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Abstract

Field studies are fundamental to ecological research, yet many studies rely on
unspecified or convenience-based methods for site selection, potentially introducing
bias that can compromise research results. Remote-sensing data provides a
quantitative way to evaluate potential sites without expensive pilot visits, however,
interacting with spatial data can be computationally complex. We present an R Shiny
application that integrates geospatial data into the site selection process, helping
researchers generate a list of potential field sites in a region of interest and ensuring
sites fall along a gradient of variation relevant to their research questions. Through
integration of remote-sensing data into an easy-to-use interface, this tool improves the
ability of researchers to make quantitative site selection decisions, ultimately leading to

more robust studies and research results.

Introduction

Field studies are essential to research across disciplines, as they allow

observation and measure of natural systems in ways irreplicable in laboratory studies.
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Researchers in ecology and evolution have a long history of optimizing sampling
methods for statistical inference, resulting in extensive guidance on carefully selecting
sampling intervals and structures (Andrew and Mapstone 1987; Anderson 2001;
Stevens and Olsen 2004; Green and Plotkin 2007; Legendre and Fortin 1989; Albert et
al. 2010). Despite this guidance, systematic reviews of field studies show many studies
use unspecified, haphazard, or convenience-based sampling methods (Smith,
Anderson, and Pawley 2017; Lewis 2004). Poorly specified sampling designs can bias
input data and resulting parameter estimates and model outcomes, possibly leading to
unrepresentative or even false conclusions (Elphick 2008; Albert et al. 2010; Hurlbert
1984; Conn, Thorson, and Johnson 2017). In studies on conservation and public health,
false conclusions can have costly impacts, such as incorrect species abundance
estimates altering protection prioritization (Reddy and Davalos 2003) or missed
detection of a disease vector thereby underestimating risk (Abad-Franch et al. 2014).

Sampling design involves three main components: what to sample (e.g. species,
water, air, or soil), how to sample (the measurement procedure), and where to sample.
A review of urban ecology studies demonstrated that while many studies reported on
what they sampled and how, few studies provided details on their site selection
methods (Dyson et al. 2023). A variety of R tools can help researchers with selecting
sampling sites, such as spsurvey (Dumelle et al. 2023), BalancedSampling (Grafstrom,
Prentius, and Lisic 2024), and Spbsampling (Pantalone, Benedetti, and Piersimoni
2022), but there is a need for an easy-to-use interface integrating geospatial data into
the selection process to standardize methods in field site selection.

Additionally, many existing tools focus on sampling design for an already

selected sampling frame, which is the overall pool from which samples are selected.
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Ideally, a sampling frame is representative of the target population to ensure study
results can be generalized. For instance, consider a study that intends to set out rodent
traps to assess abundance of a pathogen in the rodent population. The rodents serve as
the sampling units, or the “what”; the “how” is through rodent trapping and molecular
identification; the “where” is the location of the traps; and the “sampling frame” is the
entire area where researchers plan to put traps. If the sampling frame is biased to only
include forested areas, despite higher abundance of the rodent species in other land
cover types, the rodent and pathogen abundance measures may be biased, as the
sampling frame is not representative of the population. In this situation, it would be
useful to have a tool to evaluate bias in land cover types in the sampling frame, so that
the researchers could adjust their sampling frame to better represent the target
population.

The availability of remote-sensing data has unlocked new ways of comparing
possible field sites. Publicly available high-resolution datasets exist on land-use and
land cover, such as WorldCover (Zanaga et al. 2022), Copernicus Land Cover (Buchhorn
et al. 2020), and Dynamic World (Brown et al. 2022), as well as for climate data, such as
MODIS land surface temperature (Wan, Hook, and Hulley 2021) and CHIRPS
precipitation (Hantak et al. 2021). Integrating such geospatial data into site selection
can help researchers make data-driven decisions on where to sample, ultimately
improving the robustness of research studies. Moreover, by plotting how sites fall along
a gradient of climate and land cover characteristics, researchers can ensure their
sampling frame and sampling sites exist across the full parameter range, thus avoiding a

“truncated gradient” (Albert et al. 2010).
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Here, we lay out a method using geospatial data to select and analyze potential
field sites. The goal of this tool is twofold: (1) provide an easy way to select sites based
on remote-sensing data and (2) evaluate already selected sites along a gradient of
interest. The procedure can be applied to selecting individual sampling sites, as well as
to finding the overall geographic and climatic area of the sites (the sampling frame). We
describe the tool in the context of land cover data, although the method can easily be

adapted to any dataset with a geographic resolution.

