1	Unsung Songbirds: Advances in the Study of Corvid Communication
2	Claudia A.F. Wascher ¹ , Vittorio Baglione ² , Thomas Bugnyar ^{3,4} , Daniela Canestrari ² ,
3	Anne B. Clark ³¹ , Maddie Cusimano ⁵ , Julie E. Elie ⁶ , Pawel Fedurek ⁷ , Lena Gies ³ ,
4	Cédric Girard-Buttoz ^{8.9} , Michael Griesser ^{10,11,12,13} , Luca G. Hahn ¹⁴ , Friederike
5	Hillemann ¹⁵ , Benjamin Hoffman ⁵ , Barbara C. Klump ^{3,16,17} , Ellis J.G. Langley ¹⁸ , Diana
6	A. Liao ¹⁹ , Killian Martin ²⁰ , Anna N. Osiecka ^{8, 21} , Simone Pika ²² , Samuel Richardson ²⁴ ,
7	Christian Rutz ¹⁸ , Ambre Salis ²⁵ , Sabrina Schalz ²⁶ , Dan Stowell ^{27,28} , Alex Thornton ¹⁴ ,
8	Alizée Vernouillet ³ , Miyako H. Warrington ^{13,29} , Lutz Wehrland ³⁰ & Valérie Dufour ²⁰
9	
10	¹ Behavioural Ecology Research Group, School of Life Sciences, Anglia Ruskin
11 12 13	University, United Kingdom ² Departamento de Biodiversidad y Gestión Ambiental, Universidad de León, Spain ³ Department of Behavioral & Cognitive Biology, University of Vienna, Vienna, Austria ⁴ Konrad Lorenz Research Center, University of Vienna, Vienna, Austria
15 16 17	 ⁵Earth Species Project, Berkeley, CA, United States of America ⁶Department of Neuroscience, University of California, Berkeley, United States of America
18 19	⁷ Division of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
20	⁸ ENES Bioacoustics Research Laboratory, University of Saint-Etienne, CRNL, CNRS
21	UMR 5292, Inserm UMR_S 1028, Saint-Etienne, France
22 23	Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
24	¹⁰ Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457
25	Konstanz
26	¹¹ Centre for the Advanced Study of Collective Behaviour, University of Konstanz,
27	Universitätsstrasse 10, 78457 Konstanz, Germany
28	¹² Department of Collective Behavior, Max Planck Institute of Animal Behavior;
29	Konstanz, 78467, Germany
30	13Luondua Boreal Field Station, 93391 Arvidsjaur, Sweden
31	¹⁴ Centre for Ecology and Conservation, University of Exeter, Penryn Campus, United
32	Kingdom
33	¹⁵ Department of Psychology, Durham University, UK 16Max Planck Institute of Animal Behavior, Radolfzell, Germany
34 35	¹⁷ Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
36	Nerma Cognitive Science Flub, Oniversity of Vierma, Vierma, Austria Nerma, Austr
37	Andrews, United Kingdom
38	¹⁹ Animal Physiology, University of Tuebingen, Germany
39	²⁰ Laboratoire de Psychologie Sociale et Cognitive, CNRS-UCA, Strasbourg, France
10	²¹ Institute of Theoretical Biology, Humboldt University, Berlin, Germany
11	²³ Comparative BioCognition, Institute of Cognitive Science, Osnabrueck University,
12	Germany
13	²⁴ School of Biosciences, University of Birmingham, UK
14	²⁵ Department of Life Sciences, Imperial College London, United Kingdom
1 5	²⁶ Government Science and Engineering, Civil Service, UK
16	²⁷ Tilburg University, Tilburg, The Netherlands
17	²⁸ Naturalis Biodiversity Centre, Leiden, The Netherlands
18	²⁹ School of Biological and Medical Sciences, Oxford Brookes University, Oxford,
19	United Kingdom

 $^{\rm 30}\mbox{Neural}$ Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Germany ³¹Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America Corresponding author: Claudia A. F. Wascher (e-mail: claudia.wascher@gmail.com)

104	Abstract	2
105	I. Introduction	4
106	Acoustic structure and information encoding	8
107	From vocal production learning to cultural transmission	9
108	II. Addressing open questions in animal communication	11
109	Do animals vocalise intentionally?	11
110	Semantic meaning and social cognition	11
111	Cognitive components of vocal communication	13
112	Deciphering vocal communication	14
113	Multimodal communication	15
114	Complexity in animal communication: diversity, flexibility, and signal combination	17
115	III. Challenges and approaches	22
116	Technological and methodological advances	22
117	Bio-loggers	24
118	Analysing corvid calls	26
119	Processing data before analyses	26
120	Identifying meaningful acoustic features and classifying vocalisations	28
121	Linking vocalisations to behaviour and context	29
122	What is a segment?	31
123	Experimental approaches	31
124	IV. Future directions	33
125	Advancing animal welfare	33
126	Human-wildlife interactions	35
127	V. Conclusion	37
128	VI. Author contributions	38
129	VII. ACKNOWLEDGEMENTS	38

Abstract

Historically, much research in animal communication has focused on the information content and ultimate function of vocalisations. These include defending territories, sounding the alarm, attracting mates, and advertising identity. The proximate mechanisms that shape signal production and perception—including cognitive processes and cultural transmission—have only recently started attracting attention. Corvids are a well-established study system in comparative cognition and social evolution research, yet their vocal communication remains surprisingly understudied compared to other songbirds, which have been central to advancing our understanding of how natural selection shapes communication. With their flexible, context-dependent communication and capacity for vocal learning, corvids represent a particularly promising system for addressing open questions relating to vocal communication. Their diverse ecological and social environments, combined with extensively studied cognitive abilities, make them well-suited for investigating the co-

evolution of communication, sociality, and cognition. To unlock the potential of corvids as a system for studying vocal communication, several methodological opportunities and challenges must be addressed. These include the development of experimental designs suited to both wild and captive settings, and the adoption of advanced technologies for data collection in naturalistic environments. Recent advances in data processing—such as machine learning, acoustic classification, and automated tracking—open up promising new avenues for decoding corvid communication. These tools are promising to reshape the field by enabling more fine-grained, large-scale analyses of vocal behaviour. Ultimately, a deeper understanding of corvid vocal communication can significantly enhance our broader insights into the evolution of animal communication and the origins of human language. Furthermore, it holds applied value for improving animal welfare and conservation, including innovations in welfare monitoring and strategies for addressing human-wildlife conflict.

