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 14 

Abstract  15 

Field studies are fundamental to ecological research, yet many studies rely on 16 

unspecified or convenience-based methods for site selection, potentially introducing 17 

bias that can compromise research results. Remote-sensing data provides a 18 

quantitative way to evaluate potential sites without expensive pilot visits, however, 19 

interacting with spatial data can be computationally complex. We present an R Shiny 20 

application that integrates geospatial data into the site selection process, helping 21 

researchers generate a list of potential field sites in a region of interest and ensuring 22 

sites fall along a gradient of variation relevant to their research questions. Through 23 

integration of remote-sensing data into an easy-to-use interface, this tool improves the 24 

ability of researchers to make quantitative site selection decisions, ultimately leading to 25 

more robust studies and research results.  26 

 27 

Introduction 28 

Field studies are essential to research across disciplines, as they allow 29 

observation and measure of natural systems in ways irreplicable in laboratory studies. 30 



Researchers in ecology and evolution have a long history of optimizing sampling 31 

methods for statistical inference, resulting in extensive guidance on carefully selecting 32 

sampling intervals and structures (Andrew and Mapstone 1987; Anderson 2001; 33 

Stevens and Olsen 2004; Green and Plotkin 2007; Legendre and Fortin 1989; Albert et 34 

al. 2010). Despite this guidance, systematic reviews of field studies show many studies 35 

use unspecified, haphazard, or convenience-based sampling methods (Smith, 36 

Anderson, and Pawley 2017; Lewis 2004). Poorly specified sampling designs can bias 37 

input data and resulting parameter estimates and model outcomes, possibly leading to 38 

unrepresentative or even false conclusions (Elphick 2008; Albert et al. 2010; Hurlbert 39 

1984; Conn, Thorson, and Johnson 2017). In studies on conservation and public health, 40 

false conclusions can have costly impacts, such as incorrect species abundance 41 

estimates altering protection prioritization (Reddy and Dávalos 2003) or missed 42 

detection of a disease vector thereby underestimating risk (Abad-Franch et al. 2014). 43 

Sampling design involves three main components: what to sample (e.g. species, 44 

water, air, or soil), how to sample (the measurement procedure), and where to sample. 45 

A review of urban ecology studies demonstrated that while many studies reported on 46 

what they sampled and how, few studies provided details on their site selection 47 

methods (Dyson et al. 2023). A variety of R tools can help researchers with selecting 48 

sampling sites, such as spsurvey (Dumelle et al. 2023), BalancedSampling (Grafström, 49 

Prentius, and Lisic 2024), and Spbsampling (Pantalone, Benedetti, and Piersimoni 50 

2022), but there is a need for an easy-to-use interface integrating geospatial data into 51 

the selection process to standardize methods in field site selection.  52 

Additionally, many existing tools focus on sampling design for an already 53 

selected sampling frame, which is the overall pool from which samples are selected. 54 



Ideally, a sampling frame is representative of the target population to ensure study 55 

results can be generalized. For instance, consider a study that intends to set out rodent 56 

traps to assess abundance of a pathogen in the rodent population. The rodents serve as 57 

the sampling units, or the “what”; the “how” is through rodent trapping and molecular 58 

identification; the “where” is the location of the traps; and the “sampling frame” is the 59 

entire area where researchers plan to put traps. If the sampling frame is biased to only 60 

include forested areas, despite higher abundance of the rodent species in other land 61 

cover types, the rodent and pathogen abundance measures may be biased, as the 62 

sampling frame is not representative of the population. In this situation, it would be 63 

useful to have a tool to evaluate bias in land cover types in the sampling frame, so that 64 

the researchers could adjust their sampling frame to better represent the target 65 

population.  66 

The availability of remote-sensing data has unlocked new ways of comparing 67 

possible field sites. Publicly available high-resolution datasets exist on land-use and 68 

land cover, such as WorldCover (Zanaga et al. 2022), Copernicus Land Cover (Buchhorn 69 

et al. 2020), and Dynamic World (Brown et al. 2022), as well as for climate data, such as 70 

MODIS land surface temperature (Wan, Hook, and Hulley 2021) and CHIRPS 71 

precipitation (Hantak et al. 2021). Integrating such geospatial data into site selection 72 

can help researchers make data-driven decisions on where to sample, ultimately 73 

improving the robustness of research studies. Moreover, by plotting how sites fall along 74 

a gradient of climate and land cover characteristics, researchers can ensure their 75 

sampling frame and sampling sites exist across the full parameter range, thus avoiding a 76 

