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Abstract

Social interactions mediate the phenotypic expression of fitness-relevant traits. The expression of
such labile social traits includes three distinct components: an individual’s mean trait value (direct
effect), its social responsiveness, and its social impact (indirect effects). Traditional methods, such as
variance-partitioning or trait-based models, usually only partition individual variation into direct
and indirect effects. However, individual variation in social responsiveness and its covariation with
direct effects and social impact will affect responses to selection. To date, no studies have explored
the performance of models that allow the decomposition of responsiveness from impact. Here, we
describe a model for studying variation in phenotypic expression caused by social interactions, and
we use simulations to explore its performance under various experimental designs. Our analyses
show that with adequate total sample sizes (> 3200), variance components are estimated accurately
across study designs. In contrast, covariance estimation can benefit drastically from optimising
study design choices. We also found that failing to model individual variation in responsive-
ness, and neglecting measurement error, increases bias and imprecision in trait-based approaches.
Hence, disregarding individual variation in responsiveness would ignore a key component of social

behaviour, and hamper our ability to acquire unbiased estimates of indirect genetic or social effects.
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Introduction

Social interactions alter selection pressures and phenotypic expression, shaping the trajectory of
evolutionary change in ways that are often difficult to predict (Moore et al., 1997; Wolf et al., 1998).
Phenotypes displayed by individuals or genotypes rarely emerge without external influences; rather
they arise from the interaction of internal regulators and external conditions (Via & Lande, 1985;
West-Eberhard, 1989). One important external factor, the social environment, consists of conspecifics
that affect phenotypic expression through social interactions. The effects of the social environment
can be far-reaching in traits that are solely expressed in a social context, such as cooperation,
social hierarchies or parental-offspring interactions (Bailey et al., 2018; Bleakley & Brodie, 2009;
Kirkpatrick & Lande, 1989; Smiseth et al., 2008; Wilson et al., 2011). Explaining (co-)variation in
social traits is challenging because individuals often adjust their phenotype plastically in response
to their partners’ traits (Bailey & Desjonqueres, 2022; Moore et al., 1997). These socially mediated
effects, when heritable, are termed indirect genetic effects (IGEs) (Griffing, 1967; Moore et al.,
1997). The optimal phenotype might therefore depend on other phenotypes displayed in the social
environment (Maynard-Smith & Price, 1973; McNamara & Weissing, 2010), where selection could
also act on an individual’s competence to adjust their phenotype to a changing social environment

(Martin & Jaeggi, 2022; Taborsky & Oliveira, 2012).

An often overlooked aspect of such indirect genetic effects (IGEs) is that individuals both respond
to (responsiveness) and affect (impact) the phenotype of other individuals, and individuals may
differ in both of these traits. Following recent proposals (Araya-Ajoy etal., 2020; de Groot etal., 2023),
social phenotypes can be decomposed into three components of individual phenotypic variation:
(i) mean level behaviour; (ii) social responsiveness, which refers to the phenotypic response of the
focal to the traits of their interacting social partners; and lastly (iii) social impact, which refers to the
response an individual elicits in their social partners (Araya-Ajoy et al., 2020; de Groot et al., 2023).
Previous studies in quantitative genetics have estimated population-level IGEs (reviewed by Bailey &
Desjonqueéres, 2022), disregarding that individuals may differ in their level of social responsiveness.
Common statistical models for studying social effects include the ‘variance-partitioning’ (Bijma,

2014; Griffing, 1967) and ‘trait-based” approach (Kirkpatrick & Lande, 1989; McGlothlin et al.,
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2010; Moore et al., 1997; Wolf et al., 1999). The variance-partitioning approach is a type of mixed-
effects model that partitions observed phenotypic variation in a given trait into variance associated
with direct individual effects and indirect individual effects caused by the individual in its social
environment. If information on the relatedness between individuals is available, additive genetic
variation underpinning these individual effects can be estimated using mixed-effect ‘animal models’
(Henderson, 1984; Kruuk, 2004; Meyer, 1992; Wilson et al., 2010). The trait-based approach is a
statistical model that is mathematically equivalent to the variance partitioning approach under
certain assumptions (McGlothlin & Brodie, 2009), but applies a reaction norm approach to quantify
social responsiveness as a slope. Both frameworks estimate the interaction coefficient 1, which
represents the population-level response and describes the magnitude and direction of phenotypic
change in response to the phenotype expressed by interaction partners (see Bailey & Desjonqueres,
2022; Bijma, 2014). Thus, these models typically ignore the possibility that individuals may differ
in responsiveness. However, empirical evidence increasingly shows that individuals can differ in
the degree to which they respond to social signals (Bailey & Zuk, 2012; Fiirtbauer & Fry, 2018;
Guayasamin et al., 2017; Jablonszky et al., 2022; Morand-Ferron et al., 2011; Strickland & Frére,
2019). Hence, researchers have suggested that ¢ is not fixed and may show variation and can
consequently evolve (Akcay & Van Cleve, 2012; Araya-Ajoy et al., 2020; Dingemanse & Araya-Ajoy,
2015; Kazancioglu et al., 2012; Wolf et al., 2008). Already there is experimental evidence that
Y can evolve under different selection regimes, therefore social responsiveness can vary among-
individuals and can be heritable (Chenoweth et al., 2010). Furthermore, the covariance of social
responsiveness with the mean social trait could speed up or slow down evolution through a process

called “social drive’ (Bailey et al., 2021; Martin et al., 2023).

Very little is known about the extent to which variation in ¢’ influences social interactions, for
two key reasons. First, individuals may differ in their responsiveness, yet standard quantitative
genetics models typically assume a fixed population-level effect. This masks important individual
variation and limits evolutionary inference. Second, the traits of social partners (to which focal
individuals respond) are often measured with error. Measurement error in this predictor will
logically attenuate estimates of ¢, and therefore underestimate true social effects. To overcome

this, we use a model that incorporates both random slopes (to capture individual variation in ¢)
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(de Groot et al., 2023; Martin & Jaeggi, 2022) and ‘errors-in-variables” approaches that correct for
bias due to noisy partner trait estimates (Dingemanse et al., 2021; Ponzi et al., 2018). By addressing
these two key issues, we can more accurately estimate social responsiveness and its evolutionary

consequences.

The next challenge is to determine which study design is optimal to estimate the three com-
ponents of individuality in social interactions. A common and effective laboratory approach for
estimating individual differences in IGEs involves assessing individuals while continuously ma-
nipulating their social environment. Often, individuals are assessed in a laboratory setting, where
researchers perform pairwise assays in which individuals repeatedly interact with different social
partners (e.g. Han et al., 2018; Lane et al., 2020; Santostefano et al., 2016; Wilson et al., 2009). Similar
datasets have been collected through observational studies on dyadic interactions in wild popula-
tions (e.g. Brommer & Rattiste, 2008; McLean et al., 2023; Moiron et al., 2020; Tuliozi et al., 2023;
Wilson et al., 2011). Several data simulation studies have explored the accuracy and precision of
statistical models in estimating individual variation in labile traits (Araya-Ajoy et al., 2015; Dinge-
manse & Dochtermann, 2013; Martin et al., 2011; van de Pol, 2012). From these studies, we have
learnt that there is a rapid increase in statistical power when more individuals are sampled, or more
repeated measures per individual are taken. Furthermore, simulation studies show that resource
allocation (more individuals with fewer observations per individual versus fewer individuals with
more observations per individual) can matter when the total sample size is the limiting factor (Mar-
tin et al., 2011; van de Pol, 2012). We do not know whether resource allocation also matters for the

estimation of individual variation in mean social trait values, social impact or social responsiveness.

Some studies have focused on optimal study designs to estimate IGEs, comparing different
group sizes or breeding designs (Bijma, 2010). However, few have explored how well IGE mod-
els perform when estimating individual variation in labile traits expressed during repeated social
interactions. Designing such studies requires decisions that are not typically encountered when
studying non-social traits. For example, how many different social partners should each focal indi-
vidual interact with, and should individuals better interact repeatedly with the same or rather with

different interaction partners? Unlike standard environmental covariates, social partners are phe-
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notypically variable themselves, introducing both among- and within-individual variation into the
social environment (Araya-Ajoy et al., 2020; Dingemanse & Araya-Ajoy, 2015). These requirements
impose constraints on how social behaviour must be sampled, and highlight that designing studies
of social versus non-social traits involves different trade-off decisions in study design. Specifically,
two design features are required to reliably estimate variance in social responsiveness and impact,
and their covariances with mean trait value. First, individuals must be repeatedly observed inter-
acting multiple times both as focal individuals and as social partners. This reciprocity in roles is
essential to estimate covariances between how individuals behave and how they influence others
(Dingemanse & Araya-Ajoy, 2015). Second, individuals must encounter sufficient variation in the
trait values of their partners. This is a prerequisite for estimating responsiveness, which reflects the
slope of the function that describes the phenotypic change in response to the value of the partner
trait. Without these specific design properties, many components of the multivariate nature of
social traits are non-estimable. As such, studying social behaviour in experimental settings with
limited time and/or resources compels researchers to make critical allocation decisions on study
design, such as the number of individuals, the number of repeats per individual, and the number
of unique pairwise interactions used. One goal of this study is to explore which of these three
sampling design dimensions should be prioritised for optimal precision and accuracy in estimating

(variation in) social impact and responsiveness.

In this study, we evaluate the accuracy and precision with which variance and covariance
in mean behaviour, social impact, and social responsiveness can be estimated. We first explore
the minimally required sample size needed to obtain unbiased estimates. Next, we assess the
difference in accuracy and precision of study designs that vary in the number of individuals, the
number of repeated measures per individual, and the number of unique social partners. We
further determine the consequences of not accounting for individual variation in responsiveness,
measurement error/plasticity in partner traits, when estimating social effects. By combining these
perspectives, our study aims to encourage empirical estimates of key component underlying social
interactions, provide practical guidance on the experimental design and analysis of social interaction

studies, and increase awareness of problems when failing to account for sources of variation.
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Methods

Data simulation

We simulated social interaction data under a biologically realistic scenario in which individuals
differ in their average trait value (intercept), their social impact (the effect they have on the phenotype
of others), and their responsiveness (the extent to which they adjust their phenotype as a function
of partner phenotype). Individuals interacted with one social partner at a time, and only responded
to a single partner trait. The partner’s trait was fixed (e.g. body size), but measured with error.
We created datasets with balanced designs (i.e. each individual interacted with a fixed number of
partners and was observed an equal number of times). In each dataset, each individual acted an
equal number of times as the ‘focal’ versus the "partner’ individual. To answer our questions, we

simulated and analysed the following datasets:

1. To assess model performance as a function of the total sample size, we simulated 1000 datasets
per sample size, varying the number of individuals while keeping the number of interactions

per individual constant.

