trait models, Trait and Trait+RS do
not correct for measurement error, and thus estimate impact (𝑉𝜙) using the variance of the partner trait that includes measurement error
(𝜒𝑖 𝑗𝑘 . Each model estimates a covariance matrix containing all individual-level random effects and their covariances corresponding to
that model specification.

Model
Component Mean behaviour Responsiveness Impact trait Total / Residual impact

V-P 𝑉𝛼 𝑉𝜙

Trait 𝑉𝛼 𝜒𝑖 𝑗𝑘 𝑉𝜖

Trait+RS 𝑉𝛼 𝑉𝜓 𝜒𝑖 𝑗𝑘 𝑉𝜖

Trait+EIV 𝑉𝛼 𝑉𝜒 𝑉𝜖

I&R 𝑉𝛼 𝑉𝜓 𝑉𝜒 𝑉𝜖

Model specification281

All simulations were implemented in R (version 4.5.1, R Core Team, 2025) and analysed in a Bayesian282

framework using Stan probabilistic programming language (Carpenter et al., 2017) via the ‘rstan’283

package (version 2.32.2) (Stan Development Team, 2025). Each model used weakly informative284

priors: normal distributions (mean = 0, SD = 1) for fixed effects, and truncated normal distributions285

(mean = 0, SD = 1; lower bound = 0) for variance parameters. Correlation structures among random286

effects were estimated via Cholesky decomposition with an LKJ(1) prior. All models were run with287

one chain with 1000 warm-up, and 5000 iterations. The models were run in parallel on multiple288

processing units (up to 56) using the ’future’ and ’future.apply’ packages (Bengtsson, 2021).289

Results290

Total sample size291

The I&R model recovered fixed effects and variances with high accuracy (Figure 2). Estimates of292

the population mean (𝛽0) and interaction coefficient (𝜓̄) showed negligible bias, for sample sizes293

≥ 800. The dispersion decreased steadily with the sample size for all parameters. “All variance294

components showed minimal bias (< 5%), except a slight overestimation of social impact 𝑉𝜙 (8.2%295

at 𝑛 = 400). Covariances were more difficult to estimate, with strong underestimation at small296

sample sizes (-17.6% to -30.2% at 400). Among covariances, Cov𝜓𝜙 was most difficult to estimate,297
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followed by Cov𝛼𝜓, whereas Cov𝛼𝜙 was least biased. The bias decreased consistently with larger298

samples, with less than 4% bias at the largest sample size of 6400 observations with 800 individuals.299

These results show that estimates of fixed effects and variances stabilise at moderate sample sizes300

(≥ 800), whereas reliable estimation of covariance components requires substantially larger datasets.301

Based on these patterns, we continued the subsequent analyses with a total sample size of 3200302

observations.303
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Figure 2: Bias and dispersion of model parameters estimated by the impact and responsiveness (I&R) model across various
total sample sizes. The top panels show the relative bias (%) of the posterior medians of a 1000 analysed simulated datasets per sample
size. The bottom panel shows boxplots of all 1000 posterior medians. The left-side panels (a) show the fixed effects: population mean 𝛽0
and interaction coefficient 𝜓̄. The middle panels (b) show variances of: mean trait value 𝑉𝛼 , social impact 𝑉𝜙 and social responsiveness
𝑉𝜓 . The right-side panels (c) show the covariances: mean trait value-social impact 𝐶𝑜𝑣𝛼𝜙 , mean trait value-social responsiveness
𝐶𝑜𝑣𝛼𝜓 and social impact-social responsiveness 𝐶𝑜𝑣𝜓𝜙 . The total sample sizes are increased by increasing the number of individuals.
Each individual interacts with eight different social partners. The dotted lines represent the simulated ‘true’ estimate.
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Sampling design304

We examined different sampling designs while keeping the total sample size constant at 3200305

observations. Throughout the results, we only highlight changes greater than 5% across study306

designs; smaller differences were considered negligible. Across all designs, estimates of variance307

components showed minimal differences in both accuracy (bias) and precision (dispersion) (Figure 3,308

Table S2). Bias in variance components was generally below 5%, with variance in social impact309

consistently showing a slight overestimation. Variance dispersion was generally stable, except for310

an in increase in the dispersion for variance in means when fewer individuals and more repeats311

of pairs were included (Figure 3b). These results indicate that at a total sample size of 3200312

all study designs appear adequate to obtain reliable variance estimates. In contrast, estimates313

of individual-level covariances were more sensitive to study design choices. Covariances were314

generally underestimated, typically by less than 10%, although the magnitude of bias varied between315

design choices. Moreover, covariances did not all respond similarly to trade-offs between sampling316

axes.317
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Figure 3: Effect of sampling design choices on bias and dispersion of variance and covariance parameters. Relative bias and
relative dispersion of the model estimates of variances and covariances over 1000 simulated datasets per study design. Each study design
contains a total sample size of 3200 observations. The left-side panels (a) show the trade-off between the number of individuals and the
number of social partners (each individuals interacts once with each social partner). The middle panels (b) show the trade-off between
the number of individuals and repeated dyadic interactions (repeats) for a total sample size of 3200 (each individual interacts with four
different social partners). The right-side panels (c) show the trade-off between interacting with more different social partners against
interacting repeatedly with the same social partners for a total sample size of 3200 (each study design has 200 unique individuals). Top
panels represent bias and dispersion of the variance parameters and the bottom panels the covariance parameters.