Key words: animal communication, animal linguistics, bioacoustics, cognition, Corvidae, machine learning, meaning, vocal signals

I. Introduction

Communication is the transfer of information from senders to receivers, mediated by one or more sensory channels, or modalities: visual, acoustic, chemical, mechanical or electrical (Bradbury & Vehrencamp, 2011). Signals, in contrast to cues, are generally understood to be adaptive behaviours, or traits, shaped by evolution for effective communication. Receivers' responses to signals offer a window into understanding whether and how information is extracted and used (Smith, 1965; Cherry, 1995), i.e. the 'meaning' of vocalisations (Cheney & Seyfarth, 1990; Rutz *et al.*, 2023; Amphaeris *et al.*, 2023). Key research questions in the study of animal communication concern cognitive processes and social dynamics, such as how individuals use signals for deception or cooperation, or extract information through eavesdropping. In this review, we outline approaches to studying corvid vocal communication, including challenges and future opportunities (Figure 1).

Vocal communication in corvids

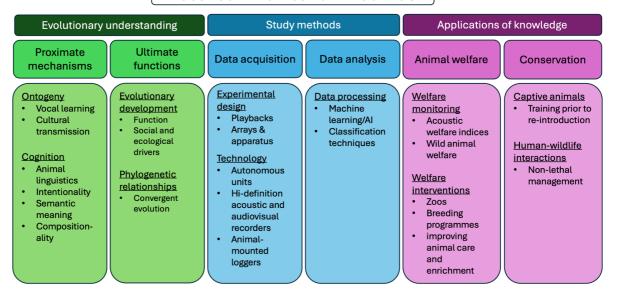


Figure 1: Framework and future directions in the study of corvid vocal communication.

Vocal communication has received particular attention from researchers due to its prominence in humans, its perceptibility to human observers, and its prevalence in a wide range of taxa. *Corvidae* are a large family of birds consisting of more than 120 species (Gill, Donsker & Rasmussen, 2023; Clements *et al.*, 2024) inhabiting most areas of the globe, except Antarctica (Figure 2). The group includes crows, ravens, jays and magpies, which show striking variation in sociality and ecology, enabling powerful comparative analyses addressing the evolution of behaviour, cognition

(Taylor 2014), and vocal communication (Wascher & Reynolds, 2025). They belong to the suborder of oscine passerine birds, commonly known as songbirds. The songbird syrinx, located at the base of the trachea, functions as two independently controlled sound sources within each primary bronchus (medial and lateral labia; Zollinger et al. 2008; Elemans et al. 2015). Specialized syringeal muscles enable complex vocalizations through finely tuned coordination of respiratory and motor patterns, continuously adjusted by somatosensory feedback (Suthers & Zollinger, 2004). As with other songbirds, the structure of corvid vocalisations arises from both the structural configuration of the vocal apparatus and vocal learning (Gaunt & Nowicki, 1998; Goller, 2019, 2022). Corvids are well known for their loud and 'harsh'-sounding broadband vocalisations (Figure 3), caused by unpredictable or irregular ways the sound is produced (non-linear phenomena). Non-linear phenomena include biphonation, when two independent fundamental frequencies occur in a call spectrum, frequency jumps, defined as an abrupt change in the fundamental frequency, or deterministic chaos, referring to complex, unpredictable sound patterns in vocalisations. While corvid non-linear phenomena in corvid vocalisations are well-known, they have hardly been described in the literature, except deterministic chaos in 'alala, (Hawaiian crow), Corvus hawaiiensis (Tanimoto et al. 2017). Corvids mostly produce calls—short, distinct vocalisations— as opposed to the songs typically associated with oscine passerines, which are heterogeneous, combinatory vocalisations consisting of notes or phrases that are arranged in a specific order and often repeated (Sandoval & Graham, 2025).

(A)

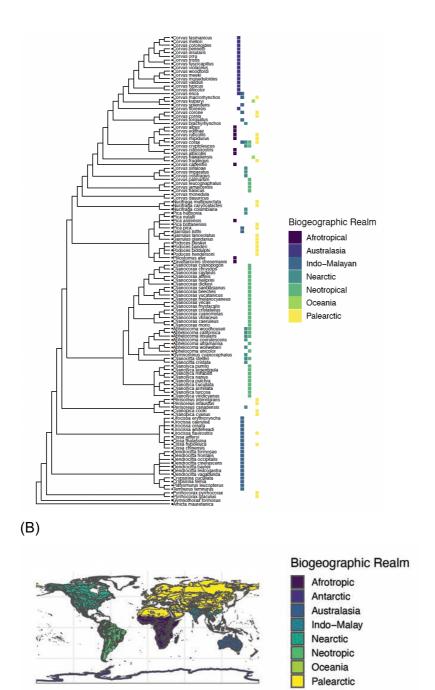


Figure 2: Phylogenetic tree of *Corvidae* and occurrence in biogeographic realms of the world. Corvid phylogeny is from OpenTreeOfLife et al. 2019 and geographical data from <a href="Tobias et al. (2022). Map is downloaded from World Wildlife Fund's Terrestrial Ecoregions of the World (Olson et al., 2001).

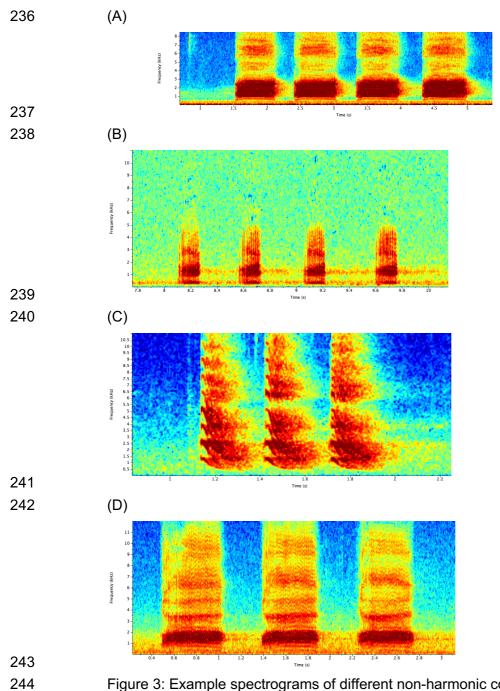


Figure 3: Example spectrograms of different non-harmonic corvid calls of different species. (A) carrion crow (*Corvus corone*), (B) common raven (*Corvus corax*), (C) jackdaw (*Coloeus monedula*) and (D) rook (*Corvus frugilegus*).

