Unravelling drivers of forest biodiversity: Contrasting effects of mean environmental conditions, environmental heterogeneity and landscape context

Abstract

- 1. Understanding how biodiversity varies under different environmental conditions is one of the central aims of ecology. Mean environmental conditions and heterogeneity have an effect on biodiversity. Increased heterogeneity is generally associated with increased diversity, but mean conditions tend to have a stronger influence. Conditions on site are embedded into a landscape context, which adds another layer of complexity to be considered. Due to the rarity of multi-taxon data it remains unclear if resulting patterns are similar across taxa. Most European forests are managed, and management strongly influences both mean conditions and heterogeneity. How different species groups respond to variation in these forest characteristics is therefore crucial for testing ecological theories and designing effective conservation measures for management.
- 2. We assessed the effects of environmental conditions on biodiversity of seven taxonomic groups in a temperate mountain forest area in Central Europe. We analysed the responses of biodiversity (species richness, Shannon diversity, and β -diversity) to three groups of environmental variables: local mean conditions, local heterogeneity, and landscape. Our objectives were to determine which group of variables is most important in explaining biodiversity variation, and whether certain environmental conditions have consistent effects on the diversity of multiple taxonomic groups.
- 3. We found that the effects of environmental conditions varied substantially between taxa and aspects of biodiversity. The proportion of conifers had the largest number of significant effects overall, but the direction varied between taxa. None of the three groups of variables was more relevant in explaining the variation in biodiversity. While an increase in local heterogeneity and higher values in the landscape context were associated with increased diversity, an increase in mean conditions was mainly negatively associated with diversity.
- 4. Synthesis and applications. Our results show that no single factor or group of factors affects biodiversity across different species groups in the same way. For management, this means that stand-level interventions, such as retention of old-growth elements, are likely not sufficient to promote the many aspects of biodiversity. Instead, different types of management are likely needed for objective-specific biodiversity conservation at the landscape scale.

 red^1

¹Corresponding Author: Carlos M. Landivar Albis. carlos.landivar@bfw.gv.at. Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests (BFW). Vienna, Austria

Unravelling drivers of forest biodiversity: Contrasting effects of mean environmental conditions, environmental heterogeneity and landscape context

Gita Benadi¹, Julian Frey², Carlos M. Landivar Albis^{3,4}, Michael Wohlwend¹, Marco Basile⁵, João M. Cordeiro Pereira^{1,12}, Martin Denter⁶, Anna-Lena Hendel¹, Marlotte Jonker^{1,7}, Sara Klingenfuß⁸, Nolan Rappa⁹, Sebastian Schwegmann¹, Ninon Meyer^{1,16}, Andreea Petronela Spînu¹⁰, Max Zibold^{8,11}, Nathalie Winiger¹, Jürgen Bauhus¹⁰, Veronika Braunisch^{12,16}, Carsten F. Dormann³, Marc Hanewinkel¹³, Alexandra Klein¹⁰, Daniela Kleinschmit¹⁵, Barbara Koch⁶, Michael Staab¹⁴, Gernot Segelbacher¹, Michael Scherer-Lorenzen⁸, and Ilse Storch¹

¹Chair of Wildlife Ecology and Management, University of Freiburg. Freiburg, Germany

²Chair of Forest Growth and Dendroecology, University of Freiburg, Germany

³Chair of Biometry and Environmental System Analysis. University of Freiburg. Freiburg, Germany

⁴Department of Forest Growth, Silviculture and Genetics, Austrian Research
Centre for Forests (BFW). Vienna, Austria

- ⁵Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL). Birmensdorf, Switzerland
- ⁶Chair of Remote Sensing and Landscape Information Systems, University of Freiburg. Freiburg, Germany
 - ⁷Zoogdiervereniging (Dutch Mammal society), Nijmegen, Netherlands
 ⁸Chair of Geobotany, University of Freiburg. Freiburg, Germany
 ⁹Chair of Nature Conservation and Landscape Ecology, University of Freiburg. Freiburg, Germany
 - ¹⁰Chair of Silviculture, University of Freiburg. Freiburg, Germany
 ¹¹State Museum of Natural History Karlsruhe, Department of Biosciences,
 Karlsruhe, Germany
- ¹²Forest Research Institute Baden-Wuerttemberg (FVA). Freiburg, Germany
 ¹³Chair of Forestry Economics and Forest Planning, University of Freiburg.
 Freiburg, Germany
- ¹⁴Ecological Networks, Technical University Darmstadt. Darmstadt, Germany
 ¹⁵Department of Biology, University of Toronto. Toronto, Canada
 ¹⁶Department of Conservation Biology, Institute of Ecology and Evolution,
 University of Bern. Bern, Switzerland

Acknowledgements

This study was funded by the German Science Foundation (DFG), Research Training Group ConFoBi (GRK 2123/1 TPX). The work of Max Zibold was funded by the German Federal Environment Foundation (DBU, grant number AZ 20019/616) and the work of Ninon Meyer was funded by the EU's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 894290. We are most grateful to Forst Baden-Württemberg (ForstBW) for enabling and facilitating field work – without their work, our study would not have been possible. The authors thank all members of the ConFoBi research training group for valuable discussions and constant feedback. The constructive comments of Catalina Munteanu helped improve an earlier version of this manuscript. We are also grateful to Jan Helbach and Anna Knuff for the effort in data collection for understory vegetation and insects, respectively, to Thomas Asbeck for processing of ConFoBi's plot forest inventory data and to all assistants involved in data collection. Barbara Koch and Michael Pregernig have contributed to the development of the ConFoBi research programme and the study design.

Author Contribution

The research setting (GRK2123 ConFoBi) was designed by Ilse Storch, Jürgen Bauhus, Veronika Braunisch, Carsten F. Dormann, Marc Hanewinkel, Alexandra Klein, Barbara Koch, Gernot Segelbacher and Michael Scherer-Lorezen. Gita Benadi, Julian Frey, Carlos Miguel Landivar and Michael Wohlwend conceived the ideas and designed methodology; Marco Basile, Joao M. Cordeiro, Martin Denter, Anna-Lena Hendel, Marlotte Jonker, Sara Klingenfuß, Nolan Rappa, Sebastian Schwegmann, Ninon Meyer, Andreea Petronela Spinu, Max Zibold and Nathalie Winiger collected the data; Gita Benadi, Carlos Miguel Landivar Albis and Julian Frey prepared and analysed the data; Gita Benadi, Carlos Miguel Landivar Albis and Michael Wohlwend led the writing of the manuscript. All authors critically contributed to the manuscript and gave their final approval for publication.

Corresponding Author

Carlos M. Landivar Albis. carlos.landivar@bfw.gv.at. Department of Forest Growth, Silviculture and Genetics, Austrian Research Centre for Forests (BFW). Vienna, Austria

Data Availability

The data supporting this study's findings will be made available on Dryad upon acceptance of the manuscript.

Conflict of interest

The authors have no conflict of interest to declare.

Unravelling drivers of forest biodiversity: Contrasting effects of mean environmental conditions, environmental heterogeneity and landscape

Keywords

- 2 Multi-taxa biodiversity, environmental conditions, environmental heterogeneity, temperate
- ³ forest, conservation management.

4 Abstract

- 1. Understanding how biodiversity varies under different environmental conditions is one of
- 6 the central aims of ecology. Mean environmental conditions and heterogeneity have an effect
- on biodiversity. Increased heterogeneity is generally associated with increased diversity, but
- mean conditions tend to have a stronger influence. Conditions on site are embedded into a
- 9 landscape context, which adds another layer of complexity to be considered. Due to the rarity
- of multi-taxon data it remains unclear if resulting patterns are similar across taxa. Most Eu-
- ropean forests are managed, and management strongly influences both mean conditions and
- heterogeneity. How different species groups respond to variation in these forest character-
- istics is therefore crucial for testing ecological theories and designing effective conservation
- measures for management.
- 2. We assessed the effects of environmental conditions on biodiversity of seven taxonomic
- groups in a temperate mountain forest area in Central Europe. We analysed the responses of
- biodiversity (species richness, Shannon diversity, and β -diversity) to three groups of environ-
- mental variables: local mean conditions, local heterogeneity, and landscape. Our objectives
- were to determine which group of variables is most important in explaining biodiversity vari-
- 20 ation, and whether certain environmental conditions have consistent effects on the diversity
- of multiple taxonomic groups.
 - 3. We found that the effects of environmental conditions varied substantially between taxa

- and aspects of biodiversity. The proportion of conifers had the largest number of significant effects overall, but the direction varied between taxa. None of the three groups of variables was
 more relevant in explaining the variation in biodiversity. While an increase in local heterogeneity and higher values in the landscape context were associated with increased diversity,
 an increase in mean conditions was mainly negatively associated with diversity.
- 4. Synthesis and applications. Our results show that no single factor or group of factors affects biodiversity across different species groups in the same way. For management, this means that stand-level interventions, such as retention of old-growth elements, are likely not sufficient to promote the many aspects of biodiversity. Instead, different types of management are likely needed for objective-specific biodiversity conservation at the landscape scale.

33 Introduction

Environmental conditions are the architects of biodiversity. Among these conditions, the availability of energy and limiting resources plays a pivotal role fostering greater biodiversity (Coelho et al., 2025). More energy allows for larger population sizes, which reduces extinc-36 tion risk and expands the community's total niche space, ultimately enriching the regional species pool (e.g. Hawkins et al., 2003; Field et al., 2009). This relationship aligns with the "more-individuals hypothesis," which posits that higher resource availability sustains greater numbers of individuals and, consequently, more species reducing the probability of local extinctions (Srivastava and Lawton, 1998; Storch et al., 2018). One of the most studied mechanisms of biodiversity variation under environmental condi-42 tions is the heterogeneity-diversity relationship (e.g. Stein et al., 2014, and references therein). 43 According to thishypothesis, spatially heterogeneous environments can accommodate more species because they provide a greater variety of niches and resources (Bazzaz, 1975). However, some studies also found none or even negative effects of heterogeneity on species richness (reviewed by Tews et al., 2004; Stein et al., 2014). An explanation for such divergent pat-47

terns is a trade-off between the amount of resources or habitat types and the available area of
each habitat or resource (area-heterogeneity trade-off: Kadmon and Allouche, 2007; Allouche
et al., 2012). This trade-off produces a hump-shaped relationship between heterogeneity and
diversity, with a decrease of biodiversity at high heterogeneity levels due to a greater risk of
stochastic extinctions in increasing smaller patches with suitable conditions. Although the relationship between environmental heterogeneity and biodiversity can be more complex than

55 for biodiversity is still widespread in the ecological and nature conservation literature (e.g.