2. To evaluate the effects of sampling design on bias and precision, we simulated 1000 datasets
with balanced designs that partitioned a fixed total number of observations among varying

numbers of individuals, social partners per individual, and repeated interactions.

3. To compare the performance of alternative statistical models, we simulated 1000 datasets
using four study designs and to each we fit the full model and several reduced models lacking

particular components.

Our main parameters of interest are two fixed effects: the population intercept Sy and population
slope 1, and six (co)variance components: the among-individual variance in mean trait value (V,);
social responsiveness (Vy); and social impact (V); and their three covariances (Table S1). For each

scenario, we calculated the relative bias and relative dispersion of the model estimates: Relative
0 —0;

5 100% , where 0 is

. . . 1
bias can be interpreted as the average accuracy and is calculated as EZ
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the true simulated value, 0; is the model estimate (posterior median) of the ith simulation, and n
is the number of simulations. Relative dispersion is the dispersion around the mean, also termed
MADm (Mean Absolute Deviation of the mean), and is calculated by %Z'Q%{oll -100%, where 0
is the grand mean of the 1000 posterior median model estimates. We do not present formal power
analyses, as these are uncommon within a Bayesian framework. Instead, we report performance
using bias and dispersion and provide an open-access simulation tool "socialSim" for researchers to
explore expected performance under their study design of choice (Wijnhorst, 2025). The simulation
process and model fitting steps are summarised in Figure 1. Each simulation followed these steps:
(1) assignment of individuals and social partners, (2) simulation of social interaction outcomes based

on known trait values and model parameters, (3) addition of measurement error to the observed

partner traits, and (4) analysis using the appropriate model structure.

a. b. c. d.
Simulate study Simulate trait values for each Simulate . Repeat
X Lo - N measurement Data analysis 1000
design structure individual and interaction outcome arror Gmes

I

Focali Partnerj Zijk= A + Yi x Xj + Focali Partnerj x
1 2 0.52 1 0.2 0.6 0.2 -0.8 0.63 0.6 0.03 1 2 0.63 0.52
2 3 0.25 1.2 0.5 -0.5 -0.1 -0.6 -0.57 -0.5 -0.07 2 3 -0.57 0.25
3 1 1.48 0.8 0.4 0.2 0.1 0.5 0.22 0.2 0.02 3 1 0.22 1.48
1 4 1.40 1 0.2 -1.0 -0.1 0.7 -0.97 -1.0 0.03 1 4 -0.97 1.40
Symbol Description
Zijk The phenotype of individual i when it interaction with j at instance k
a; Mean behaviour: individual deviation of the population mean
P Social responsiveness: individual deviation of the population slope
Xj True value of the phenotype to which the focal responds
& Residual impact: partner effects caused by unknown/unmeasured traits
€ijk Residual effect/nonsocial environmental effect
€ijky Measurement error or nonsocial phenotypic plasticity around the true value of x;

Figure 1: Workflow of data simulations and analyses a.) A data structure is created that contains a certain number of individuals
that interact with a fixed number of social partners in balanced designs. b.) We simulated the outcome of the social interaction (z;jx)
based on their simulated trait values of each individual and their partner drawn from a multivariate normal distribution plus residual
error. c.) Before we enter our observed data into the model, we assume that the fixed opponent trait is measured with error before every
social interaction. Therefore, we added or subtracted simulated measurement error to obtain the observed opponent trait x;jx. d.) The
data is analysed by the model and this process is iterated a 1000 times.
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Simulated effect sizes

Since we do not aim to explore all of parameter space, we meticulously chose effect sizes based on
systematic reviews to represent a realistic biological scenario where effect sizes are non-zero. The
population response ¢ was set to 0.3, similar to the mean (0.27) of the significant non-reciprocal,
positive estimates i (obtained from Bailey & Desjonquéres, 2022). The variance components were
adjusted so that the total phenotypic variances sum to 1, with the variance explained by the focal
individual at 0.3 (approximating the mean repeatability of animal behaviours of 0.37; Bell et al.,
2009) and the variance explained by the social partner (variance of social impact) at 0.1 and residual
variance V, = 0.6. This variance explained by the social partner is representative of potential total
phenotypic partner effects, however for indirect genetic effects, the effect size is expected to be
somewhat smaller (6% for behavioural traits and 3% for all traits; Santostefano et al., 2024). The
variance of social responsiveness was set to 0.1. Therefore, the ratio of variation in mean behaviour
(elevation) to variation in plasticity (slopes) is 1 : 0.50, which approximates the elevation : slope
ratios (median = 1 : 0.65) reported in nine studies on non-social plasticity (Brommer, 2013). The
measurement error for the impact trait was set to 0.1, which corresponds to 10% of the variance
in the social partner’s body size x;. All other parameter values used in the data simulation are

described in Supplementary Table S7.

Analyses
Sample size

To assess model performance as a function of total sample size, we simulated 1000 datasets of
social interaction data. In each dataset, the number of interactions per individual was kept constant
at 8, while the number of individuals varied. The smallest dataset included 50 individuals (400
observations), and the number of individuals was doubled at each step to a maximum of 800
individuals (6400 observations). Our aim was to identify the minimum sample size at which the
full model for estimating impact and responsiveness (I&R model) yields unbiased estimates, which

will then be used for subsequent analyses.
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Sampling design

To determine how to best allocate limited sampling resources, we assessed how different study
designs influence the accuracy and precision of parameter estimates. In many ecological and evo-
lutionary studies, researchers face logistical constraints that limit the total number of observations
that can be collected. This raises the question: given a fixed number of total observations, how
should they be distributed among individuals, social partners (‘partners’), and repeated interactions

of dyads (‘repeats’) to optimise model performance?

To address this, we simulated a series of balanced designs under a fixed total sample size.
Each observation in our simulations represents a pairwise interaction between a focal individual
and a social partner. All individuals in the study population take on both roles across different
interactions, acting as focal individuals in some interactions and as social partners in others. The
number of individuals in the study therefore determines both the number of unique focal individuals

and the pool of available partners. We vary our study designs across three key axes:

¢ Number of individuals (‘individuals’), which determines the total population of interacting

individuals.

e Number of unique social partners per focal individual (“partners’), which reflects the variety

of partners encountered by each individual.

* Number of repeated interactions per dyad (‘repeats’), which controls the extent to which
specific focal-partner pairs are observed multiple times. A value of ‘1x” indicates that each

focal interacts only once with each unique social partner (i.e. no repetitions of unique dyads).

Subsequently, we examined how the trade-off between the three sampling axes affects model perfor-
mance. In each case, we kept one component constant while trading-off the other two, allowing us
to identify how different designs affect the accuracy (bias) and precision (dispersion) of parameter

estimates.

10
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Model comparison

To evaluate how different statistical modelling choices influence the estimation of social parameters,
we compare several models used in the study of indirect genetic effects (IGEs) and social trait evolu-
tion. Specifically, to investigate the consequences of not accounting for certain sources of variation,
we compare the full impact and responsiveness model (I&R) to incomplete models (i.e. models
that lack certain parameters, Table 1). As such, model I&R is compared to two reduced models,
the variance partitioning (V-P) model and the trait-based approach (Trait). Secondly, it is possible
to modify the trait-based approach to include random slopes or an errors-in-variables correction.
Thus, we can identify which missing component may cause increased bias or imprecision associated
with incomplete models. For this, we compare the full I&R model (equivalent to Trait+RS+EIV)
against two reduced models: one including an errors-in-variable correction (Trait+EIV) and one
including random slopes (Trait+RS) for individual social responsiveness. Below, we describe the

models in increasing order of model completeness.
Variance-partitioning (V-P) model:

The variance partitioning approach can be described as:

zijk = Po+ai + @ +eijk, 1)

where z;j; denotes the phenotype of individual i after interacting with social partner j at instance k.
The fixed intercept o represents the population mean phenotype. The random effect a; represents
the deviation of individual i’s mean trait value from the population mean. The variance of these
deviations (V) quantifies among-individual variance, which may arise from direct genetic effects
(DGEs) and permanent environmental influences. The random partner effect ¢; represents the
deviation associated with social partner j, that is, the extent to which partner j influences the
phenotype of others. The variance of these deviations (V) quantifies variation in social impact,
which may arise from indirect genetic effects (IGEs) as well as non-genetic partner effects. The
residual term e;j; represents unexplained deviations at the observation level. The residual variance

(Ve) captures within-individual variation that is not attributable to focal identity or repeatable

11
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partner effects. When individuals interact both as focal and partner (as is common in social
interaction datasets), the model can also be used to estimate the covariance (Cov,g) between an

individual’s mean trait value and its social impact (Wilson et al., 2009):

CMVNO,Q), Q=] Covas |, N(0, V). 2)
¢ Covap Vo

The covariance between focals” mean trait value and social impact (Cov,) is critical for predicting
evolutionary change in social traits. When decomposed into genetic and environmental compo-
nents, it corresponds to the DGE-IGE covariance, which can accelerate or constrain evolutionary
responses depending on its sign and magnitude (Bijma et al., 2007; Wilson et al., 2009; Wolf et al.,
1998). The V-P model is commonly used in IGE studies to estimate the variance attributable to social
partners without explicitly modelling the partner traits through which those effects are mediated.
While the model provides an estimate of the total variance of social impact (V;), it does not identify

trait-based pathways or quantify individual differences in responsiveness.
Trait-based (Trait) model:

The trait-based model can be described as:

Ziji = o + @i + PXijk + € + €ijic - @)

The trait-based model adopts a reaction norm framework (Dingemanse & Araya-Ajoy, 2015; Kirk-
patrick & Lande, 1989; McGlothlin et al., 2010; Moore et al., 1997, Wolf et al., 1999), modelling
the focal’s phenotype as a function of a measured trait of the social partner, x;jx (e.g. body size).
The response is estimated through 1, the interaction coefficient or slope that represents the mean
response of the population to the trait values of the social partners. To account for unexplained
social effects not captured by the measured trait, a partner identity effect ¢; is included. Although
this addition is not conventional in trait-based models, it ensures mathematical equivalence to the
variance-partitioning model, allowing us to recover the same variance decomposition of social im-

pact. The model that we refer to as the Trait model has also been termed a "hybrid model” (Baud

12
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et al., 2022). The total variance in social impact can then be expressed as:

Vg = 9V + Ve +2¢Cov e . @)

Subsequently, we can again estimate the covariance matrix, the same as we derive from the V-P

approach.
Trait-based model with random slopes (Trait+RS):

The trait-based model can be extended to estimate social responsiveness:
zijk = Bo + i + (Y + Yi)Xijk + € + eiji - )

This extension of the trait-based model includes random slopes 1;, which represent individual-
specific deviations from the population slope 1. This allows individuals to differ in their respon-
siveness to partner traits. The model therefore estimates a 3 X 3 covariance matrix that includes
mean behaviour (V,), social responsiveness (V,), and residual partner effects (Ve), as well as their

covariances.
Trait-based model with measurement error correction:

