Unravelling drivers of forest biodiversity: Contrasting effects of mean
environmental conditions, environmental heterogeneity and landscape con-
text

Abstract
1. Understanding how biodiversity varies under different environmental con-
ditions is one of the central aims of ecology. Mean environmental conditions
and heterogeneity have an effect on biodiversity. Increased heterogeneity is
generally associated with increased diversity, but mean conditions tend to
have a stronger influence. Conditions on site are embedded into a landscape
context, which adds another layer of complexity to be considered. Due to the
rarity of multi-taxon data it remains unclear if resulting patterns are similar
across taxa. Most European forests are managed, and management strongly
influences both mean conditions and heterogeneity. How different species
groups respond to variation in these forest characteristics is therefore crucial
for testing ecological theories and designing effective conservation measures
for management.

2. We assessed the effects of environmental conditions on biodiversity of
seven taxonomic groups in a temperate mountain forest area in Central Eu-
rope. We analysed the responses of biodiversity (species richness, Shannon
diversity, and (-diversity) to three groups of environmental variables: local
mean conditions, local heterogeneity, and landscape. Our objectives were to
determine which group of variables is most important in explaining biodiver-
sity variation, and whether certain environmental conditions have consistent
effects on the diversity of multiple taxonomic groups.

3. We found that the effects of environmental conditions varied substan-
tially between taxa and aspects of biodiversity. The proportion of conifers
had the largest number of significant effects overall, but the direction var-
ied between taxa. None of the three groups of variables was more relevant
in explaining the variation in biodiversity. While an increase in local het-
erogeneity and higher values in the landscape context were associated with
increased diversity, an increase in mean conditions was mainly negatively
associated with diversity.

4. Synthesis and applications. Our results show that no single factor
or group of factors affects biodiversity across different species groups in the
same way. For management, this means that stand-level interventions, such
as retention of old-growth elements, are likely not sufficient to promote the
many aspects of biodiversity. Instead, different types of management are
likely needed for objective-specific biodiversity conservation at the landscape
scale.
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Abstract

1. Understanding how biodiversity varies under different environmental conditions is one of
the central aims of ecology. Mean environmental conditions and heterogeneity have an effect
on biodiversity. Increased heterogeneity is generally associated with increased diversity, but
mean conditions tend to have a stronger influence. Conditions on site are embedded into a
landscape context, which adds another layer of complexity to be considered. Due to the rarity
of multi-taxon data it remains unclear if resulting patterns are similar across taxa. Most Eu-
ropean forests are managed, and management strongly influences both mean conditions and
heterogeneity. How different species groups respond to variation in these forest character-
istics is therefore crucial for testing ecological theories and designing effective conservation
measures for management.

2. We assessed the effects of environmental conditions on biodiversity of seven taxonomic
groups in a temperate mountain forest area in Central Europe. We analysed the responses of
biodiversity (species richness, Shannon diversity, and 3-diversity) to three groups of environ-
mental variables: local mean conditions, local heterogeneity, and landscape. Our objectives
were to determine which group of variables is most important in explaining biodiversity vari-
ation, and whether certain environmental conditions have consistent effects on the diversity
of multiple taxonomic groups.

3. We found that the effects of environmental conditions varied substantially between taxa
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and aspects of biodiversity. The proportion of conifers had the largest number of significant ef-
fects overall, but the direction varied between taxa. None of the three groups of variables was
more relevant in explaining the variation in biodiversity. While an increase in local hetero-
geneity and higher values in the landscape context were associated with increased diversity,
an increase in mean conditions was mainly negatively associated with diversity.

4. Synthesis and applications. Our results show that no single factor or group of factors
affects biodiversity across different species groups in the same way. For management, this
means that stand-level interventions, such as retention of old-growth elements, are likely not
sufficient to promote the many aspects of biodiversity. Instead, different types of management

are likely needed for objective-specific biodiversity conservation at the landscape scale.
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Introduction

Environmental conditions are the architects of biodiversity. Among these conditions, the avail-
ability of energy and limiting resources plays a pivotal role fostering greater biodiversity
(Coelho et al., 2025). More energy allows for larger population sizes, which reduces extinc-
tion risk and expands the community’s total niche space, ultimately enriching the regional
species pool (e.g. Hawkins et al., 2003; Field et al., 2009). This relationship aligns with the
“more-individuals hypothesis,” which posits that higher resource availability sustains greater
numbers of individuals and, consequently, more species reducing the probability of local ex-
tinctions (Srivastava and Lawton, 1998; Storch et al., 2018).

