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Abstract8

Social interactions mediate the phenotypic expression of fitness-relevant traits. The expression of9

such labile social traits includes three distinct components: an individual’s mean trait value (direct10

effect), its social responsiveness, and its social impact (indirect effects). Traditional methods, such as11

variance-partitioning or trait-based models, usually only partition individual variation into direct12

and indirect effects. However, individual variation in social responsiveness and its covariation with13

direct effects and social impact will affect responses to selection. To date, no studies have explored14

the performance of models that allow the decomposition of responsiveness from impact. Here, we15

describe a model for studying variation in phenotypic expression caused by social interactions, and16

we use simulations to explore its performance under various experimental designs. Our analyses17

show that with adequate total sample sizes (≥ 3200), variance components are estimated accurately18

across study designs. In contrast, covariance estimation can benefit drastically from optimising19

study design choices. We also found that failing to model individual variation in responsive-20

ness, and neglecting measurement error, increases bias and imprecision in trait-based approaches.21

Hence, disregarding individual variation in responsiveness would ignore a key component of social22

behaviour, and hamper our ability to acquire unbiased estimates of indirect genetic or social effects.23
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Introduction24

Social interactions alter selection pressures and phenotypic expression, shaping the trajectory of25

evolutionary change in ways that are often difficult to predict (Moore et al., 1997; Wolf et al., 1998).26

Phenotypes displayed by individuals or genotypes rarely emerge without external influences; rather27

they arise from the interaction of internal regulators and external conditions (Via & Lande, 1985;28

West-Eberhard, 1989). One important external factor, the social environment, consists of conspecifics29

that affect phenotypic expression through social interactions. The effects of the social environment30

can be far-reaching in traits that are solely expressed in a social context, such as cooperation,31

social hierarchies or parental-offspring interactions (Bailey et al., 2018; Bleakley & Brodie, 2009;32

Kirkpatrick & Lande, 1989; Smiseth et al., 2008; Wilson et al., 2011). Explaining (co-)variation in33

social traits is challenging because individuals often adjust their phenotype plastically in response34

to their partners’ traits (Bailey & Desjonquères, 2022; Moore et al., 1997). These socially mediated35

effects, when heritable, are termed indirect genetic effects (IGEs) (Griffing, 1967; Moore et al.,36

1997). The optimal phenotype might therefore depend on other phenotypes displayed in the social37

environment (Maynard-Smith & Price, 1973; McNamara & Weissing, 2010), where selection could38

also act on an individual’s competence to adjust their phenotype to a changing social environment39

(Martin & Jaeggi, 2022; Taborsky & Oliveira, 2012).40

An often overlooked aspect of such indirect genetic effects (IGEs) is that individuals both respond41

to (responsiveness) and affect (impact) the phenotype of other individuals, and individuals may42

differ in both of these traits. Following recent proposals (Araya-Ajoy et al., 2020; de Groot et al., 2023),43

social phenotypes can be decomposed into three components of individual phenotypic variation:44

(i) mean level behaviour; (ii) social responsiveness, which refers to the phenotypic response of the45

focal to the traits of their interacting social partners; and lastly (iii) social impact, which refers to the46

response an individual elicits in their social partners (Araya-Ajoy et al., 2020; de Groot et al., 2023).47

Previous studies in quantitative genetics have estimated population-level IGEs (reviewed by Bailey &48

Desjonquères, 2022), disregarding that individuals may differ in their level of social responsiveness.49

Common statistical models for studying social effects include the ‘variance-partitioning’ (Bĳma,50

2014; Griffing, 1967) and ‘trait-based’ approach (Kirkpatrick & Lande, 1989; McGlothlin et al.,51
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2010; Moore et al., 1997; Wolf et al., 1999). The variance-partitioning approach is a type of mixed-52

effects model that partitions observed phenotypic variation in a given trait into variance associated53

with direct individual effects and indirect individual effects caused by the individual in its social54

environment. If information on the relatedness between individuals is available, additive genetic55

variation underpinning these individual effects can be estimated using mixed-effect ‘animal models’56

(Henderson, 1984; Kruuk, 2004; Meyer, 1992; Wilson et al., 2010). The trait-based approach is a57

statistical model that is mathematically equivalent to the variance partitioning approach under58

certain assumptions (McGlothlin & Brodie, 2009), but applies a reaction norm approach to quantify59

social responsiveness as a slope. Both frameworks estimate the interaction coefficient 𝜓, which60

represents the population-level response and describes the magnitude and direction of phenotypic61

change in response to the phenotype expressed by interaction partners (see Bailey & Desjonquères,62

2022; Bĳma, 2014). Thus, these models typically ignore the possibility that individuals may differ63

in responsiveness. However, empirical evidence increasingly shows that individuals can differ in64

the degree to which they respond to social signals (Bailey & Zuk, 2012; Fürtbauer & Fry, 2018;65

Guayasamin et al., 2017; Jablonszky et al., 2022; Morand-Ferron et al., 2011; Strickland & Frère,66

2019). Hence, researchers have suggested that 𝜓 is not fixed and may show variation and can67

consequently evolve (Akçay & Van Cleve, 2012; Araya-Ajoy et al., 2020; Dingemanse & Araya-Ajoy,68

2015; Kazancıoğlu et al., 2012; Wolf et al., 2008). Already there is experimental evidence that69

𝜓 can evolve under different selection regimes, therefore social responsiveness can vary among-70

individuals and can be heritable (Chenoweth et al., 2010). Furthermore, the covariance of social71

responsiveness with the mean social trait could speed up or slow down evolution through a process72

called ’social drive’ (Bailey et al., 2021; Martin et al., 2023).73

Very little is known about the extent to which variation in 𝜓 influences social interactions, for74

two key reasons. First, individuals may differ in their responsiveness, yet standard quantitative75

genetics models typically assume a fixed population-level effect. This masks important individual76

variation and limits evolutionary inference. Second, the traits of social partners (to which focal77

individuals respond) are often measured with error. Measurement error in this predictor will78

logically attenuate estimates of 𝜓, and therefore underestimate true social effects. To overcome79

this, we use a model that incorporates both random slopes (to capture individual variation in 𝜓)80
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(de Groot et al., 2023; Martin & Jaeggi, 2022) and ‘errors-in-variables’ approaches that correct for81

bias due to noisy partner trait estimates (Dingemanse et al., 2021; Ponzi et al., 2018). By addressing82

these two key issues, we can more accurately estimate social responsiveness and its evolutionary83

consequences.84

The next challenge is to determine which study design is optimal to estimate the three com-85

ponents of individuality in social interactions. A common and effective laboratory approach for86

estimating individual differences in IGEs involves assessing individuals while continuously ma-87

nipulating their social environment. Often, individuals are assessed in a laboratory setting, where88

researchers perform pairwise assays in which individuals repeatedly interact with different social89

partners (e.g. Han et al., 2018; Lane et al., 2020; Santostefano et al., 2016; Wilson et al., 2009). Similar90

datasets have been collected through observational studies on dyadic interactions in wild popula-91

tions (e.g. Brommer & Rattiste, 2008; McLean et al., 2023; Moiron et al., 2020; Tuliozi et al., 2023;92

Wilson et al., 2011). Several data simulation studies have explored the accuracy and precision of93

statistical models in estimating individual variation in labile traits (Araya-Ajoy et al., 2015; Dinge-94

manse & Dochtermann, 2013; Martin et al., 2011; van de Pol, 2012). From these studies, we have95

learnt that there is a rapid increase in statistical power when more individuals are sampled, or more96

repeated measures per individual are taken. Furthermore, simulation studies show that resource97

allocation (more individuals with fewer observations per individual versus fewer individuals with98

more observations per individual) can matter when the total sample size is the limiting factor (Mar-99

tin et al., 2011; van de Pol, 2012). We do not know whether resource allocation also matters for the100

estimation of individual variation in mean social trait values, social impact or social responsiveness.101

Some studies have focused on optimal study designs to estimate IGEs, comparing different102

group sizes or breeding designs (Bĳma, 2010). However, few have explored how well IGE mod-103

els perform when estimating individual variation in labile traits expressed during repeated social104

interactions. Designing such studies requires decisions that are not typically encountered when105

studying non-social traits. For example, how many different social partners should each focal indi-106

vidual interact with, and should individuals better interact repeatedly with the same or rather with107

different interaction partners? Unlike standard environmental covariates, social partners are phe-108
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notypically variable themselves, introducing both among- and within-individual variation into the109

social environment (Araya-Ajoy et al., 2020; Dingemanse & Araya-Ajoy, 2015). These requirements110

impose constraints on how social behaviour must be sampled, and highlight that designing studies111

of social versus non-social traits involves different trade-off decisions in study design. Specifically,112

two design features are required to reliably estimate variance in social responsiveness and impact,113

and their covariances with mean trait value. First, individuals must be repeatedly observed inter-114

acting multiple times both as focal individuals and as social partners. This reciprocity in roles is115

essential to estimate covariances between how individuals behave and how they influence others116