To account for measurement error or labile variation in the partner trait, we supplement the trait-

based model with an error correction:
zijk = Po+ ai +PXj + € + eijkc, (6)
where the latent trait value x; is estimated by:
Xijk = Poy + Xj + €ijk - )

This model is an extension of the Trait model, where yx;jx denotes the trait value of the social partner

j as observed when interacting with focal 7 at instance k. We partition this observed value into two

13
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components: a partner-specific effect x; and a residual term Cijk - In the context of measurement
error, ejjx, represents random error around the true partner trait value x;. More generally, this
same structure can also be interpreted as a decomposition of the partner trait into genetic and
environmental components: y; can be viewed as the heritable additive genetic contribution to the
partner trait, whereas ¢;; ky represents non-heritable influences (environmental or transient effects).
Thus, the measurement-error model provides a framework that can be applied both to correct for
error in trait measurements or to allow inference about the genetic basis of social impact through
partner traits, thereby linking directly to IGE theory. This model also estimates a 3 X 3 covariance
matrix that includes mean behaviour (V,), partner impact trait (V,), and residual partner effects

(Ve), as well as their covariances.
Impact and responsiveness model:

The complete model to estimate individual mean trait values, social responsiveness, and social

impact is described as:

zijk = Bo + ai + (Y + Yi)x; + € +eij, (8)

where the latent trait value x; is estimated by:
Xijk = oy + Xj + €ijk - )

This model extends the trait-based approach by combining two components: random slopes and
the error-correction framework. This complete model yields a 4 X 4 covariance matrix that esti-
mates the variances and covariances of mean behaviour (V,), the partner impact trait (V,), social
responsiveness (Vy), and residual partner effects (V). From these estimates, we can derive the joint
covariance structure of mean behaviour (@), social impact (¢), and social responsiveness (i) (see

Supplementary Equations S1, S2, S3, 54 for details):

Q; Va COVmp COme,
1113' ~MVN(0, Q) : Q- COVmp le COVIM) [e] ~ MVN(O, V) . (10)
d)i COVaq*) COVIM) V(p

14
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Table 1: Overview of the variance components estimated in each model. Total social impact variance is estimated either directly
(Vi) or via a combination of the variance in impact trait and residual impact ( D2V + Ve). The two trait models, Trait and Trait+RS do
not correct for measurement error, and thus estimate impact (V) using the variance of the partner trait that includes measurement error
(Xijk- Each model estimates a covariance matrix containing all individual-level random effects and their covariances corresponding to
that model specification.

Model Component Mean behaviour | Responsiveness | Impact trait | Total / Residual impact
V-P Va Ve
Trait Vy Xijk Ve
Trait+RS Vy le Xijk Ve
Trait+EIV Vi Vy Ve
1&R Va Vi Vy Ve

Model specification

All simulations were implemented in R (version 4.5.1, R Core Team, 2025) and analysed in a Bayesian
framework using Stan probabilistic programming language (Carpenter et al., 2017) via the ‘rstan’
package (version 2.32.2) (Stan Development Team, 2025). Each simulated dataset was analysed with
weakly informative priors: normal distributions (mean = 0, SD = 1) for fixed effects, and truncated
normal distributions (mean = 0, SD = 1; lower bound = 0) for variance parameters. Correlation
structures among random effects were estimated using Cholesky decomposition with an LKJ(1)
prior. All models were run with one chain with 1000 warm-up, and 5000 sampling iterations.
The models were run in parallel on multiple processing units (up to 56) using the "future” and

"future.apply” packages (Bengtsson, 2021).

Results

Sample size

The 1&R model recovered fixed effects and variances with high accuracy (Figure 2). Estimates
of the population mean (By) and interaction coefficient (i) showed negligible bias, once sample
size reached 800 observations (< 3%). The dispersion decreased steadily with the sample size for
all parameters. All variance components were estimated with minimal bias (< 5%) in all sample

sizes, with the exception of a slight overestimation of the social impact variance (V) at the smallest

15
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sample size (8.2% at 400). Covariances were more difficult to estimate, with strong underestimation
at small sample sizes (-17.6% to -30.2% at 400). Among the covariances, Covyg (social impact
- social responsiveness) was the most difficult to estimate, followed by Cov,y (mean trait value -
social responsiveness), while Cov,¢ (mean trait value - social impact) was estimated most accurately
(least biased). The bias decreased consistently with larger samples, with less than 4% bias at the
largest sample size of 6400 observations with 800 individuals. Taken together, these results show
that estimates of fixed effects and variances stabilise at moderate sample sizes (> 800), whereas
reliable estimation of covariance components requires substantially larger datasets. Based on these
patterns, we continued the subsequent analyses with a total sample size of 3200 observations, which

yielded adequate accuracy for all parameters.
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Figure 2: Visualisation of bias and dispersion of model parameters estimated by the impact and responsiveness (I&R)
model across various total sample sizes. The top panels show the relative bias (%) of the posterior medians from analyses of a 1000
simulated datasets per sample size. The bottom panel shows boxplots of all 1000 posterior medians. The left-side panels (a) show the
fixed effects: population mean By and interaction coefficient 1. The middle panels (b) show variances of: mean behaviour V,, social
impact Vi, and social responsiveness Vy,. The right-side panels (c) show the covariances: mean behaviour-social impact Covyg, mean
behaviour-social responsiveness Covqy and social impact-social responsiveness Covyq. The sample sizes are increased by increasing
the number of individuals. Each individual interacts eight times with different social partners for each interaction. The dotted lines
represent the simulated ‘true’ estimate.

Sampling design

We examined different sampling designs while keeping the total sample size constant at 3200
observations. Throughout the results, we only highlight changes greater than 5% across study
designs; smaller differences were considered negligible. Across all designs, estimates of variance
components showed minimal differences in both accuracy (bias) and precision (dispersion) (Figure 3,
Table S2). Bias in variance components was generally below 5%, with variance in social impact
consistently showing a slight overestimation. Dispersion remained stable across designs, with the

exception of variance in mean trait values, where dispersion increased from 8.2% to 14.2% when
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fewer individuals and more repeated interactions with the same partners were included. . These
results indicate that at a total sample size of 3200, the partitioning of observations into numbers
of individuals, numbers of social partners per individual, or repeated dyadic interactions has little
effect on the accuracy or precision of variance component estimates. Thus, all study designs appear
adequate to obtain reliable variance estimates. In contrast, estimates of individual-level covariances
were more sensitive to study design choices. Covariances were generally underestimated, typically
by less than 10%, although the magnitude of bias varied between design choices. Moreover,

covariances did not all respond similarly to trade-offs between sampling axes.
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Figure 3: Effect of sampling design axes on bias and dispersion of variance and covariance parameters. Relative bias and
relative dispersion of the model estimates of variances and covariances over 1000 simulated datasets per study design. Each study design
contains a total sample size of 3200 observations. The left-side panels (a) show the trade-off between the number of individuals and
the number of social partners (each individuals interacts once with each social partner: repeats = 1). The middle panels (b) show the
trade-off between the number of individuals and repeated dyadic interactions (repeats) for a total sample size of 3200 (each individual
interacts with four different social partner: partners = 4). The right-side panels (c) show the trade-off between interacting with more
different social partners against interacting repeatedly with the same social partners for a total sample size of 3200 (each study design
has 200 unique individuals: individuals = 200). Top panels represent the accuracy (relative bias) and precision (relative dispersion) of
the variance parameters and the bottom panels the covariance parameters.
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More individuals or more unique partners per individual

To investigate this, we compared whether it is more beneficial to maximise the number of indi-

viduals or the number of social partners per individual. In these scenarios, individuals had 2,

4, 8, 16, or 32 social partners (equal to the number of interactions per individual), correspond-
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ing to datasets with 1600, 800, 400, 200, or 100 individuals, respectively, while maintaining 3200
total observations. Increasing the number of individuals at the expense of repeated interactions
reduced accuracy and precision for some covariances (Figure 3a). Specifically, bias increased for
the mean—-impact and mean-responsiveness covariances as fewer individuals were included. In
contrast, the impact-responsiveness covariance showed the opposite trend, with bias decreasing as
the number of individuals decreased and the number of partners per individual increased, reaching
a minimum at 200 individuals with 16 partners each. Overall, the design with 400 individuals and
8 partners yielded the lowest average bias across the three covariances. Dispersion also increased as
the number of individuals decreased, rising from 11.1% to 22.8% for the mean—impact covariance
and from 12.0% to 19.2% for the mean-responsiveness covariance (Table 52). The dispersion of the

impact-responsiveness covariance was largely unaffected.

More individuals or more repeated interactions with the same partners

Next, we evaluated designs trading-off the number of individuals against the number of repeated
dyadic interactions, while keeping the number of unique partners per individual constant at 4
(Figure 3b). Here, bias increased for both the mean—impact covariance (from —0.9% to —9.0%)
and the mean-responsiveness covariance (from —3.1% to —8.2%) when repeated interactions were
prioritised over including more individuals (Table 52). Bias in the impact-responsiveness covariance
remained stable across designs. However, dispersion increased for all three covariance estimates
as fewer individuals were included and more dyadic pairs were repeated. This indicates that
prioritising repeated dyadic interactions at the cost of including more individuals reduces the

reliability of covariance estimation.

More social partners or more repeated interactions with the same partners

Finally, we examined the trade-off between the number of social partners and the number of
repeated interactions with the same partners while keeping the number of individuals constant
at 200. Bias and dispersion remained largely unchanged across study designs, except for the

impact-responsiveness covariance, which showed a marked increase in bias (from —5.8% to —13.4%)
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as the number of unique partners decreased and repeated dyads increased (Figure 3¢, Table S2).
Overall, there is little evidence that prioritising more partners versus more repeated dyads has an

effect on the estimation accuracy and precision.

Taken together, these results show that estimation of variance in mean trait values, social impact,
and social responsiveness are not strongly affected by study design choices for a total sample size
of 3200. Covariances, on the contrary, are more sensitive to how social interaction observations
are partitioned. Designs that balance moderate numbers of individuals with moderate numbers
of partners are expected to perform well overall, whereas prioritising repeated dyadic interactions
over the number of individuals reduces the reliability of the estimation of the covariances. We
further tested the trade-off in sampling design axes for a total sample size of 800 observations,

which showed similar patterns (see Figure S1)

Model comparison

We compared the complete I&R model to two reduced models, the variance-partitioning approach
and the trait-based model, that lack the statistical components required to fully quantify all levels of
variation. Specifically, these reduced models do not account for variation in social responsiveness,
nor for measurement error in the partner trait. Our results show that these models show clear
differences in bias and dispersion. Specifically, models that did not account for measurement error
(Trait and Trait+RS) in the partners trait showed large biases in all three model parameters (Figure

4 and 5).
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Figure 4: Comparison of the impact and responsiveness model (I&R) with a variance-partitioning model (V-P) and a
trait-based model (Trait). The figure shows the accuracy (bias) and precision (dispersion) of (a) the population response ¥, (b) the
variance in social impact Vy, (c) the covariance between mean trait value and social impact Covy. Top panels show the relative bias of
three models that analysed the same 1000 simulated datasets for four different partitions of number of individuals and number of social
partners per individual. Bottom panel shows the relative dispersion (mean absolute deviation of the mean), expressed as a percentage.