One of the most studied mechanisms of biodiversity variation under environmental condi-
tions is the heterogeneity-diversity relationship (e.g. Stein et al., 2014, and references therein).
According to thishypothesis, spatially heterogeneous environments can accommodate more
species because they provide a greater variety of niches and resources (Bazzaz, 1975). How-
ever, some studies also found none or even negative effects of heterogeneity on species rich-
ness (reviewed by Tews et al., 2004; Stein et al., 2014). An explanation for such divergent pat-
terns is a trade-off between the amount of resources or habitat types and the available area of
each habitat or resource (area-heterogeneity trade-off: Kadmon and Allouche, 2007; Allouche
et al., 2012). This trade-off produces a hump-shaped relationship between heterogeneity and
diversity, with a decrease of biodiversity at high heterogeneity levels due to a greater risk of
stochastic extinctions in increasing smaller patches with suitable conditions. Although the re-
lationship between environmental heterogeneity and biodiversity can be more complex than
initially thought (Heidrich et al., 2020), the notion that heterogeneity is generally beneficial
for biodiversity is still widespread in the ecological and nature conservation literature (e.g.
Benton et al., 2003; Bollmann et al., 2009; Brunet et al., 2010; Kati et al., 2010; Uhl et al., 2024;
Ampoorter et al., 2020).

However, biodiversity also depend on historical and biotic conditions. Common or histor-
ically predominant environmental conditions tend to harbour larger, yet often less diverse,

species pools, as these conditions favour a narrower range of ecological strategies (e.g. Taylor
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et al.,, 1990; Partel et al., 1996; Ewald, 2003; Zobel, 2016). Finally, the physical landscape itself
acts as both a canvas and a constraint: it defines the spatial availability of habitats and their
fragmentation, particularly influencing species with limited dispersal ability and strongly de-
pendent on habitat connectivity (Fuentes-Montemayor et al., 2017). Together, these factors in-
tricately weave the tapestry of biodiversity, highlighting the interplay between environmental
mean conditions, heterogeneity, historical processes, and spatial structure.

Although the separate effects of environmental heterogeneity, mean environmental site
conditions, and landscape context on biodiversity have been the subject of numerous studies,
few have evaluated the relative importance of these factors for variation in species diversity.
Evidence from plant communities suggests that the quantity of resources influence the rich-
ness of the species under a wider range of conditions than resource heterogeneity (Stevens
and Carson, 2002; Bartels and Chen, 2010; Simova et al., 2013). However, direct comparisons
between these drivers across different taxa are still scarce. Such a comparison would improve
our understanding of forest biodiversity drivers and provide valuable information to preserve
and promote biodiversity in managed ecosystems, where environment heterogeneity can be
influenced.

In temperate European forests, both mean environmental conditions and heterogeneity are
strongly influenced by management (Menge et al., 2023). While traditionally the primary pur-
pose of forest management has been timber production, biodiversity conservation has become
an important additional goal in managed forests, as unmanaged forests dedicated for conser-
vation are limited in size and connectivity (Bollmann and Braunisch, 2013). Traditional forest
management for timber production frequently reduces structural heterogeneity at the stand
level, for example, variation in tree age and height (Brunet et al., 2010; Bauhus et al., 2017),
and decreases the availability of resources and habitats such as deadwood and tree cavities
(e.g. Miiller et al., 2007).

In order to compensate for these effects, retention forestry was recently introduced to Cen-
tral Europe to promote the preservation of physical old-growth elements such as deadwood
and large old trees. These could act as resources and refuges for species dependent on them.

This old-growth elements also serve as stepping stones in the landscape contributing to con-
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nectivity (Gustafsson et al., 2012; Lindenmayer et al., 2012; Fedrowitz et al., 2014). Whether
biodiversity in general benefits from retention forestry is still an area of active investigation
(Gustafsson et al., 2020, and references therein), however this knowledge is crucial for practi-
tioners and conservationists alike.

Previous studies on the effects of forest characteristics on biodiversity compared general
management types (such as clear cut and selective cutting) (e.g. Paillet et al., 2010; Chaudhary
et al., 2016; Schall et al., 2018) or focused on relationships between particular forest charac-
teristics (e.g., tree species diversity, deadwood) and diversity of single taxonomic groups (e.g.
Gil-Tena et al., 2007; Vockenhuber et al., 2011; Bouget et al., 2013). In comparison, the response
of multiple taxa to variation in forest structure still remains understudied, mostly because it
requires a large, concerted effort. Studies such as Penone et al. (2019); Ampoorter et al. (2020);
Sabatini et al. (2019); Schall et al. (2020); Heidrich et al. (2020) and Heidrich et al. (2023) showed
mixed responses for different species groups, but also clear and consistent effects of mean lo-
cal conditions related, in particular, to the type of dominant tree (conifers vs. oak) and canopy
cover. However, it is unclear whether their results can be transferred to other species groups
or forest types, such as conifer-dominated mountain forests.