Benton et al., 2003; Bollmann et al., 2009; Brunet et al., 2010; Kati et al., 2010; Uhl et al., 2024;

initially thought (Heidrich et al., 2020), the notion that heterogeneity is generally beneficial

57 Ampoorter et al., 2020).

However, biodiversity also depend on historical and biotic conditions. Common or historically predominant environmental conditions tend to harbour larger, yet often less diverse,
species pools, as these conditions favour a narrower range of ecological strategies (e.g. Taylor

et al., 1990; Pärtel et al., 1996; Ewald, 2003; Zobel, 2016). Finally, the physical landscape itself
acts as both a canvas and a constraint: it defines the spatial availability of habitats and their
fragmentation, particularly influencing species with limited dispersal ability and strongly dependent on habitat connectivity (Fuentes-Montemayor et al., 2017). Together, these factors intricately weave the tapestry of biodiversity, highlighting the interplay between environmental
mean conditions, heterogeneity, historical processes, and spatial structure.

Although the separate effects of environmental heterogeneity, mean environmental site conditions, and landscape context on biodiversity have been the subject of numerous studies, few have evaluated the relative importance of these factors for variation in species diversity. Evidence from plant communities suggests that the quantity of resources influence the richness of the species under a wider range of conditions than resource heterogeneity (Stevens and Carson, 2002; Bartels and Chen, 2010; Šímová et al., 2013). However, direct comparisons between these drivers across different taxa are still scarce. Such a comparison would improve our understanding of forest biodiversity drivers and provide valuable information to preserve and promote biodiversity in managed ecosystems, where environment heterogeneity can be influenced.

In temperate European forests, both mean environmental conditions and heterogeneity are strongly influenced by management (Menge et al., 2023). While traditionally the primary purpose of forest management has been timber production, biodiversity conservation has become an important additional goal in managed forests, as unmanaged forests dedicated for conservation are limited in size and connectivity (Bollmann and Braunisch, 2013). Traditional forest management for timber production frequently reduces structural heterogeneity at the stand level, for example, variation in tree age and height (Brunet et al., 2010; Bauhus et al., 2017), and decreases the availability of resources and habitats such as deadwood and tree cavities (e.g. Müller et al., 2007).

In order to compensate for these effects, retention forestry was recently introduced to Central Europe to promote the preservation of physical old-growth elements such as deadwood
and large old trees. These could act as resources and refuges for species dependent on them.
This old-growth elements also serve as stepping stones in the landscape contributing to con-

nectivity (Gustafsson et al., 2012; Lindenmayer et al., 2012; Fedrowitz et al., 2014). Whether biodiversity in general benefits from retention forestry is still an area of active investigation (Gustafsson et al., 2020, and references therein), however this knowledge is crucial for practitioners and conservationists alike.

Previous studies on the effects of forest characteristics on biodiversity compared general management types (such as clear cut and selective cutting) (e.g. Paillet et al., 2010; Chaudhary et al., 2016; Schall et al., 2018) or focused on relationships between particular forest characteristics (e.g., tree species diversity, deadwood) and diversity of single taxonomic groups (e.g. 97 Gil-Tena et al., 2007; Vockenhuber et al., 2011; Bouget et al., 2013). In comparison, the response of multiple taxa to variation in forest structure still remains understudied, mostly because it requires a large, concerted effort. Studies such as Penone et al. (2019); Ampoorter et al. (2020); Sabatini et al. (2019); Schall et al. (2020); Heidrich et al. (2020) and Heidrich et al. (2023) showed 101 mixed responses for different species groups, but also clear and consistent effects of mean local conditions related, in particular, to the type of dominant tree (conifers vs. oak) and canopy 103 cover. However, it is unclear whether their results can be transferred to other species groups or forest types, such as conifer-dominated mountain forests. 105

In this study, we investigate the influence of mean environmental conditions and envi-106 ronmental heterogeneity on the species diversity of seven taxonomic groups in a temperate 107 mountain forest area in central Europe. Forest stands included in this study are mainly conifer-108 dominated or mixed conifer-broadleaved forests and managed by selective logging under con-109 tinuous cover forestry with different degrees of retention of deadwood and large habitat trees. 110 As predictors of diversity, we included structural and compositional variables largely deter-111 mined by forest management and physical site conditions, which in previous studies explained a substantial part of the variation in biodiversity, especially in mountain ecosystems (Körner, 113 2007). In addition to local-scale heterogeneity and mean conditions, we also included variables describing the landscape in our analyses, as many organisms move and disperse over 115 areas larger than the size of our study plots. We studied three aspects of biodiversity: I) species richness, as it is the most widely used diversity measure, higher levels of species richness are 117 generally associated with greater ecosystem functioning, stability, and productivity, II) Shannon diversity, to account for species' relative abundances, using a good indicator of abundance and evenness, and III) β diversity, to account for the identity of species co-occurring at each site and species turnover between sites. Our main aims were to elucidate whether one of the three groups of environmental variables has a dominant effect in explaining variation in biodiversity, and to test if any of the environmental conditions has a homogeneous effect (same direction) across several taxonomic groups and aspects of biodiversity.

Concise information regarding these aspects will give a concise evaluation of the range and way in which they shape biodiversity and foster ecological theory evaluation as conservation practice alike.

128 Methods

126

Study area

The study area is located in the Black Forest (Schwarzwald) in Baden-Württemberg, southern 130 Germany. Small parts of the study area to the east are outside of the bioregion of the Black 131 Forest (Naturraum Baar) but are subsumed for simplicity. The area is dominated by granite 132 and gneiss to the west and south, while to the east and north sandstone prevails. Limestone 133 areas can be found on the eastern edge. The climate is temperate, but has a relatively large 134 temperature gradient, ranging from 4°C average annual temperature in the mountains (<1500 135 m. a.s.l.) to 10.4°C in the lowlands (> 120 m.a.s.l.) (Gauer and Aldinger, 2005). About 75% (3650 136 km²) of the area is forested, with forest mostly consisting of Norway spruce (*Picea abies*) (42.8%) followed by silver fir (Abies alba) (18.5%) and beech (Fagus sylvatica) (15.3%). While Norway 138 spruce is seen as naturally occurring in the region in higher elevations, it has been planted preferably in the past for economic reasons, leading to a high share of canopy cover in the 140 landscape (Spiecker et al., 2000).

Plot selection

Our study is based on 135 one hectare forest plots located within state-owned and managed forests. The plots are above 400 and below 1500 metres m.a.s.l. and contain no bodies of water except for puddles or little brooks. None of the plots exceed an average slope of more than 35°, but plots are rarely flat. Plots were selected based on two gradients, initially estimated using remote sensing and later confirmed and adjusted on the ground. Those gradients were 1) forested area in proximity (as an indicator of connectivity) and 2) the volume of deadwood (as a proxy for the effect of different retention levels). (Storch et al., 2020)

150 Biodiversity data

We included data from seven groups defined by taxonomy and sampling methods in the analyses: vascular plants, wood-inhabiting fungi (hereafter: fungi), birds, bats, mammals, beetles 152 (insect order Coleoptera) and cavity-nesting bees and wasps (order Hymenoptera). Beetles were identified at the family level, and bats were assigned to acoustic groups (some of which 154 are single species) according to their calls. All other groups were identified at the species level. Larger, terrestrial mammals (hereafter: mammals) were recorded using camera traps. Small 156 mammals (rodents and insectivores) were excluded because the camera setup was not optimal for their detection. Data collected during repeated visits to a study plot or at more than one 158 location within a plot were pooled for the analyses to obtain a single abundance/activity value per species and plot. Plants, fungi, bees and wasps were sampled with equal effort in all study 160 plots. For the remaining four groups, we quantified the sampling effort per plot according to the sampling method (e.g. number of visits for birds). We included the sampling effort as a 162 covariate in the statistical models for all taxa. A detailed description of the sampling methods can be found in the supplementary material.

Environmental variables

We classified our predictors of species diversity into three groups: local mean conditions (LM), local heterogeneity (LH), and landscape context (LC) (Table 1). Most variables could be placed

Variables are categorized as local mean (LM), local heterogeneity (LH), a special category for variables that fall in both mean and heterogeneity Table 1: Overview of environmental variables included as predictors in the analyses of species richness, Shannon diversity and β diversity. (LM/LH) and landscape context (LC) and separated by dashed lines. Landscape variables are reported here for a circle of 10 km². Values for all buffer sizes can be found in the supplementary information.

Variable	Category	Minimum	Minimum Maximum	Median
Mean canopy height (m)	Local mean	4.35	32.45	16.90
Mean elevation (m a.s.l.)	Local mean	443	1334	831
Deadwood volume (m³)	Local mean	4.91	486.01	42.14
Aspect – Northness	Local mean	-1.00	1.00	0.14
Aspect – Eastness	Local mean	-1.00	1.00	0.05
Proportion of coniferous tree cover	Local mean/local heterogeneity	0.04	1.00	-0.92
Canopy gap share	Local mean/local heterogeneity	0.00	0.42	0.12
Mean slope (°)	Local mean/local heterogeneity	1	34	14
Stand structural complexity index (SSCI)	Local heterogeneity	2.01	13.28	3.59
Standard deviation of canopy height (m)	Local heterogeneity	3.26	17.92	10.15
Shannon diversity of tree species	Local heterogeneity	90.0	1.87	96.0
Deadwood diversity	Local heterogeneity	1.04	3.12	2.16
Forest cover (in a circle of 10 km^2)	Landscape	0.12	0.90	$^{-}$ $^{-}$ 0.51
Proportion of coniferous forest (in a circle of $10~\mathrm{km}^2$) Landscape	Landscape	0.01	96.0	0.62

in a single category, but some can be interpreted as both local mean or local heterogeneity (e.g. Canopy gap share). Since we were interested in general patterns across different taxa, we chose variables potentially important for biodiversity and species composition of several taxonomic groups and excluded variables likely to affect one or two specific taxa disproportionately (e.g. soil pH). This means that our study does not raise the claim to capture the most important driver for a specific taxa, but focuses on the relative effect of drivers affecting many or all taxa in a dominant way.