More individuals or more unique partners per individual318

To investigate this, we compared designs varying the number of individuals (100–1600) and partners319

per individual (2–32), keeping 3200 total observations. Increasing the number of individuals at the320

expense of repeated interactions reduced accuracy and precision for some covariances (Figure 3a).321

Specifically, bias increased for the mean–impact and mean–responsiveness covariances as fewer322
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individuals were included. In contrast, the impact–responsiveness covariance showed the opposite323

trend, with bias decreasing as the number of individuals decreased and the number of partners per324

individual increased, reaching a minimum at 200 individuals with 16 partners each. Overall, the325

design with 400 individuals and 8 partners yielded the lowest average bias across the three covari-326

ances. Dispersion also increased as the number of individuals decreased, rising from 11.1% to 22.8%327

for the mean–impact covariance and from 12.0% to 19.2% for the mean–responsiveness covariance328

(Table S2). The dispersion of the impact–responsiveness covariance was largely unaffected.329

More individuals or more repeated interactions with the same partners330

Next, we compared designs varying the number of individuals (100–800) and repeated interactions331

with the same partners (1x–8x), keeping 3200 total observations (Figure 3b). Here, bias increased332

for the mean–impact covariance (from −0.9% to −9.0%) and the mean–responsiveness covariance333

(from−3.1% to−8.2%) when repeated interactions were prioritised over including more individuals334

(Table S2). Bias in the impact–responsiveness covariance remained stable across designs. However,335

dispersion increased for all three covariance estimates as fewer individuals were included. This336

indicates that including more individuals outweighs the benefit of having more repeated pair337

interactions for covariance estimation.338

More social partners or more repeated interactions with the same partners339

Lastly, we examined the trade-off between the number of social partners (2-16) and the number340

of repeated interactions with the same partner (1x-8x), keeping 3200 total observations. Bias and341

dispersion remained largely unchanged across study designs, except for the impact–responsiveness342

covariance, which showed a marked increase in bias (from −5.8% to −13.4%) as the number of343

unique partners decreased and repeated dyads increased (Figure 3c, Table S2). Overall, there is344

little evidence that prioritising more partners versus more repeated dyads affects the estimation345

accuracy and precision.346

Taken together, these results show that estimation of variance in mean trait values, social impact,347

and social responsiveness are not strongly affected by study design choices for a total sample size348
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of 3200. Covariances, on the contrary, are more sensitive to how social interaction observations349

are partitioned. Designs that balance moderate numbers of individuals with moderate numbers350

of partners are expected to perform well overall, and including more individuals outweighs the351

benefit of prioritising more repeated dyads. We further tested the trade-off in sampling design axes352

for a total sample size of 800 observations, which showed similar patterns (see Figure S1, Table S3)353

Model comparison354

We compared the complete I&R model to two reduced models, the variance-partitioning approach355

and the trait-based model. Specifically, these reduced models do not account for variation in social356

responsiveness, nor for measurement error in the partner trait. Our results show that models that357

did not account for measurement error (Trait and Trait+RS) in the partners trait showed large biases358

in all three model parameters (Figure 4 and 5).359

a. b. c.

Figure 4: Comparison of the impact and responsiveness model (I&R) with a variance-partitioning model (V-P) and a
trait-based model (Trait). The figure shows the accuracy (bias) and precision (dispersion) of (a) the population response 𝜓̄, (b) the
variance in social impact 𝑉𝜙 , (c) the covariance between mean trait value and social impact Cov𝛼𝜙 . Top panels show the relative bias of
three models that analysed the same 1000 simulated datasets for four different partitions of number of individuals and number of social
partners per individual. Bottom panel shows the relative dispersion (MADm), expressed as a percentage.
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For the population-level response 𝜓̄, the I&R model showed minimal bias across study designs360

(all < 2%), with dispersion between 9.9% and 12.4% (Table S4). The Trait model underestimated 𝜓̄361

by 10.1 - 17.0%, particularly when fewer individuals were included (Figure 4). Dispersion in the362

estimation of 𝜓̄ was slightly higher in the I&R model compared to the Trait model across study363

designs. For the variance in social impact 𝑉𝜙, the Trait model showed consistent underestimation364

between −8.5% and −14.4% compared to slight overestimation by the I&R model (2.0% to 5.9%)365