(Dingemanse & Araya-Ajoy, 2015). Second, individuals must encounter sufficient variation in the117

trait values of their partners. This is a prerequisite for estimating responsiveness, which reflects the118

slope of the function that describes the phenotypic change in response to the value of the partner119

trait. Without these specific design properties, many components of the multivariate nature of120

social traits are non-estimable. As such, studying social behaviour in experimental settings with121

limited time and/or resources compels researchers to make critical allocation decisions on study122

design, such as the number of individuals, the number of repeats per individual, and the number123

of unique pairwise interactions used. One goal of this study is to explore which of these three124

sampling design dimensions should be prioritised for optimal precision and accuracy in estimating125

(variation in) social impact and responsiveness.126

In this study, we evaluate the accuracy and precision with which variance and covariance127

in mean behaviour, social impact, and social responsiveness can be estimated. We first explore128

the minimally required sample size needed to obtain unbiased estimates. Next, we assess the129

difference in accuracy and precision of study designs that vary in the number of individuals, the130

number of repeated measures per individual, and the number of unique social partners. We131

further determine the consequences of not accounting for individual variation in responsiveness,132

measurement error/plasticity in partner traits, when estimating social effects. By combining these133

perspectives, our study aims to encourage empirical estimates of key component underlying social134

interactions, provide practical guidance on the experimental design and analysis of social interaction135

studies, and increase awareness of problems when failing to account for sources of variation.136
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Methods137

Data simulation138

We simulated social interaction data under a biologically realistic scenario in which individuals139

differ in their average trait value (intercept), their social impact (the effect they have on the phenotype140

of others), and their responsiveness (the extent to which they adjust their phenotype as a function141

of partner phenotype). Individuals interacted with one social partner at a time, and only responded142

to a single partner trait. The partner’s trait was fixed (e.g. body size), but measured with error.143

We created datasets with balanced designs (i.e. each individual interacted with a fixed number of144

partners and was observed an equal number of times). In each dataset, each individual acted an145

equal number of times as the ’focal’ versus the ’partner’ individual. To answer our questions, we146

simulated and analysed the following datasets:147

1. To assess model performance as a function of the total sample size, we simulated 1000 datasets148

per sample size, varying the number of individuals while keeping the number of interactions149

per individual constant.150

2. To evaluate the effects of sampling design on bias and precision, we simulated 1000 datasets151

with balanced designs that partitioned a fixed total number of observations among varying152

numbers of individuals, social partners per individual, and repeated interactions.153

3. To compare the performance of alternative statistical models, we simulated 1000 datasets154

using four study designs and to each we fit the full model and several reduced models lacking155

particular components.156

Our main parameters of interest are two fixed effects: the population intercept 𝛽0 and population157

slope 𝜓̄, and six (co)variance components: the among-individual variance in mean trait value (𝑉𝛼);158

social responsiveness (𝑉𝜓); and social impact (𝑉𝜙); and their three covariances (Table S1). For each159

scenario, we calculated the relative bias and relative dispersion of the model estimates: Relative160

bias can be interpreted as the average accuracy and is calculated as 1
𝑛
𝛴
𝜃 − 𝜃𝑖

𝜃
· 100% , where 𝜃 is161

7



the true simulated value, 𝜃𝑖 is the model estimate (posterior median) of the 𝑖th simulation, and 𝑛162

is the number of simulations. Relative dispersion is the dispersion around the mean, also termed163

MADm (Mean Absolute Deviation of the mean), and is calculated by 1
𝑛
𝛴
|𝜃̄ − 𝜃𝑖 |

𝜃̄
· 100%, where 𝜃̄164

is the grand mean of the 1000 posterior median model estimates. We do not present formal power165

analyses, as these are uncommon within a Bayesian framework. Instead, we report performance166

using bias and dispersion and provide an open-access simulation tool "socialSim" for researchers to167

explore expected performance under their study design of choice (Wĳnhorst, 2025). The simulation168

process and model fitting steps are summarised in Figure 1. Each simulation followed these steps:169

(1) assignment of individuals and social partners, (2) simulation of social interaction outcomes based170

on known trait values and model parameters, (3) addition of measurement error to the observed171

partner traits, and (4) analysis using the appropriate model structure.172

𝒆𝒊𝒋𝒌

𝒆𝒊𝒋𝒌

Symbol          Descrip�on

𝒛𝒊𝒋𝒌 The phenotype of individual i when it interac�on with j at instance k
𝜶𝒊 Mean behaviour: individual devia�on of the popula�on mean
𝝍𝒊 Social responsiveness: individual devia�on of the popula�on slope
𝝌𝒋

𝝌

True value of the phenotype to which the focal responds
𝜺𝒋 Residual impact: partner effects caused by unknown/unmeasured traits 

Residual effect/nonsocial environmental effect

 -1.0 0.03

𝝌𝒛𝒊𝒋𝒌 𝜶𝒊 𝝍𝒊 𝝌𝒋 𝜺𝒋 𝒆𝒊𝒋𝒌

0.52 1 0.2 0.6 0.2 -0.8

0.25 1.2 0.5 -0.5 -0.1 -0.6

1.48 0.8 0.4 0.2 0.1 0.5

1.40 1 0.2 -1.0 -0.1 0.7

- - - - - -

Simulate study
design structure

Simulate trait values for each
individual and interac�on outcome

Simulate
measurement

error
Data analysis

Repeat
1000
�mes

Focal 𝒊 Partner 𝒋

1 2

2 3

3 1

1 4

- -

Focal 𝒊 Partner 𝒋 𝝌𝒊𝒋𝒌 𝒛𝒊𝒋𝒌

1 2 0.63 0.52

2 3 -0.57 0.25

3 1 0.22 1.48

1 4 -0.97 1.40

- - - -

x= 𝝌𝒊𝒋𝒌 𝝌𝒋 𝒆𝒊𝒋𝒌

0.63 0.6 0.03

-0.57 -0.5 -0.07

0.22 0.2 0.02

-0.97

- - -

+ ++ +=

b.a. c. d.

Measurement error or nonsocial phenotypic plas�city around the true value of χj

Figure 1: Workflow of data simulations and analyses a.) A data structure is created that contains a certain number of individuals
that interact with a fixed number of social partners in balanced designs. b.) We simulated the outcome of the social interaction (𝑧𝑖 𝑗𝑘 )
based on their simulated trait values of each individual and their partner drawn from a multivariate normal distribution plus residual
error. c.) Before we enter our observed data into the model, we assume that the fixed opponent trait is measured with error before every
social interaction. Therefore, we added or subtracted simulated measurement error to obtain the observed opponent trait 𝜒𝑖 𝑗𝑘 . d.) The
data is analysed by the model and this process is iterated a 1000 times.
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Simulated effect sizes173

Since we do not aim to explore all of parameter space, we meticulously chose effect sizes based on174

systematic reviews to represent a realistic biological scenario where effect sizes are non-zero. The175

population response 𝜓̄ was set to 0.3, similar to the mean (0.27) of the significant non-reciprocal,176

positive estimates 𝜓̄ (obtained from Bailey & Desjonquères, 2022). The variance components were177

adjusted so that the total phenotypic variances sum to 1, with the variance explained by the focal178

individual at 0.3 (approximating the mean repeatability of animal behaviours of 0.37; Bell et al.,179

2009) and the variance explained by the social partner (variance of social impact) at 0.1 and residual180

variance 𝑉𝑒 = 0.6. This variance explained by the social partner is representative of potential total181

phenotypic partner effects, however for indirect genetic effects, the effect size is expected to be182

somewhat smaller (6% for behavioural traits and 3% for all traits; Santostefano et al., 2024). The183

variance of social responsiveness was set to 0.1. Therefore, the ratio of variation in mean behaviour184

(elevation) to variation in plasticity (slopes) is 1 : 0.50, which approximates the elevation : slope185

ratios (median = 1 : 0.65) reported in nine studies on non-social plasticity (Brommer, 2013). The186

measurement error for the impact trait was set to 0.1, which corresponds to 10% of the variance187

in the social partner’s body size 𝜒𝑗 . All other parameter values used in the data simulation are188

described in Supplementary Table S7.189

Analyses190

Sample size191

To assess model performance as a function of total sample size, we simulated 1000 datasets of192

social interaction data. In each dataset, the number of interactions per individual was kept constant193

at 8, while the number of individuals varied. The smallest dataset included 50 individuals (400194

observations), and the number of individuals was doubled at each step to a maximum of 800195

individuals (6400 observations). Our aim was to identify the minimum sample size at which the196

full model for estimating impact and responsiveness (I&R model) yields unbiased estimates, which197

will then be used for subsequent analyses.198
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Sampling design199