For local mean and heterogeneity conditions, we included variables that describe both abi-175 otic conditions and forest structure at each site. Where several measures were available to represent an aspect of forest structure or abiotic conditions, we selected the one that was closely 177 correlated with the alternative measures and not too strongly correlated with other environmental conditions (Pearson's r < 0.7, supporting information). To characterise the landscape 179 context around the study plots, we compiled a set of variables from publicly available data sources, including abiotic conditions, various classes of landcover, and NDVI (Normalized Dif-181 ference Vegetation Index) as a measure of productivity. As many of these landscape context variables showed strong correlations either to the respective local conditions or to other land-183 scape context variables, we decided to only include two landscape context variables in our models: forest cover and the proportion of coniferous forest (supporting information) calcu-185 lated for circles of 1, 5, 10, 15 and 20 km² around plot centres. Since the strength and direction of the effects of landscape context attributes on biodiversity often vary with the spatial ex-187 tent at which the landscape context variables are measured (e.g. Jackson and Fahrig, 2015), we tested both landscape context variables at five spatial scales and selected the scale with the best 189 model performance (10 km²). A detailed description of the data acquisition and preparation can be found in the supplementary material. 191

92 Statistical analyses

We modeled, species richness, Shannon diversity (e^H , i.e. the effective number of species) and β diversity (Bray-Curtis distance) of each of the seven taxonomic groups as a function of all environmental variables. In the following, α diversity refers to species richness and Shan-

non diversity, and β diversity refers to the Bray-Curtis distance. Deadwood volume and stand structural complexity index (SSCI) were log-transformed before the analyses to reduce skew 197 in their distributions. Sampling effort was included as an additional covariate in the models of bats, birds, beetles and mammals in order to include any influence caused by it. All predic-199 tors were standardised to a mean of zero and a standard deviation of one to facilitate model 200 convergence and comparisons of the strengths of the effects. Each model was run with the 201 two landscape context variables (forest cover and proportion of coniferous forest) measured at each of the five spatial scales. We then selected the spatial scale with the best model perfor-203 mance based on AICc (Shannon diversity and species richness) or percent deviance explained 204 (β diversity). Since we expected non-linear effects of some of the environmental variables on 205 biodiversity, we modelled Shannon diversity and species richness using Generalized Additive Models (GAM; Wood, 2017), assuming a Gamma distribution with a logarithmic link for Shan-207 non diversity and a Poisson distribution for species richness. We checked model assumptions using simulated residuals provided by the R package "DHARMa" (Hartig, 2022) and tested 209 for residual spatial autocorrelation using Moran's I. As the residuals of the models of species richness of bats, beetles, birds and mammals showed underdispersion, we switched to a quasi-211 Poisson estimation procedure for these groups. To account for overdispersion in the models of bees and wasps and plants, we specified a negative binomial distribution. We did not a spatial 213 autocorrelation structure in the model, since Moran's I test for residual spatial autocorrelation was only significant for the Shannon diversity of bats, and a semi-variogram of the residu-215 als of this model showed no signs of autocorrelation. To model the β diversity of the seven 216 species groups, we used generalized dissimilarity modelling (GDM; Ferrier et al., 2007). We 217 modelled the matrix of Bray-Curtis distances between pairs of study plots as a function of their differences in environmental conditions and geographic distance. With the fitted model, 219 we calculated a measure of variable importance based on the permutation of single predictors. 220 Specifically, variable importance is the percentage change in deviance between models with 221 the respective variable permuted and unpermuted. 222

All statistical analyses were performed using R version 4.2.2 (R Core Team, 2022).

223

224 Results

Effects of environmental conditions varied both between taxonomic groups (Table 2 and 3, Fig. 1 and 2). The predictors included in the models of α diversity explained on average 31% of variation in species/group richness and 23% of variation in Shannon diversity between sites. However, this proportion was much lower for plants (7% and 5%, respectively). Across all tax-onomic groups, 18 of 102 combinations of predictor and response variable were significant for species/group richness and Shannon diversity. The number of significant variables was lowest in plant and mammal α diversity models. Most significant variables had monotonously increasing or decreasing effects on α diversity, which were often approximately linear (Sup-plementary material). Few relationships were hump-shaped or even more strongly non-linear. In models of β diversity, the average proportion of deviance explained was markedly lower (15.2%) than in models of Shannon diversity (34%) and species richness (41%). This proportion was highest for the β diversity of beetle families (34%) and lowest for plants (1%).

All three groups of variables (local mean conditions, local heterogeneity, landscape context) were equally important across taxa or aspects of biodiversity. While local higher levels of mean environmental conditions had mostly negative effects on α diversity, significant effects of local heterogeneity were generally positive, except for a negative relationship between stand structural complexity (SSCI) and Shannon diversity of beetle families (Fig. 1). At the local scale, both abiotic conditions and forest structure and composition explained some of the variation in biodiversity between study plots, but most variables only had significant effects on one or two of the seven taxonomic groups. For example, only mean canopy height had a significant effect on Shannon diversity of bats, while only canopy gap share affected the species richness of bees and wasps. Deadwood volume and diversity had no significant effect on any taxonomic group's richness or Shannon diversity, except for a slight positive effect of deadwood diversity on bat Shannon diversity. However, the two deadwood-related variables had an effect on the β diversity of several groups. Elevation was the most important abiotic factor, having a negative effect on richness of bees and wasps and Shannon diversity of bats, bees and wasps. The proportion of conifers (either at the local plot scale or in the surrounding

landscape) was important for richness, Shannon diversity and β diversity of several taxonomic groups, but the direction of its effect on α diversity varied between taxa. For instance, both local and landscape scale proportion of conifers had negative effects on species richness of fungi, whereas landscape scale coniferous share was positively related to Shannon diversity of beetle families, birds and bees and wasps.

Model performance comparisons indicated that the most relevant spatial scale of the two landscape context variables differed between the seven taxonomic groups (Table 2 and 3) and between α and β diversity (supporting information). In models of α diversity, the smallest scale (1 km²) was selected for Shannon diversity of plants and fungi and species richness of mammals, plants, and fungi, while the best models for bees and wasps had the largest extent tested (20 km²), and the remaining groups were at an intermediate scale (5-15 km²). For β diversity, the proportion of deviance explained by the model was highest at the largest spatial scale for four groups (plants, fungi, bees and wasps, mammals), at a slightly smaller scale for beetle families (15 km²) and a much smaller scale for bats and birds (1 km²).

For the four taxonomic groups with varying sampling efforts, sampling effort was of greater importance for richness and β diversity and less important for Shannon diversity (Fig. 1, 2). In models of β diversity, geographic distance did not play a major role for any taxonomic group (Fig. 2). Thus, communities closer together were not markedly more or less similar than communities farther away.

Table 2: Results of Generalized Additive Models (GAM) of species richness as a function of all environmental variables. Dashed lines separate variable groups: local mean (LM), local heterogeneity (LH), mean and heterogeneity (LM/LH), landscape context (LC), and sampling effort (in this order from top to bottom). For each taxonomic group, the landscape context scale with the lowest model AICc was chosen.

eight (m) Edf F value Edf F value sight (m) 1.0 0.1 1.0 0.3 1.0 0.1 1.0 0.3 1.1 volume (m³) 1.0 0.2 1.0 1.7 1.1 0.0 1.0 0.1 1.3 mifers 1.0 0.3 1.0 0.1 1.3 mifers 1.0 0.2 1.8 1.7 1.7 reght (m) 1.0 0.2 1.8 1.7 6.9 eight (m) 1.0 0.2 1.8 1.7 6.9 eight (m) 1.0 0.2 1.2 9.4** rsity 1.0 0.3 1.0 0.1 cm²) 1.7 1.0 0.3 1.0 0.1 st share (1 km²) 1.7 1.0 0.1 1.0 5.0* km²) 1.7 1.0 0.1 1.0 5.0* st share (15 km²) 1.0 1.0 5.0* 1.0 st share (20 km²) 1.0 1.0 5.0* 1.0 <	F value Edf 0.1 1.0 0.8 1.3 0.2 1.0 0.0 1.0 0.0 1.0 0.3 1.0 0.5 - 1.0 0.2 1.8 0.2 1.8	Edf F value 1.0 0.2 2.5 0.9 1.0 0.4 1.0 2.0 1.6 0.5	Edf F value 1.0 2.8 1.0 34.8*** 2.0 5.7 1.0 2.3	Edf F value 1.0 0.4 1.0 1.7	Edf	F value Edf	ഥ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 					1.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8 1.3 0.2 1.0 0.0 1.0 0.3 1.0 0.5 - 1.0 0.2 1.8	 				2* 2.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1			1.0 0.	0.1 1.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0 1.0 0.3 1.0 0.5 1.0 0.2 1.8	 		2.3 1.9			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 		1.0 0.6		0.7 1.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 		1.0 2.4	1.0 0.	.3 1.0	
$1.0 0.2 1.8 1.7$ $1.0 0.9 2.7 6.9$ $1.0 0.8 1.0 2.0$ $1.4 0.2 1.2 9.4^{**}$ $1.0 0.3 1.0 0.1$ $1.7 -1.0 -1.0 0.1$ $3.5 10.1^* 1.0 5.0^*$	0.2 1.8		 	 	l I	 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.9	1.0 0.6	1.0 5.0^*	1.0 0.2	1.0	2.3 1.0	0.0
$egin{array}{cccccccccccccccccccccccccccccccccccc$							
$1.0 0.8 1.0 2.0$ $1.4 0.2 1.2 9.4^*$ $1.0 0.3 1.0 0.1$ $-\frac{1}{7} - \frac{1}{1.0} - \frac{1}{1.0} - \frac{2.1}{2.1}$ $3.5 10.1^* 1.0 5.0^*$	1.1 3.2	$\frac{1.7}{1.7}$ $\frac{2.6}{2.6}$	1.0 8.3	$\frac{1.0}{1.0}$	 	$\frac{2}{2.6} = \frac{1}{1.3} = \frac{1}{1.3}$	i i
$1.4 0.2 1.2 9.4^{**}$ $1.0 0.3 1.0 0.1$ $1.7 -\frac{1}{1.0} - \frac{1}{1.0} - \frac{0.1}{2.1}$ $3.5 10.1^* 1.0 5.0^*$		1.0 0.0	1.7 4.8	1.3 0.1		8.6** 1.3	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0.2 1.2	1.0 1.8	1.3 0.2	1.0 1.2		1.0	
$1.7 1.0 1.0 2.1$ $3.5 10.1^* 1.0 5.0^*$	0.3 1.0	1.0 1.3	1.0 1.5	1.0 0.3	1.0 1.6	.6 1.0	8.0
$3.5 10.1^* 1.0 5.0^*$	 	 			 	1.0	0.2
	$10.1^* \qquad 1.0$					2.2	1.7
		$1.0 9.5^{**}$					
					1.0	2.8	
						6.	
				1.0 4.3 *			
			1.0 1.8				
			$1.1 \qquad 6.0^*$				
Sampling effort 1.		1.4 18.8	 	$-\frac{1}{1.0}$ $-\frac{1}{65.1}$	$2.1 - 12.3^{***}$	3*** - 3.0	5.2**
Deviance explained 0.18 0.45		0.44	0.49	0.56	0.44		0.30
\mathbb{R}^2 0.07 0.35		0.33	0.37	0.50	0.36		0.19
Num. obs. 133 135		135	134	135	135		135