(Figure 4, Table S5). The variance partitioning model (V-P), however, showed no marked bias366

in the estimation of the variance in social impact. The dispersion of 𝑉𝜙 was slightly higher in367

the I&R model. All models underestimated the mean-impact covariance (𝐶𝑜𝑣𝛼𝜙). In the I&R368

model, bias ranged from −0.1% to −7.0%, with dispersion ranging from 11.1% to 22.8%. In the369

variance-partitioning model, bias ranged from −2.2% to −4.4%, with dispersion ranging from370

13.7% to 23.0%. The trait-based model showed severe underestimation, particularly when more371

individuals interacted with fewer social partners (−61.3%), with bias decreasing to −8.7% when372

fewer individuals interacted with more social partners (Figure 4, Table S6). Overall, the I&R model373

and V-P model performed better than the Trait model, which produced extremely biased estimates374

of the mean-impact covariance under most sampling conditions (which is equivalent to a DGE-IGE375

covariance).376

To test whether the model error in the trait-based approach arose from missing the variance377

component that estimates responsiveness or measurement error, we compared the full I&R model378

to two models that each lacked one of these components. Our results show that there are very379

little differences in estimation bias and precision between the full impact and responsiveness (I&R)380

model and a model that does not account for individual variation in responsiveness, however, not381

modelling measurement error can cause substantial biases (Figure 5).382
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a. b. c.

/

Figure 5: Comparison of the impact and responsiveness (I&R) model with a trait-based model without random slopes
(Trait+EIV) and a trait-based model without errors-in-variables correction (Trait+RS). See caption Figure 4 for details.

For the population-level response 𝜓̄, both the I&R and Trait+EIV models showed minimal bias (<383

2%) across all sample sizes (Table S4). In contrast, the Trait+RS model consistently underestimated384

𝜓̄, with bias worsening as the number of individuals decreased (up to 25.96% at 100 individual),385

even more bias than the Trait model (Table S4). Dispersion was similar between models (6–12%).386

For the variance in social impact 𝑉𝜙, Trait+EIV model (1.2% to 2.5%) was slightly closer to unbiased387

estimation than the I&R. The Trait+RS model showed the largest bias (−4.5% to −8.7%). Both388

Trait+RS and Trait+EIV provide less biased estimates for variance in social impact than the basic389

Trait model. For the mean-impact covariance Cov𝛼𝜙, the Trait+EIV model and I&R model do not390

show substantial estimation bias. The Trait+RS model showed large bias, particularly when more391

individuals interacted with fewer social partners. This bias was slightly less than the basic Trait392

model.393

Overall, the Trait+EIV model performed comparably to the full I&R model, with even slightly394

more accurate and precise estimation of 𝑉𝜙. Adding error correction thus substantially improves395

the Trait model. In contrast, the trait-based model with random slopes and without error correction396
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(Trait+RS) performed significantly worse than the I&R model. However, compared to the Trait397

model, the Trait+RS model performed worse in estimating the population-level response 𝜓̄, slightly398

better in estimating 𝑉𝜙 and slightly better in estimating Cov𝛼𝜙. We also performed the model399

comparison with a lower total sample size of 800 observations, which showed similar patterns400

(Figures S2, S3).401

Discussion402

Understanding how social traits evolve requires not only studying individual variation in the403

mean phenotype, but also accurately estimating how individuals influence, and are influenced404

by, their social partners. Building upon recent conceptual advances (Araya-Ajoy et al., 2020; de405

Groot et al., 2023), our study provides a systematic exploration of the statistical and study design406

challenges associated with estimating mean trait values, social responsiveness, and social impact.407

Our simulations demonstrate that it is possible to estimate mean trait value, social responsiveness408

and social impact with reasonable accuracy and precision, but that model performance can be409

strongly affected by both sampling design and model structure. In particular, we show that failing410

to account for measurement error in the traits of social partners can lead to biased estimates of411

key parameters, including the population-level responsiveness 𝜓̄ and the covariance between mean412

phenotype and social impact. By systematically assessing these issues, our results provide practical413

guidance for studying the evolution of labile social traits in dynamic systems.414

Our results highlight that accurate and precise estimation of social parameters depends strongly415

on total sample size. Across increasing sample sizes, the I&R model produced unbiased estimates416

of fixed effects and variance components, with dispersion decreasing markedly as larger datasets417

were used. This aligns with earlier simulation work showing that model performance improves418

rapidly with increasing numbers of individuals and observations per individual (Dingemanse &419

Dochtermann, 2013; Martin et al., 2011). Notably, covariance estimates between components of420

individuality (Cov𝛼𝜙, Cov𝛼𝜓, and Cov𝜓𝜙) were consistently underestimated at small sample sizes,421

which largely disappeared when sample sizes were larger (≥ 3200). This indicates that detecting422
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and quantifying covariance structure among individuals in social traits requires substantially more423

data than estimating univariate effects (i.e. variances) alone. Large sample sizes are necessary424

to obtain unbiased estimates, especially when researchers expect even smaller effect sizes, for425

instance, when estimating indirect genetic effects (Santostefano et al., 2024). These sample sizes426

are fortunately not uncommon in studies on IGEs. Based on data extracted from Santostefano427

et al. (2024), we found that across 47 meta-analysed IGE studies, an average of 5023 individuals428

were included per study, with a mean of 1.48 observations per individual. Nonetheless, six studies429

were conducted with fewer than 400 individuals and fewer than 1600 total observations. Similar430

studies, where sample sizes are limited, might benefit the most from optimising sampling methods431

