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Abstract

Social interactions mediate the phenotypic expression of fitness-relevant traits. The expression of
such labile social traits includes three distinct components: an individual’s mean trait value (direct
effect), its social responsiveness, and its social impact (indirect effects). Traditional methods, such as
variance-partitioning or trait-based models, usually only partition individual variation into direct
and indirect effects. However, individual variation in social responsiveness and its covariation with
direct effects and social impact will affect responses to selection. To date, no studies have explored
the performance of models that allow the decomposition of responsiveness from impact. Here, we
describe a model for studying variation in phenotypic expression caused by social interactions, and
we use simulations to explore its performance under various experimental designs. Our analyses
show that with adequate total sample sizes (> 3200), variance components are estimated accurately
across all study designs. In contrast, covariance estimation would benefit most from including more
unique individuals, followed by more unique social partners per individual, whereas repeated
interactions with the same partners added the least improvement to the covariance estimation. We
also found that failing to model individual variation in responsiveness, and neglecting measurement
error, increases bias and imprecision in trait-based approaches. Hence, disregarding individual
variation in responsiveness would ignore a key component of social behaviour, and hamper our

ability to acquire unbiased estimates of indirect genetic or social effects.

Introduction

Social interactions alter selection pressures and phenotypic expression, shaping the trajectory of
evolutionary change in ways that are often difficult to predict (Moore et al., 1997; Wolf et al., 1998).
Phenotypes displayed by individuals or genotypes rarely emerge in isolation; rather they arise from
the interaction of internal regulators and external conditions (Via & Lande, 1985; West-Eberhard,
1989). One important external factor, the social environment, consists of conspecifics that affect
phenotypic expression through social interactions. The effects of the social environment can be far-

reaching in traits that are solely expressed in a social context, such as cooperation, social hierarchies
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or parental-offspring interactions (Bailey et al., 2018; Bleakley & Brodie, 2009; Kirkpatrick & Lande,
1989; Smiseth et al., 2008; Wilson et al., 2011). Explaining (co-)variation in social traits is challenging
because individuals often adjust their phenotype plastically in response to their partners’ traits
(Bailey & Desjonqueéres, 2022; Moore et al., 1997). These socially mediated effects, when heritable,
are termed indirect genetic effects (IGEs) (Griffing, 1967; Moore et al., 1997). The optimal phenotype
might therefore depend on other phenotypes displayed in the social environment (Maynard-Smith
& Price, 1973; McNamara & Weissing, 2010), where selection could also act on an individual’s
competence to adjust their phenotype to a changing social environment (Martin & Jaeggi, 2022;

Taborsky & Oliveira, 2012).

An often overlooked aspect of such indirect genetic effects (IGEs) is that individuals both re-
spond to (responsiveness) and affect (impact) the phenotype of other individuals, and individuals
may differ in both of these traits. Following recent proposals, social phenotypes can be decomposed
into three components of individual phenotypic variation: (i) mean trait value; (ii) social respon-
siveness, which refers to the phenotypic response of the focal to the traits of their interacting social
partners; and lastly (iii) social impact, which refers to the response an individual elicits in their social
partners (Araya-Ajoy et al., 2020; de Groot et al., 2023). Previous studies in quantitative genetics
have estimated population-level IGEs (reviewed by Bailey & Desjonqueéres, 2022), disregarding that
individuals may differ in their level of social responsiveness. Common statistical models for study-
ing social effects include the ‘variance-partitioning’ (Bijma, 2014; Griffing, 1967) and ‘trait-based’
approach (Kirkpatrick & Lande, 1989; McGlothlin et al., 2010; Moore et al., 1997; Wolf et al., 1999).
The variance-partitioning approach is a type of mixed-effects model that partitions observed phe-
notypic variation into direct individual effects and indirect individual effects, which can be further
decomposed into additive genetic components using ‘animal models’” (Henderson, 1984; Kruuk,
2004; Meyer, 1992; Wilson et al., 2010). The trait-based approach, mathematically equivalent to the
variance partitioning approach under certain assumptions (McGlothlin & Brodie, 2009), applies a
reaction norm approach to quantify social responsiveness as a slope. Both frameworks estimate the
interaction coefficient ¢, which represents the population-level response and describes the mag-
nitude and direction of phenotypic change in response to the phenotype expressed by interaction

partners (see Bailey & Desjonqueres, 2022; Bijma, 2014). Thus, these models typically ignore the
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possibility that individuals may differ in responsiveness. However, empirical evidence increasingly
shows that individuals can differ in the degree to which they respond to social signals (Bailey &
Zuk, 2012; Guayasamin et al., 2017; Jablonszky et al., 2022; Morand-Ferron et al., 2011; Strickland
& Frére, 2019). Hence, researchers have suggested that 1) is not fixed; instead it may vary among
individuals and can consequently evolve (Akcay & Van Cleve, 2012; Araya-Ajoy et al., 2020; Dinge-
manse & Araya-Ajoy, 2015; Kazancioglu et al., 2012; Wolf et al., 2008). Already there is experimental
evidence that ¢ can evolve under different selection regimes (Chenoweth et al., 2010). Furthermore,
the covariance of social responsiveness with the mean social trait could speed up or slow down

evolution through a process called "social drive” (Bailey et al., 2021; Martin et al., 2023).

Very little is known about the extent to which variation in 1 influences social interactions for two
key reasons. First, individuals may differ in their responsiveness, yet standard quantitative genetics
models typically assume a fixed population-level effect. This masks important individual variation
and limits evolutionary inference. Second, the traits of social partners (to which focal individuals
respond) are themselves phenotypically variable, introducing both among- and within-individual
variation into an environmental covariate (Araya-Ajoy et al., 2020; Dingemanse & Araya-Ajoy,
2015). This variability, as is also the case for measurement error, can attenuate estimates of ¢ and
underestimate true social effects. To address these problems, we use a model that incorporates both
random slopes (to capture individual variation in ¢) (de Groot et al., 2023; Martin & Jaeggi, 2022)
and an ‘errors-in-variables” approach that corrects for noisy partner trait estimates (Dingemanse
et al., 2021; Ponzi et al., 2018), which should allow an accurate estimation of social responsiveness

and its evolutionary consequences.

The next challenge is to determine which study design is optimal to estimate the three com-
ponents of individuality in social interactions. A common and effective laboratory approach for
estimating individual differences in IGEs involves assessing individuals in pairwise assays in which
individuals repeatedly interact with different social partners (e.g. Han et al., 2018; Lane et al., 2020;
Santostefano et al., 2016; Wilson et al., 2009). Similar datasets have been collected through observa-
tional studies on dyadic interactions in wild populations (e.g. Brommer & Rattiste, 2008; McLean et

al., 2023; Moiron et al., 2020; Tuliozi et al., 2023; Wilson et al., 2011). Several data simulation studies
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have explored the accuracy and precision of statistical models in estimating individual variation in
labile traits (Araya-Ajoy et al., 2015; Dingemanse & Dochtermann, 2013; Martin et al., 2011; van de
Pol, 2012). From these studies, we have learnt that there is a rapid increase in statistical power when
more individuals are sampled, or more repeated measures per individual are taken. Furthermore,
simulation studies show that resource allocation (more individuals with fewer observations per
individual versus fewer individuals with more observations per individual) can matter when the
total sample size is the limiting factor (Martin et al., 2011; van de Pol, 2012). We do not know how
resource allocation affects the estimation of individual variation in mean social trait values, social

impact or social responsiveness.