*** p < 0.001; ** p < 0.01; *p < 0.05

variable groups: local mean (LM), local heterogeneity (LH), mean and heterogeneity (LM/LH), landscape context (LC), and sampling effort (in this order from top to bottom). For each taxonomic group, the landscape scale with the lowest model AICc was chosen. Table 3: Results of Generalised Additive Models (GAM) of Shannon diversity as a function of all environmental variables. Dashed lines separate

		Plants	H	Fungi	Ř	Beetles	Bee	Bees/wasps		Birds		Bats	Мал	Mammals
	Edf	F value	Edf	F value	Edf	F value	Edf	F value	Edf	F value	Edf	F value	Edf	F value
Mean canopy height (m)	1.0	1.1	1.0	0.5	1.0	0.0	2.3	1.7	1.0	0.2	1.0	10.4**	2.8	2.1
Elevation (m)	1.0	8.0	1.3	2.4	3.3	2.6^*	1.2	25.4^{***}	1.0	1.1	1.0	4.2^*	1.0	0.1
log(Deadwood volume (m³))	1.0	0.0	1.0	0.0	1.1	0.1	2.2	1.5	1.9	8.0	1.8	1.3	1.0	0.0
Northness	1.0	0.0	1.0	0.1	2.3	3.6^*	1.0	4.9^*	1.0	0.0	1.0	0.3	1.0	0.0
Eastness	1.0	0.0	1.0	0.3	1.0	0.1	1.0	4.1	1.0	2.7	1.0	0.3	1.0	0.3
Proportion of conifers	1.0^{-1}	1.4	-1.0^{-1}	19.2	1.0^{-1}	$-\frac{3.0}{3.0}$	1.0	0.0	$-\frac{1}{1.0}$	1.3	1.0	3.5	$-\frac{1}{1.0}$	0.4
Canopy gap share	1.0	0.0	1.3	0.3	1.0	1.4	2.1	1.5	1.0	0.1	1.7	0.5	1.0	0.2
Mean slope	1.0	0.7	2.5	2.5	1.0	2.6	1.0	0.0	2.3	2.9^*	1.0	1.5	1.0	2.2
_log(SSCI)	1.0	2.2	1.0	0.2	1.0	10.7	1.0	6.4	$\frac{1}{1.0}$	2.2	1.0	0.0	$-\frac{1}{2.0}$	0.8
S.d. of canopy height (m)	1.0	6.0	1.0	1.5	1.0	1.9	1.7	0.7	1.1	6.0	1.0	0.1	1.0	2.4
Tree Shannon diversity	1.4	0.2	1.0	11.6^{***}	1.0	1.7	1.0	0.0	1.0	2.2	1.0	0.0	1.0	0.2
Deadwood diversity	1.0	0.1	1.0	0.0	1.0	0.3	1.0	1.2	1.0	0.2	1.0	7.5	1.0	0.2
Forest cover $(1 \mathrm{km}^2)$	1.0	$ \frac{1}{0.5}$ $ \frac{1}{0.5}$	-1.0^{-1}	2.1	 	 	! 	 	[[
Coniferous forest share (1 km²)	3.4	2.8^*	1.0	3.6										
Forest cover (10 km^2)					1.0	1.8			1.0	2.4	1.6	1.7	1.5	2.8
Coniferous forest share (10 km^2)					2.1	5.6^{**}			1.0	5.8^*	1.0	2.2	1.0	0.2
Forest cover (20 km^2)							1.0	1.6						
Coniferous forest share (20 km²)							1.0	9.1						
Sampling effort	 	 	 		1.0^{-1}	- $ 0.2$ $ -$	 	 	$^ \bar{\overset{-}{1}}$ $\bar{\overset{-}{0}}$	$^{-}$ $^{-}$ *** $^{-}$ 2 7.4	1.4	0.9	$^{-}\bar{2}.\bar{0}^{-}$	2.9
Deviance explained		0.15		0.36		0.40		0.47		0.47		0.30	0	.27
\mathbb{R}^2		0.05		0.27		0.30		0.27		0.40		0.18	_	0.16
Num. obs.		133		135		135		134		135		135	•	135
1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4														

 $^{***}p < 0.001; ^{**}p < 0.01; ^{*}p < 0.05$

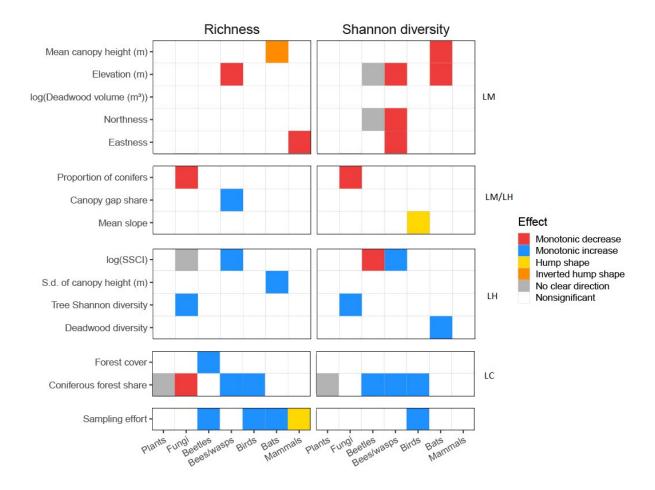


Figure 1: Effects of environmental conditions and sampling effort on Shannon diversity and species/group richness of all seven taxonomic groups. Environmental conditions are separated into groups: local mean (LM), local heterogeneity (LH), local mean or heterogeneity (LM/LH) and landscape context (LC). The results shown are based on Generalized Additive models (GAM) of the response variable modeled as a function of all predictors. Significant effects were assigned to one of five categories based on visual inspection of the fitted relationship (supporting information).

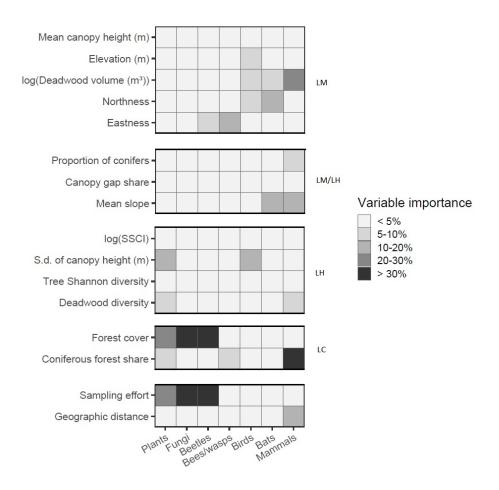


Figure 2: Importance of environmental variables, sampling effort and geographic distance for β diversity (Bray-Curtis distance between pairs of study plots) of all seven taxonomic groups. Environmental conditions are separated into groups: local mean (LM), local heterogeneity (LH), local mean or heterogeneity (LM/LH) and landscape context (LC). Variable importance was quantified as the per cent change in deviance between Generalized Dissimilarity Models (GDM) with the respective variable permuted and unpermuted.

Discussion

Our results highlight the variation of environmental predictor's effect between different taxa diversity. Neither of the three groups of variables was more important than the other two in explaining the variation of biodiversity. However, the effect of local heterogeneity (when significant effect was found) was generally positive, suggesting that heterogeneity trade-offs

do only play a minor role at the investigated spatial scales. The results of our study contributes
to the growing evidence that each aspect of diversity is shaped by specific factors.