To determine how to best allocate limited sampling resources, we assessed how different study200

designs influence the accuracy and precision of parameter estimates. In many ecological and evo-201

lutionary studies, researchers face logistical constraints that limit the total number of observations202

that can be collected. This raises the question: given a fixed number of total observations, how203

should they be distributed among individuals, social partners (‘partners’), and repeated interactions204

of dyads (‘repeats’) to optimise model performance?205

To address this, we simulated a series of balanced designs under a fixed total sample size.206

Each observation in our simulations represents a pairwise interaction between a focal individual207

and a social partner. All individuals in the study population take on both roles across different208

interactions, acting as focal individuals in some interactions and as social partners in others. The209

number of individuals in the study therefore determines both the number of unique focal individuals210

and the pool of available partners. We vary our study designs across three key axes:211

• Number of individuals (‘individuals’), which determines the total population of interacting212

individuals.213

• Number of unique social partners per focal individual (‘partners’), which reflects the variety214

of partners encountered by each individual.215

• Number of repeated interactions per dyad (‘repeats’), which controls the extent to which216

specific focal-partner pairs are observed multiple times. A value of ‘1x’ indicates that each217

focal interacts only once with each unique social partner (i.e. no repetitions of unique dyads).218

Subsequently, we examined how the trade-off between the three sampling axes affects model perfor-219

mance. In each case, we kept one component constant while trading-off the other two, allowing us220

to identify how different designs affect the accuracy (bias) and precision (dispersion) of parameter221

estimates.222
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Model comparison223

To evaluate how different statistical modelling choices influence the estimation of social parameters,224

we compare several models used in the study of indirect genetic effects (IGEs) and social trait evolu-225

tion. Specifically, to investigate the consequences of not accounting for certain sources of variation,226

we compare the full impact and responsiveness model (I&R) to incomplete models (i.e. models227

that lack certain parameters, Table 1). As such, model I&R is compared to two reduced models,228

the variance partitioning (V-P) model and the trait-based approach (Trait). Secondly, it is possible229

to modify the trait-based approach to include random slopes or an errors-in-variables correction.230

Thus, we can identify which missing component may cause increased bias or imprecision associated231

with incomplete models. For this, we compare the full I&R model (equivalent to Trait+RS+EIV)232

against two reduced models: one including an errors-in-variable correction (Trait+EIV) and one233

including random slopes (Trait+RS) for individual social responsiveness. Below, we describe the234

models in increasing order of model completeness.235

Variance-partitioning (V-P) model:236

The variance partitioning approach can be described as:237

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + 𝜙 𝑗 + 𝑒𝑖 𝑗𝑘 , (1)

where 𝑧𝑖 𝑗𝑘 denotes the phenotype of individual 𝑖 after interacting with social partner 𝑗 at instance 𝑘.238

The fixed intercept 𝛽0 represents the population mean phenotype. The random effect 𝛼𝑖 represents239

the deviation of individual 𝑖’s mean trait value from the population mean. The variance of these240

deviations (𝑉𝛼) quantifies among-individual variance, which may arise from direct genetic effects241

(DGEs) and permanent environmental influences. The random partner effect 𝜙 𝑗 represents the242

deviation associated with social partner 𝑗, that is, the extent to which partner 𝑗 influences the243

phenotype of others. The variance of these deviations (𝑉𝜙) quantifies variation in social impact,244

which may arise from indirect genetic effects (IGEs) as well as non-genetic partner effects. The245

residual term 𝑒𝑖 𝑗𝑘 represents unexplained deviations at the observation level. The residual variance246

(𝑉𝑒 ) captures within-individual variation that is not attributable to focal identity or repeatable247
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partner effects. When individuals interact both as focal and partner (as is common in social248

interaction datasets), the model can also be used to estimate the covariance (Cov𝛼𝜙) between an249

individual’s mean trait value and its social impact (Wilson et al., 2009):250


𝛼

𝜙

 ∼ MVN(0,𝛺), 𝛺 =


𝑉𝛼 Cov𝛼𝜙

Cov𝛼𝜙 𝑉𝜙

 , 𝑒 ∼ N(0, 𝑉𝑒). (2)

The covariance between focals’ mean trait value and social impact (Cov𝛼𝜙) is critical for predicting251

evolutionary change in social traits. When decomposed into genetic and environmental compo-252

nents, it corresponds to the DGE–IGE covariance, which can accelerate or constrain evolutionary253

responses depending on its sign and magnitude (Bĳma et al., 2007; Wilson et al., 2009; Wolf et al.,254

1998). The V-P model is commonly used in IGE studies to estimate the variance attributable to social255

partners without explicitly modelling the partner traits through which those effects are mediated.256

While the model provides an estimate of the total variance of social impact (𝑉𝜙), it does not identify257

trait-based pathways or quantify individual differences in responsiveness.258

Trait-based (Trait) model:259

The trait-based model can be described as:260

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + 𝜓̄𝜒𝑖 𝑗𝑘 + 𝜖 𝑗 + 𝑒𝑖 𝑗𝑘 . (3)

The trait-based model adopts a reaction norm framework (Dingemanse & Araya-Ajoy, 2015; Kirk-261

patrick & Lande, 1989; McGlothlin et al., 2010; Moore et al., 1997; Wolf et al., 1999), modelling262

the focal’s phenotype as a function of a measured trait of the social partner, 𝜒𝑖 𝑗𝑘 (e.g. body size).263

The response is estimated through 𝜓̄, the interaction coefficient or slope that represents the mean264

response of the population to the trait values of the social partners. To account for unexplained265

social effects not captured by the measured trait, a partner identity effect 𝜖 𝑗 is included. Although266

this addition is not conventional in trait-based models, it ensures mathematical equivalence to the267

variance-partitioning model, allowing us to recover the same variance decomposition of social im-268

pact. The model that we refer to as the Trait model has also been termed a ’hybrid model’ (Baud269
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et al., 2022). The total variance in social impact can then be expressed as:270

𝑉𝜙 = 𝜓̄2𝑉𝜒 +𝑉𝜖 + 2𝜓̄Cov𝜒𝜖 . (4)

Subsequently, we can again estimate the covariance matrix, the same as we derive from the V-P271

approach.272

Trait-based model with random slopes (Trait+RS):273

The trait-based model can be extended to estimate social responsiveness:274

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + (𝜓̄ + 𝜓𝑖)𝜒𝑖 𝑗𝑘 + 𝜖 𝑗 + 𝑒𝑖 𝑗𝑘 . (5)

This extension of the trait-based model includes random slopes 𝜓𝑖 , which represent individual-275

specific deviations from the population slope 𝜓̄. This allows individuals to differ in their respon-276

siveness to partner traits. The model therefore estimates a 3 × 3 covariance matrix that includes277

mean behaviour (𝑉𝛼), social responsiveness (𝑉𝜓), and residual partner effects (𝑉𝜖), as well as their278

covariances.279

Trait-based model with measurement error correction:280

To account for measurement error or labile variation in the partner trait, we supplement the trait-281

based model with an error correction:282

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + 𝜓̄𝜒𝑗 + 𝜖 𝑗 + 𝑒𝑖 𝑗𝑘 , (6)

where the latent trait value 𝜒𝑗 is estimated by:283

𝜒𝑖 𝑗𝑘 = 𝛽0𝜒 + 𝜒𝑗 + 𝑒𝑖 𝑗𝑘𝜒 . (7)

This model is an extension of the Trait model, where 𝜒𝑖 𝑗𝑘 denotes the trait value of the social partner284

𝑗 as observed when interacting with focal 𝑖 at instance 𝑘. We partition this observed value into two285
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components: a partner-specific effect 𝜒𝑗 and a residual term 𝑒𝑖 𝑗𝑘𝜒. In the context of measurement286

error, 𝑒𝑖 𝑗𝑘𝜒 represents random error around the true partner trait value 𝜒𝑗 . More generally, this287

same structure can also be interpreted as a decomposition of the partner trait into genetic and288

environmental components: 𝜒𝑗 can be viewed as the heritable additive genetic contribution to the289

partner trait, whereas 𝑒𝑖 𝑗𝑘𝜒 represents non-heritable influences (environmental or transient effects).290

Thus, the measurement-error model provides a framework that can be applied both to correct for291

error in trait measurements or to allow inference about the genetic basis of social impact through292

partner traits, thereby linking directly to IGE theory. This model also estimates a 3 × 3 covariance293

matrix that includes mean behaviour (𝑉𝛼), partner impact trait (𝑉𝜒), and residual partner effects294