For the population-level response ¢, the I&R model showed minimal bias across study designs
(all < 2%), with dispersion between 9.9% and 12.4% (Table S4). By contrast, the Trait model
consistently underestimated ¢ by 10.1 - 17.0%, with bias increasing as the number of individuals
decreased (Figure 4). Dispersion in the estimation of 1 was slightly higher in the &R model
compared to the Trait model across study designs. For the variance-partitioning (V-P) model,
an estimate of ¢ can also be derived; however, this would reflect the population-level response
to the total phenotype of the social partners (i.e. both x; and €;) (McGlothlin & Brodie, 2009),
whereas we simulated data such that ¢ represents the response to the trait component y; alone.
Therefore, these estimates would not be the same as the simulated value of 1,5 For the variance in
social impact V¢, the Trait model showed consistent underestimation between —8.5% and —14.4%
compared to slight overestimation by the I&R model (2.0% to 5.9%) (Figure 4, Table S5). The variance

partitioning model (V-P), however, showed no marked bias in the estimation of the variance in social
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impact. Dispersion was slightly higher in the I&R model, than the two reduced models. All models
underestimated the mean-impact covariance (Cov,g). In the I&R model, bias ranged from —-0.1%
to —=7.0%, with dispersion ranging from 11.1% to 22.8%. In the variance-partitioning model, bias
ranged from —2.2% to —4.4%, with dispersion ranging from 13.7% to 23.0%. The trait-based model
showed severe underestimation, particularly when more individuals interacted with fewer social
partners (—-61.3%), with bias decreasing to —8.7% when fewer individuals interacted with more
social partners (Figure 4, Table S6). Overall, the I&R model and V-P model performed better than
the Trait model, which produced extremely biased estimates of the mean-impact covariance under

most sampling conditions (which is equivalent to a DGE-IGE covariance).

In order to determine whether the trait-based model shows more error because it does not
account for individual variation in responsiveness (no random slopes), or due to the methodological
issue that traits are often measured with error (no error correction), we compared the full I&R model
to two models that were each lacking one of these components that account for this. Our results
show that there are very little differences in estimation bias and precision between the full impact
and responsiveness (I&R) model and a model that does not account for individual variation in

responsiveness, however, not modelling measurement error can cause substantial biases (Figure 5).
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Figure 5: Comparison of the impact and responsiveness (I&R) model with a trait-based model without random slopes
(Trait+EIV) and a trait-based model without errors-in-variables correction (Trait+RS). See caption Figure 4 for details.

For the population-level response 1, both the I&R and Trait+EIV models showed minimal bias
(< 2%) across all sample sizes (Table S4). In contrast, the Trait+RS model consistently underesti-
mated 1, with bias increasing from 11.5% at 1600 individuals with 2 social partners to 25.96% at
100 individuals with 32 social partners, which is actually worse than the Trait model (Table S4).
Dispersion was similar across models (6-12%). For the variance in social impact V,, the Trait+EIV
model (1.2% to 2.5%) was a bit closer to unbiased estimation than the [&R. The Trait+RS model was
the most biased, with an underestimation between —4.5% and —8.7%. Both models provide better
estimates for variance in social impact than the basic Trait model. For the mean-impact covariance
Cova¢, the Trait+EIV model and I&R model do not show substantial estimation bias. The Trait+RS
model showed large bias, particularly when more individuals interacted with fewer social partners.

This bias was slightly less than the basic Trait model.

In summary, the Trait+EIV model performed comparably to the full I&R model, with even
slightly more accurate and precise estimation of V;. Adding error correction thus substantially

improves the Trait model. In contrast, the addition of random slopes without error correction

24



440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

(Trait+RS) provided little benefit and, in most cases, worsened the performance compared to I&R.
Compared to the Trait model, the Trait+RS model performed worse in estimating the population-
level response 1), slightly better in estimating V; and slightly better in estimating Cova¢. Across
most metrics, parameters and study designs the model that does not account for measurement error
(Trait+RS) performed worse than the I&R model. We also performed the model comparison with a

lower total sample size of 800 observations, which showed similar patterns (Figures S2, S3).

Discussion

Understanding how social traits evolve requires not only studying individual variation in mean
behavioural tendencies, but also accurately estimating how individuals influence, and are influ-
enced by, their social partners. Building upon recent conceptual advances that decompose social
phenotypes into mean behaviour, social responsiveness and social impact (Araya-Ajoy et al., 2020;
de Groot et al., 2023), our study provides a systematic exploration of the statistical and study design
challenges associated with estimating these components. In this study, we explored how different
sampling decisions and model structures affect our ability to estimate these components in em-
pirical social interaction data. Our simulations demonstrate that it is possible to estimate mean
behaviour, social responsiveness and social impact with reasonable accuracy and precision, but
that model performance can be strongly affected by both sampling design and model structure. In
particular, we show that failing to account for measurement error in the traits of social partners can
lead to biased estimates of key parameters, including the population-level responsiveness 1) and the
covariance between mean behaviour and social impact. By systematically assessing these issues,
our results provide practical guidance for researchers aiming to study the evolution of labile social

traits in systems where the social environment is dynamic and trait expression is plastic.

Our results highlight that accurate and precise estimation of social behavioural parameters de-
pends strongly on total sample size. Across increasing sample sizes, the 1&R model produced
unbiased estimates of fixed effects and variance components, with dispersion decreasing markedly

as larger datasets were used. This aligns with earlier simulation work showing that model perfor-
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mance improves rapidly with increasing numbers of individuals and observations per individual
(Dingemanse & Dochtermann, 2013; Martin et al., 2011). Notably, covariance estimates between
components of individuality (Covag, Covay, and Covy,,) were consistently underestimated at small
sample sizes, which largely disappeared when sample sizes were larger (> 3200). This indicates
that detecting and quantifying covariance structure among individuals in social traits requires sub-
stantially more data than estimating univariate effects (i.e. variances) alone. Large sample sizes
are necessary to obtain unbiased estimates, especially when researchers expect even smaller effect
sizes, for instance, when estimating indirect genetic effects (Santostefano et al., 2024). These sample
sizes are fortunately not uncommon in studies on IGEs. Based on data extracted from Santostefano
etal. (2024), we found that across 47 meta-analysed IGE studies, an average of 5023 individuals were
included per study, with a mean of 1.48 observations per individual. Nonetheless, six studies were
conducted with fewer than 400 individuals and fewer than 1600 total observations. These datasets
were mostly on wild and semi-captive populations. Similar studies, where sample sizes are limited,
might benefit the most from optimising sampling methods (see Figure S1). Our results, showing
that we need at least 3200 observations, align with the widely acknowledged difficulty of obtaining
precise IGE estimates without large and well-structured datasets (Bijma, 2010; Charmantier et al.,
2014). Our inspection of the full parameter set indicated that the impact-responsiveness model
struggled most when estimating the residual impact parameter, which was typically overestimated
by about 50% (Table S7). This bias likely arises because variation in residual impact is estimated
through the random identity of the partner, which is also used to model the partner’s impact trait
affecting the focal individual. The model therefore has difficulty disentangling these two partner
effects. We furthermore suspect that the complexity of the multivariate structure matrix demands
large sample sizes. In our simulated data, we modelled four traits that (co-)varied among individu-
als: mean behaviour, social responsiveness, impact trait, and residual impact (the latter two jointly
contributing to total social impact). These traits were simulated with correlations of 0.6, -0.6, or
0. The model was then tasked with disentangling all variances and covariances among these traits
using only the phenotype of the focal individual, the observed impact trait of their partner, and the
identities of both individuals within a single assay. This level of complexity is expected to increase

the sample size required for unbiased and precise estimation.
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Estimating social responsiveness and impact, as well as their covariances with mean behaviour,
requires specific features in study design that are rarely addressed in detail. In particular, the need
for individuals/genotypes to act both as focal subjects and social partners, variation in partner
traits, and repeated interactions between individuals or genotypes imposes constraints that are
unique to studies of social behaviour. Given these constraints, we explored how different ways
of allocating sampling effort affect the performance of models estimating individual variation in
social traits. We found that the specific sampling design choices for datasets with a total of 3200
observations did not have extreme effects on the accuracy and precision of the estimation of variance
components. Changes in bias and dispersion from one extreme to the other never exceeded 5%.
This means that researchers are able to compensate by investing in increasing the number of social
partners per individual or repeating the same dyadic interactions if they do not have access to a large
population size. Similarly, in some cases, if observations of social behaviour are often with the same
social partner, researchers are forced to obtain an adequate population size of unique individuals
to estimate all variance components. For example, this applies to longitudinal studies on indirect
genetic effects in breeding attempts of long-lived animals that form strong pair bonds (Moiron
et al., 2020; Teplitsky et al., 2010). However, for covariances, our results show that analyses using
small population sizes could suffer from lower accuracy and precision in estimating individual-level
covariances. To accurately estimate covariances, having more individuals is preferred over having
more social partners or more dyadic repeated interactions at an equal total sample size in almost all
cases. Furthermore, we also show that repeating pairwise interactions with the same individuals at
the cost of using more individuals or more unique social partners is not advisable. In our analyses,
increasing the repeats of the same dyads always resulted in a decrease in number of individuals
or a decrease in number of unique dyads (social partners). We show that if the total sample size
is kept equal having more repeats of the same dyad is either detrimental or does not improve the
model estimation. However, repeating dyads with the purpose of increasing the total sample size
should improve estimation accuracy and precision, but likely not as much as increasing the number
of individuals or the number of unique dyads. Thus, if researchers face constraints on measuring a
specific number of interactions, based on our specific simulations, the total sample size should be

increased using the following order of priority:
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1. Increase the number of individuals;
2. Increase the number of social partners per individual (unique dyads);

3. Increase the number of repeated dyads.

This recommendation applies primarily to researchers interested in decomposing among- and
within-individual variation in all three components of a social trait, as well as their covariances.
However, it is important to recognise that our conclusions are specific to the parameter values
and effect sizes used in our simulations. Consequently, we strongly encourage researchers to
simulate their own datasets and analyse them to identify the sampling design most suitable for their
expected effect sizes and study system. To facilitate this process, we developed socialSim, an easy-
to-use R package that provides a simple workflow for designing and evaluating social interaction
studies (Wijnhorst, 2025). The package includes three core functions: simulate_data(), which
generates social interaction datasets under user-specified parameters. The user can, for example,
choose whether to include variation in social responsiveness, measurement error/variation in the
partner trait, and specify individual-level correlations between variance components. The function
run_model (), where the user can choose one of the hierarchical Bayesian models tested in this
article in Stan; and summarise_results(), which extracts and summarises outcomes as relative
bias and relative precision. Importantly, socialSim can be used without any prior experience in Stan
programming or Bayesian hierarchical modelling, lowering the threshold for researchers to explore

how study design and parameter choices influence model performance.