In this study, we investigate the influence of mean environmental conditions and envi-
ronmental heterogeneity on the species diversity of seven taxonomic groups in a temperate
mountain forest area in central Europe. Forest stands included in this study are mainly conifer-
dominated or mixed conifer-broadleaved forests and managed by selective logging under con-
tinuous cover forestry with different degrees of retention of deadwood and large habitat trees.
As predictors of diversity, we included structural and compositional variables largely deter-
mined by forest management and physical site conditions, which in previous studies explained
a substantial part of the variation in biodiversity, especially in mountain ecosystems (Korner,
2007). In addition to local-scale heterogeneity and mean conditions, we also included vari-
ables describing the landscape in our analyses, as many organisms move and disperse over
areas larger than the size of our study plots. We studied three aspects of biodiversity: I) species
richness, as it is the most widely used diversity measure, higher levels of species richness are

generally associated with greater ecosystem functioning, stability, and productivity, II) Shan-
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non diversity, to account for species’ relative abundances, using a good indicator of abundance
and evenness, and IIl) 3 diversity, to account for the identity of species co-occurring at each
site and species turnover between sites. Our main aims were to elucidate whether one of the
three groups of environmental variables has a dominant effect in explaining variation in bio-
diversity, and to test if any of the environmental conditions has a homogeneous effect (same
direction) across several taxonomic groups and aspects of biodiversity.

Concise information regarding these aspects will give a concise evaluation of the range and
way in which they shape biodiversity and foster ecological theory evaluation as conservation

practice alike.

Methods

Study area

The study area is located in the Black Forest (Schwarzwald) in Baden-Wiirttemberg, southern
Germany. Small parts of the study area to the east are outside of the bioregion of the Black
Forest (Naturraum Baar) but are subsumed for simplicity. The area is dominated by granite
and gneiss to the west and south, while to the east and north sandstone prevails. Limestone
areas can be found on the eastern edge. The climate is temperate, but has a relatively large
temperature gradient, ranging from 4°C average annual temperature in the mountains (<1500
m. a.s.l.) to 10.4°C in the lowlands (> 120 m.a.s.1.) (Gauer and Aldinger, 2005). About 75% (3650
km?) of the area is forested, with forest mostly consisting of Norway spruce (Picea abies) (42.8%)
followed by silver fir (Abies alba) (18.5%) and beech (Fagus sylvatica) (15.3%). While Norway
spruce is seen as naturally occurring in the region in higher elevations, it has been planted
preferably in the past for economic reasons, leading to a high share of canopy cover in the

landscape (Spiecker et al., 2000).

11
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Plot selection

Our study is based on 135 one hectare forest plots located within state-owned and managed
forests. The plots are above 400 and below 1500 metres m.a.s.l. and contain no bodies of water
except for puddles or little brooks. None of the plots exceed an average slope of more than
35°, but plots are rarely flat. Plots were selected based on two gradients, initially estimated
using remote sensing and later confirmed and adjusted on the ground. Those gradients were
1) forested area in proximity (as an indicator of connectivity) and 2) the volume of deadwood

(as a proxy for the effect of different retention levels). (Storch et al., 2020)

Biodiversity data

We included data from seven groups defined by taxonomy and sampling methods in the anal-
yses: vascular plants, wood-inhabiting fungi (hereafter: fungi), birds, bats, mammals, beetles
(insect order Coleoptera) and cavity-nesting bees and wasps (order Hymenoptera). Beetles
were identified at the family level, and bats were assigned to acoustic groups (some of which
are single species) according to their calls. All other groups were identified at the species level.
Larger, terrestrial mammals (hereafter: mammals) were recorded using camera traps. Small
mammals (rodents and insectivores) were excluded because the camera setup was not optimal
for their detection. Data collected during repeated visits to a study plot or at more than one
location within a plot were pooled for the analyses to obtain a single abundance/activity value
per species and plot. Plants, fungi, bees and wasps were sampled with equal effort in all study
plots. For the remaining four groups, we quantified the sampling effort per plot according to
the sampling method (e.g. number of visits for birds). We included the sampling effort as a
covariate in the statistical models for all taxa. A detailed description of the sampling methods

can be found in the supplementary material.

Environmental variables

We classified our predictors of species diversity into three groups: local mean conditions (LM),

local heterogeneity (LH), and landscape context (LC) (Table 1). Most variables could be placed

12
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in a single category, but some can be interpreted as both local mean or local heterogeneity (e.g.
Canopy gap share). Since we were interested in general patterns across different taxa, we chose
variables potentially important for biodiversity and species composition of several taxonomic
groups and excluded variables likely to affect one or two specific taxa disproportionately (e.g.
soil pH). This means that our study does not raise the claim to capture the most important
driver for a specific taxa, but focuses on the relative effect of drivers affecting many or all taxa
in a dominant way.