Methods

The two core steps in the procedure are generating a list of potential sites and
calculating the landcover characteristics around each of the sites. Once the
calculations are complete, a series of filtering steps and statistical comparisons can be
used to narrow down to the final sites. There are three main input parameters in the
workflow: (1) the region of interest (ROI), or the potential space where the study could
take place; (2) the type of geospatial data and resolution; and (3) the analysis distance
from the center of each site at which landcover data should be analyzed. The procedure
isimplemented in R (R Core Team 2023) and designed to be an iterative process, where

the cycle is repeated until optimal field sites are found.

The Site Tool App
The procedure was developed into an R package featuring an easy-to-use R Shiny
interface (Chang et al. 2024). A hosted version of the tool is available at

(https://ecosyshealth.shinyapps.io/SiteTool/). A local version can be obtained from

GitHub (https://github.com/BioDivHealth/sitetool).
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The app divides the procedure into three steps. Users first select a region of

interest by drawing on the map, entering bounding box coordinates, or uploading a

shapefile (Figure 1). Users then add raster data to the map, either by uploading or using

the default available data. Next, users specify parameters to generate a list of potential

sites. Finally, users specify their desired analysis distance in meters, and the land cover

characteristics are evaluated for each site. A series of plots are displayed with the

results of the analysis. Users can interact with these plots to select sites, or download

the site list to further analyze the resulting data in outside software.

Site Selection Tool

Step 1. Select a region of interest
and raster data source.

Please select a region of interest using:

O Box tool on map
Bounding box coordinates
Upload a shapefile

Bounding box coordinates:

-11.8902, 13.363828, -11.693938,
13.5691526

Please select a raster data source:

ESA WorldCover
Add Raster

Clear All Rasters

+

ESA WorldCover
m Bare/Sparse = Builtup  Cropland = Grassland = Mangroves
Moss/Lichen  Shrubland = Snow/Ice = Treecover = Water = Wetland

- = PR
Leaflet | Tiles © Esri — Esri, DeLorme, NAVTéQ, TomTom, Intermap, iPC, USGS, FAO, NPS, NRCAN,
GeoBase, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), and the GIS
User Community

Background map:

ESRI Topo v

Figure 1. The application interface and preview of the workflow. The workflow
involves three main steps, each in a separate box on the interface: (1) select an area and
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type of input data; (2) generate a list of potential sites; and (3) analyze the landcover
data surrounding each site. The figure shows a preview of step one, where a user has
multiple options to select their region of interest and type of landcover data, after which
the raster is displayed on the map.
Generating a list of potential sites
Depending on the study, a researcher may want field sites centered in a place of
human habitation (“village” sites) or be randomly sampled throughout the region of

»” <«

interest (“random” sites). To obtain village sites, all areas tagged “city”, “suburb”,
“village”, “town”, and “hamlet” are extracted from OpenStreetMap (OSM) using the R
package osmdata (Padgham et al., 2017; OpenStreetMap contributors, 2017). Users
have an option to return all of the villages within the region of interest, or user defined
subset. These values can be used to further refine the list of sites.

To obtain random sites, points are randomly generated throughout the region of
interest, up to a user specified number of points. To avoid sampling bodies of water,

points are selected only from land areas, based on shapefiles derived from Natural

Earth's 50m resolution land and lake boundaries (https://www.naturalearthdata.com/).

After generating a shapefile of the sample space, the function st_sample from the sf
package is used to select points (Pebesma 2018; Pebesma and Bivand 2023). As some
studies may want to avoid human dominated areas or be near them for practicality
purposes, users may refine the list of points by specifying proximity constraints to other

points, roads and cities. The data on roads is downloaded from OSM (highways tagged

as "motorway,

primary," "secondary," or "tertiary") along with the city data (any place

tagged "city," "borough," "suburb," "quarter," "village," "town," or "hamlet"). Points within
the specified distance are then filtered out. The sampling process repeats until a list of

sites meeting all constraints and equal to the specified number is generated.


https://www.naturalearthdata.com/
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At this stage, users may also supply a list of selected sites or select potential sites
on the map. These sites will be evaluated in comparison to the generated sites to assess
whether the selected sites show bias in land cover characteristics or appropriately

represent the variation that exists in the region of interest.