Some studies have focused on optimal study designs to estimate IGEs, comparing different
group sizes or breeding designs (Bijma, 2010), but few have explored how well IGE models recover
individual variation in labile traits expressed during repeated social interactions. Designing studies
of social traits poses challenges not typically encountered for non-social traits, because social pheno-
types must be sampled in ways that capture both the effect of the individual on its own phenotypic
expression and its effects on others. Specifically, two design features are required to reliably estimate
variance in social responsiveness and impact, and their covariances with mean trait value. First,
individuals must be repeatedly observed interacting multiple times both as focal individuals and as
social partners. This reciprocity in roles is essential to estimate covariances between how individ-
uals behave and how they influence others (Dingemanse & Araya-Ajoy, 2015). Second, individuals
must encounter sufficient variation in partner trait values, which is a prerequisite for estimating
responsiveness (the slope describing the individual’s phenotypic response to partner phenotypes).
Without these specific design properties, many components of the multivariate structure of social
traits are non-estimable. Consequently, when studying social traits under limited time or resources,
researchers face critical trade-offs in allocating sampling effort across individuals, the number of
partners per individual, and the number of unique pairwise interactions. One goal of this study is
to explore which of these sampling axes should be prioritised to maximise precision and accuracy

in estimating social impact and responsiveness.

In this study, we evaluate the accuracy and precision with which variance and covariance in mean
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trait value, social impact, and social responsiveness can be estimated. The impact-responsiveness
framework provides a general conceptual and statistical approach and can be used to study any
system in which organisms adjust their phenotype in response to others and influence the pheno-
types of others, including behavioural, physiological, developmental, and ecological interactions
(see de Groot et al., 2023, for a discussion of its general applicability). Here, we focus mainly on
labile social traits in the context of interacting phenotypes and indirect genetic effects (Bailey et al.,
2018; Bijma, 2010; Moore et al., 1997), and explore the statistical implementation of the framework.
We first explore the minimally required sample size needed to obtain unbiased estimates. Next,
we assess the difference in accuracy and precision of study designs that vary in the number of
individuals, the number of repeated measures per individual, and the number of unique social
partners. We further determine the consequences of not accounting for individual variation in
responsiveness, measurement error/plasticity in partner traits, when estimating social effects. By
combining these perspectives, our study aims to encourage empirical estimates of key components
underlying phenotypic expression during social interactions, provide practical guidance on the
optimal experimental designs and statistical analyses, and increase awareness of problems when

failing to account for key sources of variation.

Methods

Data simulation

We simulated realistic social interaction data where individuals differed in their mean trait value
(intercept), social impact (effect on others), and social responsiveness (response to partner pheno-
type). Individuals interacted pairwise, responding to a single fixed partner trait (e.g. body size)
that was measured with error. Each dataset had a balanced design: all individuals interacted with
the same number of partners and acted equally often as focal and partner. To answer our questions,

we simulated and analysed the following datasets:

1. To assess model performance as a function of the total sample size, we simulated 1000 datasets
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per sample size, varying the number of individuals while keeping the number of interactions

per individual constant.

2. To evaluate the effects of sampling design on bias and precision, we simulated 1000 datasets
with balanced designs that partitioned a fixed total number of observations among varying

numbers of individuals, social partners per individual, and repeated interactions.

3. To compare the performance of alternative statistical models, we simulated 1000 datasets
using four study designs and to each we fit the full model and several reduced models lacking

particular components.

The main parameters of interest are two fixed effects (population intercept 39 and population slope

1), and six (co)variance components: the among-individual variance in mean trait value (V,); social
responsiveness (Vy); and social impact (V); and their three covariances (Table S1). We assessed the

accuracy and precision of estimated parameters. We measured accuracy as relative bias, calculated
1.0-0
as: =X
n 0
median) of the ith simulation, and 7 is the number of simulations. We measured precision as relative

1.10-6;
dispersion (MADm: Mean Absolute Deviation of the mean), calculated as: EZJ % -100%, where

- 100% , where 0 is the true simulated value, é,- is the model estimate (posterior

0 is the grand mean of the 1000 posterior median model estimates. Instead of formal power analyses
(less common in Bayesian settings), we report performance using bias and dispersion and provide
an open-access simulation tool "socialSim" for researchers to explore expected performance under
their study design of choice (Wijnhorst, 2025). The data simulation and model fitting workflow is

summarised in Figure 1.
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a. b. [ d.

Simulate study Simulate trait values for each Simulate . Repeat
X Lo . N measurement Data analysis 1000
design structure individual and interaction outcome error Gmes

U

Focali Partnerj Zijk= A + Pi x Xj + Focali Partnerj i
1 2 0.63 0.52
2 3 -0.57 0.25
3 1 0.22 1.48
1 4 -0.97 1.40
Symbol Description
Zijk The phenotype of individual i when it interaction with j at instance k
a; Mean behaviour: individual deviation of the population mean
Y Social responsiveness: individual deviation of the population slope
Xj True value of the phenotype to which the focal responds
& Residual impact: partner effects caused by unknown/unmeasured traits
€ijk Residual effect/nonsocial environmental effect
Cijky Measurement error or nonsocial phenotypic plasticity around the true value of x;

Figure 1: Workflow of data simulations and analyses a.) A data structure is created that contains a certain number of individuals
that interact with a fixed number of social partners in balanced designs. b.) We simulated the outcome of the social interaction (z;ji)
based on their simulated trait values of each individual and their partner drawn from a multivariate normal distribution plus residual
error. c.) Before we enter our observed data into the model, we assume that the fixed opponent trait is measured with error before every
social interaction. Therefore, we added or subtracted simulated measurement error to obtain the observed opponent trait x;jx. d.) The
data is analysed by the model and this process is iterated a 1000 times.

Simulated effect sizes

Effect sizes were selected to represent biologically realistic magnitudes derived from empirical
estimates. The population response 1 was set to 0.3, similar to the mean (0.27) of the significant
non-reciprocal, positive estimates ¢ (obtained from Bailey & Desjonquéres, 2022). The variance
components were adjusted so that the total phenotypic variances sum to 1, with the variance
explained by the focal individual at 0.3 (approximating the mean repeatability of animal behaviours
of 0.37; Bell et al., 2009) and the variance explained by the social partner (variance of social impact)
at 0.1 and residual variance V, = 0.6. This variance explained by the social partner is representative
of partner effects, however for indirect genetic effects, the effect size is expected to be somewhat

smaller (6% for behavioural traits and 3% for all traits; Santostefano et al., 2024). The variance of
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social responsiveness was set to 0.1, giving an elevation-to-slope ratio of 1 : 0.5, similar to empirical
estimates (1 : 0.65) (Brommer, 2013). The measurement error for the impact trait was set to 0.1 (10%
of the variance in the social partner trait x;). Full parameter settings are given in Supplementary

Table S7.

Analyses
Total sample size

To assess model performance as a function of total sample size, we simulated 1000 datasets of social
interaction data. In each dataset, the number of interactions per individual was kept constant at 8.
The smallest dataset included 50 individuals (400 observations), and the number of individuals was
doubled at each step to a maximum of 800 individuals (6400 observations). Our aim was to identify
the minimum sample size at which the full model for estimating impact and responsiveness (I&R

model) yields unbiased estimates, which was used for subsequent analyses.