For local mean and heterogeneity conditions, we included variables that describe both abi-
otic conditions and forest structure at each site. Where several measures were available to rep-
resent an aspect of forest structure or abiotic conditions, we selected the one that was closely
correlated with the alternative measures and not too strongly correlated with other environ-
mental conditions (Pearson’s r < 0.7, supporting information). To characterise the landscape
context around the study plots, we compiled a set of variables from publicly available data
sources, including abiotic conditions, various classes of landcover, and NDVI (Normalized Dif-
ference Vegetation Index) as a measure of productivity. As many of these landscape context
variables showed strong correlations either to the respective local conditions or to other land-
scape context variables, we decided to only include two landscape context variables in our
models: forest cover and the proportion of coniferous forest (supporting information) calcu-
lated for circles of 1, 5, 10, 15 and 20 km? around plot centres. Since the strength and direction
of the effects of landscape context attributes on biodiversity often vary with the spatial ex-
tent at which the landscape context variables are measured (e.g. Jackson and Fahrig, 2015), we
tested both landscape context variables at five spatial scales and selected the scale with the best
model performance (10 km?) . A detailed description of the data acquisition and preparation

can be found in the supplementary material.

Statistical analyses

We modeled, species richness, Shannon diversity (e, i.e. the effective number of species) and
B diversity (Bray-Curtis distance) of each of the seven taxonomic groups as a function of all

environmental variables. In the following, o diversity refers to species richness and Shan-
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non diversity, and (3 diversity refers to the Bray-Curtis distance. Deadwood volume and stand
structural complexity index (SSCI) were log-transformed before the analyses to reduce skew
in their distributions. Sampling effort was included as an additional covariate in the models
of bats, birds, beetles and mammals in order to include any influence caused by it. All predic-
tors were standardised to a mean of zero and a standard deviation of one to facilitate model
convergence and comparisons of the strengths of the effects. Each model was run with the
two landscape context variables (forest cover and proportion of coniferous forest) measured
at each of the five spatial scales. We then selected the spatial scale with the best model perfor-
mance based on AICc (Shannon diversity and species richness) or percent deviance explained
(B diversity). Since we expected non-linear effects of some of the environmental variables on
biodiversity, we modelled Shannon diversity and species richness using Generalized Additive
Models (GAM; Wood, 2017), assuming a Gamma distribution with a logarithmic link for Shan-
non diversity and a Poisson distribution for species richness. We checked model assumptions
using simulated residuals provided by the R package “DHARMa” (Hartig, 2022) and tested
for residual spatial autocorrelation using Moran’s I. As the residuals of the models of species
richness of bats, beetles, birds and mammals showed underdispersion, we switched to a quasi-
Poisson estimation procedure for these groups. To account for overdispersion in the models of
bees and wasps and plants, we specified a negative binomial distribution. We did not a spatial
autocorrelation structure in the model, since Moran’s I test for residual spatial autocorrelation
was only significant for the Shannon diversity of bats, and a semi-variogram of the residu-
als of this model showed no signs of autocorrelation. To model the 3 diversity of the seven
species groups, we used generalized dissimilarity modelling (GDM; Ferrier et al., 2007). We
modelled the matrix of Bray-Curtis distances between pairs of study plots as a function of
their differences in environmental conditions and geographic distance. With the fitted model,
we calculated a measure of variable importance based on the permutation of single predictors.
Specifically, variable importance is the percentage change in deviance between models with
the respective variable permuted and unpermuted.

All statistical analyses were performed using R version 4.2.2 (R Core Team, 2022).
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Results

Effects of environmental conditions varied both between taxonomic groups (Table 2 and 3,
Fig. 1 and 2). The predictors included in the models of «v diversity explained on average 31% of
variation in species/group richness and 23% of variation in Shannon diversity between sites.
However, this proportion was much lower for plants (7% and 5%, respectively). Across all tax-
onomic groups, 18 of 102 combinations of predictor and response variable were significant for
species/group richness and Shannon diversity. The number of significant variables was low-
est in plant and mammal « diversity models. Most significant variables had monotonously
increasing or decreasing effects on « diversity, which were often approximately linear (Sup-
plementary material). Few relationships were hump-shaped or even more strongly non-linear.
In models of 3 diversity, the average proportion of deviance explained was markedly lower
(15.2%) than in models of Shannon diversity (34%) and species richness (41%). This proportion
was highest for the 3 diversity of beetle families (34%) and lowest for plants (1%).