Acoustic structure and information encoding

From an evolutionary perspective, understanding the information content in animal vocalisations is crucial because it sheds light on how communication systems evolve to enhance survival and reproduction. Researchers often categorise vocalisations of individuals and species into different types, such as calls, songs, phrases, that have different acoustic structures (Bradbury & Vehrencamp, 2011), as these may correspond to different types of information (Marler, 2004). Different call types can be further attributed to functional contexts, such as maintaining contact between individuals in a social group (Kondo & Watanabe, 2009), indicating the presence of predators (Griesser, 2008, 2009; Suzuki, 2014; Stephan & Zuberbühler, 2014) or a food source (Heinrich & Marzluff, 1991; Pendergraft & Marzluff, 2019), begging for food (Stamps, 1993), aggression (Seyfarth & Cheney, 2017), submission (Fedurek *et al.*, 2021), territory defence (Mennill & Odom, 2010), or searching for a sexual partner (Bradbury & Vehrencamp, 2011; Chen & Wiens, 2020).

In many corvid species, call types are highly graded, with acoustic structures transitioning gradually between categories, making discrete classification challenging (rooks, *Corvus frugilegus*: Martin et al. 2024). This limits the scope for investigating the meaning, or function, of calls by categorising them. Some corvids also produce non-vocal sounds, such as bill-clicking (e.g., carrion crows, *Corvus corone*: Siriwardena 1995), which are known from other taxa (e.g., biphonation in black-capped chickadees, *Poecile atricapillus*: Nowicki and Capranica 1986; graded signals in orangutans, *Pongo pygmaeus*: Erb et al. 2024; non-vocal sound production in chimpanzees, *Pan troglodytes*: Marshall et al. 1999).

In addition to contextual information (see below), acoustic features of vocalisations can provide information about the characteristics of the caller (reviewed in Wascher & Reynolds 2025), such as their sex, breeding status, group membership (Warrington *et al.*, 2014), body mass (Fitch & Hauser, 1995; Ey, Pfefferle & Fischer, 2007; Taylor & Reby, 2010; Garcia & Favaro, 2017) or emotional state. Both emotional arousal (Fitch, Neubauer & Herzel, 2002; Keenan *et al.*, 2020; Corvin *et al.*, 2024; Sibiryakova, Volodin & Volodina, 2024) and valence (Osiecka *et al.*, 2024a; Osiecka, Lefèvre & Briefer, 2024b), can be conveyed, for example, through pitch and degree of harmonicity in calls (Morton, 1977; Briefer, 2012). The acoustic structure of certain calls, such as distress calls, can be sensitive to the composition of the audience and the likelihood to recruit potential support when being attacked (Slocombe & Zuberbühler, 2007; Szipl, Ringler & Bugnyar, 2018). Adult Siberian jays (*Perisoreus*

infaustus) only respond to mobbing calls of group members, while ignoring those of neighbours that use mobbing calls in a deceptive manner to gain access to food (Cunha and Griesser 2021). In common ravens (Corvus corax), 'haa' calls, a call type used to signal the presence of food, acoustically encode the caller's sex, age class, and individual identity (Boeckle, Szipl & Bugnyar, 2018). Moreover, common ravens can attend to this individual information (Boeckle, Szipl & Bugnyar, 2012) and use it in daily life decisions—that is, whether or not to call and respond to calls, respectively (Szipl et al., 2015; Sierro et al., 2020). An interesting feature of raven haa calls is the large individual variation in calling probability and calling rate, showing that some birds may be more prone to call at food than others (Szipl & Bugnyar, 2014). Factors influencing this variation include the birds' age, sex and residency status, with adult females calling more than adult males and local birds calling more than vagrants (Szipl & Bugnyar, 2014). These findings suggest that ravens may use individual characteristics in calls to learn about, and identify, specific individuals. They recall this information after years of separation, as captive birds selectively respond to haa calls of former group members and even discriminate their former friends from foes (Boeckle & Bugnyar, 2012). Carrion crows are able to differentiate between vocalisations of familiar and unfamiliar humans (Wascher et al., 2012). This ability to infer individual identity from conspecific and heterospecific raises interesting questions around the use of public sensory information and how this is shaped by ecological factors like predation pressure and sociality (Igic et al., 2019).

312313

314

315

316

317

318

319

320

321

322

323

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

From vocal production learning to cultural transmission

Corvids have extended developmental periods during which they practice social behaviour and vocalisations (Uomini *et al.*, 2020), and are open-ended vocal learners that acquire new vocalisations throughout their lifetime (Brenowitz, Margoliash & Nordeen, 1997). Vocal learning refers to the ability to modify vocal output in response to social or individual experience (Janik & Slater, 2000; Sewall, Young & Wright, 2016). It can be divided into two distinct processes, namely: (1) vocal production learning, which refers to the ability to produce new vocalisations or modify existing vocalisations using auditory feedback and social experience (Janik & Knörnschild, 2021; Ten Cate, 2021); and (2) usage learning, which refers to learning the contextual use of vocalisation (Hollén & Radford, 2009) or how to combine single calls from a repertoire (Janik & Slater, 2000; Vernes *et al.*, 2021).