“truncated gradient” (Albert et al. 2010). 77 



Here, we lay out a method using geospatial data to select and analyze potential 78 

field sites. The goal of this tool is twofold: (1) provide an easy way to select sites based 79 

on remote-sensing data and (2) evaluate already selected sites along a gradient of 80 

interest. The procedure can be applied to selecting individual sampling sites, as well as 81 

to finding the overall geographic and climatic area of the sites (the sampling frame). We 82 

describe the tool in the context of land cover data, although the method can easily be 83 

adapted to any dataset with a geographic resolution.  84 

 85 

Methods 86 

The two core steps in the procedure are generating a list of potential sites and 87 

calculating the landcover characteristics around each of the sites. Once the 88 

calculations are complete, a series of filtering steps and statistical comparisons can be 89 

used to narrow down to the final sites. There are three main input parameters in the 90 

workflow: (1) the region of interest (ROI), or the potential space where the study could 91 

take place; (2) the type of geospatial data and resolution; and (3) the analysis distance 92 

from the center of each site at which landcover data should be analyzed. The procedure 93 

is implemented in R (R Core Team 2023) and designed to be an iterative process, where 94 

the cycle is repeated until optimal field sites are found.  95 

 96 

The Site Tool App  97 

The procedure was developed into an R package featuring an easy-to-use R Shiny 98 

interface (Chang et al. 2024). A hosted version of the tool is available at 99 

(https://ecosyshealth.shinyapps.io/SiteTool/). A local version can be obtained from 100 

GitHub (https://github.com/BioDivHealth/sitetool). 101 

https://ecosyshealth.shinyapps.io/SiteTool/


The app divides the procedure into three steps. Users first select a region of 102 

interest by drawing on the map, entering bounding box coordinates, or uploading a 103 

shapefile (Figure 1).  Users then add raster data to the map, either by uploading or using 104 

the default available data. Next, users specify parameters to generate a list of potential 105 

sites. Finally, users specify their desired analysis distance in meters, and the land cover 106 

characteristics are evaluated for each site. A series of plots are displayed with the 107 

results of the analysis. Users can interact with these plots to select sites, or download 108 

the site list to further analyze the resulting data in outside software. 109 

 110 

 111 

Figure 1. The application interface and preview of the workflow. The workflow 112 
involves three main steps, each in a separate box on the interface: (1) select an area and 113 



type of input data; (2) generate a list of potential sites; and (3) analyze the landcover 114 
data surrounding each site. The figure shows a preview of step one, where a user has 115 
multiple options to select their region of interest and type of landcover data, after which 116 
the raster is displayed on the map.  117 

 118 

 Generating a list of potential sites 119 

Depending on the study, a researcher may want field sites centered in a place of 120 

human habitation (“village” sites) or be randomly sampled throughout the region of 121 

interest (“random” sites). To obtain village sites, all areas tagged “city”, “suburb”, 122 

“village”, “town”, and “hamlet” are extracted from OpenStreetMap (OSM) using the R 123 

package osmdata (Padgham et al., 2017; OpenStreetMap contributors, 2017).  Users 124 

have an option to return all of the villages within the region of interest, or user defined 125 

subset. These values can be used to further refine the list of sites.   126 

To obtain random sites, points are randomly generated throughout the region of 127 

interest, up to a user specified number of points. To avoid sampling bodies of water, 128 

points are selected only from land areas, based on shapefiles derived from Natural 129 

Earth's 50m resolution land and lake boundaries (https://www.naturalearthdata.com/). 130 

After generating a shapefile of the sample space, the function st_sample from the sf 131 

package is used to select points (Pebesma 2018; Pebesma and Bivand 2023). As some 132 

studies may want to avoid human dominated areas or be near them for practicality 133 

purposes, users may refine the list of points by specifying proximity constraints to other 134 

points, roads and cities. The data on roads is downloaded from OSM (highways tagged 135 

as "motorway," "primary," "secondary," or "tertiary") along with the city data (any place 136 

tagged "city," "borough," "suburb," "quarter," "village," "town," or "hamlet").  Points within 137 

the specified distance are then filtered out. The sampling process repeats until a list of 138 

sites meeting all constraints and equal to the specified number is generated. 139 

https://www.naturalearthdata.com/


At this stage, users may also supply a list of selected sites or select potential sites 140 

on the map. These sites will be evaluated in comparison to the generated sites to assess 141 

whether the selected sites show bias in land cover characteristics or appropriately 142 

represent the variation that exists in the region of interest. 143 

 144 

 Calculating landcover characteristics around sites 145 

Once a list of potential sites is determined, the landcover characteristics 146 

surrounding each site are calculated. The analysis procedure remains the same 147 

regardless of whether the sites are random locations or human settlements. Unless 148 

otherwise specified, calculations take place using the named functions in the sf and 149 

terra packages (Hijmans 2024) in R.  150 

First, the scale for the analysis must be set by specifying the analysis distance. 151 