In order to detect the consequences of having incomplete models when we suspect complex
multivariate social phenotypes, we compared a complete I&R model to several reduced models.
Importantly, we show that trait-based models which lack specific components to estimate individual
differences in traits may perform worse. Our comparisons show that the variance-partitioning (V-
P), however, showed very little biases and low dispersion in estimating the variation in social
impact and the covariance (mean trait value x social impact) under large sample sizes. This is a
positive result because the variance-partitioning approach is also the most widely used method for
estimating IGEs (Bailey & Desjonquéres, 2022). However, we show that using a trait-based model,

that doesn’t account for variation in slopes or measurement error, can lead to an underestimation
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of the social effect Vi and the mean-impact covariance Cov,p. We demonstrate the well-known
effect that not accounting for measurement error leads to an attenuation of the regression coefficient
(¢ in our model), which also caused an underestimation of the social effect V. Interestingly, our
model comparison indicates that adding or removing random slopes has little influence on the
accuracy and precision of model estimates. Thus, including random slopes is not detrimental and
may even be preferable when individual variation in responsiveness is of interest. In contrast,
not accounting for random slopes when such variation is present in the data does not appear to
worsen model performance. This is somewhat unexpected, as previous studies have emphasised
the importance of modelling among-individual variation in slopes. For instance, omitting random
slopes can bias fixed effects and inflate Type I error rates (Barr et al., 2013), or lead to overestimated
between-individual variance components depending on the intercept-slope correlation (i.e. the
mean behaviour-responsiveness covariance) (Schielzeth & Forstmeier, 2009). However, in our case,
we do not observe such overestimation. Instead, the variance attributable to individual differences
in slopes (0.1) is absorbed by the residual variance when slopes are not modelled (residual variance
increases from 0.6 to 0.7). Consequently, estimates of repeatability for direct and indirect effects
(calculated as the proportion of variance explained by V, and Vj, respectively) remain stable.
Nevertheless, this implies that within-individual variance in the social trait is inflated, as variance
in slopes is treated as unexplained residual variance, despite potentially capturing biologically
meaningful differences in responsiveness to the social environment. Therefore, given both prior
evidence for the potential risks of omitting random slopes and our finding that their inclusion is at
least not harmful, we recommend incorporating random slopes into IGE models to better capture

individual differences in social responsiveness.

The impact-and-responsiveness framework we propose is particularly useful when the partner
trait is either measured with error or varies substantially between social interactions. In the context
of social effects, we are primarily interested in how repeatable individual differences in partners
shape the focal individual’s behaviour. These effects are not caused by non-heritable or transient
expressions of a partner’s phenotype during a given interaction, but by repeatable traits, such as
mean levels of aggression or body size, that exert influence across multiple encounters (Bleakley

& Brodie, 2009; Saltz, 2013; Wilson et al., 2009). Therefore, rather than modelling the observed
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phenotype expressed in a single interaction, we aim to estimate the latent mean trait value of each
partner using a double equation (errors-in-variables) model. This approach captures the repeatable
among-individual variation that drives social effects and allows us to quantify its contribution
to focal behaviour. Importantly, this latent partner trait (x;) can also be partitioned into additive
genetic and permanent environmental components using an animal model. This enables estimation
of the breeding values underlying social effects and the total genetic variance attributable to indirect
genetic effects using the interaction coefficient 1/_1 (McGlothlin & Brodie, 2009; Wolf et al., 1999). Thus,
the model not only accounts for measurement error or stochastic expression in labile traits, but also
aligns with the conceptual goal of identifying the stable genetic and/or phenotypic individual

differences in partners that generate social effects.

Several theoretical papers have suggested modelling social responsiveness using random slopes
in IGE frameworks (Araya-Ajoy et al., 2020; Bailey et al., 2021; Dingemanse & Araya-Ajoy, 2015;
Martin & Jaeggi, 2022), which is further supported by observational and experimental evidence
that individuals show repeatable differences in how they respond to the social cues (Bailey & Zuk,
2012; Chenoweth et al., 2010; Fiirtbauer & Fry, 2018; Guayasamin et al., 2017; Jablonszky et al.,
2022; Morand-Ferron et al., 2011; Strickland & Freére, 2019; Strickland et al., 2021). We support this
perspective and show that including random slopes does not harm estimation accuracy or precision.
Therefore, we recommend considering random slopes in IGE models, especially when aiming to
disentangle social impact and responsiveness, two traits that can vary independently and jointly
shape social phenotypes (de Groot et al., 2023). Exploring how these traits genetically covary,
including with the direct effects, will be key to understanding the evolution of social behaviour
(Bailey et al., 2021; Bijma et al., 2007; Moore et al., 1997; Wilson et al., 2009). By assessing the utility
of an impact-and-responsiveness model, we hope to provide a useful statistical tool for the study
of the expression of social traits. Only through considering the multivariate nature of ubiquitous

social interactions will we be able to understand their effects on evolutionary dynamics.

30



606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

622

623

624

625

626

627

628

629

630

631

Data Availability Statement

The data and code used to generate the data and results of this study are available on:

https:/ / github.com/RoriWijnhorst/Social-impact-and-responsiveness

Acknowledgements

We thank Joel Pick for lending advice on the computational challenge of running many Bayesian
models. The authors also thank Alastair Wilson for insightful discussions related to the manuscript

and the reviewers.

References

Akgay, E., & Van Cleve, J. (2012). Behavioral responses in structured populations pave the way to group optimality. American
Naturalist, 179(2), 257-269. https:/ /doi.org/10.1086 /663691

Araya-Ajoy, Y. G., Mathot, K. J., & Dingemanse, N. J. (2015). An approach to estimate short-term, long-term and reaction
norm repeatability. Methods in Ecology and Evolution, 6(12), 1462-1473. https:/ /doi.org/10.1111/2041-210X.12430

Araya-Ajoy, Y. G., Westneat, D. F., & Wright, J. (2020). Pathways to social evolution and their evolutionary feedbacks.
Evolution, 74(9), 1894-1907. https://doi.org/10.1111/evo.14054

Bailey, N. W., & Desjonqueéres, C. (2022). The indirect genetic effect interaction coefficient 1 : Theoretically essential and
empirically neglected. Journal of Heredity, 113(1), 79-90. https:/ /doi.org/10.1093 /jhered / esab056

Bailey, N. W., Desjonqueres, C., Drago, A., Rayner, J. G., Sturiale, S. L., & Zhang, X. (2021). A neglected conceptual problem
regarding phenotypic plasticity’s role in adaptive evolution: The importance of genetic covariance and social drive.
Evolution Letters, 5(5), 444-457. https:/ /doi.org/10.1002/ev13.251

Bailey, N. W., Marie-Orleach, L., & Moore, A. J. (2018). Indirect genetic effects in behavioral ecology: Does behavior play a
special role in evolution? Behavioral Ecology, 29(1), 1-11. https:/ /doi.org/10.1093 /beheco/arx127

Bailey, N. W., & Zuk, M. (2012). Socially flexible female choice differs among populations of the Pacific field cricket:
Geographical variation in the interaction coefficient psi (). Proceedings of the Royal Society B Biological Sciences,
279(1742), 3589-3596. https:/ /doi.org/10.1098 /rspb.2012.0631

Barr, D. ], Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it
maximal. Journal of Memory and Language, 68(3), 255-278. https:/ /doi.org/10.1016/j.jm1.2012.11.001

31


https://github.com/RoriWijnhorst/Social-impact-and-responsiveness
https://doi.org/10.1086/663691
https://doi.org/10.1111/2041-210X.12430
https://doi.org/10.1111/evo.14054
https://doi.org/10.1093/jhered/esab056
https://doi.org/10.1002/evl3.251
https://doi.org/10.1093/beheco/arx127
https://doi.org/10.1098/rspb.2012.0631
https://doi.org/10.1016/j.jml.2012.11.001

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

652

653

654

655

656

657

658

659

660

661

662

663

664

Baud, A., McPeek, S., Chen, N., & Hughes, K. A. (2022). Indirect genetic effects: A cross-disciplinary perspective on empirical
studies. Journal of Heredity, 113(1), 1-15. https:/ /doi.org/10.1093 /jhered / esab059

Bell, A. M., Hankison, S. J., & Laskowski, K. L. (2009). The repeatability of behaviour: A meta-analysis. Animal Behaviour,
77(4), 771-783. https:/ /doi.org/10.1016 /j.anbehav.2008.12.022

Bengtsson, H. (2021). A unifying framework for parallel and distributed processing in r using futures. The R Journal, 13(2),
208-227. https:/ /doi.org/10.32614/R]-2021-048

Bijma, P. (2014). The quantitative genetics of indirect genetic effects: A selective review of modelling issues. Heredity, 112(1),

61-69. https://doi.org/10.1038 /hdy.2013.15

Bijma, P. (2010). Estimating indirect genetic effects: Precision of estimates and optimum designs. Genetics, 186(3), 1013-1028.
https://doi.org/10.1534/ genetics.110.120493

Bijma, P, Muir, W. M., & Van Arendonk, J. A. M. (2007). Multilevel selection 1: Quantitative genetics of inheritance and
response to selection. Genetics, 175(1), 277-288. https:/ /doi.org/10.1534/ genetics.106.062711

Bleakley, B. H., & Brodie, E. D., III. (2009). Indirect genetic effects influence antipredator behavior in guppies: Estimates of
the coefficient of interaction psi and the inheritance of reciprocity. Evolution, 63(7), 1796-1806. https:/ /doi.org/
10.1111/j.1558-5646.2009.00672.x

Brommer, J. E. (2013). Variation in plasticity of personality traits implies that the ranking of personality measures changes be-
tween environmental contexts: Calculating the cross-environmental correlation. Behavioral Ecology and Sociobiology,

67(10), 1709-1718. https:/ /doi.org/10.1007 /s00265-013-1603-9

Brommer, ]J. E., & Rattiste, K. (2008). “Hidden” reproductive conflict between mates in a wild bird population. Evolution,
62(9), 2326-2333. https:/ /doi.org/10.1111/j.1558-5646.2008.00451.x

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P, & Riddell, A.
(2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1-32. https:/ /doi.org/10.
18637 /jss.v076.i01

Charmantier, A., Garant, D., & Kruuk, L. E. B. (2014). Quantitative Genetics in the Wild. OUP Oxford.