Sampling design

To determine how to best allocate limited sampling resources, we assessed how different study
designs influence the accuracy and precision of parameter estimates. In many ecological and evo-
lutionary studies, researchers face logistical constraints that limit the total number of observations
that can be collected. Therefore, we examined how design choices affect parameter bias and preci-
sion. Each observation represented a pairwise interaction, and individuals acted as both focal and

partner. We varied sampling designs along three key axes:

* Number of individuals (‘individuals’), which determines the total population of interacting

individuals.

* Number of unique social partners per focal individual (“partners’), which reflects the variety

of partners encountered by each individual.

* Number of repeated interactions per dyad (‘repeats’), which controls the extent to which
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specific focal-partner pairs are observed multiple times. A value of ‘1x” indicates that each

focal interacts only once with each unique social partner (i.e. no repetitions of unique dyads).

We kept total observations constant while trading off two axes at a time, allowing us to assess how

these factors influence estimation accuracy and precision.

Model comparison

To evaluate how different statistical modelling choices influence the estimation of social parameters,
we compare several models used in the study of indirect genetic effects (IGEs) and social trait
evolution. Specifically, to investigate the consequences of not accounting for certain sources of
variation, we compare the full impact and responsiveness model (I&R) to incomplete models (i.e.
models that lack certain parameters, Table 1). As such, I&R is compared to two reduced models,
the variance-partitioning model (V-P) and the trait-based approach (Trait). Secondly, we modify
the trait-based approach to include random slopes or an errors-in-variables correction to identify
which missing component causes increased bias or imprecision. For this, we compare the full
1&R model (equivalent to Trait+RS+EIV) against two reduced models: one including an errors-in-
variable correction (Trait+EIV) and one including random slopes (Trait+RS) for individual social

responsiveness. Below, we describe the models in increasing order of model completeness.
Variance-partitioning model (V-P):

The variance partitioning approach can be described as:

zijk = o + ai + Qj + eijk 1)

where z;j; denotes the phenotype of individual i after interacting with social partner j at instance k.
The fixed intercept fg represents the population mean phenotype. The random effect ; represents
the deviation of individual i’s mean trait value from the population mean. The variance of these
deviations (V,) quantifies among-individual variance, which may arise from direct genetic effects

(DGEs) and permanent environmental influences. The random partner effect ¢; represents the

10
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deviation associated with social partner j, that is, the extent to which partner j influences the
phenotype of others. The variance of these deviations (V,;) quantifies variation in social impact,
which may arise from indirect genetic effects (IGEs) as well as non-genetic partner effects. The
residual term e;jx represents unexplained deviations at the observation level. The residual variance
(Ve) captures within-individual variation that is not attributable to focal identity or repeatable
partner effects. When individuals interact both as focal and partner (as is common in social
interaction datasets), the model can also be used to estimate the covariance (Cov,g) between an

individual’s mean trait value and its social impact (Wilson et al., 2009):

SMVNO,Q), a=] " Sl Now). 2)
¢ Covep Vo

The covariance between focals’ mean trait value and social impact (Cov,g) is critical for predicting
evolutionary change in social traits. When decomposed into genetic and environmental compo-
nents, it corresponds to the DGE-IGE covariance, which can accelerate or constrain evolutionary
responses depending on its sign and magnitude (Bijma et al., 2007; Wilson et al., 2009; Wolf et al.,
1998). The V-P model is commonly used in IGE studies to estimate the variance attributable to social
partners without explicitly modelling the partner traits through which those effects are mediated.
While the model provides an estimate of the total variance of social impact (V), it does not identify

trait-based pathways or quantify individual differences in responsiveness.
Trait-based (Trait) model:

The trait-based model can be described as:

zijk = Bo + @i + PXijk + €f + eijk - 3)

The trait-based model adopts a reaction norm framework (Dingemanse & Araya-Ajoy, 2015; Kirk-
patrick & Lande, 1989; McGlothlin et al., 2010; Moore et al., 1997; Wolf et al., 1999), modelling
the focal phenotype as a function of a measured trait of the social partner, x;jx (e.g. body size).

The response is estimated through 1), the interaction coefficient or slope that represents the mean

11
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response of the population to the trait values of the social partners. To account for unexplained
social effects not captured by the measured trait, we include a partner identity effect €;. Although
this addition is not conventional in trait-based models, it ensures mathematical equivalence to the

variance-partitioning model. The total variance in social impact can then be expressed as:

Vi = 9*Vy + Ve +20Cov e . @)

Subsequently, we can again estimate the covariance matrix, the same as we derive from the V-P

approach.
Trait-based model with random slopes (Trait+RS):

The trait-based model can be extended to estimate social responsiveness:
zijk = Bo + ai + (P + i) Xijk + €] + eiji - ©)

This extension of the trait-based model includes random slopes 1;, which represent individual-
specific deviations from the population slope 1. This allows individuals to differ in their respon-
siveness to partner traits. The model therefore estimates a 33 covariance matrix that includes mean

trait value (V,), social responsiveness (Vy), and residual partner effects (Ve), and their covariances.
Trait-based model with measurement error correction (Trait+EIV):

To account for measurement error or labile variation in the partner trait, we supplement the trait-

based model with an error correction:
Zijk250+ai+l;[_})(j+€j+eijkr (6)
where the latent trait value x; is estimated by:

Xijk = Poy + Xj + €ijk - )

12
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This model is an extension of the Trait model, where y; jk denotes the trait value of the social partner
j as observed when interacting with focal i at instance k. We partition this observed value into two
components: a partner-specific effect x; and a residual term Cijk - In the context of measurement
error, ejjk represents random error around the true partner trait value x;. More generally, this
same structure can also be interpreted as a decomposition of the partner trait into genetic and
environmental components: y; can be viewed as the heritable additive genetic contribution to the
partner trait, whereas Cijk , represents non-heritable influences (environmental or transient effects).
Thus, the measurement-error model provides a framework that can be applied both to correct for
error in trait measurements or to allow inference about the genetic basis of social impact through
partner traits, thereby linking directly to IGE theory (McGlothlin & Brodie, 2009). This model also
estimates a 3 X 3 covariance matrix that includes mean trait value (V,), partner impact trait (V,),

and residual partner effects (V.), and their covariances.
Impact and responsiveness model (I&R):

The complete model to estimate individual mean trait values, social responsiveness, and social

impact is described as:

zijk = Bo+ i + (Y + Yi)x; + € +eij, 8)
Xijk = Poy + Xj + €ijk - )

This model extends the trait-based approach by combining two components: random slopes and
the error-correction framework. This complete model yields a 4 X 4 covariance matrix that esti-
mates the variances and covariances of mean trait value (V,), the partner impact trait (V}), social
responsiveness (Vy), and residual partner effects (V). From these estimates, we can derive the joint
covariance structure of mean trait value («), social impact (¢), and social responsiveness (1) (see

Supplementary Equations S1, S2, S3, 54 for details):

o Va Covyy  Covag
’lbj ~ MVN(O, Q) 1 0= COVm?L, le COV¢¢) [e] ~ MVN(O, Ve) . (10)
b; Covmp COV¢¢ Vo
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Table 1: Overview of the variance components estimated in each model. Total social impact variance is estimated either directly
(Vi) or via a combination of the variance in impact trait and residual impact ( D2V + Ve). The two trait models, Trait and Trait+RS do
not correct for measurement error, and thus estimate impact (V) using the variance of the partner trait that includes measurement error
(Xijk- Each model estimates a covariance matrix containing all individual-level random effects and their covariances corresponding to
that model specification.