(𝑉𝜖), as well as their covariances.295

Impact and responsiveness model:296

The complete model to estimate individual mean trait values, social responsiveness, and social297

impact is described as:298

𝑧𝑖 𝑗𝑘 = 𝛽0 + 𝛼𝑖 + (𝜓̄ + 𝜓𝑖)𝜒𝑗 + 𝜖 𝑗 + 𝑒𝑖 𝑗𝑘 , (8)

where the latent trait value 𝜒𝑗 is estimated by:299

𝜒𝑖 𝑗𝑘 = 𝛽0𝜒 + 𝜒𝑗 + 𝑒𝑖 𝑗𝑘𝜒 . (9)

This model extends the trait-based approach by combining two components: random slopes and300

the error-correction framework. This complete model yields a 4 × 4 covariance matrix that esti-301

mates the variances and covariances of mean behaviour (𝑉𝛼), the partner impact trait (𝑉𝜒), social302

responsiveness (𝑉𝜓), and residual partner effects (𝑉𝜖). From these estimates, we can derive the joint303

covariance structure of mean behaviour (𝛼), social impact (𝜙), and social responsiveness (𝜓) (see304

Supplementary Equations S1, S2, S3, S4 for details):305


αi

ψj

ϕi


∼ MVN(0,𝛺) : 𝛺=


𝑉𝛼 Cov𝛼𝜓 Cov𝛼𝜙

Cov𝛼𝜓 𝑉𝜓 Cov𝜓𝜙

Cov𝛼𝜙 Cov𝜓𝜙 𝑉𝜙


[𝑒] ∼ MVN(0, 𝑉𝑒) . (10)
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Table 1: Overview of the variance components estimated in each model. Total social impact variance is estimated either directly
(𝑉𝜙) or via a combination of the variance in impact trait and residual impact (𝜓̄2𝑉𝜒 +𝑉𝜖). The two trait models, Trait and Trait+RS do
not correct for measurement error, and thus estimate impact (𝑉𝜙) using the variance of the partner trait that includes measurement error
(𝜒𝑖 𝑗𝑘 . Each model estimates a covariance matrix containing all individual-level random effects and their covariances corresponding to
that model specification.

Model
Component Mean behaviour Responsiveness Impact trait Total / Residual impact

V-P 𝑉𝛼 𝑉𝜙

Trait 𝑉𝛼 𝜒𝑖 𝑗𝑘 𝑉𝜖

Trait+RS 𝑉𝛼 𝑉𝜓 𝜒𝑖 𝑗𝑘 𝑉𝜖

Trait+EIV 𝑉𝛼 𝑉𝜒 𝑉𝜖

I&R 𝑉𝛼 𝑉𝜓 𝑉𝜒 𝑉𝜖

Model specification306

All simulations were implemented in R (version 4.5.1, R Core Team, 2025) and analysed in a Bayesian307

framework using Stan probabilistic programming language (Carpenter et al., 2017) via the ‘rstan’308

package (version 2.32.2) (Stan Development Team, 2025). Each simulated dataset was analysed with309

weakly informative priors: normal distributions (mean = 0, SD = 1) for fixed effects, and truncated310

normal distributions (mean = 0, SD = 1; lower bound = 0) for variance parameters. Correlation311

structures among random effects were estimated using Cholesky decomposition with an LKJ(1)312

prior. All models were run with one chain with 1000 warm-up, and 5000 sampling iterations.313

The models were run in parallel on multiple processing units (up to 56) using the ’future’ and314

’future.apply’ packages (Bengtsson, 2021).315

Results316

Sample size317

The I&R model recovered fixed effects and variances with high accuracy (Figure 2). Estimates318

of the population mean (𝛽0) and interaction coefficient (𝜓̄) showed negligible bias, once sample319

size reached 800 observations (< 3%). The dispersion decreased steadily with the sample size for320

all parameters. All variance components were estimated with minimal bias (< 5%) in all sample321

sizes, with the exception of a slight overestimation of the social impact variance (𝑉𝜙) at the smallest322

15



sample size (8.2% at 400). Covariances were more difficult to estimate, with strong underestimation323

at small sample sizes (-17.6% to -30.2% at 400). Among the covariances, 𝐶𝑜𝑣𝜓𝜙 (social impact324

- social responsiveness) was the most difficult to estimate, followed by 𝐶𝑜𝑣𝛼𝜓 (mean trait value -325

social responsiveness), while 𝐶𝑜𝑣𝛼𝜙 (mean trait value - social impact) was estimated most accurately326

(least biased). The bias decreased consistently with larger samples, with less than 4% bias at the327

largest sample size of 6400 observations with 800 individuals. Taken together, these results show328

that estimates of fixed effects and variances stabilise at moderate sample sizes (≥ 800), whereas329

reliable estimation of covariance components requires substantially larger datasets. Based on these330

patterns, we continued the subsequent analyses with a total sample size of 3200 observations, which331

yielded adequate accuracy for all parameters.332
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Figure 2: Visualisation of bias and dispersion of model parameters estimated by the impact and responsiveness (I&R)
model across various total sample sizes. The top panels show the relative bias (%) of the posterior medians from analyses of a 1000
simulated datasets per sample size. The bottom panel shows boxplots of all 1000 posterior medians. The left-side panels (a) show the
fixed effects: population mean 𝛽0 and interaction coefficient 𝜓̄. The middle panels (b) show variances of: mean behaviour 𝑉𝛼 , social
impact 𝑉𝜙 and social responsiveness 𝑉𝜓 . The right-side panels (c) show the covariances: mean behaviour-social impact 𝐶𝑜𝑣𝛼𝜙 , mean
behaviour-social responsiveness 𝐶𝑜𝑣𝛼𝜓 and social impact-social responsiveness 𝐶𝑜𝑣𝜓𝜙 . The sample sizes are increased by increasing
the number of individuals. Each individual interacts eight times with different social partners for each interaction. The dotted lines
represent the simulated ‘true’ estimate.

Sampling design333

We examined different sampling designs while keeping the total sample size constant at 3200334

observations. Throughout the results, we only highlight changes greater than 5% across study335

designs; smaller differences were considered negligible. Across all designs, estimates of variance336

components showed minimal differences in both accuracy (bias) and precision (dispersion) (Figure 3,337

Table S2). Bias in variance components was generally below 5%, with variance in social impact338

consistently showing a slight overestimation. Dispersion remained stable across designs, with the339

exception of variance in mean trait values, where dispersion increased from 8.2% to 14.2% when340
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fewer individuals and more repeated interactions with the same partners were included. . These341

results indicate that at a total sample size of 3200, the partitioning of observations into numbers342

of individuals, numbers of social partners per individual, or repeated dyadic interactions has little343

effect on the accuracy or precision of variance component estimates. Thus, all study designs appear344

adequate to obtain reliable variance estimates. In contrast, estimates of individual-level covariances345

were more sensitive to study design choices. Covariances were generally underestimated, typically346

by less than 10%, although the magnitude of bias varied between design choices. Moreover,347

covariances did not all respond similarly to trade-offs between sampling axes.348
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Figure 3: Effect of sampling design axes on bias and dispersion of variance and covariance parameters. Relative bias and
relative dispersion of the model estimates of variances and covariances over 1000 simulated datasets per study design. Each study design
contains a total sample size of 3200 observations. The left-side panels (a) show the trade-off between the number of individuals and
the number of social partners (each individuals interacts once with each social partner: repeats = 1). The middle panels (b) show the
trade-off between the number of individuals and repeated dyadic interactions (repeats) for a total sample size of 3200 (each individual
interacts with four different social partner: partners = 4). The right-side panels (c) show the trade-off between interacting with more
different social partners against interacting repeatedly with the same social partners for a total sample size of 3200 (each study design
has 200 unique individuals: individuals = 200). Top panels represent the accuracy (relative bias) and precision (relative dispersion) of
the variance parameters and the bottom panels the covariance parameters.