(see Figure S1). We found that at least 3200 total observations are needed, which aligns with432

the widely acknowledged difficulty in obtaining precise IGE estimates without large and well-433

structured datasets (Bĳma, 2010; Charmantier et al., 2014). Our inspection of the full parameter434

set indicated that the impact–responsiveness model struggled most when estimating the residual435

impact parameter, which was typically overestimated by about 50% (Table S7). This bias likely arises436

because variation in residual impact is estimated through the random identity of the partner, which437

is also used to model the partner’s impact trait affecting the focal individual. The model therefore438

has difficulty disentangling these two partner effects. We furthermore suspect that the complexity439

of the multivariate structure likely increases the data requirements for precise estimation. In our440

simulations, four correlated traits (mean phenotype, responsiveness, impact trait, and residual441

impact) were modelled, and the I&R model had to disentangle their variances and covariances442

using only the focal and partner identities and (labile) phenotypes within single assays.443

Estimating social responsiveness and impact, as well as their covariances with mean phenotype,444

requires specific features in study design that are rarely addressed in detail. In particular, the need445

for individuals/genotypes to act both as focal subjects and social partners, variation in partner446

traits, and repeated interactions between individuals or genotypes imposes constraints that are447

unique to studies of social behaviour. By examining these sampling design requirements, we448

found that the specific design choices for datasets with a total of 3200 observations did not have449

extreme effects on the accuracy and precision of the estimation of variance components (changes450

in bias and dispersion never exceeded 5%). This means that researchers are able to compensate451
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by investing in increasing the number of social partners per individual or repeating the same452

dyadic interactions if they do not have access to a large population size. Similarly, in some cases,453

if observations of social behaviour are often with the same social partner, researchers are forced454

to obtain an adequate population size of unique individuals to estimate all variance components.455

For example, this applies to longitudinal studies on indirect genetic effects in breeding attempts of456

long-lived animals that form strong pair bonds (Moiron et al., 2020; Teplitsky et al., 2010). However,457

for covariances, our results show that analyses using small population sizes could suffer from458

lower accuracy and precision in estimating individual-level covariances. To accurately estimate459

covariances, having more individuals is preferred over having more social partners or more dyadic460

repeated interactions at an equal total sample size in almost all cases. Furthermore, we also show461

that repeating pairwise interactions with the same individuals at the cost of using more individuals462

or more unique social partners is not advisable. In our analyses, increasing the repeats of the same463

dyads always resulted in a decrease in number of individuals or a decrease in number of unique464

dyads (social partners). We show that if the total sample size is kept equal having more repeats of465

the same dyad is either detrimental or does not improve the model estimation. However, repeating466

dyads with the purpose of increasing the total sample size should improve estimation accuracy and467

precision, but likely not as much as increasing the number of individuals or the number of unique468

dyads. Thus, based on our specific simulations, the order of priority for increasing sample sizes469

should be:470

1. Increase the number of individuals;471

2. Increase the number of social partners per individual (unique dyads);472

3. Increase the number of repeated dyads.473

However, it is important to recognise that our conclusions are relevant for the specific parameter474

values, effect sizes and the impact-responsiveness model used in our simulations. Consequently,475

we strongly encourage researchers to simulate their own datasets and analyse them to identify the476

sampling design most suitable for their expected effect sizes and study system. To facilitate this477

process, we developed socialSim, an easy-to-use R package that provides a simple workflow for478
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designing and evaluating social interaction studies (Wĳnhorst, 2025). The package includes three479

core functions: simulate_data(), which generates social interaction datasets under user-specified480

parameters. The function run_model(), where the user can choose one of the hierarchical Bayesian481

models tested in this article in Stan; and summarise_results(), which extracts the relative bias482

and relative precision of the estimated parameters. Importantly, socialSim can be used without any483

prior experience in Stan programming or Bayesian hierarchical modelling.484

In order to detect the consequences of having incomplete models when we suspect complex485

multivariate social phenotypes, we compared a complete I&R model to several reduced models.486

Importantly, we show that trait-based models which lack specific components to estimate individual487

differences in traits may perform worse. Our comparisons show that the variance-partitioning (V-488

P), however, showed very little biases and low dispersion in estimating the variation in social489

impact and the covariance (mean trait value x social impact) under large sample sizes. This is a490

positive result because the variance-partitioning approach is also the most widely used method for491

estimating IGEs (Bailey & Desjonquères, 2022). However, we show that using a trait-based model,492

that does not account for variation in slopes or measurement error, can lead to an underestimation493

of the social effect 𝑉𝜙 and the mean-impact covariance 𝐶𝑜𝑣𝛼𝜙. We demonstrate the well-known494

effect that not accounting for measurement error leads to an attenuation of the regression coefficient495