324325326

327

Vocal production learning is relatively rare amongst non-human animal species and mostly occurs in singing species, such as oscine songbirds and cetaceans (reviewed

in Wilbrecht and Nottebohm 2003; Sewall et al. 2016), as well as in some nonsinging birds (Wright, 1996) and bats (reviewed in Vernes and Wilkinson 2020). It occurs in a so called 'plasticity phase' that is completed by a 'crystallisation phase'. after which individuals are no longer able to modify repertoires in the majority of species (Marler 1967; Marler and Peters 1987; Beecher and Brenowitz 2005; Fischer and Hammerschmidt 2020; Ten Cate 2021). Only a few species retain the ability to learn and modify signals into adulthood, which are known as 'open-ended learners' (e.g., galah, Eolophus roseicapillus: Scarl and Bradbury 2009, peach-fronted conures, Eupsittula aurea: Thomsen et al. 2019; American crows, Corvus brachyrhynchos: Brown 1985). Songbirds may also adjust the spectral or temporal arrangement of vocal signals (Veit et al., 2021; Costalunga et al., 2023; Kawaji, Fujibayashi & Abe, 2024) or the rhythmic structures of their songs to differentiate themselves from neighbours (Osiecka et al., 2025), or acquire new vocal combinations through social exposure to adults (Gultekin et al., 2021). Most research investigating usage learning has focused on non-singing species with a fixed vocal repertoire, assessing the ability of individuals to learn the contextual use of specific calls, or to associate species-specific calls to an arbitrary context in experimental settings (reviewed in Hollén and Radford 2009; Seyfarth and Cheney 2010; Janik and Knörnschild 2021). Corvids, as open-ended vocal learners, provide an example of vocal plasticity beyond early development—their social learning, and capacity for both vocal production learning and usage learning into adulthood, make them an interesting model system for understanding vocal learning. In the following section, we explore how they can be used to address key open questions in animal communication.

Vocal learning allows for flexibility and innovation and as such forms the basis for cultural transmission, the spread of vocalisations through social learning. Animals can develop regional dialects (Green, 1975; Jenkins, 1978; Slater, 1986; Deecke, Ford & Spong, 2000), group specific calls (Yurk *et al.*, 2002; Radford, 2005), or individual signatures (McCowan & Reiss, 2001; Charrier, Pitcher & Harcourt, 2009; Kershenbaum, Sayigh & Janik, 2013). These variations are culturally maintained and evolve over time as new individuals learn and possibly modify the sounds. In corvids, regional dialects have been shown in red-billed choughs (*Pyrrhocorax pyrrhocorax*; Laiolo et al. 2001) and rook calls have a clear individual signature (Benti, Curé & Dufour, 2019). Furthermore, New Caledonian crows (*Corvus moneduloides*) exhibit significant large-scale, population-level variation in vocalizations (Bluff, Kacelnik & Rutz, 2010) and call repertoires of common ravens are shared between pair partners

and within the sexes leading to a pronounced sexual dimorphism in vocal behaviour (Enggist-Dueblin & Pfister, 2002).

366367

368

369

370371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

365

II. Addressing open questions in animal communication

Do animals vocalise intentionally?

Intentional communication in animal communication refers to the deliberate production of signals by an individual. This involves active signal production, where the sender tailors their message based on their audience and their response or attention—a crucial feature of human language (Townsend et al., 2017). Intentional communication is difficult to demonstrate in non-human animals, necessitating the formulation of a robust research framework and operational definitions (Ben Mocha & Burkart, 2021). Signal production is expected to stop when a given piece of information has been conveyed to relevant receivers. This has indeed been observed in chimpanzees and bonobos (Pan paniscus), where signallers stop emitting alarm calls when nearby individuals appear to have received the information of the presence of a dangerous snake (Crockford et al., 2012; Girard-Buttoz et al., 2020). First-order intentionality refers to signallers acting in a goal-directed manner by producing voluntary recipient-directed signals as a means of reaching a desired outcome, eliciting a change in the recipient's behaviour (Bruner, 1981; Dennett, 1983). This form of intentionality has mainly been studied in the vocal and gestural communication of primates (Hopkins & Leavens, 1998; Crockford et al., 2012; Schel et al., 2013; Girard-Buttoz et al., 2020), but a few studies demonstrated intentionality in the communication of other species (e.g., dogs, Gaunet and Deputte 2011), and gestural communication in common ravens (Pika & Bugnyar, 2011; Ben Mocha, Mundry & Pika, 2019). Moreover, intentional communication requires the ability to volitionally control vocal production, which has been shown in carrion crows (Brecht et al. 2019; Liao et al. 2024). Therefore, we suggest that corvids are an ideal candidate group to study the degree of intentionality involved in vocal communication and the neurophysiological basis of such a control.

393 394

395

396

397

398

399

400

401

Semantic meaning and social cognition

Establishing the 'meaning' of vocal signals, in the sense of semantic information content, has long been a central focus of animal communication research (Schlenker *et al.*, 2022; Rutz *et al.*, 2023). Foundational work on vervet monkeys identified distinct alarm calls for three predator types (Seyfarth, Cheney & Marler, 1980), giving rise to the 'functional referential' framework. Referential signals convey information to conspecifics that can be responded to in a specific way, without contextual

information: in the case of vervet monkeys, the signal is sufficient for all recipients to infer the risk posed by a particular predator, even without the actual presence of a predator. Studies assessing the referential properties of vocalisations focus mainly on predator- (Griesser, 2008; Townsend & Manser, 2013; Gill & Bierema, 2013; Suzuki & Ueda, 2013; Suzuki, 2018) or food-related signals (Slocombe & Zuberbühler, 2005), using playback experiments. For instance, Siberian jays' mobbing calls encode information about the type and behaviour of predators (Griesser 2009; Griesser 2008).

An open question in the study of semantic cognition is whether animals have a mental representation of the meaning of their calls. Playback experiments in Japanese tits have suggested that these birds have a mental image of predators when hearing alarm calls (Suzuki et al, 2018). Operant conditioning experiments in zebra finches (*Taeniopygia castanotis*) have revealed that this songbird has a hierarchical perception of its call types according to the meaning of vocalizations (semantic 'hyper-category'), indicating that it possesses a mental representation of the meaning of all its call types in its repertoire (Elie *et al.*, 2025). Corvids, with their complex vocal repertoires and social interactions provide an ideal model system to further investigate whether corvids have mental representations of the meaning of call types.