Relative importance of mean conditions, heterogeneity and landscape context for biodiversity

Among the environmental variables that were related to the diversity of more than one tax-280 onomic group in this study, measures of mean conditions were not more or less important 281 than those of heterogeneity. Although most studies comparing the effects of resource quantity 282 (a mean condition) and resource heterogeneity on plant species richness found that quan-283 tity is the most important factor (e.g. Stevens and Carson, 2002; Bartels and Chen, 2010; Dor-284 mann et al., 2020), there is a lack of comparable studies on other groups of organisms. In 285 a global meta-analysis, Field et al. (2009) found that variables related to climate or produc-286 tivity explained significantly more of the difference in species richness of several taxa than 287 other explanatory variables, including environmental heterogeneity. This difference was sim-288 ilar for plants and animals. However, the relative importance of climate and productivity di-289 minished with decreasing spatial grain or extent of the study. At spatial scales comparable to 290 our study, all groups of variables showed similar performance. In addition, Jorba et al. (2025) 291 found that macro-climatic means (temperature and moisture) and vegetation-structure heterogeneity contributed almost equally to taxonomic, functional and phylogenetic diversity. Our 293 results therefore outline the importance of mean conditions as well as heterogeneity for biodiversity. In fact, they demonstrate that different aspects of biodiversity in different species 295 groups are highly diversely impacted by a multitude of factors and reductive approaches are unable to capture the complexity of forest ecosystems. 297

In this study, most of the significant effects of variables that indicate local heterogeneity on species richness or Shannon diversity exhibited a consistent positive trend, aligning with the habitat heterogeneity hypothesis (Stein et al., 2014, and references therein). We found barely any indication of trade-offs between area and heterogeneity. These differences in our findings compared to the most similar studies in the field, Heidrich et al. (2020) and Heidrich et al. (2023)

298

299

301

could potentially be attributed to variation in the selection of taxonomic groups and measures
of heterogeneity. For example, the finer resolution of arthropod taxa and the inclusion of plant
diversity as a predictor in their studies may explain these disparities. Therefore, results need
to be re-evaluated depending on the specific taxonomic groups (e.g. higher/lower degree of
aggregation) as well as the measure of heterogeneity applied and additionally the spatial scales
investigated.

Our study raises a significant point: neither mean conditions nor heterogeneity emerge as predominant determinants of biodiversity variation at small spatial scales across taxa. If corroborated by further research, this represents additional proof for the complex species requirements at a fine scale.

Our investigation of landscape context variables revealed an interesting distinction. Although the share of coniferous forests exhibited strong and significant relationships with the α and β diversity of some taxonomic groups, the forest cover appeared less influential. Similar results were reprted by Li et al. (2025), where increasing the proportion of broadleaf trees doubled understory plant richness and stabilised soil-microbial β -diversity, whereas total forest cover in the buffer failed to predict any diversity metric. There is also evidence that treespecies composition and stand structure consistently outperform simple percent forest cover in explaining α - and β -diversity across arthropods, birds and fungi (Uhl et al., 2024) Thus, we cannot conclude that the landscape context was generally more or less important for biodiversity than local conditions, but rather that the type of available landscape context may play a role.

Theory posits that the scale at which environmental conditions impact species, known as the "scale of effect" should depend on species mobility (both local movements and dispersal: Miguet et al., 2016). Empirical tests, however, do not consistently support this prediction (Arroyo-Rodríguez et al., 2023). Despite the common assertion that larger animals should exhibit a larger scale of effect due to their longer dispersal distances (Jenkins et al., 2007), our findings did not align with this hypothesis. In our study system, the largest spatial scale tested (20 km²) to α diversity for bees and wasps, but not mammals. Gengler et al. (2024) described how the spatial extent at which landscape variables shape biodiversity is influenced less by

body size than by the type of metric of biodiversity, but also by life-stage-specific behaviour.

This suggests that in our study, the maximum dispersal distance may not be the primary factor
that determines the differences on the "scale of effect"

Effects of environmental variables across taxa

Our statistical models had relatively low proportions of explained variation, many non-significant 336 effects and considerable variation between taxonomic group responses. These results show similarity to those of Penone et al. (2019), Heidrich et al. (2020) and Uhl et al. (2024), who 338 studied the effects of forest attributes and environmental heterogeneity, respectively, on bio-339 diversity of multiple taxa across temperate forests. Similarly, joint species-distribution models 340 of 11 taxa showed that forest structure and edaphic conditions exerted highly divergent effects among groups (Kepfer-Rojas et al., 2024). One plausible explanation for the weak relationships 342 between forest structure and biodiversity is the heterogeneous response of sub-groups and even individual species within each taxonomic group. These responses are most likely based 344 on factors such as habitat preference, mobility, and dietary requirements. Our results suggest 345 that the best predictors of occurrence and abundance may be species-specific, which could 346 account for the unexplained variability in our models. For instance, Rappa et al. (2022) identi-347 fied divergent effects of forest structural variables on the abundance of beetle families based 348 on their feeding guilds. In the case of bees and wasps, forest structure exhibited significantly 349 greater effects on biodiversity for forest specialists compared to non-forest specialists (Rappa 350 et al., 2023). Likewise, in similar studies of subsets of the bird species and bat acoustic groups 351 included in our analyses, Basile et al. (2021) and Hendel et al. (2023) reported that the impor-352 tance of forest attributes such as mean tree size and deadwood amount varied considerably 353 between species or groups. 354

Light availability is a key limiting resource for understory plants (Dormann et al., 2020, and references therein) and can affect higher trophic levels directly through its influence on microclimate (e.g. von Arx et al., 2013) or indirectly via its effects on plant abundance and community composition (e.g. Gao et al., 2015; Rappa et al., 2023). In their study of 13 trophic groups, Penone et al. (2019) found that of all stand structural variables tested, canopy cover

355

357

(a measure of light availability) had the strongest and most consistent effects on biodiversity, but even so its effect on species richness was only statistically significant for four of the 13 361 groups (vascular plants, lichens, arthropod herbivores, arthropod carnivores). By contrast, in our analyses canopy gap share (1 - canopy cover) only had substantial effects on species rich-363 ness and β diversity of bees and wasps (see also Rappa et al., 2023). The limited influence on other groups could potentially be attributed to the relatively narrow range of canopy gap share 365 in our study sites (ranging from 0 to 0.42, with a median of 0.12; Table 1), reflecting typical conditions in Central European mountain forests managed according to close-to-nature forestry 367 principles (Bauhus et al., 2013). While the absence of plots with higher light availability may have precluded the detection of effects on other taxonomic groups, such effects at extreme 369 light conditions may not be relevant in undisturbed central European forests. For vascular plants, the relatively coarse spatial scale of our analyses and the absence of statistical inter-371 actions between environmental variables likely prevented us from detecting an effect of light availability. In their analysis of the same plant diversity data, Helbach et al. (2022) identified a 373 significant relationship between understory plant richness and light heterogeneity at the scale of 25 m² subplots, but only when soil resource heterogeneity was also high. 375

Despite the general consensus on the importance of large, old trees for biodiversity con-376 servation in forests (e.g. Bauhus et al., 2009; Brunet et al., 2010; Gustafsson et al., 2020), our 377 study revealed that mean canopy height exerted only a modest influence on α or β diversity 378 across taxonomic groups, except for a negative hump-shaped effect on α diversity in bats. 379 This mirrors the limited impact of mean diameter at breast height (DBH) found by Penone 380 et al. (2019). It is conceivable that the age of stands, often associated with larger trees, may 381 not be the primary driver of biodiversity increases, contradicting Spake et al. (2015); instead, specific structural elements more abundant in older forests may be better predictors than aver-383 age tree size (Bauhus et al., 2009; Penone et al., 2019). In addition, our data set did not include some of the taxonomic groups that are typically associated with the presence of large trees 385 (e.g. epiphytic bryophytes and lichens) (Odor et al., 2013) and our sampling did not focused on 386 species that depend on the specific conditions and habitats provided by large trees (e.g. Storch 387 et al., 2023; Asbeck et al., 2021).

While canopy height may influence multiple taxonomic groups, we only found signifi-389 cant effects on bats. In line with previous findings (Jung et al., 2012; Froidevaux et al., 2016; 390 Heidrich et al., 2020), bat α diversity increased with the heterogeneity of the canopy height. Forests with diverse canopies provide foraging habitats for bats with different adaptations to 392 vegetation (Schnitzler and Denzinger, 2011) while also offering shelter and facilitating com-393 muting flights of bats (Schaub and Schnitzler, 2007). Interestingly, the relationship between α 394 diversity and the canopy height itself suggests that species richness is highest at low and high canopy heights, while the Shannon diversity of bats declined with increasing canopy height. 396 Hendel et al. (2023) found that forest height played a minor role in the habitat suitability of most bat groups, and positive associations of bat occurrence and activity with canopy height 398 have been described (Jung et al., 2012; Froidevaux et al., 2016).

Apart from the presence of large, old trees and related structural elements, deadwood is 400 conventionally regarded as a pivotal factor explaining the high biodiversity in old-growth forests compared to intensively managed production forests (Bauhus et al., 2009; Paillet et al., 402 2010; Doerfler et al., 2018). Consequently, retention forestry strives to augment the quantity and diversity of deadwood (logs and snags) in timber production forests (Vítková et al., 2018; 404 Gustafsson et al., 2020). Surprisingly, our analyses showed that both deadwood volume and deadwood diversity scarcely influenced the α diversity of any taxonomic group, with the ex-406 ception of a minor effect of deadwood diversity on bat Shannon diversity. Rousseau et al. (2025) found similar results, But they reported how deadwood had en effect on community composi-408 tion rather than α diversity. Moreover, it is plausible that deadwood exerts limited influence on the overall species count among animal taxa, as only a subset of species within each taxonomic 410 group rely on deadwood for sustenance or refuge. For example, beetles, which we identified on family level, have some species within each family that are known to depend on deadwood 412 to different degrees. 413

409

414

416

Our results are also in contrast with previous reports of positive effects of deadwood diversity (Abrego and Salcedo, 2013; Penone et al., 2019; Heidrich et al., 2020; Tomao et al., 2020; Yamanaka et al., 2025) and deadwood volume (Lassauce et al., 2011; Gao et al., 2015) on associated fungal species richness. A possible reason for this discrepancy could be that in our

study, deadwood assessments only included objects with a diameter of more than 7 cm, as it is also done in commercial forestry. In contrast, data on fungal fruiting bodies were collected 419 without minimum deadwood diameter, resulting in deadwood objects with a median diameter of 5.4 cm (Zibold et al., 2024). This study found a hump-shaped effect of deadwood diversity 421 on fungal species diversity, but it also pointed out that the strong correlation between dead-422 wood amount and deadwood diversity measures may obscure this. This indicates a mismatch 423 between how deadwood is generally evaluated and how it is utilized by fungal species in managed forests (Juutilainen et al., 2011). Species composition for some groups can be affected 425 by deadwood disposition rather than just volume (Zumr et al., 2024). In addition, deadwood volumes in mature forest are reported to be higher than on most of our sites (von Oheimb 427 et al., 2007), there are also limited diversity of deadwood sizes and decay stages, limiting the applicability in these ranges. However, all of these points reflect the reality of commercially 429 used forests.