(𝜓̄ in our model), which also caused an underestimation of the social effect 𝑉𝜙. Interestingly, our496

model comparison indicates that adding or removing random slopes has little influence on the497

accuracy and precision of model estimates. Thus, including random slopes is not detrimental and498

may even be preferable when individual variation in responsiveness is of interest. In contrast,499

not accounting for random slopes when such variation is present in the data does not appear to500

worsen model performance. This is somewhat unexpected, as previous studies have emphasised501

the importance of modelling among-individual variation in slopes. For instance, omitting random502

slopes can bias fixed effects and inflate Type I error rates (Barr et al., 2013), or lead to overestimated503

between-individual variance components depending on the intercept–slope correlation (i.e. the504

mean behaviour–responsiveness covariance) (Schielzeth & Forstmeier, 2009). However, in our505

case, we do not observe such overestimation. Instead, the variance attributable to individual506

differences in slopes (0.1) is absorbed by the residual variance when slopes are not modelled507
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(residual variance increases from 0.6 to 0.7). Consequently, estimates of repeatability for direct508

and indirect effects (calculated as the proportion of variance explained by 𝑉𝛼 and 𝑉𝜙, respectively)509

remain stable. Nevertheless, this means that within-individual variance is inflated, as variance in510

slopes is absorbed by the residual, masking meaningful differences in responsiveness. Therefore,511

given both prior evidence for the potential risks of omitting random slopes and our finding that512

their inclusion is at least not harmful, we recommend incorporating random slopes into IGE models513

to better capture individual differences in social responsiveness.514

The impact-and-responsiveness framework we propose is particularly useful when the partner515

trait is either measured with error or varies substantially between social interactions. In the context516

of social effects, we are primarily interested in how repeatable individual differences in partners517

shape the focal individual’s behaviour. These effects are not caused by non-heritable or transient518

expressions of a partner’s phenotype during a given interaction, but by repeatable traits, such as519

mean levels of aggression or body size, that exert influence across multiple encounters (Bleakley520

& Brodie, 2009; Saltz, 2013; Wilson et al., 2009). Therefore, rather than modelling the observed521

phenotype expressed in a single interaction, we estimate the latent mean trait value of each partner522

using a double equation (errors-in-variables) model. This approach captures the repeatable among-523

individual variation that drives social effects and allows us to quantify its contribution to focal524

behaviour. Importantly, this latent partner trait (𝜒𝑗) can also be partitioned into additive genetic525

and permanent environmental components using an animal model. This enables the estimation of526

social breeding values and total genetic variance underlying IGEs using the interaction coefficient 𝜓̄527

(Bĳma et al., 2007; McGlothlin & Brodie, 2009; Wolf et al., 1999). Thus, the model not only accounts528

for measurement error or stochastic expression in labile traits, but also aligns with the conceptual529

goal of identifying the stable genetic and/or phenotypic individual differences in partners that530

generate social effects.531

Several theoretical papers have suggested modelling social responsiveness using random slopes532

in IGE frameworks (Araya-Ajoy et al., 2020; Bailey et al., 2021; Dingemanse & Araya-Ajoy, 2015;533

Martin & Jaeggi, 2022), which is further supported by observational and experimental evidence534

that individuals show repeatable differences in how they respond to the social cues (Bailey & Zuk,535
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2012; Chenoweth et al., 2010; Fürtbauer & Fry, 2018; Guayasamin et al., 2017; Jablonszky et al.,536

2022; Morand-Ferron et al., 2011; Strickland & Frère, 2019; Strickland et al., 2021). We support this537

perspective and show that including random slopes does not harm estimation accuracy or precision.538

Therefore, we recommend considering random slopes in IGE models, especially when aiming to539

disentangle social impact and responsiveness, two traits that can vary independently and jointly540

shape social phenotypes (de Groot et al., 2023). Exploring how these traits genetically covary,541

including with the direct effects, will be key to understanding the evolution of social behaviour542

(Araya-Ajoy et al., 2020; Bailey et al., 2021; Martin & Jaeggi, 2022). By assessing the utility of an543

impact-and-responsiveness model, we hope to provide a useful statistical tool for the study of the544

expression of social traits.545
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Supplementary material713

The full 4 x 4 matrix estimated in the I&R model:714 

α𝑖

ψ𝑖

χ𝑖

ϵ𝑖


∼ 𝒩 (0, Ω) , Ω =



𝑉𝛼 Cov(𝛼,𝜓) Cov(𝛼, 𝜒) Cov(𝛼, 𝜖)

Cov(𝛼,𝜓) 𝑉𝜓 Cov(𝜓, 𝜒) Cov(𝜓, 𝜖)

Cov(𝛼, 𝜒) Cov(𝜓, 𝜒) 𝑉𝜒 Cov(𝜒, 𝜖)