Going beyond individual calls, the composition of vocal sequences can also carry meaning (Kershenbaum et al., 2016). In corvids, this remains an understudied but promising aspect of vocal behaviour. Corvids often produce calls in sequences which vary in both the number of calls and their acoustic features such as temporal rhythm, call duration, or sequence length may encode different information (Thompson, 1982). For example, in Siberian jays, the number of mobbing call repetitions is associated with the risk posed by a predator (Griesser, 2009), while in large-billed crows (Corvus macrorhynchos), the number of ka calls increases when the dominant individual is temporarily removed from a group (Aota, Takano & Izawa, 2025). Across other avian and mammalian species, differences in call number are associated with changes in magnitude, such as severity of a threat, distance from a predator, or competitiveness exhibited by neighbors (Arak, 1983; Blumstein & Armitage, 1997; Templeton, Greene & Davis, 2005; Courter & Ritchison, 2010; Dutour et al., 2021). While the number of calls is traditionally thought to reflect differences in internal states such as arousal, a recent experimental study showed that carrion crows can volitionally control the number of calls in the sequences they produce (Liao et al.,

2024a). This opens up the possibility that corvids could use different acoustic features to intentionally signal information, or even to deceive others (Cunha and Griesser 2021). That said, it remains unclear at present whether, and how, composition of a sequence conveys meaning to receivers. Addressing this question will require both careful observations in the full natural context in which communication takes place, as well as controlled playback experiments (Igic *et al.*, 2019; Carlson, Greene & Templeton, 2020).

Cognitive components of vocal communication

The cognitive abilities of non-human animals have always fascinated researchers of animal behaviour (Shettleworth, 2009), and have moral and legal implications for their treatment by humans (Bekoff, 1994). Understanding the cognitive abilities of animals can also aid conservation efforts, such as when training individuals to recognise predators prior to re-introduction into the wild (Greggor et al., 2014, 2021). Different aspects of vocal communication can provide valuable insights into animal cognition. Playback experiments can be used to investigate behavioural responses to specific stimuli, and have shown that different corvid species are able to recognise individuals (Kondo, Izawa & Watanabe, 2012), group membership (Hopp, Jablonski & Brown, 2001), and familiarity of conspecifics (Davídková et al., 2020) and heterospecifics (Wascher et al., 2012). Common ravens and Siberian jays, for instance, memorise affiliated and unaffiliated individuals for multiple years (Boeckle & Bugnyar, 2012; Cunha & Griesser, 2021), and the birds' early social environment may affect their attention to social cues (Gallego-Abenza, Boucherie & Bugnyar, 2022). Scolding calls—loud, harsh vocalisations typically made in response to a perceived threat or disturbance—demonstrated corvids' ability to learn about dangerous humans (Marzluff et al., 2010; Blum, Fitch & Bugnyar, 2020) and revealed how this information socially spread amongst populations (Cornell, Marzluff & Pecoraro, 2012; Lee et al., 2019b).

Compared to the variety of studies examining individual recognition in corvids, there have been surprisingly few attempts to test birds' knowledge about social relationships (Wascher and Reynolds 2025). In most playback studies, individuals show selective responses to pair partners and family or group members, indicating that they are aware of their own social bonds and rank (Wascher & Reynolds, 2025). Yet, when tested with playbacks for the understanding of third-party relationships, results are mixed. On the one hand, female Eurasian jackdaws (*Coloeus monedula*) do not respond to simulated infidelity of their partners: copulation calls with other

females indicate that they may not attend to third-party information in this experimental context (Lee *et al.*, 2019b). On the other hand, ravens respond to simulated rank changes between group members, suggesting that they represent others' relationships and make inferences about dominance ranks from a third-party perspective (Massen *et al.*, 2014). These findings fit with behavioural studies on wild ravens' conflicts, where victims of aggression adjust their calling to audience composition—for example, by suppressing their vocalisation when a bonding partner of the aggressor is present (Szipl *et al.*, 2018). Similarly, Siberian jay breeders suppress the production of hawk attack calls when together with unrelated non-breeding group members, particularly female breeders that are at times socially subdominant to male non-breeders (Griesser & Ekman, 2004).

Because of the breadth of research into corvid cognition, this group presents an ideal model system for investigating further the understanding of third-party relationships, using refined experimental paradigms, such as playback (Szipl *et al.*, 2015; King, 2015) and touch-screen experiments (Brecht *et al.*, 2019; Federspiel *et al.*, 2023; Liao *et al.*, 2024b). Additionally, exploring the neural and cognitive mechanisms underlying social knowledge in corvids could provide deeper comparative insights into the evolution of complex social cognition.

Deciphering vocal communication

Linguistics and socio-ecology have historically developed as separate fields of research. However, recent collaborations between these fields have brought new methods and concepts to explore animal communication that could be particularly specifically useful for studying corvid communication. Specifically, animal linguistics has formulated three objectives, each with specific methodologies (Schlenker et al., 2022; Berthet et al., 2023). The first is integrating evolutionary mechanisms into the study of calls, to their meaning, and to their combinations. For instance, 'boom' calls of some old world monkeys (Cercopithecinae) have been phylogenetically traced back five millions years (Schlenker et al., 2016), and similar analyses suggest call combinations in tits (Paridae) originating around eleven million years ago (Salis, A., under review). A second objective is comparative research, as it can help understand shared coding mechanisms between species occurring either through convergent evolution or shared ancestry as well as patterns of divergence. Recent work has suggested that specific acoustic features can encode meaning (e.g., call rate to signal urgency) in numerous species (Liao et al., 2024a). While primarily developed to explain variation in communication across species (Schlenker et al., 2025), this

feature-based perspective (instead of call-types) may also be useful in corvid research because of their highly gradual and complex call systems. Comparative research can also aid the investigation of 'linguistic laws', such as selection for efficiency and the related 'principle of least effort', which has been supported in several animal groups, such as primates and whales (Semple, Ferrer-i-Cancho & Gustison, 2022; Youngblood, 2025). To our knowledge, similar analyses have not yet been attempted in corvids. Finally, a third objective is to develop formal models to explore the precise semantics of calls, such as the 'compositional syntax' in mobbing calls of the Japanese tit (*Parus minor*, Suzuki et al. 2016). Such application of methods and concepts from linguistics has yet to be explored in the context of corvid communication.