More individuals or more unique partners per individual349

To investigate this, we compared whether it is more beneficial to maximise the number of indi-350

viduals or the number of social partners per individual. In these scenarios, individuals had 2,351

4, 8, 16, or 32 social partners (equal to the number of interactions per individual), correspond-352
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ing to datasets with 1600, 800, 400, 200, or 100 individuals, respectively, while maintaining 3200353

total observations. Increasing the number of individuals at the expense of repeated interactions354

reduced accuracy and precision for some covariances (Figure 3a). Specifically, bias increased for355

the mean–impact and mean–responsiveness covariances as fewer individuals were included. In356

contrast, the impact–responsiveness covariance showed the opposite trend, with bias decreasing as357

the number of individuals decreased and the number of partners per individual increased, reaching358

a minimum at 200 individuals with 16 partners each. Overall, the design with 400 individuals and359

8 partners yielded the lowest average bias across the three covariances. Dispersion also increased as360

the number of individuals decreased, rising from 11.1% to 22.8% for the mean–impact covariance361

and from 12.0% to 19.2% for the mean–responsiveness covariance (Table S2). The dispersion of the362

impact–responsiveness covariance was largely unaffected.363

More individuals or more repeated interactions with the same partners364

Next, we evaluated designs trading-off the number of individuals against the number of repeated365

dyadic interactions, while keeping the number of unique partners per individual constant at 4366

(Figure 3b). Here, bias increased for both the mean–impact covariance (from −0.9% to −9.0%)367

and the mean–responsiveness covariance (from −3.1% to −8.2%) when repeated interactions were368

prioritised over including more individuals (Table S2). Bias in the impact–responsiveness covariance369

remained stable across designs. However, dispersion increased for all three covariance estimates370

as fewer individuals were included and more dyadic pairs were repeated. This indicates that371

prioritising repeated dyadic interactions at the cost of including more individuals reduces the372

reliability of covariance estimation.373

More social partners or more repeated interactions with the same partners374

Finally, we examined the trade-off between the number of social partners and the number of375

repeated interactions with the same partners while keeping the number of individuals constant376

at 200. Bias and dispersion remained largely unchanged across study designs, except for the377

impact–responsiveness covariance, which showed a marked increase in bias (from−5.8% to−13.4%)378
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as the number of unique partners decreased and repeated dyads increased (Figure 3c, Table S2).379

Overall, there is little evidence that prioritising more partners versus more repeated dyads has an380

effect on the estimation accuracy and precision.381

Taken together, these results show that estimation of variance in mean trait values, social impact,382

and social responsiveness are not strongly affected by study design choices for a total sample size383

of 3200. Covariances, on the contrary, are more sensitive to how social interaction observations384

are partitioned. Designs that balance moderate numbers of individuals with moderate numbers385

of partners are expected to perform well overall, whereas prioritising repeated dyadic interactions386

over the number of individuals reduces the reliability of the estimation of the covariances. We387

further tested the trade-off in sampling design axes for a total sample size of 800 observations,388

which showed similar patterns (see Figure S1)389

Model comparison390

We compared the complete I&R model to two reduced models, the variance-partitioning approach391

and the trait-based model, that lack the statistical components required to fully quantify all levels of392

variation. Specifically, these reduced models do not account for variation in social responsiveness,393

nor for measurement error in the partner trait. Our results show that these models show clear394

differences in bias and dispersion. Specifically, models that did not account for measurement error395

(Trait and Trait+RS) in the partners trait showed large biases in all three model parameters (Figure396

4 and 5).397
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Figure 4: Comparison of the impact and responsiveness model (I&R) with a variance-partitioning model (V-P) and a
trait-based model (Trait). The figure shows the accuracy (bias) and precision (dispersion) of (a) the population response 𝜓̄, (b) the
variance in social impact 𝑉𝜙 , (c) the covariance between mean trait value and social impact Cov𝛼𝜙 . Top panels show the relative bias of
three models that analysed the same 1000 simulated datasets for four different partitions of number of individuals and number of social
partners per individual. Bottom panel shows the relative dispersion (mean absolute deviation of the mean), expressed as a percentage.

For the population-level response 𝜓̄, the I&R model showed minimal bias across study designs398

(all < 2%), with dispersion between 9.9% and 12.4% (Table S4). By contrast, the Trait model399

consistently underestimated 𝜓̄ by 10.1 - 17.0%, with bias increasing as the number of individuals400

decreased (Figure 4). Dispersion in the estimation of 𝜓̄ was slightly higher in the I&R model401

compared to the Trait model across study designs. For the variance-partitioning (V-P) model,402

an estimate of 𝜓̄ can also be derived; however, this would reflect the population-level response403

to the total phenotype of the social partners (i.e. both 𝜒𝑗 and 𝜖 𝑗) (McGlothlin & Brodie, 2009),404

whereas we simulated data such that 𝜓̄ represents the response to the trait component 𝜒𝑗 alone.405
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Therefore, these estimates would not be the same as the simulated value of 𝜓̄. For the variance in406

social impact 𝑉𝜙, the Trait model showed consistent underestimation between −8.5% and −14.4%407

compared to slight overestimation by the I&R model (2.0% to 5.9%) (Figure 4, Table S5). The variance408

partitioning model (V-P), however, showed no marked bias in the estimation of the variance in social409

impact. Dispersion was slightly higher in the I&R model, than the two reduced models. All models410

underestimated the mean-impact covariance (𝐶𝑜𝑣𝛼𝜙). In the I&R model, bias ranged from −0.1%411

to −7.0%, with dispersion ranging from 11.1% to 22.8%. In the variance-partitioning model, bias412

ranged from −2.2% to −4.4%, with dispersion ranging from 13.7% to 23.0%. The trait-based model413

showed severe underestimation, particularly when more individuals interacted with fewer social414

partners (−61.3%), with bias decreasing to −8.7% when fewer individuals interacted with more415

social partners (Figure 4, Table S6). Overall, the I&R model and V-P model performed better than416

the Trait model, which produced extremely biased estimates of the mean-impact covariance under417

most sampling conditions (which is equivalent to a DGE-IGE covariance).418

In order to determine whether the trait-based model shows more error because it does not419

account for individual variation in responsiveness (no random slopes), or due to the methodological420

issue that traits are often measured with error (no error correction), we compared the full I&R model421

to two models that were each lacking one of these components that account for this. Our results422

show that there are very little differences in estimation bias and precision between the full impact423

and responsiveness (I&R) model and a model that does not account for individual variation in424

responsiveness, however, not modelling measurement error can cause substantial biases (Figure 5).425
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Figure 5: Comparison of the impact and responsiveness (I&R) model with a trait-based model without random slopes
(Trait+EIV) and a trait-based model without errors-in-variables correction (Trait+RS). See caption Figure 4 for details.

For the population-level response 𝜓̄, both the I&R and Trait+EIV models showed minimal bias426

(< 2%) across all sample sizes (Table S4). In contrast, the Trait+RS model consistently underesti-427

mated 𝜓̄, with bias increasing from 11.5% at 1600 individuals with 2 social partners to 25.96% at428

100 individuals with 32 social partners, which is actually worse than the Trait model (Table S4).429

Dispersion was similar across models (6–12%). For the variance in social impact 𝑉𝜙, the Trait+EIV430

model (1.2% to 2.5%) was a bit closer to unbiased estimation than the I&R. The Trait+RS model was431

the most biased, with an underestimation between −4.5% and −8.7%. Both models provide better432

estimates for variance in social impact than the basic Trait model. For the mean-impact covariance433

Cov𝛼𝜙, the Trait+EIV model and I&R model do not show substantial estimation bias. The Trait+RS434

model showed large bias, particularly when more individuals interacted with fewer social partners.435

This bias was slightly less than the basic Trait model.436
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In summary, the Trait+EIV model performed comparably to the full I&R model, with even437

slightly more accurate and precise estimation of 𝑉𝜙. Adding error correction thus substantially438

improves the Trait model. In contrast, the addition of random slopes without error correction439

(Trait+RS) provided little benefit and, in most cases, worsened the performance compared to I&R.440

Compared to the Trait model, the Trait+RS model performed worse in estimating the population-441

level response 𝜓̄, slightly better in estimating 𝑉𝜙 and slightly better in estimating Cov𝛼𝜙. Across442

most metrics, parameters and study designs the model that does not account for measurement error443

(Trait+RS) performed worse than the I&R model. We also performed the model comparison with a444

lower total sample size of 800 observations, which showed similar patterns (Figures S2, S3).445

Discussion446

Understanding how social traits evolve requires not only studying individual variation in mean447

behavioural tendencies, but also accurately estimating how individuals influence, and are influ-448

enced by, their social partners. Building upon recent conceptual advances that decompose social449

phenotypes into mean behaviour, social responsiveness and social impact (Araya-Ajoy et al., 2020;450

de Groot et al., 2023), our study provides a systematic exploration of the statistical and study design451

challenges associated with estimating these components. In this study, we explored how different452

sampling decisions and model structures affect our ability to estimate these components in em-453

pirical social interaction data. Our simulations demonstrate that it is possible to estimate mean454

behaviour, social responsiveness and social impact with reasonable accuracy and precision, but455

that model performance can be strongly affected by both sampling design and model structure. In456

particular, we show that failing to account for measurement error in the traits of social partners can457

lead to biased estimates of key parameters, including the population-level responsiveness 𝜓̄ and the458

covariance between mean behaviour and social impact. By systematically assessing these issues,459

our results provide practical guidance for researchers aiming to study the evolution of labile social460

traits in systems where the social environment is dynamic and trait expression is plastic.461

Our results highlight that accurate and precise estimation of social behavioural parameters de-462