Cov(𝛼, 𝜖) Cov(𝜓, 𝜖) Cov(𝜒, 𝜖) 𝑉𝜖


𝑒 ∼ 𝒩(0, 𝑉𝑒 ) (S1)

was reduced to a 3 x 3 matrix (Equation 10) estimating the (co-)variance of mean trait values, social715

responsiveness and social impact using the following equations:716

𝑉𝜙 = 𝑉𝜖 + 𝜓̄2𝑉𝜒 + 2 𝜓̄ Cov(𝜒, 𝜖) (S2)
717

Cov(𝛼, 𝜙) = Cov(𝛼, 𝜖) + 𝜓̄ Cov(𝛼, 𝜒) (S3)
718

Cov(𝜓, 𝜙) = Cov(𝜓, 𝜖) + 𝜓̄ Cov(𝜒,𝜓) (S4)

Table S1: Mean percentage bias in posterior medians across 1000 simulations under different sample sizes

Total sample size 400 800 1600 3200 6400
Individuals 50 100 200 400 800

Parameter Description Sim. value Bias (%)
𝐵0 Population mean 1.00 1.31 0.61 0.52 0.16 0.07
𝜓̄ Population response 0.30 -4.31 -1.67 -1.54 -0.77 -2.18
𝑉𝛼 Mean behaviour variance 0.20 -1.93 0.85 -0.58 0.20 0.17
𝑉𝜓 Social responsiveness variance 0.10 -1.28 -0.92 0.25 0.52 0.21
𝑉𝜙 Social impact variance 0.10 8.24 4.66 1.91 3.09 2.74
Cov(𝛼, 𝜙) Cov: mean × impact 0.080 -17.63 -7.82 -4.44 -1.77 -0.73
Cov(𝛼,𝜓) Cov: mean × responsiveness -0.085 -26.03 -11.95 -6.10 -2.70 -1.44
Cov(𝜓, 𝜙) Cov: responsiveness × impact -0.076 -30.10 -19.48 -11.80 -7.13 -3.42

719

720

721
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Table S2: Bias and dispersion for key variance and covariance parameters for different sampling design (total sample size = 3200).

Individuals 1600 800 400 200 100 800 400 200 100 200 200 200 200
Social partners 2 4 8 16 32 4 4 4 4 16 8 4 2

Repeats 1x 1x 1x 1x 1x 1x 2x 4x 8x 1x 2x 4x 8x

Bias (%)

Mean 𝑉𝛼 -1.64 -0.77 0.20 -0.54 0.67 -0.77 0.06 -0.27 0.08 -0.54 0.63 -0.27 -0.41
Impact 𝑉𝜙 5.88 3.19 3.09 3.83 1.96 3.19 4.01 2.66 1.06 3.83 2.33 2.66 2.92
Response 𝑉𝜓 -0.34 -0.05 0.52 0.27 -0.59 -0.05 0.10 0.36 0.25 0.27 -0.02 0.36 0.61
Cov(𝛼, 𝜙) -0.14 -0.92 -1.77 -3.80 -6.95 -0.92 -1.58 -4.42 -8.98 -3.80 -3.68 -4.42 -3.98
Cov(𝛼,𝜓) -2.96 -3.14 -2.70 -4.33 -6.06 -3.14 -3.27 -5.40 -8.20 -4.33 -4.11 -5.40 -6.12
Cov(𝜓, 𝜙) -11.98 -8.82 -7.13 -5.82 -7.14 -8.82 -7.45 -8.64 -9.93 -5.82 -7.31 -8.64 -13.41

Dispersion (%)

Mean 𝑉𝛼 9.36 8.30 8.55 10.52 13.53 8.30 8.58 10.62 14.24 10.52 10.47 10.62 11.17
Impact 𝑉𝜙 20.70 17.29 17.23 18.69 21.72 17.29 17.07 19.11 21.35 18.69 18.85 19.11 19.68
Response 𝑉𝜓 13.67 11.44 11.07 11.82 13.93 11.44 10.97 12.80 15.05 11.82 11.88 12.80 14.97
Cov(𝛼, 𝜙) 11.10 11.70 13.77 16.49 22.76 11.70 13.23 17.79 23.74 16.49 17.29 17.79 18.63
Cov(𝛼,𝜓) 11.95 12.35 12.50 15.79 19.23 12.35 12.92 15.72 21.51 15.79 15.57 15.72 17.33
Cov(𝜓, 𝜙) 12.99 12.49 12.27 13.80 16.53 12.49 12.21 14.57 17.73 13.80 13.96 14.57 17.19

Table S3: Bias and dispersion for key variance and covariance parameters for different sampling designs (total sample size = 800).