Model Component Mean behaviour | Responsiveness | Impact trait | Total / Residual impact
V-P Va Ve
Trait Vy Xijk Ve
Trait+RS Vy le Xijk Ve
Trait+EIV Va Vy Ve
1&R Va Vi Vy Ve

Model specification

All simulations were implemented in R (version 4.5.1, R Core Team, 2025) and analysed in a Bayesian
framework using Stan probabilistic programming language (Carpenter et al., 2017) via the ‘rstan’
package (version 2.32.2) (Stan Development Team, 2025). Each model used weakly informative
priors: normal distributions (mean =0, SD = 1) for fixed effects, and truncated normal distributions
(mean = 0, SD = 1; lower bound = 0) for variance parameters. Correlation structures among random
effects were estimated via Cholesky decomposition with an LKJ(1) prior. All models were run with
one chain with 1000 warm-up, and 5000 iterations. The models were run in parallel on multiple

processing units (up to 56) using the "future” and “future.apply’ packages (Bengtsson, 2021).

Results

Total sample size

The I&R model recovered fixed effects and variances with high accuracy (Figure 2). Estimates of
the population mean (B) and interaction coefficient () showed negligible bias, for sample sizes
> 800. The dispersion decreased steadily with the sample size for all parameters. “All variance
components showed minimal bias (< 5%), except a slight overestimation of social impact Vy (8.2%
at n = 400). Covariances were more difficult to estimate, with strong underestimation at small

sample sizes (-17.6% to -30.2% at 400). Among covariances, Covy,, was most difficult to estimate,

14



followed by Covmp, whereas Cova(/) was least biased. The bias decreased consistently with larger
samples, with less than 4% bias at the largest sample size of 6400 observations with 800 individuals.
These results show that estimates of fixed effects and variances stabilise at moderate sample sizes
(> 800), whereas reliable estimation of covariance components requires substantially larger datasets.

Based on these patterns, we continued the subsequent analyses with a total sample size of 3200

observations.
a. Fixed effects b. Variances C. Covariances
10 10 5
Bo -e- meanV, 0
7 Vo 5
51 5 Vi
= Y ~10
R
2] -154
o
o -20 .
OfF === === == - === - O === - —>g == === -o- mean-impact Cov,
-25
v -o— mean-response Cov,y
=30 COV,‘/)(Z)
-5 -5 351
1.2
o 10 % % % == 03 o1{ | L __+__+___
2
g 081
3 o2+ M-8-B--B--8-- |
3 061 I 0.0
[0}
B oa
= 014 F-9- -8 - 8- - —-+$-
Lok odok
0.2-
0.0- 0.0
50 100 200 400 800 50 100 200 400 800 50 100 200 400 800
400 800 1600 3200 6400 400 800 1600 3200 6400 400 800 1600 3200 6400

Number of individuals/
Total observations

Figure 2: Bias and dispersion of model parameters estimated by the impact and responsiveness (I&R) model across various
total sample sizes. The top panels show the relative bias (%) of the posterior medians of a 1000 analysed simulated datasets per sample
size. The bottom panel shows boxplots of all 1000 posterior medians. The left-side panels (a) show the fixed effects: population mean Bo
and interaction coefficient 1. The middle panels (b) show variances of: mean trait value Vy, social impact Vg and social responsiveness
Vy. The right-side panels (c) show the covariances: mean trait value-social impact Cov,gp, mean trait value-social responsiveness
Covay and social impact-social responsiveness Covyg. The total sample sizes are increased by increasing the number of individuals.
Each individual interacts with eight different social partners. The dotted lines represent the simulated ‘true’ estimate.
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Sampling design

We examined different sampling designs while keeping the total sample size constant at 3200
observations. Throughout the results, we only highlight changes greater than 5% across study
designs; smaller differences were considered negligible. Across all designs, estimates of variance
components showed minimal differences in both accuracy (bias) and precision (dispersion) (Figure 3,
Table S2). Bias in variance components was generally below 5%, with variance in social impact
consistently showing a slight overestimation. Variance dispersion was generally stable, except for
an in increase in the dispersion for variance in means when fewer individuals and more repeats
of pairs were included (Figure 3b). These results indicate that at a total sample size of 3200
all study designs appear adequate to obtain reliable variance estimates. In contrast, estimates
of individual-level covariances were more sensitive to study design choices. Covariances were
generally underestimated, typically by less than 10%, although the magnitude of bias varied between
design choices. Moreover, covariances did not all respond similarly to trade-offs between sampling

axes.
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Figure 3: Effect of sampling design choices on bias and dispersion of variance and covariance parameters. Relative bias and
relative dispersion of the model estimates of variances and covariances over 1000 simulated datasets per study design. Each study design
contains a total sample size of 3200 observations. The left-side panels (a) show the trade-off between the number of individuals and the
number of social partners (each individuals interacts once with each social partner). The middle panels (b) show the trade-off between
the number of individuals and repeated dyadic interactions (repeats) for a total sample size of 3200 (each individual interacts with four
different social partners). The right-side panels (c) show the trade-off between interacting with more different social partners against
interacting repeatedly with the same social partners for a total sample size of 3200 (each study design has 200 unique individuals). Top
panels represent bias and dispersion of the variance parameters and the bottom panels the covariance parameters.

More individuals or more unique partners per individual

To investigate this, we compared designs varying the number of individuals (100-1600) and partners
per individual (2-32), keeping 3200 total observations. Increasing the number of individuals at the
expense of repeated interactions reduced accuracy and precision for some covariances (Figure 3a).

Specifically, bias increased for the mean-impact and mean-responsiveness covariances as fewer

17



323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

individuals were included. In contrast, the impact-responsiveness covariance showed the opposite
trend, with bias decreasing as the number of individuals decreased and the number of partners per
individual increased, reaching a minimum at 200 individuals with 16 partners each. Overall, the
design with 400 individuals and 8 partners yielded the lowest average bias across the three covari-
ances. Dispersion also increased as the number of individuals decreased, rising from 11.1% to 22.8%
for the mean-impact covariance and from 12.0% to 19.2% for the mean-responsiveness covariance

(Table S2). The dispersion of the impact-responsiveness covariance was largely unaffected.

More individuals or more repeated interactions with the same partners

Next, we compared designs varying the number of individuals (100-800) and repeated interactions
with the same partners (1x-8x), keeping 3200 total observations (Figure 3b). Here, bias increased
for the mean—impact covariance (from —0.9% to —9.0%) and the mean-responsiveness covariance
(from —3.1% to —8.2%) when repeated interactions were prioritised over including more individuals
(Table S2). Bias in the impact-responsiveness covariance remained stable across designs. However,
dispersion increased for all three covariance estimates as fewer individuals were included. This
indicates that including more individuals outweighs the benefit of having more repeated pair

interactions for covariance estimation.

More social partners or more repeated interactions with the same partners

Lastly, we examined the trade-off between the number of social partners (2-16) and the number
of repeated interactions with the same partner (1x-8x), keeping 3200 total observations. Bias and
dispersion remained largely unchanged across study designs, except for the impact-responsiveness
covariance, which showed a marked increase in bias (from —5.8% to —13.4%) as the number of
unique partners decreased and repeated dyads increased (Figure 3c, Table S2). Overall, there is
little evidence that prioritising more partners versus more repeated dyads affects the estimation

accuracy and precision.