431

433

435

437

438

439

441

443

445

Among the environmental variables investigated in our study, the proportion of conifers at the local or landscape scale emerged as the most influential among taxonomic groups and facets of biodiversity. Beetle, bees and wasps, and bird richness and Shannon diversity were positively associated with the coniferous forest share in the surrounding landscape, while fungal species diversity declined with increasing conifer proportion. Our findings do not suggest that mixed coniferous and broadleafed tree stands harbor more species than conifer-dominated stands, indicating that the conifer proportion can be considered a measure of mean environmental conditions rather than heterogeneity. These results concur (where applicable) with those of Penone et al. (2019), despite their data originating from broadleaf-dominated forests, while most of our study plots and the surrounding landscape predominantly featured coniferous species, particularly spruce and fir. On the other hand, the weakly positive effect of coniferous share in the surrounding landscape on bird diversity is in contrast to the results of a previous publication (Basile et al., 2021) and a large-scale study of tree composition effects on bird diversity across Europe (Charbonnier et al., 2016). This may be due to the lower sampling effort in the first and the much larger range of tree compositions in the second study, which underlines the importance of putting our findings in perspective with similar studies on specific taxa.

470

472

The higher α diversity of some taxonomic groups in coniferous forests may be associated with the size of the regional species pool. The presence of tree resins as nesting material for trap-nesting bees and wasps and large aphid colonies as food resources on conifers may also contribute to this effect (Eckerter et al., 2022). In contrast, the adverse effect of conifers on alpha diversity of wood-dwelling fungi aligns with earlier observations and may be attributed to the higher lignin and lower nutrient content in conifer wood (Yang et al., 2021).

454 Management implications

Our study reports heterogeneous effects of the environment (in terms of mean conditions, 455 heterogeneity and landscape context) on biodiversity that can not be generalized across tax-456 onomic groups. However, our results can be used to generalize the effect of a given structure 457 over specific taxa, without any focus on dominant species or species of high conservation 458 value. We suggest that forest managers acknowledge the specific effects of forest elements on 459 specific potential biodiversity targets (e.g. endangered species, forest specialists, native species 460 or species with an important role in the ecosystem) at specific spatial scales. Diversifying for-461 est management and considering the specific taxon requirements to provide a wide range of 462 habitats would provide a wide range of structural elements capable of promoting suitable con-463 ditions for conservation and/or management goals. Local interventions such as planting spe-464 cific combinations of tree species, thinning, selective harvesting, or deadwood conservation 465 have a direct and specific impact in some of the variables we studied and on different aspects 466 of biodiversity. As there is no clear main driver of biodiversity, we suggest dividing the forest 467 landscape into a mosaic of specific target-oriented areas and applying specific interventions 468 for conservation at the local scale.

We found that environmental variables such as elevation or exposure had a (negative) impact on some groups. Although management cannot change the abiotic circumstances in a meaningful way, it is important to consider the limitations that those variables might impose while setting conservation goals. The changes in bee/wasp and mammal β diversity with elevation indicate that even when the environmental conditions are generally associated with

lower richness and Shannon diversity, those sites can still be an important habitat for specific taxa.

We highlight the importance of tree species composition and stand structure for each taxon over deadwood volume, stand age or tree species richness. The composition of tree species (proportion of conifers, tree diversity) and stand structure (Stand structure complexity index (SSCI), canopy height, deadwood diversity) can offer practitioners numerous ways of potential interventions to cause a positive effect on biodiversity.

Conclusions

486

488

490

492

494

496

497

498

This study demonstrates that local mean conditions, heterogeneity, and landscape context characteristics influence biodiversity in taxon-specific ways. We did not identify a single driver or a set of dominant drivers of biodiversity.

Our findings underscore the absence of a uniform impact of forest management on biodiversity, indicating that most taxa are only weekly affected by particular forest structures or show contrasting responses. These results are consistent with recent studies that examined multiple species groups, but contradict some studies that focused on individual taxonomic groups or species of conservation interest. Therefore, specific variables and scales should be considered for the conservation of particular targeted species, while a multifaceted landscape approach may be necessary for the overall conservation of biodiversity. This study provides a comprehensive and comparable overview of the drivers relevant for the diversity of different taxa.

Based on our findings, we recommend stakeholders establish and apply taxon-specific conservation targets. Each taxon is dependent on certain elements within the forest. Here, the diversity of forest structure at landscape level is key to meet the needs of all taxa. The creation or conservation of such a landscape can be guided by the relationships between biodiversity, forest mean conditions, heterogeneity, and landscape context we identified.

References

- Abrego, N. and Salcedo, I. (2013). Variety of woody debris as the factor influencing woodinhabiting fungal richness and assemblages: Is it a question of quantity or quality? Forest

 Ecology and Management, 291:377–385.
- Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M., and Kadmon, R. (2012).

 Area-heterogeneity tradeoff and the diversity of ecological communities. *Proceedings of*
- the National Academy of Sciences USA 100(42),17405 17500
- the National Academy of Sciences, USA, 109(43):17495–17500.
- Ampoorter, E., Barbaro, L., Jactel, H., Baeten, L., Boberg, J., Carnol, M., Castagneyrol, B., Char-
- bonnier, Y., Dawud, S. M., Deconchat, M., et al. (2020). Tree diversity is key for promoting
- the diversity and abundance of forest-associated taxa in europe. Oikos, 129(2):133–146.
- Arroyo-Rodríguez, V., Martínez-Ruiz, M., Bezerra, J. S., Galán-Acedo, C., San-José, M., and
- Fahrig, L. (2023). Does a species' mobility determine the scale at which it is influenced
- by the surrounding landscape pattern? *Current Landscape Ecology Reports.*
- Asbeck, T., Großmann, J., Paillet, Y., Winiger, N., and Bauhus, J. (2021). The use of tree-related
- microhabitats as forest biodiversity indicators and to guide integrated forest management.
- *Current Forestry Reports*, 7(1):59–68.
- Bartels, S. F. and Chen, H. Y. H. (2010). Is understory plant species diversity driven by resource quantity or resource heterogeneity? *Ecology*, 91(7):1931–1938.
- Basile, M., Storch, I., and Mikusiński, G. (2021). Abundance, species richness and diversity
- of forest bird assemblages The relative importance of habitat structures and landscape
- context. Ecological Indicators, 133:108402.
- Bauhus, J., Kouki, J., Paillet, Y., Asbeck, T., and Marchetti, M. (2017). How does the forest-
- based bioeconomy impact forest biodiversity? In Winkel, G., editor, Towards a Sustainable
- European Forest-Based Bioeconomy Assessment and the Way Forward, volume 8 of What
- Science Can Tell Us, pages 67–76. European Forest Institute.

- Bauhus, J., Puettmann, K., and Kühne, C. (2013). Close-to-nature forest management in europe: does it support complexity and adaptability of forest ecosystems. *Managing forests as*complex adaptive systems: building resilience to the challenge of global change, pages 187–213.
- Bauhus, J., Puettmann, K., and Messier, C. (2009). Silviculture for old-growth attributes. *Forest Ecology and Management*, 258(4):525–537.
- Bazzaz, F. A. (1975). Plant species diversity in old-field successional ecosystems in southern Illinois. *Ecology*, 56(2):485–488.
- Benton, T. G., Vickery, J. A., and Wilson, J. D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? *Trends in Ecology & Evolution*, 18(4):182–188.
- Bollmann, K., Bergamini, A., Senn-Irlet, B., Nobis, M., Duelli, P., and Scheidegger, C. (2009).
- Konzepte, Instrumente und Herausforderungen bei der Förderung der Biodiversität im
- Wald— Concepts, instruments and challenges for the conservation of biodiversity in the
- forest. Schweizerische Zeitschrift für Forstwesen, 160(3):53-67.
- Bollmann, K. and Braunisch, V. (2013). To integrate or to segregate: Balancing commodity
 production and biodiversity conservation in European forests. In *Integrative Approaches as*an Opportunity for the Conservation of Forest Biodiversity. European Forest Institute, Joensuu,
 Finland.
- Bouget, C., Larrieu, L., Nusillard, B., and Parmain, G. (2013). In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. *Biodiversity and Conservation*, 22(9):2111–2130.
- Brunet, J., Fritz, Ö., and Richnau, G. (2010). Biodiversity in European beech forests a review with recommendations for sustainable forest management. *Ecological Bulletins*, (53):77–94.
- Charbonnier, Y. M., Barbaro, L., Barnagaud, J.-Y., Ampoorter, E., Nezan, J., Verheyen, K., and Jactel, H. (2016). Bat and bird diversity along independent gradients of latitude and tree composition in European forests. *Oecologia*, 182(2):529–537.

- Chaudhary, A., Burivalova, Z., Koh, L. P., and Hellweg, S. (2016). Impact of forest management on species richness: Global meta-analysis and economic trade-offs. Scientific Reports, 551 6(1):23954. 552
- Coelho, M. T. P., Barreto, E., Diniz-Filho, J. A. F., Rangel, T. F., Bohdalková, E., Storch, D., Jang, Y.-T., Pontarp, M., Cassemiro, F., de Araujo, M. L., et al. (2025). Consistent energy-diversity 554 relationships in terrestrial vertebrates. *Science*, 389(6755):53–57.
- Doerfler, I., Gossner, M. M., Müller, J., Seibold, S., and Weisser, W. W. (2018). Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity 557 of multiple taxa in managed forests. *Biological Conservation*, 228:70–78.
- Dormann, C. F., Bagnara, M., Boch, S., Hinderling, J., Janeiro-Otero, A., Schäfer, D., Schall, P., and Hartig, F. (2020). Plant species richness increases with light availability, but not 560 variability, in temperate forests understorey. BMC Ecology, 20(1):43.
- Eckerter, T., Braunisch, V., Pufal, G., and Klein, A. M. (2022). Small clear-cuts in managed forests 562 support trap-nesting bees, wasps and their parasitoids. Forest Ecology and Management, 563 509:120076.
- Ewald, J. (2003). The calcareous riddle: Why are there so many calciphilous species in the Central European flora? Folia Geobotanica, 38(4):357-366. 566
- Fedrowitz, K., Koricheva, J., Baker, S. C., Lindenmayer, D. B., Palik, B., Rosenvald, R., Beese, W.,

568

573

Franklin, J. F., Kouki, J., Macdonald, E., Messier, C., Sverdrup-Thygeson, A., and Gustafsson,

- L. (2014). Can retention forestry help conserve biodiversity? A meta-analysis. Journal of 569 Applied Ecology, 51(6):1669-1679. 570
- Ferrier, S., Manion, G., Elith, J., and Richardson, K. (2007). Using generalized dissimilarity mod-571 elling to analyse and predict patterns of beta diversity in regional biodiversity assessment. 572 *Diversity and Distributions*, 13(3):252–264.
- Field, R., Hawkins, B. A., Cornell, H. V., Currie, D. J., Diniz-Filho, J. A. F., Guégan, J.-F., Kaufman,

D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O'Brien, E. M., and Turner, J. R. G. (2009).