Chenoweth, S. F,, Rundle, H. D., & Blows, M. W. (2010). Experimental evidence for the evolution of indirect genetic effects:
changes in the interaction effect coefficient, Psi (¢’), due to sexual selection. Evolution, 64(6), 1849-1856. https:
//doi.org/10.1111/j.1558-5646.2010.00952.x

de Groot, C., Wijnhorst, R. E., Ratz, T., Murray, M., Araya-Ajoy, Y. G., Wright, ]., & Dingemanse, N. J. (2023). The importance
of distinguishing individual differences in ‘social impact’ versus ‘social responsiveness’ when quantifying indirect
genetic effects on the evolution of social plasticity. Neuroscience and Biobehavioral Reviews, 144, 104996. https:
//doi.org/10.1016/j.neubiorev.2022.104996

Dingemanse, N. J., & Araya-Ajoy, Y. G. (2015). Interacting personalities: behavioural ecology meets quantitative genetics.

Trends in Ecology and Evolution, 30(2), 88-97. https:/ /doi.org/10.1016/j.tree.2014.12.002

32


https://doi.org/10.1093/jhered/esab059
https://doi.org/10.1016/j.anbehav.2008.12.022
https://doi.org/10.32614/RJ-2021-048
https://doi.org/10.1038/hdy.2013.15
https://doi.org/10.1534/genetics.110.120493
https://doi.org/10.1534/genetics.106.062711
https://doi.org/10.1111/j.1558-5646.2009.00672.x
https://doi.org/10.1111/j.1558-5646.2009.00672.x
https://doi.org/10.1111/j.1558-5646.2009.00672.x
https://doi.org/10.1007/s00265-013-1603-9
https://doi.org/10.1111/j.1558-5646.2008.00451.x
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1111/j.1558-5646.2010.00952.x
https://doi.org/10.1111/j.1558-5646.2010.00952.x
https://doi.org/10.1111/j.1558-5646.2010.00952.x
https://doi.org/10.1016/j.neubiorev.2022.104996
https://doi.org/10.1016/j.neubiorev.2022.104996
https://doi.org/10.1016/j.neubiorev.2022.104996
https://doi.org/10.1016/j.tree.2014.12.002

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

Dingemanse, N. J., & Dochtermann, N. A. (2013). Quantifying individual variation in behaviour: mixed-effect modelling
approaches. Journal of Animal Ecology, 82(1), 39-54. https://doi.org/10.1111/1365-2656.12013

Dingemanse, N. J., Araya-Ajoy, Y. G., & Westneat, D. F. (2021). Most published selection gradients are underestimated: why
this is and how to fix it. Evolution, 75(4), 806-818. https:/ /doi.org/10.1111/ev0.14198

Fiirtbauer, I., & Fry, A. (2018). Social conformity in solitary crabs, carcinus maenas, is driven by individual differences in
behavioural plasticity. Animal Behaviour, 135, 131-137. https:/ /doi.org/10.1016 /j.anbehav.2017.11.010

Griffing, B. (1967). Selection in reference to biological groups. I. Individual and group selection applied to populations in
unordered groups. Australian Journal Biological Science, 20, 127-142.

Guayasamin, O. L., Couzin, I. D., & Miller, N. Y. (2017). Behavioural plasticity across social contexts is regulated by the
directionality of inter-individual differences [The Cognition of Fish]. Behavioural Processes, 141, 196-204. https:
//doi.org/10.1016/j.beproc.2016.10.004

Han, C. S., Tuni, C., Ulcik, J., & Dingemanse, N. J. (2018). Increased developmental density decreases the magnitude of
indirect genetic effects expressed during agonistic interactions in an insect: density-dependent indirect genetic
effects. Evolution, 72(11), 2435-2448. https:/ /doi.org/10.1111/ev0.13600

Henderson, C. R. (1984). Applications of linear models in animal breeding. University of Guelph Press.

Jablonszky, M., Canal, D., Hegyi, G., Krenhardt, K., Laczi, M., Marké, G., Nagy, G., Rosivall, B., Szasz, E., Zsebdk, S., &
Garamszegi, L. Z. (2022). Individual differences in song plasticity in response to social stimuli and singing position.
Ecology and Evolution, 12(5), e8883. https:/ /doi.org/10.1002/ece3.8883

Kazancioglu, E., Klug, H., & Alonzo, S. H. (2012). The evolution of social interactions changes predictions about interacting
phenotypes. Evolution, 66(7), 2056-2064. https://doi.org/10.1111/].1558-5646.2012.01585.x

Kirkpatrick, M., & Lande, R. (1989). The evolution of maternal characters. Evolution, 43(3), 485-503. https:/ /doi.org/10.
1111/j.1558-5646.1989.tb04247.x

Kruuk, L. E. B. (2004). Estimating genetic parameters in natural populations using the ‘animal model’. Philos. T. Roy. Soc. B.,
359, 873-890. https://doi.org/10.1098 /rstb.2003.1437

Lane, S. M., Wilson, A.]., & Briffa, M. (2020). Analysis of direct and indirect genetic effects in fighting sea anemones. Behavioral
Ecology, 31(2), 540-547. https:/ /doi.org/10.1093 /beheco/arz217

Martin, J. S., & Jaeggi, A. V. (2022). Social animal models for quantifying plasticity, assortment, and selection on interacting
phenotypes. Journal of Evolutionary Biology, 35(4), 520-538. https://doi.org/10.1111/jeb.13900

Martin, J. S., Jaeggi, A. V., & Koski, S. E. (2023). The social evolution of individual differences: future directions for a
comparative science of personality in social behavior. Neuroscience & Biobehavioral Reviews, 144, 104980. https:
//doi.org/10.1016/j.neubiorev.2022.104980

Martin, J. G. A, Nussey, D. H., Wilson, A. J., & Réale, D. (2011). Measuring individual differences in reaction norms in field
and experimental studies: a power analysis of random regression models. Methods in Ecology and Evolution, 2(4),

362-374. https:/ /doi.org/10.1111/j.2041-210X.2010.00084.x

33


https://doi.org/10.1111/1365-2656.12013
https://doi.org/10.1111/evo.14198
https://doi.org/10.1016/j.anbehav.2017.11.010
https://doi.org/10.1016/j.beproc.2016.10.004
https://doi.org/10.1016/j.beproc.2016.10.004
https://doi.org/10.1016/j.beproc.2016.10.004
https://doi.org/10.1111/evo.13600
https://doi.org/10.1002/ece3.8883
https://doi.org/10.1111/j.1558-5646.2012.01585.x
https://doi.org/10.1111/j.1558-5646.1989.tb04247.x
https://doi.org/10.1111/j.1558-5646.1989.tb04247.x
https://doi.org/10.1111/j.1558-5646.1989.tb04247.x
https://doi.org/10.1098/rstb.2003.1437
https://doi.org/10.1093/beheco/arz217
https://doi.org/10.1111/jeb.13900
https://doi.org/10.1016/j.neubiorev.2022.104980
https://doi.org/10.1016/j.neubiorev.2022.104980
https://doi.org/10.1016/j.neubiorev.2022.104980
https://doi.org/10.1111/j.2041-210X.2010.00084.x

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

Maynard-Smith, J., & Price, G. R. (1973). The logic of animal conflict. Nature, 246(5427), 15-18. https:/ /doi.org/10.1038 /
246015a0

McGlothlin, J. W., & Brodie, E. D., III. (2009). How to measure indirect genetic effects: the congruence of trait-based and
variance-partitioning approaches. Evolution, 63(7), 1785-1795. https:/ /doi.org/10.1111/j.1558-5646.2009.00676.x

McGlothlin, J. W., Moore, A. J., Wolf, . B., & Brodie, E. D., II. (2010). Interacting phenotype and the evolutionary process
III. Social evolution: indirect genetic effects and social selection. Evolution, 64(9), 2558-2574. https:/ /doi.org/10.
1111/j.1558-5646.2010.01012.x

McLean, E. M., Moorad, J. A., Tung, J., Archie, E. A., & Alberts, S. C. (2023). Genetic variance and indirect genetic effects for
affiliative social behavior in a wild primate. Evolution, 77(7), 1607-1621. https:/ / doi.org/10.1093/evolut/qpad066

McNamara, J. M., & Weissing, F. ]. (2010). Evolutionary game theory. In T. Székely, A. J. Moore, & J. Komdeur (Eds.), Social

Behaviour: Genes, Ecology and Evolution. Cambridge University Press.

Meyer, K. (1992). Bias and sampling covariances of estimates of variance components due to maternal effects. Genetics

Selection Evolution, 24(6), 487. https:/ /doi.org/10.1186/1297-9686-24-6-487

Moiron, M., Araya-Ajoy, Y. G., Teplitsky, C., Bouwhuis, S., & Charmantier, A. (2020). Understanding the social dynamics of
breeding phenology: indirect genetic effects and assortative mating in a long-distance migrant. American Naturalist,

196(5), 566-576. https:/ /doi.org/10.1086 /711045

Moore, A. ]., Brodie, E. D., III, & Wolf, ]. B. (1997). Interacting phenotypes and the evolutionary process. I. Direct and
indirect genetic effects of social interactions. Evolution, 51(5), 1352-1362. https:/ / doi.org /10.1111 /j.1558-
5646.1997.tb01458.x

Morand-Ferron, J., Varennes, E., & Giraldeau, L.-A. (2011). Individual differences in plasticity and sampling when playing
behavioural games. Proceedings of the Royal Society B Biological Sciences, 278(1709), 1223-1230. https:/ /doi.org/10.
1098 /rspb.2010.1769

Ponzi, E., Keller, L. F.,, Bonnet, T., & Muff, S. (2018). Heritability, selection, and the response to selection in the presence of

phenotypic measurement error: Effects, cures, and the role of repeated measurements. Evolution, 72(10), 1992-2004.

https://doi.org/10.1111/evo0.13573
R Core Team. (2025). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna,
Austria.