This distance represents how far from each potential site the input raster should be 152 

analyzed. The value depends on the question of interest and resolution of the input 153 

data. For example, a study on insects requires investigation of small-scale processes (a 154 

small analysis distance), while larger-roaming animals will need to consider a wider 155 

landscape area (a larger analysis distance). Ideally, researchers will conduct a thorough 156 

analysis to determine the appropriate scale for their study (see Faust et al. 2023; 157 

Andreo et al. 2021; Brock et al. 2019). Additionally, researchers must consider the 158 

resolution of their input raster, as the resolution of the input raster must be finer than 159 

the analysis distance; a raster resolution of 1 km2 with an analysis distance of 1 160 

kilometer would distinguish little of the variation surrounding sites.  161 

After an appropriate analysis distance is set, the input raster is cropped at that 162 

distance from each potential site. The raster is cropped to be square surrounding each 163 



point, with the analysis distance, d, serving as the distance to each edge of the raster. 164 

As a result, the length of each edge of the cropped raster is 2d, and the total analysis 165 

area for each site is equal to 4d2. Only entire cells are returned, and the raster is 166 

cropped to contain the entire area, so sometimes the cropped area is slightly larger 167 

depending on the raster resolution and analysis distance.  168 

For categorical rasters (e.g., landcover and land-use data), calculations take 169 

place among classes. For each class the metrics calculated are (1) class total area, (2) 170 

class proportion, and (3) class mean patch area. To calculate class total area, first the 171 

size of each raster cell (keeping the cell size the same as input data used) is calculated 172 

using the cellSize function in terra. Using the cellSize function allows close 173 

approximation of area whether rasters are in angular (longitude/latitude) or planar 174 

(projected) coordinate reference systems. We use the function zonal to sum the area 175 

cells for each class, providing us with a total area for each class. We divide this total 176 

class area by the total area of the raster (4d2) to find class proportion. To calculate class 177 

mean patch area, the raster is split into separate layers for each class. We then detect 178 

all the patches in the layer, using the patches function and considering the 8 179 

surrounding cells to be adjacent (Queen’s case). We find the area of each patch by 180 

summing the cells from the cell area raster, then calculate the mean of the summed 181 

patch areas to get mean patch area. 182 

For continuous rasters (e.g., climate measures, NDVI, and elevation data), the 183 

cropped raster is considered as one layer and summary measures are calculated. 184 

Surrounding each site, the mean, standard deviation, and range of the values in the 185 

raster are calculated, providing an estimate on the variability of the measure. If the 186 

measure has high temporal variability, such as with climate measures, the analysis is 187 



best performed at multiple time points, or at critical points relevant to the research 188 

study. The tool allows upload of multiple rasters so the values from a series of rasters 189 

can be compared and visualized at one time.  190 

 191 

Statistical comparison with selected sites  192 

Following site generation and raster analysis, a series of plots are generated 193 

showing the distribution of land cover values across all sites analyzed. If selected sites 194 

are provided, a two-sided Mann-Whitney U test is performed to assess whether the 195 

distribution of the generated sites diners significantly from the distribution of selected 196 

sites. If the test is significant (p-value < 0.05), it suggests that the input sites may not 197 

adequately represent the full gradient range of the tested parameter. However, the 198 

statistical results should be interpreted with caution if there are land cover classes or 199 

areas irrelevant to the focus of the study. At this stage, sites from the generated list may 200 

be added to the selected list to narrow down to a short list of potential sites.  201 

 202 

Example Use Case: Selecting across an agricultural gradient in Nigeria 203 

The site selection tool was trialed as part of a multi-year field study on Lassa 204 

fever in Nigeria, aimed at integrating local-scale risk factors into broad-scale zoonotic 205 

spillover models. The study sought three sites across a gradient of postulated drivers of 206 

Lassa fever. Spillover is hypothesized to be driven by contact with infected rodents, with 207 

a key risk factor of agricultural land use (Redding et al., 2021). Sites had to be within a 3-208 

hour drive of the project’s base city and medium-sized villages (100–500 households).  209 