400 200 100 50 200 100 50 100 100 100
2 4 8 16 4 4 4 8 4 2
1x 1x 1x 1x 1x 2x 4x 1x 2x 4x

Bias (%)

Mean 𝑉𝛼 -0.01 -1.21 0.02 -2.89 -1.21 -1.39 -2.92 0.02 -1.39 -3.09
Impact 𝑉𝜙 14.07 5.36 2.63 1.45 5.36 5.44 1.11 2.63 5.44 8.94
Response 𝑉𝜓 3.61 0.91 -0.42 1.04 0.91 -0.06 -2.13 -0.42 -0.06 1.18
Cov(𝛼, 𝜙) -3.75 -6.10 -11.16 -21.00 -6.10 -10.79 -21.60 -11.16 -10.79 -9.74
Cov(𝛼,𝜓) -17.34 -16.12 -17.27 -23.93 -16.12 -18.90 -28.77 -17.27 -18.90 -22.14
Cov(𝜓, 𝜙) -24.53 -24.61 -24.65 -26.10 -24.61 -25.72 -32.38 -24.65 -25.72 -29.83

Dispersion (%)

Mean 𝑉𝛼 17.46 15.96 17.34 19.65 15.96 17.95 21.19 17.34 17.95 18.71
Impact 𝑉𝜙 19.65 19.81 22.05 27.95 19.81 23.43 28.64 22.05 23.43 25.99
Response 𝑉𝜓 22.97 21.99 21.38 21.84 21.99 22.10 26.31 21.38 22.10 25.48
Cov(𝛼, 𝜙) 19.83 20.52 25.28 32.53 20.52 25.41 33.87 25.28 25.41 27.74
Cov(𝛼,𝜓) 25.06 23.33 25.75 30.83 23.33 26.85 34.44 25.75 26.85 32.52
Cov(𝜓, 𝜙) 22.75 22.22 23.89 28.53 22.22 25.72 32.29 23.89 25.72 29.81

Table S4: Fixed effect: population response 𝜓̄

Individuals I&R Trait Trait+EIV Trait+RS

Bias (%)

1600 -1.68 -10.09 -0.48 -11.54
800 -1.00 -10.59 -0.02 -13.45
400 -0.77 -12.23 -0.29 -17.39
200 -0.98 -13.84 0.06 -21.48
100 -1.58 -17.00 0.22 -25.96

Dispersion (%)

1600 12.42 5.38 6.66 5.34
800 10.33 6.02 6.37 6.11
400 9.92 6.81 6.89 7.20
200 10.75 8.40 8.06 8.96
100 11.54 10.95 9.91 12.16
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Table S5: Variance: social impact 𝑉𝜙

Individuals I&R V–P Trait Trait+EIV Trait+RS

Bias (%)

1600 5.88 -1.06 -8.50 1.20 -4.54
800 3.19 -0.69 -12.97 -1.72 -7.72
400 3.09 -0.28 -14.43 -2.45 -8.74
200 3.83 1.16 -13.32 -0.83 -7.68
100 1.96 1.50 -12.46 0.06 -7.23

Dispersion (%)

1600 20.70 19.61 13.01 13.76 12.81
800 17.29 15.33 13.61 13.60 12.65
400 17.23 14.54 14.95 14.59 13.41
200 18.69 16.01 16.91 16.58 15.76
100 21.72 20.63 21.68 20.85 20.64

Table S6: Covariance: mean behaviour-social impact 𝐶𝑜𝑣𝛼𝜙

Individuals I&R V–P Trait Trait+EIV Trait+RS

Bias (%)

1600 -0.14 -4.41 -61.26 -0.76 -53.91
800 -0.92 -3.13 -45.66 -1.18 -36.66
400 -1.77 -2.59 -29.67 -1.86 -20.76
200 -3.80 -2.16 -17.27 -2.15 -11.14
100 -6.95 -2.54 -8.73 -3.47 -5.51

Dispersion (%)

1600 11.10 14.55 24.43 10.64 20.75
800 11.70 13.72 18.03 11.57 15.78
400 13.77 14.91 17.52 13.73 14.98
200 16.49 16.82 18.00 16.12 15.64
100 22.76 23.02 23.76 22.47 20.55

Table S7: Mean model estimates (posterior medians) of 1000 simulated datasets under different sampling partitions (total sample size =
3200).

Individuals 1600 800 400 200 100 400 200 100 200
Social partners 2 4 8 16 32 4 4 4 8