Multimodal communication

One challenge in animal communication research is the bias towards unimodal studies, which focus on a single sensory modality, typically vocalisations (Ratcliffe, Taylor & Reby, 2016; Rutz *et al.*, 2023). This bias is likely due to humans being naturally attuned to auditory information. Additionally, vocalisations are easy to record, analyse, and study experimentally. However, a comprehensive understanding of animal communication requires an integrated, multimodal approach, as signals in different modalities often interact to convey information more effectively.

Multimodal signals can enhance the reliability and effectiveness of communication. Many species combine visual, olfactory, and acoustic signals—for instance, a vocalisation may be reinforced by a specific posture or facial expression, which increases the likelihood that the intended message is successfully transmitted and understood. Redundancy in multi-modal information ('back-up signal hypothesis') can increase the robustness of communication systems as receivers can pick up the information from one modality if another one is missed, for example in situations of increased environmental noise (Akcay & Beecher, 2019). Already in the middle of the twentieth century, researchers observed that many behaviours of corvids are flexible and involve a combination of distinct vocalisations with specific visual features such as body postures, wing formations and feather positions (Gwinner 1964; Coombs 1978; Figure 4). These visual features are used to communicate information and express different degrees of motivation (e.g., threat, begging, mating displays). While some studies have examined non-vocal signals in corvids (Gwinner, 1964; Pika & Bugnyar, 2011), it remains unclear whether their vocalisations are consistently accompanied by specific postures or other types of signals, or if combinations are

context-dependent. For example, in male chickens (*Gallus gallus domesticus*), intense crowing is only possible when the bird adopts an extended and bent neck posture (Claes *et al.*, 2017). A key limitation in studying multimodal communication in corvids, and birds more generally, has been the lack of reliable methods to quantify, amongst other things, body posture, wing displays, feather erection, eye temperature or pupil dilation. Beyond visual signalling, olfactory communication in corvids remains largely unexplored. While birds have traditionally been considered less reliant on olfaction (Grieves *et al.*, 2022), carrion crows have been shown to respond to conspecific scents (Wascher *et al.*, 2015a). Further research is needed to clarify the role of olfactory cues in corvid social interactions.

562 (A) (B)

563

(C)

(D)

Figure 4: Examples of body postures associated with vocalisations in (A) common ravens, (B) carrion crows, (C) red-billed choughs (*Pyrrhocorax pyrrhocorax*), and (D) a jackdaw.

Complexity in animal communication: diversity, flexibility, and signal combination

'Vocal complexity' is a key concept in the study of communication, which generally assumes that more complex signals allow for more complex information transmission (Peckre, Kappeler & Fichtel, 2019). Rebout et al. (2021) introduced a framework for analysing the complexity of communicative systems through three dimensions: (1) diversity—the number of different signals in a repertoire, their distinctiveness, and how individuals distribute their vocal production across signal types; (2) flexibility—an individual's ability to modify its repertoire via changes in call structure and function or composition, such as the number of different call types; and (3) combinability—how multiple vocalisations are arranged into sequences (see above).

In terms of diversity, some corvid species, such as Siberian jays (Griesser 2008) or common ravens (Enggist-Dueblin & Pfister, 2002) produce easily distinguishable call types, while others use both stereotyped calls and calls with significant graded variations (e.g., carrion crows: Siriwardena 1995; rooks: Martin et al. 2024). Similar inter-individual variation has been noted in some species, such as American crows (Mates *et al.*, 2015) and rooks (Benti *et al.*, 2019). Further investigation into these differences could provide insights into vocal diversity and complexity in corvids (Martin *et al.*, 2024).

Corvid vocal flexibility is characterised by high levels of vocal learning and imitation. Corvids mimic vocalisations of other species and environmental sounds (Wascher, Waterhouse & Beheim, 2025), but also of conspecifics (Brown, 1985; Kondo, 2021), in particular social partners (Luef et al. 2017). They also show high levels of functional flexibility; for example, male rooks produce their most frequent call in as many as seven different contexts (Roskaft and Espmark 1982). It should be noted that in this early study, structural nuances and combinations of calls with other modalities, might have been missed, which highlights the need of further research with standardised analyses methods. Carrion crows can even be trained to produce vocalisations in response to arbitrary stimuli in a laboratory setting (Brecht *et al.*, 2019; Liao *et al.*, 2024b). Very few studies have systematically assessed functional vocal flexibility in birds, indicating rich opportunities for further research.

Vocal combinability refers to how information is encoded in vocal sequences, either by combining the meaning of calls (Suzuki et al. 2016; Engesser and Townsend

2019; Suzuki 2021) or by generating new meanings not directly related to the individual components (Arnold and Zuberbühler 2006). Understanding the extent of vocal combinability in different species is key to tracing the evolutionary pathways that have shaped complex communication systems, including (but not limited to) human language, which is an open-ended combinatorial system capable of generating an infinite number of signals to communicate new meanings indefinitely (Nowak, Plotkin & Jansen, 2000; Nowak & Komarova, 2001). Extensive combinability has recently been shown in bonobos (Berthet, Surbeck & Townsend, 2025). Great apes and marmosets produce a wide range of vocal sequences in diverse social and environmental contexts (Girard-Buttoz *et al.*, 2022; Bortolato *et al.*, 2023; Bosshard *et al.*, 2024), and corvids provide a powerful contrast for comparative studies, to test potential evolutionary drivers of combinatory capacities in two distantly related lineages.

Vocal sequences are also of interest to the emerging field of rhythm studies (Suzuki et al., 2016; Hersh, Ravignani & Burchardt, 2023). Advances in analytical methods, such as rhythm or cluster analysis (e.g., Burchardt and Knörnschild 2020; Burchardt et al. 2021) have revealed that rhythmic patterns can both carry important phylogenetic (Garcia et al., 2020) and social (Mathevon et al., 2017; Osiecka et al., 2024a, 2025) information, and interact with the caller's emotional state (Maldarelli et al., 2024). Studying how rhythm is used, produced and perceived is crucial for understanding the role of rhythm in the evolution of both language and music (Patel, 2014, 2021; Hersh et al., 2023). Similarly, linguistic analyses of animal vocal structures can reveal broader evolutionary patterns of communication, such as the widespread adherence to brevity laws (Youngblood, 2025; Wascher & Youngblood, 2025).