Calculating landcover characteristics around sites
Once a list of potential sites is determined, the landcover characteristics
surrounding each site are calculated. The analysis procedure remains the same
regardless of whether the sites are random locations or human settlements. Unless
otherwise specified, calculations take place using the named functions in the sfand
terra packages (Hijmans 2024) in R.
First, the scale for the analysis must be set by specifying the analysis distance.
This distance represents how far from each potential site the input raster should be
analyzed. The value depends on the question of interest and resolution of the input
data. For example, a study on insects requires investigation of small-scale processes (a
small analysis distance), while larger-roaming animals will need to consider a wider
landscape area (a larger analysis distance). Ideally, researchers will conduct a thorough
analysis to determine the appropriate scale for their study (see Faust et al. 2023;
Andreo et al. 2021; Brock et al. 2019). Additionally, researchers must consider the
resolution of their input raster, as the resolution of the input raster must be finer than
the analysis distance; a raster resolution of 1 km? with an analysis distance of 1
kilometer would distinguish little of the variation surrounding sites.
After an appropriate analysis distance is set, the input raster is cropped at that

distance from each potential site. The raster is cropped to be square surrounding each
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point, with the analysis distance, d, serving as the distance to each edge of the raster.
As aresult, the length of each edge of the cropped raster is 2d, and the total analysis
area for each site is equal to 4d2. Only entire cells are returned, and the raster is
cropped to contain the entire area, so sometimes the cropped area is slightly larger
depending on the raster resolution and analysis distance.

For categorical rasters (e.g., landcover and land-use data), calculations take
place among classes. For each class the metrics calculated are (1) class total area, (2)
class proportion, and (3) class mean patch area. To calculate class total area, first the
size of each raster cell (keeping the cell size the same as input data used) is calculated
using the cellSize function in terra. Using the cellSize function allows close
approximation of area whether rasters are in angular (longitude/latitude) or planar
(projected) coordinate reference systems. We use the function zonalto sum the area
cells for each class, providing us with a total area for each class. We divide this total
class area by the total area of the raster (4d?) to find class proportion. To calculate class
mean patch area, the raster is split into separate layers for each class. We then detect
all the patches in the layer, using the patches function and considering the 8
surrounding cells to be adjacent (Queen’s case). We find the area of each patch by
summing the cells from the cell area raster, then calculate the mean of the summed
patch areas to get mean patch area.

For continuous rasters (e.g., climate measures, NDVI, and elevation data), the
cropped raster is considered as one layer and summary measures are calculated.
Surrounding each site, the mean, standard deviation, and range of the values in the
raster are calculated, providing an estimate on the variability of the measure. If the

measure has high temporal variability, such as with climate measures, the analysis is
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best performed at multiple time points, or at critical points relevant to the research
study. The tool allows upload of multiple rasters so the values from a series of rasters

can be compared and visualized at one time.

Statistical comparison with selected sites

Following site generation and raster analysis, a series of plots are generated
showing the distribution of land cover values across all sites analyzed. If selected sites
are provided, a two-sided Mann-Whitney U test is performed to assess whether the
distribution of the generated sites differs significantly from the distribution of selected
sites. If the test is significant (p-value < 0.05), it suggests that the input sites may not
adequately represent the full gradient range of the tested parameter. However, the
statistical results should be interpreted with caution if there are land cover classes or
areas irrelevant to the focus of the study. At this stage, sites from the generated list may

be added to the selected list to narrow down to a short list of potential sites.

Example Use Case: Selecting across an agricultural gradient in Nigeria

The site selection tool was trialed as part of a multi-year field study on Lassa
fever in Nigeria, aimed at integrating local-scale risk factors into broad-scale zoonotic
spillover models. The study sought three sites across a gradient of postulated drivers of
Lassa fever. Spillover is hypothesized to be driven by contact with infected rodents, with
a key risk factor of agricultural land use (Redding et al., 2021). Sites had to be within a 3-

hour drive of the project’s base city and medium-sized villages (100-500 households).

Step 1: Identifying the region of interest and input raster data
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First, a bounding box area was selected to encompass the project base city and
areas within approximately a three-hour drive, with coordinates spanning from the
southwest corner at 5.8° N, 8° E to the northeast corner 9.1° N, 7° E. These coordinates
were entered in the tool and the raster data selected as the ESA WorldCover dataset
(Figure 2A). This raster data source was selected as the main comparison of interest

was land cover characteristics of potential sites.

Step 2: Generate a list of possible points and analyze land cover

Next, using the drop-down menu, “village” sites were selected, as the study
intended to study disease risk around human settlements. The tool used
OpenStreetMap to identify any settlements within the area and the 272 communities

were display as blue points on the map (Figure 2B).