All three groups of variables (local mean conditions, local heterogeneity, landscape con-
text) were equally important across taxa or aspects of biodiversity. While local higher levels
of mean environmental conditions had mostly negative effects on « diversity, significant ef-
fects of local heterogeneity were generally positive, except for a negative relationship between
stand structural complexity (SSCI) and Shannon diversity of beetle families (Fig. 1). At the lo-
cal scale, both abiotic conditions and forest structure and composition explained some of the
variation in biodiversity between study plots, but most variables only had significant effects
on one or two of the seven taxonomic groups. For example, only mean canopy height had
a significant effect on Shannon diversity of bats, while only canopy gap share affected the
species richness of bees and wasps. Deadwood volume and diversity had no significant effect
on any taxonomic group’s richness or Shannon diversity, except for a slight positive effect of
deadwood diversity on bat Shannon diversity. However, the two deadwood-related variables
had an effect on the [ diversity of several groups. Elevation was the most important abiotic
factor, having a negative effect on richness of bees and wasps and Shannon diversity of bats,

bees and wasps. The proportion of conifers (either at the local plot scale or in the surrounding
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landscape) was important for richness, Shannon diversity and (3 diversity of several taxonomic
groups, but the direction of its effect on « diversity varied between taxa. For instance, both
local and landscape scale proportion of conifers had negative effects on species richness of
fungi, whereas landscape scale coniferous share was positively related to Shannon diversity
of beetle families, birds and bees and wasps.

Model performance comparisons indicated that the most relevant spatial scale of the two
landscape context variables differed between the seven taxonomic groups (Table 2 and 3) and
between o and 3 diversity (supporting information). In models of « diversity, the smallest
scale (1 km?) was selected for Shannon diversity of plants and fungi and species richness of
mammals, plants, and fungi, while the best models for bees and wasps had the largest extent
tested (20 km?®), and the remaining groups were at an intermediate scale (5-15 km?). For (3
diversity, the proportion of deviance explained by the model was highest at the largest spatial
scale for four groups (plants, fungi, bees and wasps, mammals), at a slightly smaller scale for
beetle families (15 km?) and a much smaller scale for bats and birds (1 km?).

For the four taxonomic groups with varying sampling efforts, sampling effort was of greater
importance for richness and /3 diversity and less important for Shannon diversity (Fig. 1, 2).
In models of 8 diversity, geographic distance did not play a major role for any taxonomic
group (Fig. 2). Thus, communities closer together were not markedly more or less similar than

communities farther away:.
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Figure 1: Effects of environmental conditions and sampling effort on Shannon diversity and

species/group richness of all seven taxonomic groups. Environmental conditions are sepa-

rated into groups: local mean (LM), local heterogeneity (LH), local mean or heterogeneity

(LM/LH) and landscape context (LC). The results shown are based on Generalized Additive

models (GAM) of the response variable modeled as a function of all predictors. Significant

effects were assigned to one of five categories based on visual inspection of the fitted relation-

ship (supporting information).
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Figure 2: Importance of environmental variables, sampling effort and geographic distance
for [ diversity (Bray-Curtis distance between pairs of study plots) of all seven taxonomic
groups. Environmental conditions are separated into groups: local mean (LM), local hetero-
geneity (LH), local mean or heterogeneity (LM/LH) and landscape context (LC). Variable im-
portance was quantified as the per cent change in deviance between Generalized Dissimilarity

Models (GDM) with the respective variable permuted and unpermuted.

Discussion

Our results highlight the variation of environmental predictor ‘s effect between different taxa
diversity. Neither of the three groups of variables was more important than the other two
in explaining the variation of biodiversity. However, the effect of local heterogeneity (when

significant effect was found) was generally positive, suggesting that heterogeneity trade-offs
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do only play a minor role at the investigated spatial scales. The results of our study contributes

to the growing evidence that each aspect of diversity is shaped by specific factors.

Relative importance of mean conditions, heterogeneity and landscape

context for biodiversity

Among the environmental variables that were related to the diversity of more than one tax-
onomic group in this study, measures of mean conditions were not more or less important
than those of heterogeneity. Although most studies comparing the effects of resource quantity
(a mean condition) and resource heterogeneity on plant species richness found that quan-
tity is the most important factor (e.g. Stevens and Carson, 2002; Bartels and Chen, 2010; Dor-
mann et al., 2020), there is a lack of comparable studies on other groups of organisms. In
a global meta-analysis, Field et al. (2009) found that variables related to climate or produc-
tivity explained significantly more of the difference in species richness of several taxa than
other explanatory variables, including environmental heterogeneity. This difference was sim-
ilar for plants and animals. However, the relative importance of climate and productivity di-
minished with decreasing spatial grain or extent of the study. At spatial scales comparable to
our study, all groups of variables showed similar performance. In addition, Jorba et al. (2025)
found that macro-climatic means (temperature and moisture) and vegetation-structure hetero-
geneity contributed almost equally to taxonomic, functional and phylogenetic diversity. Our
results therefore outline the importance of mean conditions as well as heterogeneity for bio-
diversity. In fact, they demonstrate that different aspects of biodiversity in different species
groups are highly diversely impacted by a multitude of factors and reductive approaches are
unable to capture the complexity of forest ecosystems.