Whether within species variation in vocal complexity provides adaptive benefits to individuals is a longstanding evolutionary question. In songbirds, for example, greater song complexity in males is often linked to mate attraction, signalling individual quality to potential mates (Darolová *et al.*, 2012). Similarly, vocal complexity may play a role in social dynamics and mate choice in primates, as exemplified by female geladas, which tend to pay more attention to more complex male vocalisations (Gustison & Bergman, 2016).

Exploring the influence of social and ecological factors on vocal behaviour

Corvids provide an ideal model for evaluating how social and ecological factors can shape vocal behaviour. Sociality is highly variable, both at inter- and intraspecific levels, from pair-breeding species, such as blue jays (*Cyanocitta cristata*) or pied crows (*Corvus albus*) which become territorial as adults and breed in pairs; to colonial species like rooks or Eurasian jackdaws, which live and breed in large communities; to family-living species like Siberian jays, or cooperatively-breeding species like Florida scrub-jays (*Aphelocoma coerulescens*; for an overview on corvid sociality please see Billerman et al. 2022). However, classifying the social system of corvids is difficult because within-species sociality of some species varies depending on environmental, seasonal, and life-history factors (Kubitza, Bugnyar & Schwab, 2015; Uhl *et al.*, 2019). For example, although carrion crows breed in monogamous pairs in most areas, facultative cooperative breeding occurs in 75% of territories in Northern Spain, depending on environmental factors (Baglione *et al.*, 2005).

Adult ravens may establish a territorial breeding pair or join non-breeder flocks that mainly consist of juveniles, while individuals in other species gather in large communal roosts (Wascher 2018). Jackdaws and rooks, two communal breeders, even form large mixed-species flocks and roost together in winter (Jolles *et al.*, 2013). Some species, like American crows, are migratory in northern parts of their range and seasonally forage, roost and interact vocally in flocks with birds from distant populations (Verbeek *et al.*, 2024). These specific social situations can provide unique opportunities for information exchange between individuals of the same or of different species, opportunities that may not occur at other times of the year.

Some corvid species are highly specialised in terms of the habitat they occupy, such as Florida scrub-jays and pinyon jays (*Gymnorhinus cyanocephalus*), which only occur in shrubland and open shrub woodlands, respectively, whereas many other species, including Eurasian magpies (*Pica pica*), Eurasian jackdaws, and several species of crows (including large-billed crows (*Corvus macrorhynchos*), carrion crows, and American crows) can be considered generalists, occupying many different habitats, including forest, grassland, agricultural landscapes, and urbanised areas (Billerman *et al.*, 2022). Corvids significantly contribute to ecosystem functioning, by providing seed dispersal (Pesendorfer *et al.*, 2016; Mendes *et al.*, 2024) and sanitary services, by scavenging on carrion (Inger *et al.*, 2016; Mariyappan *et al.*, 2023). Species conservation status ranges from 'extinct in the wild' ('alalā; U.S. Fish and Wildlife Service (USFWS) 2009; although note that

680 reintroductions are underway), to 'least concern', with some species being 681 considered pests by local human populations, becoming the target of (legal and 682 illegal) persecution (Billerman et al., 2022). 683 684 This rich variation creates a valuable opportunity to investigate if aspects of vocal 685 communication, such repertoire size, vary with the degree of sociality or 686 environmental context, both within and between species. Yet, this contextual 687 variability can also present research challenges, especially when using a 688 comparative approach, if detailed information about social, temporal, and spatial 689 contexts are not provided. In Figure 5, we provide a framework illustrating what kind

enable well-informed comparative analyses.

of information should ideally be reported by studies on corvid communication, to

690

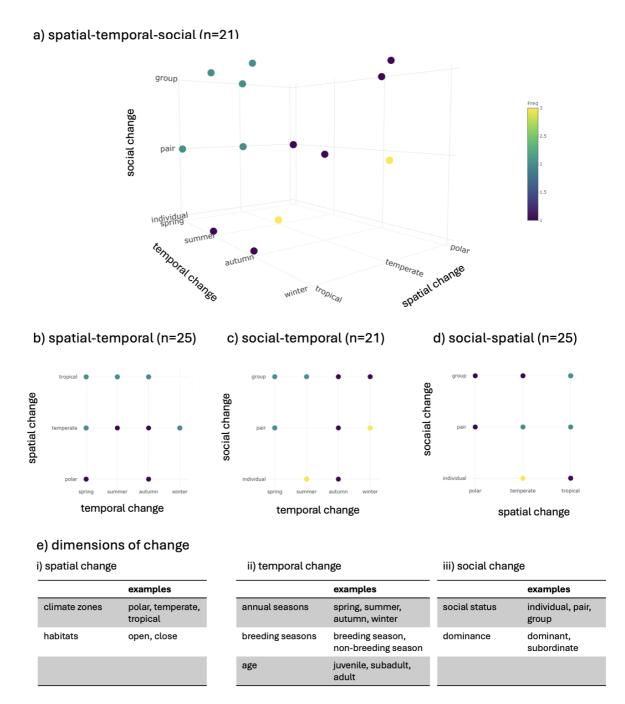


Figure 5: Framework of spatial-temporal-social information that should be reported by studies on corvid vocal communication. Data from Wascher and Reynolds 2025, selecting publications reporting the vocal repertoire of a corvid species. Colours in (a-d) code by number of studies. (a) Studies providing information on all three axes (spatial, temporal, social); studies providing information on at least two axes: (b) spatial-temporal, (c) social-temporal, (d) social-spatial. (e) Change can happen in many dimensions. Clear provisioning of contextual information in studies on vocal repertoire allows to systematically investigate how dimensions of change can affect outcomes of studies.

The evolution of vocal complexity is often explained by two non-mutually exclusive hypotheses: the 'social complexity hypothesis' and the 'acoustic adaptation hypothesis.' The social complexity hypothesis for communication postulates that social complexity has been the main driver of vocal complexity (Freeberg, 2006; Peckre *et al.*, 2019). In species with complex social systems, individuals interact with a wide range of conspecifics across different contexts, potentially requiring a more diverse and flexible vocal repertoire to facilitate coordination, competition, and bonding.