Step 3: Analyze and select sites

An analysis distance of 2 kilometers was selected based on the home range of
the target rodent species and to fully encompass each village area. This was entered
into the tool, and a series of plots were displayed showing the proportion of each land
cover type contained within the analysis distance for each site (Figure 2C). Hovering
over a point shows the value of each raster category for that site by turning the point
yellow. Using this information, three sites that varied across cropland and grassland
proportion were selected and added to the selected points list by clicking on the points.
Sites with greater than 60% forest cover or 20% built-up were excluded, as the study
intended to focus on rural agricultural areas. Visualizing the land cover for each site

within the analysis area showed the final sites selected varied across the important



236 land cover factors (Figure 2D). Additionally, the statistical comparison from the tool
237 showed that the selected sites do not show bias relative to the other possible

238 settlements in the area and appropriately reflect the land cover variation in the area.

Cropland

Generated Sites e o. e @ : * °
Step 1. Select a region of interest Selected Sites |
and raster data source. k
0.0 02 0.4 Site: Dyegh
Please select a region of interest using: Grassland .
Box tool on map Value: 0.47
O Bounding box coordinates © oo 8% ° ° ° e o o
Upload a shapefile Generated Sites o o
Enter coordinates separated by commas T T 1
(xmin, ymin, xmax, ymax): Selected Sites 1 I
I
91,7,8,58
0.0 0.2 0.4

Please select a raster data source:

Shrubland

ESA WorldCover A4

nowllce = Treecover = Water  Wetland
1, DoLorme, NAVTEQ, TorTom, Intermap, PG, USGS, FAO, NPS, NRCAN, Generated Sites

Add Raster L, Ordinance Survey, Esr Japan, METI, Esrl Chins (Hong Kong), 87d the GiS User
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Treecover
s 7 9 + o, [ 93 o o
tep 2. Generate a list of potential _| l® ° A Generated Sites % oo Py ° o e
sites.
ot 5 T
@ Selected Sites 1 [ |
Please select a sampling procedure: .'; '.‘ ) o5
L]
village - oo ‘ 025 0.50 0.75 1.00

D

ESA WorldCover 10m

Vilage

239 Figure 2. Example Use Case: Selecting field sites across a gradient in agricultural
240 land-use. This example demonstrates the selection of three village sites that vary in
241 land cover using the site selection tool. The bounding box area, visualized in the map
242  fromthe toolin (A), resulted in 272 potential village sites (blue points in B). In Step 3
243  (visualized in C), the land cover characteristics of these sites were analyzed and

244  compared. By hovering over a point, a user can see the characteristics of that site

245 across the compared factors and click on the point to add to selected sites if it has
246  suitable characteristics. Three points were selected that varied across the major land
247  covertypes. The bar plotin (D) compares the proportion of all major landcover types in
248 the final selected sites. The individual rasters display the landcover raster surrounding
249 each site, where the raster was cropped at the distance (2 km) land cover was analyzed
250 for each site.
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As the accuracy and resolution of remote-sensing products increases, thereis a
need for user-friendly tools incorporating geospatial data into the site selection
process. We have developed such a tool that requires little manipulation of
complicated raster files and geospatial formats, and helps researchers determine field
study locations. We provide direct access to the tool via a web version, as well as the
underlying code for easy adaptation for specialized use cases.

Drawbacks to this approach are potential errors in the input raster and
OpenStreetMap data. OpenStreetMap relies on crowd-sourced data, and as a result,
can have inaccurate place names or locations. This is particularly true in remote and
rural areas, where data is not as regularly verified, so users should proceed with caution
when using this data. However, the quality is consistently improving through user
modification, and we encourage researchers to improve this resource if they encounter
mistakes. Similarly, information inferred from satellites, whether for climate or land
cover classification, has varying levels of accuracy for different times and locations.
Researchers may be limited by the resolution of available geospatial products, which
may not be detailed enough to compare possible sites, depending on the research
question and target population of interest. The best use case is for researchers to use
datasets they have verified as being relatively accurate in their region of study, or to use
this tool for ground-truthing and testing of geospatial data accuracy. This process of site
selection will be most effective when coupled with quantitative or qualitative
assessments on the ground to further refine study sites.

The large number of studies that have used undisclosed site sampling methods
serves as a call to action to improve and standardize site selection procedures and

reporting. The advancement of code and data sharing methods, along with tools such
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as this one, should make it easier for researchers to report their methods, and improve

research outcomes.
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