- Spatial species-richness gradients across scales: A meta-analysis. *Journal of Biogeography*, 36(1):132–147.
- Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G., and Obrist, M. K. (2016). From field surveys to LiDAR: Shining a light on how bats respond to forest structure. *Remote Sensing*of Environment, 175:242–250.
- Fuentes-Montemayor, E., Watts, K., Macgregor, N. A., Lopez-Gallego, Z., and J. Park, K. (2017).
- Species mobility and landscape context determine the importance of local and landscape-
- level attributes. *Ecological Applications*, 27(5):1541–1554.
- Gao, T., Nielsen, A. B., and Hedblom, M. (2015). Reviewing the strength of evidence of biodiversity indicators for forest ecosystems in Europe. *Ecological Indicators*, 57:420–434.
- Gauer, J. and Aldinger, E. (2005). Waldökologische naturräume deutschlands-wuchsgebiete
 schwarzwald und baar-wutach. Mitteilungen des Vereins für Forstliche Standortskunde und
 Forstpflanzenzüchtung, 43:281–288.
- Gengler, N. W., Acevedo, M. A., and Branch, L. C. (2024). Habitat configuration influences mammal populations at a wider spatial extent than habitat composition: a meta-analysis of forest mammal datasets. *Landscape Ecology*, 39(1):2.
- Gil-Tena, A., Saura, S., and Brotons, L. (2007). Effects of forest composition and structure on bird
 species richness in a Mediterranean context: Implications for forest ecosystem management.
 Forest Ecology and Management, 242(2):470–476.
- Gustafsson, L., Baker, S. C., Bauhus, J., Beese, W. J., Brodie, A., Kouki, J., Lindenmayer, D. B.,
- Lõhmus, A., Pastur, G. M., Messier, C., Neyland, M., Palik, B., Sverdrup-Thygeson, A., Volney,
- W. J. A., Wayne, A., and Franklin, J. F. (2012). Retention forestry to maintain multifunctional forests: A world perspective. *BioScience*, 62(7):633–645.
- Gustafsson, L., Bauhus, J., Asbeck, T., Augustynczik, A. L. D., Basile, M., Frey, J., Gutzat, F.,
- Hanewinkel, M., Helbach, J., Jonker, M., Knuff, A., Messier, C., Penner, J., Pyttel, P., Reif,
- A., Storch, F., Winiger, N., Winkel, G., Yousefpour, R., and Storch, I. (2020). Retention as

- an integrated biodiversity conservation approach for continuous-cover forestry in Europe.
- 603 Ambio, 49(1):85-97.
- Hartig, F. (2022). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models.
- Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J.-F., Kaufman, D. M., Kerr, J. T.,
- Mittelbach, G. G., Oberdorff, T., O'Brien, E. M., Porter, E. E., and Turner, J. R. G. (2003). En-
- ergy, water, and broad-scale geographic patterns of species richness. *Ecology*, 84(12):3105–
- 609 3117.
- Heidrich, L., Bae, S., Levick, S., Seibold, S., Weisser, W., Krzystek, P., Magdon, P., Nauss, T.,
- Schall, P., Serebryanyk, A., Wöllauer, S., Ammer, C., Bässler, C., Doerfler, I., Fischer, M.,
- Gossner, M. M., Heurich, M., Hothorn, T., Jung, K., Kreft, H., Schulze, E.-D., Simons, N.,
- Thorn, S., and Müller, J. (2020). Heterogeneity-diversity relationships differ between and
- within trophic levels in temperate forests. *Nature Ecology & Evolution*, 4(9):1204–1212.
- Heidrich, L., Brandl, R., Ammer, C., Bae, S., Bässler, C., Doerfler, I., Fischer, M., Gossner, M. M.,
- Heurich, M., Heibl, C., Jung, K., Krzystek, P., Levick, S., Magdon, P., Schall, P., Schulze, E.-
- D., Seibold, S., Simons, N. K., Thorn, S., Weisser, W. W., Wöllauer, S., and Müller, J. (2023).
- Effects of heterogeneity on the ecological diversity and redundancy of forest fauna. Basic
- and Applied Ecology, 73(6):72-79.
- Helbach, J., Frey, J., Messier, C., Mörsdorf, M., and Scherer-Lorenzen, M. (2022). Light het-
- erogeneity affects understory plant species richness in temperate forests supporting the
- heterogeneity-diversity hypothesis. *Ecology and Evolution*, 12(2):e8534.
- Hendel, A.-L., Winiger, N., Jonker, M., Zielewska-Büttner, K., Ganz, S., Adler, P., and Braunisch,
- V. (2023). Bat habitat selection reveals positive effects of retention forestry. Forest Ecology
- and Management, 531:120783.
- Jackson, H. B. and Fahrig, L. (2015). Are ecologists conducting research at the optimal scale?
- Global Ecology and Biogeography, 24(1):52-63.

- Jenkins, D. G., Brescacin, C. R., Duxbury, C. V., Elliott, J. A., Evans, J. A., Grablow, K. R., Hille-
- gass, M., Lyon, B. N., Metzger, G. A., Olandese, M. L., Pepe, D., Silvers, G. A., Suresch, H. N.,
- Thompson, T. N., Trexler, C. M., Williams, G. E., Williams, N. C., and Williams, S. E. (2007).
- Does size matter for dispersal distance? *Global Ecology and Biogeography*, 16(4):415–425.
- ₆₃₂ Jorba, J. V., Scherrer, D., Duchenne, F., Zellweger, F., Gossner, M. M., and Bollmann, K. (2025).
- Differential responses of taxonomic, functional and phylogenetic multi-taxa diversity to en-
- vironmental factors in temperate forest ecosystems. *Ecological Indicators*, 178:113855.
- Jung, K., Kaiser, S., Böhm, S., Nieschulze, J., and Kalko, E. K. V. (2012). Moving in three dimen-
- sions: Effects of structural complexity on occurrence and activity of insectivorous bats in
- managed forest stands. *Journal of Applied Ecology*, 49(2):523–531.
- Juutilainen, K., Halme, P., Kotiranta, H., and Mönkkönen, M. (2011). Size matters in studies of
- dead wood and wood-inhabiting fungi. Fungal Ecology, 4(5):342–349.
- Kadmon, R. and Allouche, O. (2007). Integrating the effects of area, isolation, and habitat
- heterogeneity on species diversity: A unification of island biogeography and niche theory.
- The American Naturalist, 170(3):443-454.
- Kati, V., Poirazidis, K., Dufrêne, M., Halley, J. M., Korakis, G., Schindler, S., and Dimopoulos,
- P. (2010). Towards the use of ecological heterogeneity to design reserve networks: A case
- study from Dadia National Park, Greece. *Biodiversity and Conservation*, 19(6):1585–1597.
- Kepfer-Rojas, S., Ovaskainen, O., Møller, P. F., Johannsen, V. K., Byriel, D. B., Justesen, M. J., Riis-
- Nielsen, T., Hansen, A. K., Gottlieb, L., and Schmidt, I. K. (2024). Beyond species richness:
- Forest structure and edaphic conditions have similar importance but different effects on
- multi-taxon biodiversity. Forest Ecology and Management, 571:122230.
- Körner, C. (2007). The use of "altitude" in ecological research. Trends in Ecology & Evolution,
- 651 22(11):569-574.
- Lassauce, A., Paillet, Y., Jactel, H., and Bouget, C. (2011). Deadwood as a surrogate for forest

- biodiversity: Meta-analysis of correlations between deadwood volume and species richness
 of saproxylic organisms. *Ecological Indicators*, 11(5):1027–1039.
- Li, Z., Wang, X., Huang, Y., Yang, X., Wang, R., and Zhang, M. (2025). Increasing the proportion of broadleaf species in mixed conifer–broadleaf forests improves understory plant composition and promotes soil carbon fixation. *Plants*, 14(9):1392.
- Lindenmayer, D., Franklin, J., Lõhmus, A., Baker, S., Bauhus, J., Beese, W., Brodie, A., Kiehl, B.,
- Kouki, J., Pastur, G. M., Messier, C., Neyland, M., Palik, B., Sverdrup-Thygeson, A., Volney,
- J., Wayne, A., and Gustafsson, L. (2012). A major shift to the retention approach for forestry
- can help resolve some global forest sustainability issues. *Conservation Letters*, 5(6):421–431.
- Menge, J. H., Magdon, P., Wöllauer, S., and Ehbrecht, M. (2023). Impacts of forest manage-
- ment on stand and landscape-level microclimate heterogeneity of european beech forests.
- 664 Landscape Ecology, 38(4):903-917.
- Miguet, P., Jackson, H. B., Jackson, N. D., Martin, A. E., and Fahrig, L. (2016). What determines
 the spatial extent of landscape effects on species? *Landscape Ecology*, 31(6):1177–1194.
- Müller, J., Hothorn, T., and Pretzsch, H. (2007). Long-term effects of logging intensity on structures, birds, saproxylic beetles and wood-inhabiting fungi in stands of European beech Fagus
- sylvatica L. Forest Ecology and Management, 242(2):297–305.
- Ódor, P., Király, I., Tinya, F., Bortignon, F., and Nascimbene, J. (2013). Patterns and drivers
 of species composition of epiphytic bryophytes and lichens in managed temperate forests.
- Forest Ecology and Management, 306:256–265.
- Paillet, Y., Bergès, L., Hjältén, J., Ódor, P., Avon, C., Bernhardt-Römermann, M., Bijlsma, R.-J.,
- De Bruyn, L., Fuhr, M., Grandin, U., Kanka, R., Lundin, L., Luque, S., Magura, T., Matesanz,
- S., Mészáros, I., Sebastià, M.-T., Schmidt, W., Standovár, T., Tóthmérész, B., Uotila, A., Val-
- ladares, F., Vellak, K., and Virtanen, R. (2010). Biodiversity differences between managed
- and unmanaged forests: Meta-analysis of species richness in Europe. Conservation Biology,
- 678 24(1):101-112.