25



pends strongly on total sample size. Across increasing sample sizes, the I&R model produced463

unbiased estimates of fixed effects and variance components, with dispersion decreasing markedly464

as larger datasets were used. This aligns with earlier simulation work showing that model perfor-465

mance improves rapidly with increasing numbers of individuals and observations per individual466

(Dingemanse & Dochtermann, 2013; Martin et al., 2011). Notably, covariance estimates between467

components of individuality (Cov𝛼𝜙, Cov𝛼𝜓, and Cov𝜓𝜙) were consistently underestimated at small468

sample sizes, which largely disappeared when sample sizes were larger (≥ 3200). This indicates469

that detecting and quantifying covariance structure among individuals in social traits requires sub-470

stantially more data than estimating univariate effects (i.e. variances) alone. Large sample sizes471

are necessary to obtain unbiased estimates, especially when researchers expect even smaller effect472

sizes, for instance, when estimating indirect genetic effects (Santostefano et al., 2024). These sample473

sizes are fortunately not uncommon in studies on IGEs. Based on data extracted from Santostefano474

et al. (2024), we found that across 47 meta-analysed IGE studies, an average of 5023 individuals were475

included per study, with a mean of 1.48 observations per individual. Nonetheless, six studies were476

conducted with fewer than 400 individuals and fewer than 1600 total observations. These datasets477

were mostly on wild and semi-captive populations. Similar studies, where sample sizes are limited,478

might benefit the most from optimising sampling methods (see Figure S1). Our results, showing479

that we need at least 3200 observations, align with the widely acknowledged difficulty of obtaining480

precise IGE estimates without large and well-structured datasets (Bĳma, 2010; Charmantier et al.,481

2014). Our inspection of the full parameter set indicated that the impact–responsiveness model482

struggled most when estimating the residual impact parameter, which was typically overestimated483

by about 50% (Table S7). This bias likely arises because variation in residual impact is estimated484

through the random identity of the partner, which is also used to model the partner’s impact trait485

affecting the focal individual. The model therefore has difficulty disentangling these two partner486

effects. We furthermore suspect that the complexity of the multivariate structure matrix demands487

large sample sizes. In our simulated data, we modelled four traits that (co-)varied among individu-488

als: mean behaviour, social responsiveness, impact trait, and residual impact (the latter two jointly489

contributing to total social impact). These traits were simulated with correlations of 0.6, -0.6, or490

0. The model was then tasked with disentangling all variances and covariances among these traits491
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using only the phenotype of the focal individual, the observed impact trait of their partner, and the492

identities of both individuals within a single assay. This level of complexity is expected to increase493

the sample size required for unbiased and precise estimation.494

Estimating social responsiveness and impact, as well as their covariances with mean behaviour,495

requires specific features in study design that are rarely addressed in detail. In particular, the need496

for individuals/genotypes to act both as focal subjects and social partners, variation in partner497

traits, and repeated interactions between individuals or genotypes imposes constraints that are498

unique to studies of social behaviour. Given these constraints, we explored how different ways499

of allocating sampling effort affect the performance of models estimating individual variation in500

social traits. We found that the specific sampling design choices for datasets with a total of 3200501

observations did not have extreme effects on the accuracy and precision of the estimation of variance502

components. Changes in bias and dispersion from one extreme to the other never exceeded 5%.503

This means that researchers are able to compensate by investing in increasing the number of social504

partners per individual or repeating the same dyadic interactions if they do not have access to a large505

population size. Similarly, in some cases, if observations of social behaviour are often with the same506

social partner, researchers are forced to obtain an adequate population size of unique individuals507

to estimate all variance components. For example, this applies to longitudinal studies on indirect508

genetic effects in breeding attempts of long-lived animals that form strong pair bonds (Moiron509

et al., 2020; Teplitsky et al., 2010). However, for covariances, our results show that analyses using510

small population sizes could suffer from lower accuracy and precision in estimating individual-level511

covariances. To accurately estimate covariances, having more individuals is preferred over having512

more social partners or more dyadic repeated interactions at an equal total sample size in almost all513

cases. Furthermore, we also show that repeating pairwise interactions with the same individuals at514

the cost of using more individuals or more unique social partners is not advisable. In our analyses,515

increasing the repeats of the same dyads always resulted in a decrease in number of individuals516

or a decrease in number of unique dyads (social partners). We show that if the total sample size517

is kept equal having more repeats of the same dyad is either detrimental or does not improve the518

model estimation. However, repeating dyads with the purpose of increasing the total sample size519

should improve estimation accuracy and precision, but likely not as much as increasing the number520
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of individuals or the number of unique dyads. Thus, if researchers face constraints on measuring a521

specific number of interactions, based on our specific simulations, the total sample size should be522

increased using the following order of priority:523

1. Increase the number of individuals;524

2. Increase the number of social partners per individual (unique dyads);525

3. Increase the number of repeated dyads.526

This recommendation applies primarily to researchers interested in decomposing among- and527

within-individual variation in all three components of a social trait, as well as their covariances.528

However, it is important to recognise that our conclusions are specific to the parameter values529

and effect sizes used in our simulations. Consequently, we strongly encourage researchers to530

simulate their own datasets and analyse them to identify the sampling design most suitable for their531

expected effect sizes and study system. To facilitate this process, we developed socialSim, an easy-532

to-use R package that provides a simple workflow for designing and evaluating social interaction533

studies (Wĳnhorst, 2025). The package includes three core functions: simulate_data(), which534

generates social interaction datasets under user-specified parameters. The user can, for example,535

choose whether to include variation in social responsiveness, measurement error/variation in the536

partner trait, and specify individual-level correlations between variance components. The function537

run_model(), where the user can choose one of the hierarchical Bayesian models tested in this538

article in Stan; and summarise_results(), which extracts and summarises outcomes as relative539

bias and relative precision. Importantly, socialSim can be used without any prior experience in Stan540

programming or Bayesian hierarchical modelling, lowering the threshold for researchers to explore541

how study design and parameter choices influence model performance.542

In order to detect the consequences of having incomplete models when we suspect complex543

multivariate social phenotypes, we compared a complete I&R model to several reduced models.544

Importantly, we show that trait-based models which lack specific components to estimate individual545

differences in traits may perform worse. Our comparisons show that the variance-partitioning (V-546

P), however, showed very little biases and low dispersion in estimating the variation in social547

28



impact and the covariance (mean trait value x social impact) under large sample sizes. This is a548

positive result because the variance-partitioning approach is also the most widely used method for549

estimating IGEs (Bailey & Desjonquères, 2022). However, we show that using a trait-based model,550

that doesn’t account for variation in slopes or measurement error, can lead to an underestimation551

of the social effect 𝑉𝜙 and the mean-impact covariance 𝐶𝑜𝑣𝛼𝜙. We demonstrate the well-known552

effect that not accounting for measurement error leads to an attenuation of the regression coefficient553

(𝜓̄ in our model), which also caused an underestimation of the social effect 𝑉𝜙. Interestingly, our554

model comparison indicates that adding or removing random slopes has little influence on the555

accuracy and precision of model estimates. Thus, including random slopes is not detrimental and556

may even be preferable when individual variation in responsiveness is of interest. In contrast,557

not accounting for random slopes when such variation is present in the data does not appear to558

worsen model performance. This is somewhat unexpected, as previous studies have emphasised559

the importance of modelling among-individual variation in slopes. For instance, omitting random560

slopes can bias fixed effects and inflate Type I error rates (Barr et al., 2013), or lead to overestimated561

between-individual variance components depending on the intercept–slope correlation (i.e. the562

mean behaviour–responsiveness covariance) (Schielzeth & Forstmeier, 2009). However, in our case,563

we do not observe such overestimation. Instead, the variance attributable to individual differences564

in slopes (0.1) is absorbed by the residual variance when slopes are not modelled (residual variance565

increases from 0.6 to 0.7). Consequently, estimates of repeatability for direct and indirect effects566

(calculated as the proportion of variance explained by 𝑉𝛼 and 𝑉𝜙, respectively) remain stable.567

Nevertheless, this implies that within-individual variance in the social trait is inflated, as variance568

in slopes is treated as unexplained residual variance, despite potentially capturing biologically569

meaningful differences in responsiveness to the social environment. Therefore, given both prior570

evidence for the potential risks of omitting random slopes and our finding that their inclusion is at571

least not harmful, we recommend incorporating random slopes into IGE models to better capture572

individual differences in social responsiveness.573

The impact-and-responsiveness framework we propose is particularly useful when the partner574

trait is either measured with error or varies substantially between social interactions. In the context575

of social effects, we are primarily interested in how repeatable individual differences in partners576
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shape the focal individual’s behaviour. These effects are not caused by non-heritable or transient577

expressions of a partner’s phenotype during a given interaction, but by repeatable traits, such as578

mean levels of aggression or body size, that exert influence across multiple encounters (Bleakley579