In this study, most of the significant effects of variables that indicate local heterogeneity on
species richness or Shannon diversity exhibited a consistent positive trend, aligning with the
habitat heterogeneity hypothesis (Stein et al., 2014, and references therein). We found barely
any indication of trade-offs between area and heterogeneity. These differences in our findings

compared to the most similar studies in the field, Heidrich et al. (2020) and Heidrich et al. (2023)
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could potentially be attributed to variation in the selection of taxonomic groups and measures
of heterogeneity. For example, the finer resolution of arthropod taxa and the inclusion of plant
diversity as a predictor in their studies may explain these disparities. Therefore, results need
to be re-evaluated depending on the specific taxonomic groups (e.g. higher/lower degree of
aggregation) as well as the measure of heterogeneity applied and additionally the spatial scales
investigated.

Our study raises a significant point: neither mean conditions nor heterogeneity emerge
as predominant determinants of biodiversity variation at small spatial scales across taxa. If
corroborated by further research, this represents additional proof for the complex species re-
quirements at a fine scale.

Our investigation of landscape context variables revealed an interesting distinction. Al-
though the share of coniferous forests exhibited strong and significant relationships with the
« and 3 diversity of some taxonomic groups, the forest cover appeared less influential. Simi-
lar results were reprted by Li et al. (2025), where increasing the proportion of broadleaf trees
doubled understory plant richness and stabilised soil-microbial $-diversity, whereas total for-
est cover in the buffer failed to predict any diversity metric. There is also evidence that tree-
species composition and stand structure consistently outperform simple percent forest cover
in explaining a- and B-diversity across arthropods, birds and fungi (Uhl et al., 2024) Thus, we
cannot conclude that the landscape context was generally more or less important for biodi-
versity than local conditions, but rather that the type of available landscape context may play
arole.

Theory posits that the scale at which environmental conditions impact species, known as
the “scale of effect” should depend on species mobility (both local movements and disper-
sal: Miguet et al., 2016). Empirical tests, however, do not consistently support this prediction
(Arroyo-Rodriguez et al., 2023). Despite the common assertion that larger animals should ex-
hibit a larger scale of effect due to their longer dispersal distances (Jenkins et al., 2007), our
findings did not align with this hypothesis. In our study system, the largest spatial scale tested
(20 km?) to « diversity for bees and wasps, but not mammals. Gengler et al. (2024) described

how the spatial extent at which landscape variables shape biodiversity is influenced less by
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body size than by the type of metric of biodiversity, but also by life-stage-specific behaviour.
This suggests that in our study, the maximum dispersal distance may not be the primary factor

that determines the differences on the “scale of effect”

Effects of environmental variables across taxa

Our statistical models had relatively low proportions of explained variation, many non-significant

effects and considerable variation between taxonomic group responses. These results show
similarity to those of Penone et al. (2019), Heidrich et al. (2020) and Uhl et al. (2024), who
studied the effects of forest attributes and environmental heterogeneity, respectively, on bio-
diversity of multiple taxa across temperate forests. Similarly, joint species-distribution models
of 11 taxa showed that forest structure and edaphic conditions exerted highly divergent effects
among groups (Kepfer-Rojas et al., 2024). One plausible explanation for the weak relationships
between forest structure and biodiversity is the heterogeneous response of sub-groups and
even individual species within each taxonomic group. These responses are most likely based
on factors such as habitat preference, mobility, and dietary requirements. Our results suggest
that the best predictors of occurrence and abundance may be species-specific, which could
account for the unexplained variability in our models. For instance, Rappa et al. (2022) identi-
fied divergent effects of forest structural variables on the abundance of beetle families based
on their feeding guilds. In the case of bees and wasps, forest structure exhibited significantly
greater effects on biodiversity for forest specialists compared to non-forest specialists (Rappa
et al., 2023). Likewise, in similar studies of subsets of the bird species and bat acoustic groups
included in our analyses, Basile et al. (2021) and Hendel et al. (2023) reported that the impor-
tance of forest attributes such as mean tree size and deadwood amount varied considerably
between species or groups.

Light availability is a key limiting resource for understory plants (Dormann et al., 2020,
and references therein) and can affect higher trophic levels directly through its influence on
microclimate (e.g. von Arx et al., 2013) or indirectly via its effects on plant abundance and
community composition (e.g. Gao et al., 2015; Rappa et al., 2023). In their study of 13 trophic