Taken together, these results show that estimation of variance in mean trait values, social impact,

and social responsiveness are not strongly affected by study design choices for a total sample size
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of 3200. Covariances, on the contrary, are more sensitive to how social interaction observations
are partitioned. Designs that balance moderate numbers of individuals with moderate numbers
of partners are expected to perform well overall, and including more individuals outweighs the
benefit of prioritising more repeated dyads. We further tested the trade-off in sampling design axes

for a total sample size of 800 observations, which showed similar patterns (see Figure S1, Table S3)

Model comparison

We compared the complete I&R model to two reduced models, the variance-partitioning approach
and the trait-based model. Specifically, these reduced models do not account for variation in social
responsiveness, nor for measurement error in the partner trait. Our results show that models that
did not account for measurement error (Trait and Trait+RS) in the partners trait showed large biases

in all three model parameters (Figure 4 and 5).
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Figure 4: Comparison of the impact and responsiveness model (I&R) with a variance-partitioning model (V-P) and a
trait-based model (Trait). The figure shows the accuracy (bias) and precision (dispersion) of (a) the population response ¥, (b) the
variance in social impact V¢, (c) the covariance between mean trait value and social impact Covg. Top panels show the relative bias of
three models that analysed the same 1000 simulated datasets for four different partitions of number of individuals and number of social
partners per individual. Bottom panel shows the relative dispersion (MADm), expressed as a percentage.
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For the population-level response ¢, the I&R model showed minimal bias across study designs
(all < 2%), with dispersion between 9.9% and 12.4% (Table S4). The Trait model underestimated i
by 10.1 - 17.0%, particularly when fewer individuals were included (Figure 4). Dispersion in the
estimation of ¢ was slightly higher in the I&R model compared to the Trait model across study
designs. For the variance in social impact V;, the Trait model showed consistent underestimation
between —8.5% and —14.4% compared to slight overestimation by the I&R model (2.0% to 5.9%)
(Figure 4, Table S5). The variance partitioning model (V-P), however, showed no marked bias
in the estimation of the variance in social impact. The dispersion of V,, was slightly higher in
the I&R model. All models underestimated the mean-impact covariance (Cov,gp). In the 1&R
model, bias ranged from —0.1% to —7.0%, with dispersion ranging from 11.1% to 22.8%. In the
variance-partitioning model, bias ranged from —2.2% to —4.4%, with dispersion ranging from
13.7% to 23.0%. The trait-based model showed severe underestimation, particularly when more
individuals interacted with fewer social partners (—=61.3%), with bias decreasing to —8.7% when
fewer individuals interacted with more social partners (Figure 4, Table S6). Overall, the I&R model
and V-P model performed better than the Trait model, which produced extremely biased estimates
of the mean-impact covariance under most sampling conditions (which is equivalent to a DGE-IGE

covariance).

To test whether the model error in the trait-based approach arose from missing the variance
component that estimates responsiveness or measurement error, we compared the full I&R model
to two models that each lacked one of these components. Our results show that there are very
little differences in estimation bias and precision between the full impact and responsiveness (I1&R)
model and a model that does not account for individual variation in responsiveness, however, not

modelling measurement error can cause substantial biases (Figure 5).

20



383

384

385

386

387

388

389

390

391

392

393

394

395

396

a. Population response 1; b. Social impact V4 c.Mean - impact Covgg
10 10

0 .'—H#_\_‘
54 -
5 10 -
? 04 -154 ,/
x -20 1 ’
<
0 -10- -5 251 ’
.8 -301 R
0 151 -10 -351 o
-201 4090 ¢
- - _45 -4
-25 15 50 ,/ Model
] 2204 554 .
i I - I ) - &R (Trait+EIV+RS)
-A- No random slopes (Trait+EIV)
254 254 254 . .
- No error correction (Trait+RS)
—~
9\2 20 20 20
S 15 154 15
@
L 104 101 101
B
0O 51 54 54
01 01 01
1600 800 400 200 100 1600 800 400 200 100 1600 800 400 200 100
2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Number of individuals/
social partners

Figure 5: Comparison of the impact and responsiveness (I&R) model with a trait-based model without random slopes
(Trait+EIV) and a trait-based model without errors-in-variables correction (Trait+RS). See caption Figure 4 for details.

For the population-level response 1, both the &R and Trait+EIV models showed minimal bias (<
2%) across all sample sizes (Table S4). In contrast, the Trait+RS model consistently underestimated
¥, with bias worsening as the number of individuals decreased (up to 25.96% at 100 individual),
even more bias than the Trait model (Table S4). Dispersion was similar between models (6-12%).
For the variance in social impact V;,, Trait+EIV model (1.2% to 2.5%) was slightly closer to unbiased
estimation than the I1&R. The Trait+RS model showed the largest bias (—4.5% to —8.7%). Both
Trait+RS and Trait+EIV provide less biased estimates for variance in social impact than the basic
Trait model. For the mean-impact covariance Cova@, the Trait+EIV model and I1&R model do not
show substantial estimation bias. The Trait+RS model showed large bias, particularly when more
individuals interacted with fewer social partners. This bias was slightly less than the basic Trait

model.

Overall, the Trait+EIV model performed comparably to the full I&R model, with even slightly
more accurate and precise estimation of V5. Adding error correction thus substantially improves

the Trait model. In contrast, the trait-based model with random slopes and without error correction
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(Trait+RS) performed significantly worse than the I&R model. However, compared to the Trait
model, the Trait+RS model performed worse in estimating the population-level response ¢, slightly
better in estimating Vj, and slightly better in estimating Cova¢. We also performed the model
comparison with a lower total sample size of 800 observations, which showed similar patterns

(Figures S2, S3).

Discussion

Understanding how social traits evolve requires not only studying individual variation in the
mean phenotype, but also accurately estimating how individuals influence, and are influenced
by, their social partners. Building upon recent conceptual advances (Araya-Ajoy et al., 2020; de
Groot et al., 2023), our study provides a systematic exploration of the statistical and study design
challenges associated with estimating mean trait values, social responsiveness, and social impact.
Our simulations demonstrate that it is possible to estimate mean trait value, social responsiveness
and social impact with reasonable accuracy and precision, but that model performance can be
strongly affected by both sampling design and model structure. In particular, we show that failing
to account for measurement error in the traits of social partners can lead to biased estimates of
key parameters, including the population-level responsiveness 1 and the covariance between mean
phenotype and social impact. By systematically assessing these issues, our results provide practical

guidance for studying the evolution of labile social traits in dynamic systems.