- Pärtel, M., Zobel, M., Zobel, K., and van der Maarel, E. (1996). The species pool and its relation
 to species richness: Evidence from Estonian plant communities. *Oikos*, 75(1):111–117.
- Penone, C., Allan, E., Soliveres, S., Felipe-Lucia, M. R., Gossner, M. M., Seibold, S., Simons,
- N. K., Schall, P., van der Plas, F., Manning, P., Manzanedo, R. D., Boch, S., Prati, D., Ammer,
- 683 C., Bauhus, J., Buscot, F., Ehbrecht, M., Goldmann, K., Jung, K., Müller, J., Müller, J. C., Pena,
- R., Polle, A., Renner, S. C., Ruess, L., Schönig, I., Schrumpf, M., Solly, E. F., Tschapka, M.,
- Weisser, W. W., Wubet, T., and Fischer, M. (2019). Specialisation and diversity of multiple
- trophic groups are promoted by different forest features. *Ecology Letters*, 22(1):170–180.
- R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation
 for Statistical Computing.
- Rappa, N. J., Staab, M., Frey, J., Winiger, N., and Klein, A.-M. (2022). Multiple forest structural elements are needed to promote beetle biomass, diversity and abundance. *Forest Ecosystems*, 9:100056.
- Rappa, N. J., Staab, M., Ruppert, L.-S., Frey, J., Bauhus, J., and Klein, A.-M. (2023). Structural elements enhanced by retention forestry promote forest and non-forest specialist bees and wasps. *Forest Ecology and Management*, 529:120709.
- Rousseau, M., de Groot, G. A., Skidmore, A. K., Siegenthaler, A., Laros, I., Heurich, M., Adiningrat, D. P., and Neinavaz, E. (2025). Ground-lying deadwood volume promotes soil beta diversity but not alpha diversity in european temperate forests. *Plant and Soil*, pages 1–18.
- Sabatini, F. M., de Andrade, R. B., Paillet, Y., Ódor, P., Bouget, C., Campagnaro, T., Gosselin, F.,
 Janssen, P., Mattioli, W., Nascimbene, J., et al. (2019). Trade-offs between carbon stocks and
 biodiversity in european temperate forests. *Global Change Biology*, 25(2):536–548.
- Schall, P., Gossner, M. M., Heinrichs, S., Fischer, M., Boch, S., Prati, D., Jung, K., Baumgartner,
 V., Blaser, S., Böhm, S., Buscot, F., Daniel, R., Goldmann, K., Kaiser, K., Kahl, T., Lange, M.,
 Müller, J., Overmann, J., Renner, S. C., Schulze, E.-D., Sikorski, J., Tschapka, M., Türke, M.,
 Weisser, W. W., Wemheuer, B., Wubet, T., and Ammer, C. (2018). The impact of even-aged

- and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. *Journal of Applied Ecology*, 55(1):267–278.
- Schall, P., Heinrichs, S., Ammer, C., Ayasse, M., Boch, S., Buscot, F., Fischer, M., Goldmann,
- K., Overmann, J., Schulze, E.-D., Sikorski, J., Weisser, W. W., Wubet, T., and Gossner, M. M.
- (2020). Can multi-taxa diversity in european beech forest landscapes be increased by com-
- bining different management systems? *Journal of Applied Ecology*, 57(7):1363–1375.
- Schaub, A. and Schnitzler, H. U. (2007). Echolocation behavior of the bat *Vespertilio murinus*reveals the border between the habitat types "edge" and "open space". *Behavioral Ecology*and Sociobiology, 61(4):513–523.
- Schnitzler, H.-U. and Denzinger, A. (2011). Uauditory fovea and doppler shift compensation:
 adaptations for flutter detection in echolocating bats using cf-fm signals. *Journal of Com-*parative Physiology, 197(5):541–559.
- ⁷¹⁷ Šímová, I., Li, Y. M., and Storch, D. (2013). Relationship between species richness and productivity in plants: The role of sampling effect, heterogeneity and species pool. *Journal of* ⁷¹⁸ *Ecology*, 101(1):161–170.
- Spake, R., Ezard, T. H. G., Martin, P. A., Newton, A. C., and Doncaster, C. P. (2015). A meta analysis of functional group responses to forest recovery outside of the tropics. *Conservation Biology*, 29(6):1695–1703.
- Spiecker, H. et al. (2000). Growth of norway spruce (picea abies [l.] karst.) under changing environmental conditions in europe. In *EFI Proceedings*, volume 33, pages 11–26. European Forest Institute (EFI).
- Srivastava, D. and Lawton, J. (1998). Why more productive sites have more species: An experimental test of theory using tree-hole communities. *The American Naturalist*, 152(4):510–529.
- Stein, A., Gerstner, K., and Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. *Ecology Letters*, 17(7):866–880.

- Stevens, M. H. H. and Carson, W. P. (2002). Resource quantity, not resource heterogeneity, maintains plant diversity. *Ecology Letters*, 5(3):420–426.
- Storch, D., Bohdalková, E., and Okie, J. (2018). The more-individuals hypothesis revisited: The role of community abundance in species richness regulation and the productivity–diversity relationship. *Ecology Letters*, 21(6):920–937.
- Storch, F., Boch, S., Gossner, M. M., Feldhaar, H., Ammer, C., Schall, P., Polle, A., Kroiher, F.,
 Müller, J., and Bauhus, J. (2023). Linking structure and species richness to support forest
 biodiversity monitoring at large scales. *Annals of Forest Science*, 80(1):3.
- Storch, I., Penner, J., Asbeck, T., Basile, M., Bauhus, J., Braunisch, V., Dormann, C. F., Frey, J.,
 Gärtner, S., Hanewinkel, M., Koch, B., Klein, A.-M., Kuss, T., Pregernig, M., Pyttel, P., Reif, A.,
 Scherer-Lorenzen, M., Segelbacher, G., Schraml, U., Staab, M., Winkel, G., and Yousefpour,
 R. (2020). Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi-scale approach. *Ecology*and *Evolution*, 10(3):1489–1509.
- Taylor, D. R., Aarssen, L. W., and Loehle, C. (1990). On the relationship between r/K selection
 and environmental carrying capacity: A new habitat templet for plant life history strategies.
 Oikos, 58(2):239–250.
- Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M. C., Schwager, M., and Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. *Journal of Biogeography*, 31(1):79–92.
- Tomao, A., Antonio Bonet, J., Castaño, C., and de-Miguel, S. (2020). How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. *Forest Ecology and Management*,
 457:117678.
- Uhl, B., Schall, P., and Bässler, C. (2024). Achieving structural heterogeneity and high multitaxon biodiversity in managed forest ecosystems: a european review. *Biodiversity and Con*servation, pages 1–32.

- Vítková, L., Bače, R., Kjučukov, P., and Svoboda, M. (2018). Deadwood management in Central European forests: Key considerations for practical implementation. *Forest Ecology and*Management, 429:394–405.
- Vockenhuber, E. A., Scherber, C., Langenbruch, C., Meißner, M., Seidel, D., and Tscharntke, T.

 (2011). Tree diversity and environmental context predict herb species richness and cover in

 Germany's largest connected deciduous forest. *Perspectives in Plant Ecology, Evolution and*Systematics, 13(2):111–119.
- von Arx, G., Graf Pannatier, E., Thimonier, A., and Rebetez, M. (2013). Microclimate in forests
 with varying leaf area index and soil moisture: Potential implications for seedling establishment in a changing climate. *Journal of Ecology*, 101(5):1201–1213.
- von Oheimb, G., Westphal, C., and Härdtle, W. (2007). Diversity and spatio-temporal dynamics
 of dead wood in a temperate near-natural beech forest (fagus sylvatica). *European Journal*of Forest Research, 126:359–370.
- Wood, S. N. (2017). *Generalized Additive Models: An Introduction with R.* Chapman and Hall/CRC, New York, second edition.
- Yamanaka, S., Ueda, A., Furuya, N., Kobayashi, T., Goto, H., and Ozaki, K. (2025). Tree retention for conserving saproxylic beetles in harvested conifer plantations. *Forest Ecology and Management*, 593:122917.
- Yang, S., Limpens, J., Sterck, F. J., Sass-Klaassen, U., Cornelissen, J. H. C., Hefting, M., van
 Logtestijn, R. S. P., Goudzwaard, L., Dam, N., Dam, M., Veerkamp, M. T., van den Berg,
 B., Brouwer, E., Chang, C., and Poorter, L. (2021). Dead wood diversity promotes fungal
 diversity. Oikos, 130(12):2202–2216.
- Zibold, M., Bässler, C., Hauck, M., and Scherer-Lorenzen, M. (2024). Fungi and deadwood diversity: A test of the area-heterogeneity trade-off hypothesis. *Journal of Ecology*, 112:1701–
 -1718.

- Zobel, M. (2016). The species pool concept as a framework for studying patterns of plant diversity. *Journal of Vegetation Science*, 27(1):8–18.
- Zumr, V., Nakládal, O., Gallo, J., and Remeš, J. (2024). Deadwood position matters: Diversity
 and biomass of saproxylic beetles in a temperate beech forest. *Forest Ecosystems*, 11:100174.