Repeats 1x 1x 1x 1x 1x 2x 4x 8x 2x
Parameter Description Sim. value Model outcome
𝛽0 Population mean 1.00 1.000 1.000 1.002 1.004 1.005 1.002 1.005 1.010 1.005
𝜓̄ Population response 0.30 0.295 0.297 0.298 0.297 0.295 0.299 0.296 0.293 0.295
𝑉𝛼 Mean behaviour variance 0.20 0.197 0.198 0.200 0.199 0.201 0.200 0.199 0.200 0.201
𝑉𝜓 Responsiveness variance 0.10 0.100 0.100 0.101 0.100 0.099 0.100 0.100 0.100 0.100
𝑉𝜖 Residual impact variance 0.01 0.017 0.015 0.014 0.014 0.014 0.015 0.014 0.014 0.014
𝑉𝜒 Impact trait variance 1.00 0.999 0.999 0.996 1.002 0.995 0.999 0.998 0.996 0.996
𝑟𝛼𝜖 Corr: mean × res. impact -0.60 -0.598 -0.589 -0.587 -0.579 -0.569 -0.585 -0.574 -0.557 -0.578
𝑟𝛼𝜓 Corr: mean × response 0.00 0.043 0.017 0.015 -0.000 -0.000 0.012 -0.000 -0.009 0.000
𝑟𝛼𝜒 Corr: mean × impact trait -0.60 -0.285 -0.375 -0.451 -0.494 -0.526 -0.426 -0.451 -0.472 -0.484
𝑟𝜖𝜓 Corr: res. impact × response 0.60 0.599 0.595 0.590 0.584 0.569 0.590 0.583 0.567 0.585
𝑟𝜒𝜓 Corr: impact trait × response -0.60 -0.603 -0.598 -0.590 -0.585 -0.579 -0.592 -0.584 -0.574 -0.583
𝑟𝜒𝜖 Corr: impact trait × res. impact 0.00 0.033 0.009 0.004 0.000 0.006 0.003 0.010 -0.001 0.007
𝑉𝑒 Residual variance 0.60 0.599 0.600 0.599 0.600 0.600 0.600 0.600 0.600 0.599
𝑉𝑒𝜒 Measurement error 0.10 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
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Table S8: Mean model estimates (posterior medians) of 1000 simulated datasets under different sampling partitions (total sample size =
800).

Individuals 400 200 100 50 100 50 100
Social partners 2 4 8 16 4 4 2

Repeats 1x 1x 1x 1x 2x 4x 4x
Parameter Description Sim. value Model outcome
𝛽0 Population mean 1.00 1.000 1.001 1.004 1.013 1.006 1.007 1.005
𝜓̄ Population response 0.30 0.298 0.297 0.296 0.293 0.297 0.291 0.296
𝑉𝛼 Mean behaviour variance 0.20 0.200 0.198 0.200 0.194 0.197 0.194 0.194
𝑉𝜓 Responsiveness variance 0.10 0.104 0.101 0.100 0.101 0.100 0.098 0.101
𝑉𝜖 Residual impact variance 0.01 0.024 0.016 0.015 0.014 0.015 0.015 0.017
𝑉𝜒 Impact trait variance 1.00 0.996 0.991 0.985 0.975 0.990 0.967 0.990
𝑟𝛼𝜖 Corr: mean × res. impact -0.60 -0.512 -0.525 -0.515 -0.478 -0.510 -0.460 -0.492
𝑟𝛼𝜓 Corr: mean × response 0.00 0.021 0.030 0.010 0.001 0.021 0.004 0.019
𝑟𝛼𝜒 Corr: mean × impact trait -0.60 -0.113 -0.161 -0.225 -0.278 -0.197 -0.206 -0.139
𝑟𝜖𝜓 Corr: res. impact × response 0.60 0.584 0.571 0.550 0.511 0.548 0.513 0.561
𝑟𝜒𝜓 Corr: impact trait × response -0.60 -0.555 -0.554 -0.539 -0.514 -0.535 -0.504 -0.522
𝑟𝜒𝜖 Corr: impact trait × res. impact 0.00 0.006 0.009 0.008 0.006 0.007 0.008 0.009
𝑉𝑒 Residual variance 0.60 0.583 0.594 0.597 0.600 0.598 0.597 0.599
𝑉𝑒𝜒 Measurement error 0.10 0.100 0.100 0.100 0.100 0.100 0.100 0.100
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Figure S1: Analysis of sampling design parameters for optimal bias and precision for estimating variance and covariance
parameters. Relative bias and dispersion of the posterior median of variances and covariances components of 1000 simulated datasets
per sampling design. Top and bottom left figures show the trade-off between the number of individuals and the number of social partners
to obtain a total sample size of 800. Middle figures show the trade-off between the number of individuals and repeatedly interacting with
the same social partners for a total sample size of 800. Right figures shows the trade-off between interacting with more different social
partners against interacting repeatedly with the same social partners for a total sample size of 800. Top panels represent the bias and
precision of the variance parameters and the bottom panels the covariance parameters.
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Figure S2: Comparison of the impact and responsiveness model (I&R) to the variance partitioning model and trait-based
model for datasets with a total sample size of 800 observations. Top panels show the relative bias of three models that analysed
the same 1000 simulated datasets for four different partitions of number of individuals and number of social partners per individual.
Bottom panel shows the relative dispersion, expressed as a percentage.
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Figure S3: Comparison of the impact and responsiveness (I&R) model to the trait-based models without errors-in-variables
correction (Trait+RS) and trait-based model without random slopes (Trait+EIV) for datasets with a total sample size of
800 observations. Top panels show the relative bias of the three models after analysing the same 1000 simulated datasets for four
different partitions of number of individuals and number of social partners per individual. Bottom panel shows the relative dispersion,
expressed as a percentage.
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