groups, Penone et al. (2019) found that of all stand structural variables tested, canopy cover
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(a measure of light availability) had the strongest and most consistent effects on biodiversity,
but even so its effect on species richness was only statistically significant for four of the 13
groups (vascular plants, lichens, arthropod herbivores, arthropod carnivores). By contrast, in
our analyses canopy gap share (1 — canopy cover) only had substantial effects on species rich-
ness and [ diversity of bees and wasps (see also Rappa et al., 2023). The limited influence on
other groups could potentially be attributed to the relatively narrow range of canopy gap share
in our study sites (ranging from 0 to 0.42, with a median of 0.12; Table 1), reflecting typical con-
ditions in Central European mountain forests managed according to close-to-nature forestry
principles (Bauhus et al., 2013). While the absence of plots with higher light availability may
have precluded the detection of effects on other taxonomic groups, such effects at extreme
light conditions may not be relevant in undisturbed central European forests. For vascular
plants, the relatively coarse spatial scale of our analyses and the absence of statistical inter-
actions between environmental variables likely prevented us from detecting an effect of light
availability. In their analysis of the same plant diversity data, Helbach et al. (2022) identified a
significant relationship between understory plant richness and light heterogeneity at the scale
of 25 m? subplots, but only when soil resource heterogeneity was also high.

Despite the general consensus on the importance of large, old trees for biodiversity con-
servation in forests (e.g. Bauhus et al., 2009; Brunet et al., 2010; Gustafsson et al., 2020), our
study revealed that mean canopy height exerted only a modest influence on « or (8 diversity
across taxonomic groups, except for a negative hump-shaped effect on « diversity in bats.
This mirrors the limited impact of mean diameter at breast height (DBH) found by Penone
et al. (2019). It is conceivable that the age of stands, often associated with larger trees, may
not be the primary driver of biodiversity increases, contradicting Spake et al. (2015); instead,
specific structural elements more abundant in older forests may be better predictors than aver-
age tree size (Bauhus et al., 2009; Penone et al., 2019). In addition, our data set did not include
some of the taxonomic groups that are typically associated with the presence of large trees
(e.g. epiphytic bryophytes and lichens) (Odor et al., 2013) and our sampling did not focused on
species that depend on the specific conditions and habitats provided by large trees (e.g. Storch

et al., 2023; Asbeck et al., 2021).
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While canopy height may influence multiple taxonomic groups, we only found signifi-
cant effects on bats. In line with previous findings (Jung et al., 2012; Froidevaux et al., 2016;
Heidrich et al., 2020), bat « diversity increased with the heterogeneity of the canopy height.
Forests with diverse canopies provide foraging habitats for bats with different adaptations to
vegetation (Schnitzler and Denzinger, 2011) while also offering shelter and facilitating com-
muting flights of bats (Schaub and Schnitzler, 2007). Interestingly, the relationship between «
diversity and the canopy height itself suggests that species richness is highest at low and high
canopy heights, while the Shannon diversity of bats declined with increasing canopy height.
Hendel et al. (2023) found that forest height played a minor role in the habitat suitability of
most bat groups, and positive associations of bat occurrence and activity with canopy height
have been described (Jung et al., 2012; Froidevaux et al., 2016).

Apart from the presence of large, old trees and related structural elements, deadwood is
conventionally regarded as a pivotal factor explaining the high biodiversity in old-growth
forests compared to intensively managed production forests (Bauhus et al., 2009; Paillet et al.,
2010; Doerfler et al., 2018). Consequently, retention forestry strives to augment the quantity
and diversity of deadwood (logs and snags) in timber production forests (Vitkova et al., 2018;
Gustafsson et al., 2020). Surprisingly, our analyses showed that both deadwood volume and
deadwood diversity scarcely influenced the « diversity of any taxonomic group, with the ex-
ception of a minor effect of deadwood diversity on bat Shannon diversity. Rousseau et al. (2025)
found similar results, But they reported how deadwood had en effect on community composi-
tion rather than «v diversity. Moreover, it is plausible that deadwood exerts limited influence on
the overall species count among animal taxa, as only a subset of species within each taxonomic
group rely on deadwood for sustenance or refuge. For example, beetles, which we identified
on family level, have some species within each family that are known to depend on deadwood
to different degrees.

Our results are also in contrast with previous reports of positive effects of deadwood di-
versity (Abrego and Salcedo, 2013; Penone et al., 2019; Heidrich et al., 2020; Tomao et al., 2020;
Yamanaka et al., 2025) and deadwood volume (Lassauce et al., 2011; Gao et al., 2015) on as-

sociated fungal species richness. A possible reason for this discrepancy could be that in our
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study, deadwood assessments only included objects with a diameter of more than 7 cm, as it
is also done in commercial forestry. In contrast, data on fungal fruiting bodies were collected
without minimum deadwood diameter, resulting in deadwood objects with a median diameter
of 5.4 cm (Zibold et al., 2024). This study found a hump-shaped effect of deadwood diversity
on fungal species diversity, but it also pointed out that the strong correlation between dead-
wood amount and deadwood diversity measures may obscure this. This indicates a mismatch
between how deadwood is generally evaluated and how it is utilized by fungal species in man-
aged forests (Juutilainen et al., 2011). Species composition for some groups can be affected
by deadwood disposition rather than just volume (Zumr et al., 2024). In addition, deadwood
volumes in mature forest are reported to be higher than on most of our sites (von Oheimb
et al., 2007), there are also limited diversity of deadwood sizes and decay stages, limiting the
applicability in these ranges. However, all of these points reflect the reality of commercially
used forests.