Saltz, J. B. (2013). Genetic composition of social groups influences male aggressive behaviour and fitness in natural genotypes
of Drosophila melanogaster. Proc. R. Soc. B., 280(1771), 20131926. https:/ /doi.org/10.1098 /rspb.2013.1926
Santostefano, F., Moiron, M., Sdnchez-T6jar, A., & Fisher, D. N. (2024). Indirect genetic effects increase the heritable variation

available to selection and are largest for behaviors: A meta-analysis. Evolution Letters, 9(1), 89-104. https:/ /doi.

org/10.1093/evlett/qrae051

34


https://doi.org/10.1038/246015a0
https://doi.org/10.1038/246015a0
https://doi.org/10.1038/246015a0
https://doi.org/10.1111/j.1558-5646.2009.00676.x
https://doi.org/10.1111/j.1558-5646.2010.01012.x
https://doi.org/10.1111/j.1558-5646.2010.01012.x
https://doi.org/10.1111/j.1558-5646.2010.01012.x
https://doi.org/10.1093/evolut/qpad066
https://doi.org/10.1186/1297-9686-24-6-487
https://doi.org/10.1086/711045
https://doi.org/10.1111/j.1558-5646.1997.tb01458.x
https://doi.org/10.1111/j.1558-5646.1997.tb01458.x
https://doi.org/10.1111/j.1558-5646.1997.tb01458.x
https://doi.org/10.1098/rspb.2010.1769
https://doi.org/10.1098/rspb.2010.1769
https://doi.org/10.1098/rspb.2010.1769
https://doi.org/10.1111/evo.13573
https://doi.org/10.1098/rspb.2013.1926
https://doi.org/10.1093/evlett/qrae051
https://doi.org/10.1093/evlett/qrae051
https://doi.org/10.1093/evlett/qrae051

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

Santostefano, F., Wilson, A. J., Araya-Ajoy, Y. G., & Dingemanse, N. J. (2016). Interacting with the enemy: indirect effects of
personality on conspecific aggression in crickets. Behavioral Ecology, 27(4), 1235-1246. https:/ /doi.org/10.1093 /
beheco/arw037

Schielzeth, H., & Forstmeier, W. (2009). Conclusions beyond support: overconfident estimates in mixed models. Behavioral
Ecology, 20(2), 416-420. https:/ /doi.org/10.1093 /beheco/arn145

Smiseth, P. T., Wright, J., & Kolliker, M. (2008). Parent-offspring conflict and co-adaptation: behavioural ecology meets
quantitative genetics. Proceedings of the Royal Society B Biological Sciences, 275(1645), 1823-1830. https:/ /doi.org/
10.1098/rspb.2008.0199

Stan Development Team. (2025). RStan: The R interface to Stan [e version 2.32.7].

Strickland, K., & Frére, C. H. (2019). Individual variation in the social plasticity of water dragons. American Naturalist, 194(2),
194-206. https:/ /doi.org/10.1086/704089

Strickland, K., Mitchell, D. J., Delmé, C., & Frere, C. H. (2021). Repeatability and heritability of social reaction norms in a
wild agamid lizard. Evolution, 75(8), 1953-1965. https:/ /doi.org/10.1111/evo0.14298

Taborsky, B., & Oliveira, R. F. (2012). Social competence: an evolutionary approach. Trends in Ecology and Evolution, 27(12),
679-688. https:/ /doi.org/10.1016/j.tree.2012.09.003

Teplitsky, C., Mills, J. A., Yarrall, ]. W., & Meril4, J. (2010). Indirect genetic effects in a sex-limited trait: the case of breeding time
inred-billed gulls. Journal of Evolutionary Biology, 23(5), 935-944. https:/ /doi.org/10.1111/j.1420-9101.2010.01959.x

Tuliozi, B., Mantovani, R., Schoepf, 1., Tsuruta, S., Mancin, E., & Sartori, E. (2023). Genetic correlations of direct and indirect
genetic components of social dominance with fitness and morphology traits in cattle. Genetics Selection Evolution,
55, 84. https:/ /doi.org/10.1186/512711-023-00845-8

van de Pol, M. (2012). Quantifying individual variation in reaction norms: how study design affects the accuracy, precision
and power of random regression models. Methods in Ecology and Evolution, 3(2), 268-280. https:/ /doi.org/10.
1111/j.2041-210X.2011.00160.x

Via, S., & Lande, R. (1985). Genotype-environment interaction and the evolution of phenotpic plasticity. Evolution, 39(3),
505-522. https:/ /doi.org/10.1111/j.1558-5646.1985.tb00391.x

West-Eberhard, M. J. (1989). Phenotypic plasticity and the origins of diversity. Annual Review of Ecology, Evolution, and
Systematics, 20(Volume 20, 1989), 249-278. https:/ /doi.org/10.1146 /annurev.es.20.110189.001341

Wijnhorst, R. E. (2025). socialSim: Simulate and Analyse Social Interaction Data [e version 0.1.6].
Wilson, A. J., Morrissey, M. B., Adams, M. J., Walling, C. A., Guinness, F. E., Pemberton, J. M., Clutton-Brock, T. H., & Kruuk,

L. E. B. (2011). Indirect genetics effects and evolutionary constraint: an analysis of social dominance in red deer,

Cervus elaphus. Journal of Evolutionary Biology, 24(4), 772-783. https:/ /doi.org/10.1111/j.1420-9101.2010.02212.x

Wilson, A. ]., Gelin, U., Perron, M.-C., & Réale, D. (2009). Indirect genetic effects and the evolution of aggression in a vertebrate
system. Proceedings of the Royal Society B Biological Sciences, 276(1656), 533-541. https:/ /doi.org /10.1098 / rspb.
2008.1193

35


https://doi.org/10.1093/beheco/arw037
https://doi.org/10.1093/beheco/arw037
https://doi.org/10.1093/beheco/arw037
https://doi.org/10.1093/beheco/arn145
https://doi.org/10.1098/rspb.2008.0199
https://doi.org/10.1098/rspb.2008.0199
https://doi.org/10.1098/rspb.2008.0199
https://doi.org/10.1086/704089
https://doi.org/10.1111/evo.14298
https://doi.org/10.1016/j.tree.2012.09.003
https://doi.org/10.1111/j.1420-9101.2010.01959.x
https://doi.org/10.1186/s12711-023-00845-8
https://doi.org/10.1111/j.2041-210X.2011.00160.x
https://doi.org/10.1111/j.2041-210X.2011.00160.x
https://doi.org/10.1111/j.2041-210X.2011.00160.x
https://doi.org/10.1111/j.1558-5646.1985.tb00391.x
https://doi.org/10.1146/annurev.es.20.110189.001341
https://doi.org/10.1111/j.1420-9101.2010.02212.x
https://doi.org/10.1098/rspb.2008.1193
https://doi.org/10.1098/rspb.2008.1193
https://doi.org/10.1098/rspb.2008.1193

765

766

767

768

769

770

77

772

773

Wilson, A.]., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., Kruuk, L. E. B., & Nussey, D. H. (2010).
An ecologist’s guide to the animal model. Journal of Animal Ecology, 79(1), 13-26. https:/ /doi.org/10.1111/j.1365-
2656.2009.01639.x

Wolf, ]. B., Brodie, E. D., III, & Moore, A. . (1999). Interacting phenotypes and the evolutionary process. II. Selection resulting
from social interactions. American Naturalist, 153(3), 254-266. https:/ /doi.org/10.1086 /303168

Wolf, J. B., Brodie III, E. D., Cheverud, J. M., Moore, A. ., & Wade, M. J. (1998). Evolutionary consequences of indirect genetic
effects. Trends in Ecology and Evolution, 13(2), 64-69. https:/ /doi.org/10.1016/50169-5347(97)01233-0

Wolf, M., van Doorn, G. S., & Weissing, F. J. (2008). Evolutionary emergence of responsive and unresponsive personalities.

PNAS, 105(41), 15825-15830. https:/ /doi.org/10.1073 /pnas.0805473105

36


https://doi.org/10.1111/j.1365-2656.2009.01639.x
https://doi.org/10.1111/j.1365-2656.2009.01639.x
https://doi.org/10.1111/j.1365-2656.2009.01639.x
https://doi.org/10.1086/303168
https://doi.org/10.1016/S0169-5347(97)01233-0
https://doi.org/10.1073/pnas.0805473105

774

775

776

777

778

779

780

781

782

Supplementary material

The full 4 x 4 matrix estimated in the I&R model:

a; Va Cov(a, ) Cov(a,x) Cov(a,e)

Y; N@O, Q) 2= Cov(a, ) Vy Cov(y, x) Cov(y,e) ¢~ NO,V.) s1)
Xi Cov(a, x) Cov(y, x) Vy Cov(x,€)

€; Cov(a,e) Cov(ip,e) Cov(x,e) Ve

was reduced to a 3 x 3 matrix (Equation 10) estimating the (co-)variance of mean trait values, social

responsiveness and social impact using the following equations:

Ve = Ve +P?V, + 29 Cov(x, €) (S2)
Cov(a, ¢) = Cov(a, €) + ¢ Cov(a, x) (S3)
Cov(y, ¢) = Cov(y, €) + ¢ Cov(x, ¥) (54)

Table S1: Mean percentage bias in posterior medians across 1000 simulations under different sample sizes

Total sample size 400 800 1600 3200 6400
Individuals 50 100 200 400 800

Parameter Description Sim. value Bias (%)

Bo Population mean 1.00 1.31 0.61 0.52 0.16 0.07
P Population response 0.30 -431  -167 -154 -077 -2.18
Va Mean behaviour variance 0.20 -1.93 0.85 -0.58 020 0.17
Vi Social responsiveness variance  0.10 -1.28 092 025 052 021
Ve Social impact variance 0.10 8.24 4.66 191  3.09 274
Cov(a, ) Cov: mean x impact 0.080 -17.63 -7.82 444 -177 -0.73
Cov(a,) Cov: mean x responsiveness -0.085 -26.03 -11.95 -6.10 -270 -1.44
Cov(y,¢) Cov: responsiveness x impact  -0.076 -30.10 -19.48 -11.80 -7.13 -3.42

37



Table S2: Bias and dispersion for key variance and covariance parameters for different sampling design (total sample size = 3200).

Individuals 1600 800 400 200 100 | 800 400 200 100 | 200 200 200 200
Social partners 2 4 8 16 32 4 4 4 4 16 8 4 2

Repeats 1x 1x 1x 1x 1x 1x 2x 4x 8x 1x 2x 4x 8x

Mean V, -le4 -077 020 -054 067 | -077 006 -027 008 |-054 063 -027 -041

Impact Vy 588 319 309 383 196 | 319 401 266 1.06 | 383 233 266 292

Bias (%) Response vV, -034 -0.05 052 027 -059|-005 010 036 025 | 027 -0.02 036 061
Cov(a, ¢) -014 -092 -177 -380 -695 | -092 -158 -442 -898 | -3.80 -3.68 -442 -398

Cov(a, ) 296 -314 -270 -433 -6.06 | -3.14 -327 -540 -820 | -433 -411 -540 -6.12
Cov(y, ¢) -1198 -882 -713 -582 -7.14 | -882 -745 -8.64 -993 | -582 -731 -8.64 -13.41
Mean V, 936 830 855 1052 1353 | 830 858 10.62 1424 | 1052 1047 10.62 11.17
Impact Vi 2070 1729 1723 18.69 2172 | 1729 17.07 19.11 21.35 | 18.69 1885 19.11 19.68
Dispersion (%) Response V,  13.67 1144 11.07 11.82 1393 | 1144 1097 1280 15.05 | 11.82 11.88 12.80 14.97
Cov(a, ¢) 1110 1170 13.77 1649 2276 | 11.70 1323 17.79 23.74 | 1649 1729 17.79 18.63
Cov(a, 1) 11.95 1235 1250 1579 19.23 | 1235 1292 1572 2151 | 1579 1557 1572 17.33
Cov(y, ¢) 1299 1249 1227 13.80 16.53 | 1249 1221 1457 17.73 | 13.80 1396 1457 17.19

Table S3: Bias and dispersion for key variance and covariance parameters for different sampling designs (total sample size = 800).