Our results highlight that accurate and precise estimation of social parameters depends strongly
on total sample size. Across increasing sample sizes, the I&R model produced unbiased estimates
of fixed effects and variance components, with dispersion decreasing markedly as larger datasets
were used. This aligns with earlier simulation work showing that model performance improves
rapidly with increasing numbers of individuals and observations per individual (Dingemanse &
Dochtermann, 2013; Martin et al., 2011). Notably, covariance estimates between components of
individuality (Covag, Covay, and Covyg) were consistently underestimated at small sample sizes,

which largely disappeared when sample sizes were larger (> 3200). This indicates that detecting
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and quantifying covariance structure among individuals in social traits requires substantially more
data than estimating univariate effects (i.e. variances) alone. Large sample sizes are necessary
to obtain unbiased estimates, especially when researchers expect even smaller effect sizes, for
instance, when estimating indirect genetic effects (Santostefano et al., 2024). These sample sizes
are fortunately not uncommon in studies on IGEs. Based on data extracted from Santostefano
et al. (2024), we found that across 47 meta-analysed IGE studies, an average of 5023 individuals
were included per study, with a mean of 1.48 observations per individual. Nonetheless, six studies
were conducted with fewer than 400 individuals and fewer than 1600 total observations. Similar
studies, where sample sizes are limited, might benefit the most from optimising sampling methods
(see Figure S1). We found that at least 3200 total observations are needed, which aligns with
the widely acknowledged difficulty in obtaining precise IGE estimates without large and well-
structured datasets (Bijma, 2010; Charmantier et al., 2014). Our inspection of the full parameter
set indicated that the impact-responsiveness model struggled most when estimating the residual
impact parameter, which was typically overestimated by about 50% (Table S7). This bias likely arises
because variation in residual impact is estimated through the random identity of the partner, which
is also used to model the partner’s impact trait affecting the focal individual. The model therefore
has difficulty disentangling these two partner effects. We furthermore suspect that the complexity
of the multivariate structure likely increases the data requirements for precise estimation. In our
simulations, four correlated traits (mean phenotype, responsiveness, impact trait, and residual
impact) were modelled, and the I1&R model had to disentangle their variances and covariances

using only the focal and partner identities and (labile) phenotypes within single assays.

Estimating social responsiveness and impact, as well as their covariances with mean phenotype,
requires specific features in study design that are rarely addressed in detail. In particular, the need
for individuals/genotypes to act both as focal subjects and social partners, variation in partner
traits, and repeated interactions between individuals or genotypes imposes constraints that are
unique to studies of social behaviour. By examining these sampling design requirements, we
found that the specific design choices for datasets with a total of 3200 observations did not have
extreme effects on the accuracy and precision of the estimation of variance components (changes

in bias and dispersion never exceeded 5%). This means that researchers are able to compensate
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by investing in increasing the number of social partners per individual or repeating the same
dyadic interactions if they do not have access to a large population size. Similarly, in some cases,
if observations of social behaviour are often with the same social partner, researchers are forced
to obtain an adequate population size of unique individuals to estimate all variance components.
For example, this applies to longitudinal studies on indirect genetic effects in breeding attempts of
long-lived animals that form strong pair bonds (Moiron et al., 2020; Teplitsky et al., 2010). However,
for covariances, our results show that analyses using small population sizes could suffer from
lower accuracy and precision in estimating individual-level covariances. To accurately estimate
covariances, having more individuals is preferred over having more social partners or more dyadic
repeated interactions at an equal total sample size in almost all cases. Furthermore, we also show
that repeating pairwise interactions with the same individuals at the cost of using more individuals
or more unique social partners is not advisable. In our analyses, increasing the repeats of the same
dyads always resulted in a decrease in number of individuals or a decrease in number of unique
dyads (social partners). We show that if the total sample size is kept equal having more repeats of
the same dyad is either detrimental or does not improve the model estimation. However, repeating
dyads with the purpose of increasing the total sample size should improve estimation accuracy and
precision, but likely not as much as increasing the number of individuals or the number of unique
dyads. Thus, based on our specific simulations, the order of priority for increasing sample sizes

should be:

1. Increase the number of individuals;
2. Increase the number of social partners per individual (unique dyads);

3. Increase the number of repeated dyads.

However, it is important to recognise that our conclusions are relevant for the specific parameter
values, effect sizes and the impact-responsiveness model used in our simulations. Consequently,
we strongly encourage researchers to simulate their own datasets and analyse them to identify the
sampling design most suitable for their expected effect sizes and study system. To facilitate this

process, we developed socialSim, an easy-to-use R package that provides a simple workflow for
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designing and evaluating social interaction studies (Wijnhorst, 2025). The package includes three
core functions: simulate_data(), which generates social interaction datasets under user-specified
parameters. The function run_model (), where the user can choose one of the hierarchical Bayesian
models tested in this article in Stan; and summarise_results(), which extracts the relative bias
and relative precision of the estimated parameters. Importantly, socialSim can be used without any

prior experience in Stan programming or Bayesian hierarchical modelling.

In order to detect the consequences of having incomplete models when we suspect complex
multivariate social phenotypes, we compared a complete I&R model to several reduced models.
Importantly, we show that trait-based models which lack specific components to estimate individual
differences in traits may perform worse. Our comparisons show that the variance-partitioning (V-
P), however, showed very little biases and low dispersion in estimating the variation in social
impact and the covariance (mean trait value x social impact) under large sample sizes. This is a
positive result because the variance-partitioning approach is also the most widely used method for
estimating IGEs (Bailey & Desjonquéres, 2022). However, we show that using a trait-based model,
that does not account for variation in slopes or measurement error, can lead to an underestimation
of the social effect V; and the mean-impact covariance Cov,y. We demonstrate the well-known
effect that not accounting for measurement error leads to an attenuation of the regression coefficient
(¢ in our model), which also caused an underestimation of the social effect V. Interestingly, our
model comparison indicates that adding or removing random slopes has little influence on the
accuracy and precision of model estimates. Thus, including random slopes is not detrimental and
may even be preferable when individual variation in responsiveness is of interest. In contrast,
not accounting for random slopes when such variation is present in the data does not appear to
worsen model performance. This is somewhat unexpected, as previous studies have emphasised
the importance of modelling among-individual variation in slopes. For instance, omitting random
slopes can bias fixed effects and inflate Type I error rates (Barr et al., 2013), or lead to overestimated
between-individual variance components depending on the intercept—slope correlation (i.e. the
mean behaviour-responsiveness covariance) (Schielzeth & Forstmeier, 2009). However, in our
case, we do not observe such overestimation. Instead, the variance attributable to individual

differences in slopes (0.1) is absorbed by the residual variance when slopes are not modelled
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(residual variance increases from 0.6 to 0.7). Consequently, estimates of repeatability for direct
and indirect effects (calculated as the proportion of variance explained by V,, and Vj;, respectively)
remain stable. Nevertheless, this means that within-individual variance is inflated, as variance in
slopes is absorbed by the residual, masking meaningful differences in responsiveness. Therefore,
given both prior evidence for the potential risks of omitting random slopes and our finding that
their inclusion is at least not harmful, we recommend incorporating random slopes into IGE models

to better capture individual differences in social responsiveness.

The impact-and-responsiveness framework we propose is particularly useful when the partner
trait is either measured with error or varies substantially between social interactions. In the context
of social effects, we are primarily interested in how repeatable individual differences in partners
shape the focal individual’s behaviour. These effects are not caused by non-heritable or transient
expressions of a partner’s phenotype during a given interaction, but by repeatable traits, such as
mean levels of aggression or body size, that exert influence across multiple encounters (Bleakley
& Brodie, 2009; Saltz, 2013; Wilson et al., 2009). Therefore, rather than modelling the observed
phenotype expressed in a single interaction, we estimate the latent mean trait value of each partner
using a double equation (errors-in-variables) model. This approach captures the repeatable among-
individual variation that drives social effects and allows us to quantify its contribution to focal
behaviour. Importantly, this latent partner trait (x;) can also be partitioned into additive genetic
and permanent environmental components using an animal model. This enables the estimation of
social breeding values and total genetic variance underlying IGEs using the interaction coefficient ¢
(Bijma et al., 2007; McGlothlin & Brodie, 2009; Wolf et al., 1999). Thus, the model not only accounts
for measurement error or stochastic expression in labile traits, but also aligns with the conceptual
goal of identifying the stable genetic and/or phenotypic individual differences in partners that

generate social effects.