& Brodie, 2009; Saltz, 2013; Wilson et al., 2009). Therefore, rather than modelling the observed580

phenotype expressed in a single interaction, we aim to estimate the latent mean trait value of each581

partner using a double equation (errors-in-variables) model. This approach captures the repeatable582

among-individual variation that drives social effects and allows us to quantify its contribution583

to focal behaviour. Importantly, this latent partner trait (𝜒𝑗) can also be partitioned into additive584

genetic and permanent environmental components using an animal model. This enables estimation585

of the breeding values underlying social effects and the total genetic variance attributable to indirect586

genetic effects using the interaction coefficient 𝜓̄ (McGlothlin & Brodie, 2009; Wolf et al., 1999). Thus,587

the model not only accounts for measurement error or stochastic expression in labile traits, but also588

aligns with the conceptual goal of identifying the stable genetic and/or phenotypic individual589

differences in partners that generate social effects.590

Several theoretical papers have suggested modelling social responsiveness using random slopes591

in IGE frameworks (Araya-Ajoy et al., 2020; Bailey et al., 2021; Dingemanse & Araya-Ajoy, 2015;592

Martin & Jaeggi, 2022), which is further supported by observational and experimental evidence593

that individuals show repeatable differences in how they respond to the social cues (Bailey & Zuk,594

2012; Chenoweth et al., 2010; Fürtbauer & Fry, 2018; Guayasamin et al., 2017; Jablonszky et al.,595

2022; Morand-Ferron et al., 2011; Strickland & Frère, 2019; Strickland et al., 2021). We support this596

perspective and show that including random slopes does not harm estimation accuracy or precision.597

Therefore, we recommend considering random slopes in IGE models, especially when aiming to598

disentangle social impact and responsiveness, two traits that can vary independently and jointly599

shape social phenotypes (de Groot et al., 2023). Exploring how these traits genetically covary,600

including with the direct effects, will be key to understanding the evolution of social behaviour601

(Bailey et al., 2021; Bĳma et al., 2007; Moore et al., 1997; Wilson et al., 2009). By assessing the utility602

of an impact-and-responsiveness model, we hope to provide a useful statistical tool for the study603

of the expression of social traits. Only through considering the multivariate nature of ubiquitous604

social interactions will we be able to understand their effects on evolutionary dynamics.605
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Supplementary material774

The full 4 x 4 matrix estimated in the I&R model:775 

α𝑖

ψ𝑖

χ𝑖

ϵ𝑖


∼ 𝒩 (0, Ω) , Ω =



𝑉𝛼 Cov(𝛼,𝜓) Cov(𝛼, 𝜒) Cov(𝛼, 𝜖)

Cov(𝛼,𝜓) 𝑉𝜓 Cov(𝜓, 𝜒) Cov(𝜓, 𝜖)

Cov(𝛼, 𝜒) Cov(𝜓, 𝜒) 𝑉𝜒 Cov(𝜒, 𝜖)

Cov(𝛼, 𝜖) Cov(𝜓, 𝜖) Cov(𝜒, 𝜖) 𝑉𝜖


𝑒 ∼ 𝒩(0, 𝑉𝑒 ) (S1)

was reduced to a 3 x 3 matrix (Equation 10) estimating the (co-)variance of mean trait values, social776

responsiveness and social impact using the following equations:777

𝑉𝜙 = 𝑉𝜖 + 𝜓̄2𝑉𝜒 + 2 𝜓̄ Cov(𝜒, 𝜖) (S2)
778

Cov(𝛼, 𝜙) = Cov(𝛼, 𝜖) + 𝜓̄ Cov(𝛼, 𝜒) (S3)
779

Cov(𝜓, 𝜙) = Cov(𝜓, 𝜖) + 𝜓̄ Cov(𝜒,𝜓) (S4)

Table S1: Mean percentage bias in posterior medians across 1000 simulations under different sample sizes

Total sample size 400 800 1600 3200 6400
Individuals 50 100 200 400 800

Parameter Description Sim. value Bias (%)
𝐵0 Population mean 1.00 1.31 0.61 0.52 0.16 0.07
𝜓̄ Population response 0.30 -4.31 -1.67 -1.54 -0.77 -2.18
𝑉𝛼 Mean behaviour variance 0.20 -1.93 0.85 -0.58 0.20 0.17
𝑉𝜓 Social responsiveness variance 0.10 -1.28 -0.92 0.25 0.52 0.21
𝑉𝜙 Social impact variance 0.10 8.24 4.66 1.91 3.09 2.74
Cov(𝛼, 𝜙) Cov: mean × impact 0.080 -17.63 -7.82 -4.44 -1.77 -0.73
Cov(𝛼,𝜓) Cov: mean × responsiveness -0.085 -26.03 -11.95 -6.10 -2.70 -1.44
Cov(𝜓, 𝜙) Cov: responsiveness × impact -0.076 -30.10 -19.48 -11.80 -7.13 -3.42
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Table S2: Bias and dispersion for key variance and covariance parameters for different sampling design (total sample size = 3200).

Individuals 1600 800 400 200 100 800 400 200 100 200 200 200 200
Social partners 2 4 8 16 32 4 4 4 4 16 8 4 2

Repeats 1x 1x 1x 1x 1x 1x 2x 4x 8x 1x 2x 4x 8x

Bias (%)

Mean 𝑉𝛼 -1.64 -0.77 0.20 -0.54 0.67 -0.77 0.06 -0.27 0.08 -0.54 0.63 -0.27 -0.41
Impact 𝑉𝜙 5.88 3.19 3.09 3.83 1.96 3.19 4.01 2.66 1.06 3.83 2.33 2.66 2.92
Response 𝑉𝜓 -0.34 -0.05 0.52 0.27 -0.59 -0.05 0.10 0.36 0.25 0.27 -0.02 0.36 0.61
Cov(𝛼, 𝜙) -0.14 -0.92 -1.77 -3.80 -6.95 -0.92 -1.58 -4.42 -8.98 -3.80 -3.68 -4.42 -3.98
Cov(𝛼,𝜓) -2.96 -3.14 -2.70 -4.33 -6.06 -3.14 -3.27 -5.40 -8.20 -4.33 -4.11 -5.40 -6.12
Cov(𝜓, 𝜙) -11.98 -8.82 -7.13 -5.82 -7.14 -8.82 -7.45 -8.64 -9.93 -5.82 -7.31 -8.64 -13.41

Dispersion (%)

Mean 𝑉𝛼 9.36 8.30 8.55 10.52 13.53 8.30 8.58 10.62 14.24 10.52 10.47 10.62 11.17
Impact 𝑉𝜙 20.70 17.29 17.23 18.69 21.72 17.29 17.07 19.11 21.35 18.69 18.85 19.11 19.68
Response 𝑉𝜓 13.67 11.44 11.07 11.82 13.93 11.44 10.97 12.80 15.05 11.82 11.88 12.80 14.97
Cov(𝛼, 𝜙) 11.10 11.70 13.77 16.49 22.76 11.70 13.23 17.79 23.74 16.49 17.29 17.79 18.63
Cov(𝛼,𝜓) 11.95 12.35 12.50 15.79 19.23 12.35 12.92 15.72 21.51 15.79 15.57 15.72 17.33
Cov(𝜓, 𝜙) 12.99 12.49 12.27 13.80 16.53 12.49 12.21 14.57 17.73 13.80 13.96 14.57 17.19

Table S3: Bias and dispersion for key variance and covariance parameters for different sampling designs (total sample size = 800).