400 200 100 50 200 100 50 100 100 100
2 4 8 16 4 4 4 4 2
1x 1x Ix Ix 1x 2x 4x 1x 2x 4x
Mean V, -0.01 -1.21 0.02 -2.89 -1.21 -1.39 -2.92 0.02 -1.39 -3.09
Impact Vi 14.07 5.36 2.63 1.45 5.36 5.44 1.11 2.63 5.44 8.94
Bias (%) Response Vy, 361 091 -042 104 | 091 -006 -213 | 042 -0.06 118
° Cov(a, §) 375 -610 -11.16 -21.00 | -6.10 -10.79 -21.60 | -11.16 -10.79 -9.74
Cov(a, 1) 1734 -1612 -1727 2393 | -16.12 -1890 -2877 | -1727 -1890 -22.14
Cov(y, ¢) -2453 -24.61 -2465 -26.10 | -24.61 -25.72 -32.38 | -24.65 -25.72 -29.83
Mean V, 1746 1596 1734 1965 | 1596 1795 21.19 | 1734 1795 1871
Impact Vg 19.65 19.81 2205 2795 | 1981 2343 28.64 | 22.05 2343 2599
Di ion (%) Response Vy, 2297 2199 21.38 21.84 | 2199 2210 2631 | 21.38 2210 2548
1SPEISIOn o) Cov(a, ¢) 19.83 2052 2528 3253 | 2052 2541 33.87 | 2528 2541 27.74
Cov(a, 1) 25.06 2333 2575 30.83 | 2333 26.85 3444 | 2575 26.85 32.52
Cov(y, ¢) 2275 2222 2389 2853 | 2222 2572 3229 | 2389 2572 29.81
Table S4: Fixed effect: population response 1
Individuals I&R  Trait Trait+EIV  Trait+RS
1600 -1.68 -10.09 -0.48 -11.54
800 -1.00 -10.59 -0.02 -13.45
Bias (%) 400 -0.77  -12.23 -0.29 -17.39
200 -0.98 -13.84 0.06 -21.48
100 -1.58 -17.00 0.22 -25.96
1600 1242  5.38 6.66 5.34
800 1033  6.02 6.37 6.11
Dispersion (%) 400 992 681 6.89 7.20
200 10.75  8.40 8.06 8.96
100 11.54 10.95 9.91 12.16
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Table S5: Variance: social impact Vy,

Individuals I&R  V-P Trait Trait+EIV  Trait+RS

1600 588 -1.06 -850 1.20 -4.54
800 3.19 -069 -1297 -1.72 -7.72
Bias (%) 400 3.09 -028 -14.43 -2.45 -8.74
200 383 116 -13.32 -0.83 -7.68
100 196 150 -12.46 0.06 -7.23
1600 2070 19.61 13.01 13.76 12.81
800 1729 1533 13.61 13.60 12.65
Dispersion (%) 400 1723 1454 1495 14.59 13.41
200 18.69 16.01 1691 16.58 15.76
100 21.72  20.63 21.68 20.85 20.64

Table S6: Covariance: mean behaviour-social impact Cov

Individuals I&R  V-P Trait Trait+EIV  Trait+RS

1600 -014 -441 -61.26 -0.76 -53.91
800 -092 -313 -45.66 -1.18 -36.66
Bias (%) 400 -1.77 259 -29.67 -1.86 -20.76
200 -3.80 -216 -17.27 -2.15 -11.14
100 695 -254 -873 -3.47 -5.51
1600 11.10 1455 2443 10.64 20.75
800 11.70 13.72 18.03 11.57 15.78
Dispersion (%) 400 13.77 1491 17.52 13.73 14.98
200 1649 16.82 18.00 16.12 15.64
100 2276 23.02 2376 22.47 20.55

Table S7: Mean model estimates (posterior medians) of 1000 simulated datasets under different sampling partitions (total sample size =
3200).

Individuals 1600 800 400 200 100 400 200 100 200

Social partners 2 4 8 16 32 4 4 4 8
Repeats 1x 1x 1x Ix 1x 2x 4x 8x 2x
Parameter Description Sim. value Model outcome
Bo Population mean 1.00 1.000 1.000 1.002 1.004 1.005 1.002 1.005 1.010 1.005
P Population response 0.30 0295 0297 0298 0297 0295 0299 029 0293 0.295
Va Mean behaviour variance 0.20 0.197 0.198 0200 0.199 0201 0200 0.199 0200 0.201
Vy Responsiveness variance 0.10 0.100 0.100 0.101 0.100 0.099 0.100 0.100 0.100 0.100
Ve Residual impact variance 0.01 0.017 0.015 0.014 0014 0.014 0015 0.014 0.014 0.014
Vi Impact trait variance 1.00 0.999 0999 0.9% 1002 0995 0999 0998 0.99% 0.996
T'ae Corr: mean x res. impact -0.60 -0.598 -0.589 -0.587 -0.579 -0.569 -0.585 -0.574 -0.557 -0.578
Tap Corr: mean x response 0.00 0.043 0.017 0.015 -0.000 -0.000 0.012 -0.000 -0.009 0.000
Tay Corr: mean x impact trait -0.60 -0.285 -0.375 -0451 -0.494 -0.526 -0426 -0.451 -0.472 -0.484
Tey Corr: res. impact x response 0.60 0599 0595 0590 0584 0569 059 0583 0567 0.585
Ty Corr: impact trait x response -0.60 -0.603 -0.598 -0.590 -0.585 -0.579 -0.592 -0.584 -0.574 -0.583
Txe Corr: impact trait x res. impact 0.00 0.033 0.009 0.004 0.000 0.006 0.003 0.010 -0.001 0.007
Ve Residual variance 0.60 0599 0.600 0.599 0.600 0.600 0.600 0.600 0.600 0.599
Ve, Measurement error 0.10 0.100  0.100  0.100 0.100 0.100 0.100 0.100 0.100  0.100
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Table S8: Mean model estimates (posterior medians) of 1000 simulated datasets under different sampling partitions (total sample size =
800).

Individuals 400 200 100 50 100 50 100

Social partners 2 4 8 16 4 4 2
Repeats 1x 1x 1x 1x 2x 4x 4x
Parameter Description Sim. value Model outcome
Bo Population mean 1.00 1.000 1.001 1.004 1.013 1.006 1.007 1.005
¥ Population response 0.30 0298 0297 029 0293 0297 0291 0.29
Va Mean behaviour variance 0.20 0.200 0.198 0200 0.194 0197 0.194 0.194
Vi Responsiveness variance 0.10 0.104 0.101 0.100 0.101 0.100 0.098 0.101
Ve Residual impact variance 0.01 0.024 0.016 0.015 0.014 0.015 0.015 0.017
Vy Impact trait variance 1.00 0.996 0991 0985 0975 0.990 0.967 0.990
Tae Corr: mean x res. impact -0.60 -0.512 -0.525 -0.515 -0478 -0.510 -0.460 -0.492
Tay Corr: mean x response 0.00 0.021 0.030 0.010 0.001 0.021 0.004 0.019
Tay Corr: mean x impact trait -0.60 -0.113  -0.161 -0.225 -0.278 -0.197 -0.206 -0.139
Tey Corr: res. impact x response 0.60 0584 0571 0550 0511 0548 0.513 0.561
Ty Corr: impact trait x response -0.60 -0.555 -0.554 -0.539 -0.514 -0.535 -0.504 -0.522
Tye Corr: impact trait x res. impact 0.00 0.006  0.009 0.008 0.006 0.007 0.008 0.009
Ve Residual variance 0.60 0.583 0594 0597 0600 0.598 0.597 0.599
V. Measurement error 0.10 0.100  0.100 0.100 0.100 0.100 0.100  0.100

40



Variances

151 repeats = 1 151 partners = 4 154  individuals = 100
~ 101 104 10
s
» 51 5 5
Ay
m g | ]
OTe==— S L] PSR 0 ’\\
mean
-51 -51 -51
3 357 35 351
c 301 30 301
Ke)
9 254 25 254
2
@& 204 20 20
a ‘\'—// — o —=
15- T T T T 15 L T T T 15- T T T
400 200 100 50 200 100 50 8 4 2
2 4 8 16 1x 2x 4x 1x 2x 4x
number of individuals/ number of individuals/ number of social partners/
social partners repeats repeats
Covariances
o repeats = 1 o partners = 4 individuals = 100
o ——— o —— mean-impact
c\,\i ol ol \ -10 p
* S ———————+ mean-response
.8 20 -20 1 -20
m
-30 -30 -30
3 357 35 35
& \/ 1 % ° ‘dé
$ 254 25 25
(0]
-——o
& 201 20 = 20
[a)
151 i i _ 15 i _ 154 i i
400 200 100 50 200 100 50 8 4 2
2 4 8 16 1x 2x 4x 1x 2x 4x
number of individuals/ number of individuals/ number of social partners
social partners repeats repeats

Figure S1: Analysis of sampling design parameters for optimal bias and precision for estimating variance and covariance
parameters. Relative bias and dispersion of the posterior median of variances and covariances components of 1000 simulated datasets
per sampling design. Top and bottom left figures show the trade-off between the number of individuals and the number of social partners
to obtain a total sample size of 800. Middle figures show the trade-off between the number of individuals and repeatedly interacting with
the same social partners for a total sample size of 800. Right figures shows the trade-off between interacting with more different social
partners against interacting repeatedly with the same social partners for a total sample size of 800. Top panels represent the bias and
precision of the variance parameters and the bottom panels the covariance parameters.
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Figure S2: Comparison of the impact and responsiveness model (I&R) to the variance partitioning model and trait-based
model for datasets with a total sample size of 800 observations. Top panels show the relative bias of three models that analysed
the same 1000 simulated datasets for four different partitions of number of individuals and number of social partners per individual.
Bottom panel shows the relative dispersion, expressed as a percentage.
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Figure S3: Comparison of the impact and responsiveness (I&R) model to the trait-based models without errors-in-variables
correction (Trait+RS) and trait-based model without random slopes (Trait+EIV) for datasets with a total sample size of
800 observations. Top panels show the relative bias of the three models after analysing the same 1000 simulated datasets for four
different partitions of number of individuals and number of social partners per individual. Bottom panel shows the relative dispersion,
expressed as a percentage.
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