Several theoretical papers have suggested modelling social responsiveness using random slopes
in IGE frameworks (Araya-Ajoy et al., 2020; Bailey et al., 2021; Dingemanse & Araya-Ajoy, 2015;
Martin & Jaeggi, 2022), which is further supported by observational and experimental evidence

that individuals show repeatable differences in how they respond to the social cues (Bailey & Zuk,
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2012; Chenoweth et al., 2010; Fiirtbauer & Fry, 2018; Guayasamin et al., 2017; Jablonszky et al.,
2022; Morand-Ferron et al., 2011; Strickland & Frere, 2019; Strickland et al., 2021). We support this
perspective and show that including random slopes does not harm estimation accuracy or precision.
Therefore, we recommend considering random slopes in IGE models, especially when aiming to
disentangle social impact and responsiveness, two traits that can vary independently and jointly
shape social phenotypes (de Groot et al., 2023). Exploring how these traits genetically covary,
including with the direct effects, will be key to understanding the evolution of social behaviour
(Araya-Ajoy et al., 2020; Bailey et al., 2021; Martin & Jaeggi, 2022). By assessing the utility of an
impact-and-responsiveness model, we hope to provide a useful statistical tool for the study of the

expression of social traits.
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The full 4 x 4 matrix estimated in the I&R model:

a; Va Cov(a, ) Cov(a,x) Cov(a,e)

Y; N@O, Q) 2= Cov(a, ) Vy Cov(y, x) Cov(y,e) ¢~ NO,V.) s1)
Xi Cov(a, x) Cov(y, x) Vy Cov(x,€)

€; Cov(a,e) Cov(ip,e) Cov(x,e) Ve

was reduced to a 3 x 3 matrix (Equation 10) estimating the (co-)variance of mean trait values, social

responsiveness and social impact using the following equations:

Ve = Ve +P?V, + 29 Cov(x, €) (S2)
Cov(a, ¢) = Cov(a, €) + ¢ Cov(a, x) (S3)
Cov(y, ¢) = Cov(y, €) + ¢ Cov(x, ¥) (54)

Table S1: Mean percentage bias in posterior medians across 1000 simulations under different sample sizes

Total sample size 400 800 1600 3200 6400
Individuals 50 100 200 400 800

Parameter Description Sim. value Bias (%)

Bo Population mean 1.00 1.31 0.61 0.52 0.16 0.07
P Population response 0.30 -431  -167 -154 -077 -2.18
Va Mean behaviour variance 0.20 -1.93 0.85 -0.58 020 0.17
Vi Social responsiveness variance  0.10 -1.28 092 025 052 021
Ve Social impact variance 0.10 8.24 4.66 191  3.09 274
Cov(a, ) Cov: mean x impact 0.080 -17.63 -7.82 444 -177 -0.73
Cov(a,) Cov: mean x responsiveness -0.085 -26.03 -11.95 -6.10 -270 -1.44
Cov(y,¢) Cov: responsiveness x impact  -0.076 -30.10 -19.48 -11.80 -7.13 -3.42
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Table S2: Bias and dispersion for key variance and covariance parameters for different sampling design (total sample size = 3200).

Individuals 1600 800 400 200 100 | 800 400 200 100 | 200 200 200 200
Social partners 2 4 8 16 32 4 4 4 4 16 8 4 2

Repeats 1x 1x 1x 1x 1x 1x 2x 4x 8x 1x 2x 4x 8x

Mean V, -le4 -077 020 -054 067 | -077 006 -027 008 |-054 063 -027 -041

Impact Vy 588 319 309 383 196 | 319 401 266 1.06 | 383 233 266 292

Bias (%) Response vV, -034 -0.05 052 027 -059|-005 010 036 025 | 027 -0.02 036 061
Cov(a, ¢) -014 -092 -177 -380 -695 | -092 -158 -442 -898 | -3.80 -3.68 -442 -398

Cov(a, ) 296 -314 -270 -433 -6.06 | -3.14 -327 -540 -820 | -433 -411 -540 -6.12
Cov(y, ¢) -1198 -882 -713 -582 -7.14 | -882 -745 -8.64 -993 | -582 -731 -8.64 -13.41
Mean V, 936 830 855 1052 1353 | 830 858 10.62 1424 | 1052 1047 10.62 11.17
Impact Vi 2070 1729 1723 18.69 2172 | 1729 17.07 19.11 21.35 | 18.69 1885 19.11 19.68
Dispersion (%) Response V,  13.67 1144 11.07 11.82 1393 | 1144 1097 1280 15.05 | 11.82 11.88 12.80 14.97
Cov(a, ¢) 1110 1170 13.77 1649 2276 | 11.70 1323 17.79 23.74 | 1649 1729 17.79 18.63
Cov(a, 1) 11.95 1235 1250 1579 19.23 | 1235 1292 1572 2151 | 1579 1557 1572 17.33
Cov(y, ¢) 1299 1249 1227 13.80 16.53 | 1249 1221 1457 17.73 | 13.80 1396 1457 17.19

Table S3: Bias and dispersion for key variance and covariance parameters for different sampling designs (total sample size = 800).

400 200 100 50 200 100 50 100 100 100
2 4 8 16 4 4 4 4 2
1x 1x Ix Ix 1x 2x 4x 1x 2x 4x
Mean V, -0.01 -1.21 0.02 -2.89 -1.21 -1.39 -2.92 0.02 -1.39 -3.09
Impact Vi 14.07 5.36 2.63 1.45 5.36 5.44 1.11 2.63 5.44 8.94
Bias (%) Response Vy, 361 091 -042 104 | 091 -006 -213 | 042 -0.06 118
° Cov(a, §) 375 -610 -11.16 -21.00 | -6.10 -10.79 -21.60 | -11.16 -10.79 -9.74
Cov(a, 1) 1734 -1612 -1727 2393 | -16.12 -1890 -2877 | -1727 -1890 -22.14
Cov(y, ¢) -2453 -24.61 -2465 -26.10 | -24.61 -25.72 -32.38 | -24.65 -25.72 -29.83
Mean V, 1746 1596 1734 1965 | 1596 1795 21.19 | 1734 1795 1871
Impact Vg 19.65 19.81 2205 2795 | 1981 2343 28.64 | 22.05 2343 2599
Di ion (%) Response Vy, 2297 2199 21.38 21.84 | 2199 2210 2631 | 21.38 2210 2548
1SPEISIOn o) Cov(a, ¢) 19.83 2052 2528 3253 | 2052 2541 33.87 | 2528 2541 27.74
Cov(a, 1) 25.06 2333 2575 30.83 | 2333 26.85 3444 | 2575 26.85 32.52
Cov(y, ¢) 2275 2222 2389 2853 | 2222 2572 3229 | 2389 2572 29.81
Table S4: Fixed effect: population response 1
Individuals I&R  Trait Trait+EIV  Trait+RS
1600 -1.68 -10.09 -0.48 -11.54
800 -1.00 -10.59 -0.02 -13.45
Bias (%) 400 -0.77  -12.23 -0.29 -17.39
200 -0.98 -13.84 0.06 -21.48
100 -1.58 -17.00 0.22 -25.96
1600 1242  5.38 6.66 5.34
800 1033  6.02 6.37 6.11
Dispersion (%) 400 992 681 6.89 7.20
200 10.75  8.40 8.06 8.96
100 11.54 10.95 9.91 12.16
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Table S5: Variance: social impact Vy,