400 200 100 50 200 100 50 100 100 100
2 4 8 16 4 4 4 8 4 2
1x 1x 1x 1x 1x 2x 4x 1x 2x 4x

Bias (%)

Mean 𝑉𝛼 -0.01 -1.21 0.02 -2.89 -1.21 -1.39 -2.92 0.02 -1.39 -3.09
Impact 𝑉𝜙 14.07 5.36 2.63 1.45 5.36 5.44 1.11 2.63 5.44 8.94
Response 𝑉𝜓 3.61 0.91 -0.42 1.04 0.91 -0.06 -2.13 -0.42 -0.06 1.18
Cov(𝛼, 𝜙) -3.75 -6.10 -11.16 -21.00 -6.10 -10.79 -21.60 -11.16 -10.79 -9.74
Cov(𝛼,𝜓) -17.34 -16.12 -17.27 -23.93 -16.12 -18.90 -28.77 -17.27 -18.90 -22.14
Cov(𝜓, 𝜙) -24.53 -24.61 -24.65 -26.10 -24.61 -25.72 -32.38 -24.65 -25.72 -29.83

Dispersion (%)

Mean 𝑉𝛼 17.46 15.96 17.34 19.65 15.96 17.95 21.19 17.34 17.95 18.71
Impact 𝑉𝜙 19.65 19.81 22.05 27.95 19.81 23.43 28.64 22.05 23.43 25.99
Response 𝑉𝜓 22.97 21.99 21.38 21.84 21.99 22.10 26.31 21.38 22.10 25.48
Cov(𝛼, 𝜙) 19.83 20.52 25.28 32.53 20.52 25.41 33.87 25.28 25.41 27.74
Cov(𝛼,𝜓) 25.06 23.33 25.75 30.83 23.33 26.85 34.44 25.75 26.85 32.52
Cov(𝜓, 𝜙) 22.75 22.22 23.89 28.53 22.22 25.72 32.29 23.89 25.72 29.81

Table S4: Fixed effect: population response 𝜓̄

Individuals I&R Trait Trait+EIV Trait+RS

Bias (%)

1600 -1.68 -10.09 -0.48 -11.54
800 -1.00 -10.59 -0.02 -13.45
400 -0.77 -12.23 -0.29 -17.39
200 -0.98 -13.84 0.06 -21.48
100 -1.58 -17.00 0.22 -25.96

Dispersion (%)

1600 12.42 5.38 6.66 5.34
800 10.33 6.02 6.37 6.11
400 9.92 6.81 6.89 7.20
200 10.75 8.40 8.06 8.96
100 11.54 10.95 9.91 12.16
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Table S5: Variance: social impact 𝑉𝜙

Individuals I&R V–P Trait Trait+EIV Trait+RS

Bias (%)

1600 5.88 -1.06 -8.50 1.20 -4.54
800 3.19 -0.69 -12.97 -1.72 -7.72
400 3.09 -0.28 -14.43 -2.45 -8.74
200 3.83 1.16 -13.32 -0.83 -7.68
100 1.96 1.50 -12.46 0.06 -7.23

Dispersion (%)

1600 20.70 19.61 13.01 13.76 12.81
800 17.29 15.33 13.61 13.60 12.65
400 17.23 14.54 14.95 14.59 13.41
200 18.69 16.01 16.91 16.58 15.76
100 21.72 20.63 21.68 20.85 20.64

Table S6: Covariance: mean behaviour-social impact 𝐶𝑜𝑣𝛼𝜙

Individuals I&R V–P Trait Trait+EIV Trait+RS

Bias (%)

1600 -0.14 -4.41 -61.26 -0.76 -53.91
800 -0.92 -3.13 -45.66 -1.18 -36.66
400 -1.77 -2.59 -29.67 -1.86 -20.76
200 -3.80 -2.16 -17.27 -2.15 -11.14
100 -6.95 -2.54 -8.73 -3.47 -5.51

Dispersion (%)

1600 11.10 14.55 24.43 10.64 20.75
800 11.70 13.72 18.03 11.57 15.78
400 13.77 14.91 17.52 13.73 14.98
200 16.49 16.82 18.00 16.12 15.64
100 22.76 23.02 23.76 22.47 20.55

Table S7: Mean model estimates (posterior medians) of 1000 simulated datasets under different sampling partitions (total sample size =
3200).

Individuals 1600 800 400 200 100 400 200 100 200
Social partners 2 4 8 16 32 4 4 4 8

Repeats 1x 1x 1x 1x 1x 2x 4x 8x 2x
Parameter Description Sim. value Model outcome
𝛽0 Population mean 1.00 1.000 1.000 1.002 1.004 1.005 1.002 1.005 1.010 1.005
𝜓̄ Population response 0.30 0.295 0.297 0.298 0.297 0.295 0.299 0.296 0.293 0.295
𝑉𝛼 Mean behaviour variance 0.20 0.197 0.198 0.200 0.199 0.201 0.200 0.199 0.200 0.201
𝑉𝜓 Responsiveness variance 0.10 0.100 0.100 0.101 0.100 0.099 0.100 0.100 0.100 0.100
𝑉𝜖 Residual impact variance 0.01 0.017 0.015 0.014 0.014 0.014 0.015 0.014 0.014 0.014
𝑉𝜒 Impact trait variance 1.00 0.999 0.999 0.996 1.002 0.995 0.999 0.998 0.996 0.996
𝑟𝛼𝜖 Corr: mean × res. impact -0.60 -0.598 -0.589 -0.587 -0.579 -0.569 -0.585 -0.574 -0.557 -0.578
𝑟𝛼𝜓 Corr: mean × response 0.00 0.043 0.017 0.015 -0.000 -0.000 0.012 -0.000 -0.009 0.000
𝑟𝛼𝜒 Corr: mean × impact trait -0.60 -0.285 -0.375 -0.451 -0.494 -0.526 -0.426 -0.451 -0.472 -0.484
𝑟𝜖𝜓 Corr: res. impact × response 0.60 0.599 0.595 0.590 0.584 0.569 0.590 0.583 0.567 0.585
𝑟𝜒𝜓 Corr: impact trait × response -0.60 -0.603 -0.598 -0.590 -0.585 -0.579 -0.592 -0.584 -0.574 -0.583
𝑟𝜒𝜖 Corr: impact trait × res. impact 0.00 0.033 0.009 0.004 0.000 0.006 0.003 0.010 -0.001 0.007
𝑉𝑒 Residual variance 0.60 0.599 0.600 0.599 0.600 0.600 0.600 0.600 0.600 0.599
𝑉𝑒𝜒 Measurement error 0.10 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100
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Table S8: Mean model estimates (posterior medians) of 1000 simulated datasets under different sampling partitions (total sample size =
800).

Individuals 400 200 100 50 100 50 100
Social partners 2 4 8 16 4 4 2

Repeats 1x 1x 1x 1x 2x 4x 4x
Parameter Description Sim. value Model outcome
𝛽0 Population mean 1.00 1.000 1.001 1.004 1.013 1.006 1.007 1.005
𝜓̄ Population response 0.30 0.298 0.297 0.296 0.293 0.297 0.291 0.296
𝑉𝛼 Mean behaviour variance 0.20 0.200 0.198 0.200 0.194 0.197 0.194 0.194
𝑉𝜓 Responsiveness variance 0.10 0.104 0.101 0.100 0.101 0.100 0.098 0.101
𝑉𝜖 Residual impact variance 0.01 0.024 0.016 0.015 0.014 0.015 0.015 0.017
𝑉𝜒 Impact trait variance 1.00 0.996 0.991 0.985 0.975 0.990 0.967 0.990
𝑟𝛼𝜖 Corr: mean × res. impact -0.60 -0.512 -0.525 -0.515 -0.478 -0.510 -0.460 -0.492
𝑟𝛼𝜓 Corr: mean × response 0.00 0.021 0.030 0.010 0.001 0.021 0.004 0.019
𝑟𝛼𝜒 Corr: mean × impact trait -0.60 -0.113 -0.161 -0.225 -0.278 -0.197 -0.206 -0.139
𝑟𝜖𝜓 Corr: res. impact × response 0.60 0.584 0.571 0.550 0.511 0.548 0.513 0.561
𝑟𝜒𝜓 Corr: impact trait × response -0.60 -0.555 -0.554 -0.539 -0.514 -0.535 -0.504 -0.522
𝑟𝜒𝜖 Corr: impact trait × res. impact 0.00 0.006 0.009 0.008 0.006 0.007 0.008 0.009
𝑉𝑒 Residual variance 0.60 0.583 0.594 0.597 0.600 0.598 0.597 0.599
𝑉𝑒𝜒 Measurement error 0.10 0.100 0.100 0.100 0.100 0.100 0.100 0.100
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Figure S1: Analysis of sampling design parameters for optimal bias and precision for estimating variance and covariance
parameters. Relative bias and dispersion of the posterior median of variances and covariances componenets of 1000 simulated datasets
per sampling design. Top and bottom left figures show the trade-off between the number of individuals and the number of social partners
to obtain a total sample size of 800. Middle figures show the trade-off between the number of individuals and repeatedly interacting with
the same social partners for a total sample size of 800. Right figures shows the trade-off between interacting with more different social
partners against interacting repeatedly with the same social partners for a total sample size of 800. Top panels represent the bias and
precision of the variance parameters and the bottom panels the covariance parameters.
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Figure S2: Comparison of the impact and responsiveness model (I&R) to the variance partitioning model and trait-based
model. Top panels show the relative bias of three models that analysed the same 1000 simulated datasets for four different partitions
of number of individuals and number of social partners per individual. Bottom panel shows the relative dispersion, expressed as a
percentage.
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Figure S3: Comparison of the impact and responsiveness (I&R) model to the trait-based models without errors-in-variables
correction (Trait+RS) and trait-based model without random slopes (Trait+EIV). Top panels show the relative bias of the three
models after analysing the same 1000 simulated datasets for four different partitions of number of individuals and number of social
partners per individual. Bottom panel shows the relative dispersion, expressed as a percentage.
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