 210 

Step 1: Identifying the region of interest and input raster data 211 



First, a bounding box area was selected to encompass the project base city and 212 

areas within approximately a three-hour drive, with coordinates spanning from the 213 

southwest corner at 5.8° N, 8° E to the northeast corner 9.1° N, 7° E. These coordinates 214 

were entered in the tool and the raster data selected as the ESA WorldCover dataset 215 

(Figure 2A).  This raster data source was selected as the main comparison of interest 216 

was land cover characteristics of potential sites. 217 

 218 

Step 2: Generate a list of possible points and analyze land cover 219 

Next, using the drop-down menu, “village” sites were selected, as the study 220 

intended to study disease risk around human settlements. The tool used 221 

OpenStreetMap to identify any settlements within the area and the 272 communities 222 

were display as blue points on the map (Figure 2B).  223 

 224 

Step 3: Analyze and select sites 225 

An analysis distance of 2 kilometers was selected based on the home range of 226 

the target rodent species and to fully encompass each village area. This was entered 227 

into the tool, and a series of plots were displayed showing the proportion of each land 228 

cover type contained within the analysis distance for each site (Figure 2C). Hovering 229 

over a point shows the value of each raster category for that site by turning the point 230 

yellow. Using this information, three sites that varied across cropland and grassland 231 

proportion were selected and added to the selected points list by clicking on the points. 232 

Sites with greater than 60% forest cover or 20% built-up were excluded, as the study 233 

intended to focus on rural agricultural areas. Visualizing the land cover for each site 234 

within the analysis area showed the final sites selected varied across the important 235 



land cover factors (Figure 2D). Additionally, the statistical comparison from the tool 236 

showed that the selected sites do not show bias relative to the other possible 237 

settlements in the area and appropriately reflect the land cover variation in the area.  238 

Figure 2. Example Use Case: Selecting field sites across a gradient in agricultural 239 
land-use. This example demonstrates the selection of three village sites that vary in 240 
land cover using the site selection tool. The bounding box area, visualized in the map 241 
from the tool in (A), resulted in 272 potential village sites (blue points in B). In Step 3 242 
(visualized in C), the land cover characteristics of these sites were analyzed and 243 
compared. By hovering over a point, a user can see the characteristics of that site 244 
across the compared factors and click on the point to add to selected sites if it has 245 
suitable characteristics. Three points were selected that varied across the major land 246 
cover types. The bar plot in (D) compares the proportion of all major landcover types in 247 
the final selected sites. The individual rasters display the landcover raster surrounding 248 
each site, where the raster was cropped at the distance (2 km) land cover was analyzed 249 
for each site.  250 
 251 

Discussion and Outlook 252 



As the accuracy and resolution of remote-sensing products increases, there is a 253 

need for user-friendly tools incorporating geospatial data into the site selection 254 

process. We have developed such a tool that requires little manipulation of 255 

complicated raster files and geospatial formats, and helps researchers determine field 256 

study locations. We provide direct access to the tool via a web version, as well as the 257 

underlying code for easy adaptation for specialized use cases.  258 

Drawbacks to this approach are potential errors in the input raster and 259 

OpenStreetMap data. OpenStreetMap relies on crowd-sourced data, and as a result, 260 

can have inaccurate place names or locations. This is particularly true in remote and 261 

rural areas, where data is not as regularly verified, so users should proceed with caution 262 

when using this data. However, the quality is consistently improving through user 263 

modification, and we encourage researchers to improve this resource if they encounter 264 

mistakes. Similarly, information inferred from satellites, whether for climate or land 265 

cover classification, has varying levels of accuracy for dinerent times and locations. 266 

Researchers may be limited by the resolution of available geospatial products, which 267 

may not be detailed enough to compare possible sites, depending on the research 268 

question and target population of interest. The best use case is for researchers to use 269 

datasets they have verified as being relatively accurate in their region of study, or to use 270 

this tool for ground-truthing and testing of geospatial data accuracy. This process of site 271 

selection will be most enective when coupled with quantitative or qualitative 272 

assessments on the ground to further refine study sites.  273 

The large number of studies that have used undisclosed site sampling methods 274 

serves as a call to action to improve and standardize site selection procedures and 275 

reporting. The advancement of code and data sharing methods, along with tools such 276 



as this one, should make it easier for researchers to report their methods, and improve 277 

research outcomes.  278 

 279 
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