Among the environmental variables investigated in our study, the proportion of conifers
at the local or landscape scale emerged as the most influential among taxonomic groups and
facets of biodiversity. Beetle, bees and wasps, and bird richness and Shannon diversity were
positively associated with the coniferous forest share in the surrounding landscape, while fun-
gal species diversity declined with increasing conifer proportion. Our findings do not suggest
that mixed coniferous and broadleafed tree stands harbor more species than conifer-dominated
stands, indicating that the conifer proportion can be considered a measure of mean environ-
mental conditions rather than heterogeneity. These results concur (where applicable) with
those of Penone et al. (2019), despite their data originating from broadleaf-dominated forests,
while most of our study plots and the surrounding landscape predominantly featured conif-
erous species, particularly spruce and fir. On the other hand, the weakly positive effect of
coniferous share in the surrounding landscape on bird diversity is in contrast to the results of
a previous publication (Basile et al., 2021) and a large-scale study of tree composition effects
on bird diversity across Europe (Charbonnier et al., 2016). This may be due to the lower sam-
pling effort in the first and the much larger range of tree compositions in the second study,

which underlines the importance of putting our findings in perspective with similar studies
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on specific taxa.

The higher o diversity of some taxonomic groups in coniferous forests may be associated
with the size of the regional species pool. The presence of tree resins as nesting material for
trap-nesting bees and wasps and large aphid colonies as food resources on conifers may also
contribute to this effect (Eckerter et al., 2022). In contrast, the adverse effect of conifers on
alpha diversity of wood-dwelling fungi aligns with earlier observations and may be attributed

to the higher lignin and lower nutrient content in conifer wood (Yang et al., 2021).

Management implications

Our study reports heterogeneous effects of the environment (in terms of mean conditions,
heterogeneity and landscape context) on biodiversity that can not be generalized across tax-
onomic groups. However, our results can be used to generalize the effect of a given structure
over specific taxa, without any focus on dominant species or species of high conservation
value. We suggest that forest managers acknowledge the specific effects of forest elements on
specific potential biodiversity targets (e.g. endangered species, forest specialists, native species
or species with an important role in the ecosystem) at specific spatial scales. Diversifying for-
est management and considering the specific taxon requirements to provide a wide range of
habitats would provide a wide range of structural elements capable of promoting suitable con-
ditions for conservation and/or management goals. Local interventions such as planting spe-
cific combinations of tree species, thinning, selective harvesting, or deadwood conservation
have a direct and specific impact in some of the variables we studied and on different aspects
of biodiversity. As there is no clear main driver of biodiversity, we suggest dividing the forest
landscape into a mosaic of specific target-oriented areas and applying specific interventions
for conservation at the local scale.

We found that environmental variables such as elevation or exposure had a (negative) im-
pact on some groups. Although management cannot change the abiotic circumstances in a
meaningful way;, it is important to consider the limitations that those variables might impose
while setting conservation goals. The changes in bee/wasp and mammal /3 diversity with el-

evation indicate that even when the environmental conditions are generally associated with
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lower richness and Shannon diversity, those sites can still be an important habitat for specific
taxa.

We highlight the importance of tree species composition and stand structure for each taxon
over deadwood volume, stand age or tree species richness. The composition of tree species
(proportion of conifers, tree diversity) and stand structure (Stand structure complexity index
(SSCI), canopy height, deadwood diversity) can offer practitioners numerous ways of potential

interventions to cause a positive effect on biodiversity.

Conclusions

This study demonstrates that local mean conditions, heterogeneity, and landscape context
characteristics influence biodiversity in taxon-specific ways. We did not identify a single driver
or a set of dominant drivers of biodiversity.

Our findings underscore the absence of a uniform impact of forest management on biodi-
versity, indicating that most taxa are only weekly affected by particular forest structures or
show contrasting responses. These results are consistent with recent studies that examined
multiple species groups, but contradict some studies that focused on individual taxonomic
groups or species of conservation interest. Therefore, specific variables and scales should be
considered for the conservation of particular targeted species, while a multifaceted landscape
approach may be necessary for the overall conservation of biodiversity. This study provides a
comprehensive and comparable overview of the drivers relevant for the diversity of different
taxa.

Based on our findings, we recommend stakeholders establish and apply taxon-specific con-
servation targets. Each taxon is dependent on certain elements within the forest. Here, the
diversity of forest structure at landscape level is key to meet the needs of all taxa. The creation
or conservation of such a landscape can be guided by the relationships between biodiversity,

forest mean conditions, heterogeneity, and landscape context we identified.
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