Individuals I&R  V-P Trait Trait+EIV  Trait+RS

1600 588 -1.06 -850 1.20 -4.54
800 3.19 -069 -1297 -1.72 -7.72
Bias (%) 400 3.09 -028 -14.43 -2.45 -8.74
200 383 116 -13.32 -0.83 -7.68
100 196 150 -12.46 0.06 -7.23
1600 2070 19.61 13.01 13.76 12.81
800 1729 1533 13.61 13.60 12.65
Dispersion (%) 400 1723 1454 1495 14.59 13.41
200 18.69 16.01 1691 16.58 15.76
100 21.72  20.63 21.68 20.85 20.64

Table S6: Covariance: mean behaviour-social impact Cov

Individuals I&R  V-P Trait Trait+EIV  Trait+RS

1600 -014 -441 -61.26 -0.76 -53.91
800 -092 -313 -45.66 -1.18 -36.66
Bias (%) 400 -1.77 259 -29.67 -1.86 -20.76
200 -3.80 -216 -17.27 -2.15 -11.14
100 695 -254 -873 -3.47 -5.51
1600 11.10 1455 2443 10.64 20.75
800 11.70 13.72 18.03 11.57 15.78
Dispersion (%) 400 13.77 1491 17.52 13.73 14.98
200 1649 16.82 18.00 16.12 15.64
100 2276 23.02 2376 22.47 20.55

Table S7: Mean model estimates (posterior medians) of 1000 simulated datasets under different sampling partitions (total sample size =
3200).

Individuals 1600 800 400 200 100 400 200 100 200

Social partners 2 4 8 16 32 4 4 4 8
Repeats 1x 1x 1x Ix 1x 2x 4x 8x 2x
Parameter Description Sim. value Model outcome
Bo Population mean 1.00 1.000 1.000 1.002 1.004 1.005 1.002 1.005 1.010 1.005
P Population response 0.30 0295 0297 0298 0297 0295 0299 029 0293 0.295
Va Mean behaviour variance 0.20 0.197 0.198 0200 0.199 0201 0200 0.199 0200 0.201
Vy Responsiveness variance 0.10 0.100 0.100 0.101 0.100 0.099 0.100 0.100 0.100 0.100
Ve Residual impact variance 0.01 0.017 0.015 0.014 0014 0.014 0015 0.014 0.014 0.014
Vi Impact trait variance 1.00 0.999 0999 0.9% 1002 0995 0999 0998 0.99% 0.996
T'ae Corr: mean x res. impact -0.60 -0.598 -0.589 -0.587 -0.579 -0.569 -0.585 -0.574 -0.557 -0.578
Tap Corr: mean x response 0.00 0.043 0.017 0.015 -0.000 -0.000 0.012 -0.000 -0.009 0.000
Tay Corr: mean x impact trait -0.60 -0.285 -0.375 -0451 -0.494 -0.526 -0426 -0.451 -0.472 -0.484
Tey Corr: res. impact x response 0.60 0599 0595 0590 0584 0569 059 0583 0567 0.585
Ty Corr: impact trait x response -0.60 -0.603 -0.598 -0.590 -0.585 -0.579 -0.592 -0.584 -0.574 -0.583
Txe Corr: impact trait x res. impact 0.00 0.033 0.009 0.004 0.000 0.006 0.003 0.010 -0.001 0.007
Ve Residual variance 0.60 0599 0.600 0.599 0.600 0.600 0.600 0.600 0.600 0.599
Ve, Measurement error 0.10 0.100  0.100  0.100 0.100 0.100 0.100 0.100 0.100  0.100
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Table S8: Mean model estimates (posterior medians) of 1000 simulated datasets under different sampling partitions (total sample size =
800).

Individuals 400 200 100 50 100 50 100

Social partners 2 4 8 16 4 4 2
Repeats 1x 1x 1x 1x 2x 4x 4x
Parameter Description Sim. value Model outcome
Bo Population mean 1.00 1.000 1.001 1.004 1.013 1.006 1.007 1.005
¥ Population response 0.30 0298 0297 029 0293 0297 0291 0.29
Va Mean behaviour variance 0.20 0.200 0.198 0200 0.194 0197 0.194 0.194
Vi Responsiveness variance 0.10 0.104 0.101 0.100 0.101 0.100 0.098 0.101
Ve Residual impact variance 0.01 0.024 0.016 0.015 0.014 0.015 0.015 0.017
Vy Impact trait variance 1.00 0.996 0991 0985 0975 0.990 0.967 0.990
Tae Corr: mean x res. impact -0.60 -0.512 -0.525 -0.515 -0478 -0.510 -0.460 -0.492
Tay Corr: mean x response 0.00 0.021 0.030 0.010 0.001 0.021 0.004 0.019
Tay Corr: mean x impact trait -0.60 -0.113  -0.161 -0.225 -0.278 -0.197 -0.206 -0.139
Tey Corr: res. impact x response 0.60 0584 0571 0550 0511 0548 0.513 0.561
Ty Corr: impact trait x response -0.60 -0.555 -0.554 -0.539 -0.514 -0.535 -0.504 -0.522
Tye Corr: impact trait x res. impact 0.00 0.006  0.009 0.008 0.006 0.007 0.008 0.009
Ve Residual variance 0.60 0.583 0594 0597 0600 0.598 0.597 0.599
V. Measurement error 0.10 0.100  0.100 0.100 0.100 0.100 0.100  0.100
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Figure S1: Analysis of sampling design parameters for optimal bias and precision for estimating variance and covariance
parameters. Relative bias and dispersion of the posterior median of variances and covariances components of 1000 simulated datasets
per sampling design. Top and bottom left figures show the trade-off between the number of individuals and the number of social partners
to obtain a total sample size of 800. Middle figures show the trade-off between the number of individuals and repeatedly interacting with
the same social partners for a total sample size of 800. Right figures shows the trade-off between interacting with more different social
partners against interacting repeatedly with the same social partners for a total sample size of 800. Top panels represent the bias and
precision of the variance parameters and the bottom panels the covariance parameters.
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Figure S2: Comparison of the impact and responsiveness model (I&R) to the variance partitioning model and trait-based
model for datasets with a total sample size of 800 observations. Top panels show the relative bias of three models that analysed
the same 1000 simulated datasets for four different partitions of number of individuals and number of social partners per individual.
Bottom panel shows the relative dispersion, expressed as a percentage.
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Figure S3: Comparison of the impact and responsiveness (I&R) model to the trait-based models without errors-in-variables
correction (Trait+RS) and trait-based model without random slopes (Trait+EIV) for datasets with a total sample size of
800 observations. Top panels show the relative bias of the three models after analysing the same 1000 simulated datasets for four
different partitions of number of individuals and number of social partners per individual. Bottom panel shows the relative dispersion,
expressed as a percentage.
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