In contrast, the acoustic adaptation hypothesis posits that vocal signals are shaped by environmental factors to optimise information transmission (Morton 1975). Habitat structure, including ground surface and vegetation type, wind direction, microclimatic conditions, ambient noise from both biotic and abiotic sources, can all influence the physical properties of acoustic signals (Forrest, 1994; Mullet, Farina & Gage, 2017). According to this hypothesis, vocalisations with high-frequency modulations (e.g., trills) and short elements should be favoured in open habitats, whereas vocalisations with low-frequency modulations (e.g., whistles) and long elements should be favoured in habitats with complex vegetation structure (Morton, 1975; Tubaro & Lijtmaer, 2006; Hao *et al.*, 2021; Netoskie *et al.*, 2023). While supported by many theoretical studies, there is a paucity of empirical evidence (Boncoraglio & Saino, 2007; Ey & Fischer, 2009; García-Navas, Feliu & Blumstein, 2023), except in the context of urbanisation and habitat fragmentation (Briefer et al. 2010; Deoniziak and Osiejuk 2019; Rhodes et al. 2023). Corvids offer an ideal test case for exploring these hypotheses.

III. Challenges and approaches

Technological and methodological advances

In the following sections, we argue that the increased accessibility of study species to test hypotheses, combined with major technological (e.g., recording equipment, computer hardware, and software), methodological (e.g., new analytical techniques), and research culture advances (e.g., data sharing, research coordination), will enable a step-change in our understanding of corvid communication and cognition.

A number of corvid species have become model species in the study of animal behaviour as they can be studied in the wild as well as in captivity, facilitating detailed behavioural observations and repeated experimental testing, including on

tasks that require training (Brecht et al., 2019; Liao et al., 2024b). Some corvid species can be habituated to human observers or hides, enabling controlled experiments in wild populations (Baglione et al., 2006; Davidson, Clayton & Thornton, 2015; Horn et al., 2020). This allows researchers to study communication at different levels. For example, studies of wild common ravens visiting feeding sessions at a rural game park, scavenging on food provided to wolves and wild boar, investigated the function of vocalisations, such as food calls, in a meaningful socioecological context (Bugnyar & Kotrschal, 2001). This was complemented with studies on captive ravens, which afforded more detailed and controlled analysis, for example, of vocal similarity in long-term pair-bonded individuals (Luef et al., 2017), long-term memory for calls (Boeckle & Bugnyar, 2012), and third-party understanding (Massen et al., 2014). Some species, like New Caledonian crows, should not be held in permanent captivity, but tolerate brief periods in field aviaries well (Rutz & Hunt, 2020), where they can be tested before being released into the wild again (e.g., St Clair and Rutz 2013; Klump et al. 2021). Whatever the chosen methodological approach, the samples of subjects researchers draw for their studies are susceptible to sampling biases, limiting generalisation of findings to the source population and beyond (Webster & Rutz, 2020).

Recording of corvid vocalisations in the field

Like most field data collection of wild animals, research on corvid vocal communication presents challenges. It can be difficult to detect their location, and often observations will be disturbed when focal individuals move out of sight or start interacting with fieldworkers. Commonly, the collected audio data will be noisy—masked by wind noise, voices of humans, or other species. Some of these issues can be partially addressed by using wind shields, appropriate recording equipment, and hides. In other contexts, manual or automated post-processing will be required; for example, audio fragments saturated with wind noise can be automatically detected and removed prior to analysis (Terranova *et al.*, 2024), and recorders can be built to detect the acoustic presence of the focal species in audio fragments (Bergler et al. 2022).

Active and passive recordings

In captive settings, or with birds that are trained to approach an experimental set-up, it is possible to place a high-quality recording device close to the target signaller to increase the quality of sound recordings. This is especially useful for capturing soft

calls, such as social vocalisations that may be otherwise hard to record with high enough signal-to-noise ratios (SNR) at a distance. In an ongoing long-term study of Siberian jays, individuals are trained to come down to a feeding device to allow for observation of social interactions at a limited food source, or approach experimental apparatus designed for cognitive experiments (Figure 6). Placement of an autonomous recording unit nearby allowed for capturing clear recordings of the soft social calls that are given in that foraging context. Such high SNR recordings enable the implementation of machine-learning analyses (Lü et al., 2024), achieving fast processing of data-rich material (audio recordings, videos), which would be much more laborious to process manually (Williams et al., 2020; Nieto-Mora et al., 2023).

Figure 6: Siberian jays can be trained to use a feeding device (left; as part of a standardised protocol to observe social interactions), or will approach experimental apparatus (right; designed for a social learning experiment). Images taken by Liam Paulson in a long-term study population near Arvidsjaur, Sweden (Ekman & Griesser, 2016).

Bio-loggers

Sound-recording 'bio-loggers' (Rutz & Hays, 2009) can also be placed directly on focal individuals. This technique has the advantage that vocalisations can be recorded simultaneously with other data, using additional sensors, such as GPS loggers for movement tracking and 3D accelerometers for mapping behaviours of interest (e.g., flight, foraging, or resting), providing important contextual information for functional decoding (Rutz et al. 2023). Such audio-loggers offer a valuable tool for recording

both animal and environmental sounds with minimal human interference (Lynch *et al.*, 2013; Wilson *et al.*, 2020). When used with corvids, they are particularly useful for capturing soft, short-range vocalisations, which are routinely missed in studies employing more traditional methods. In jackdaws, audio-loggers have provided insights into extra-pair copulations by recording copulation calls (Gill *et al.*, 2020).

805 806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

800

801

802

803

804

But, the use of bio-loggers is not without challenges. One concern is the potential impact on the animals themselves (see section on animal welfare), especially with larger devices. Studies in birds have revealed sub-lethal effects of the increased masses or handling-induced stress associated with tags (Chivers, Hatch & Elliott, 2016; Evans et al., 2020; Puehringer-Sturmayr et al., 2020). Kittiwakes reduced the amount of time they spent flying by thirty percent when tagged with bio-loggers that were five percent of their body mass, whilst tags that were one percent of their body mass had no recorded effects on a variety of behavioural measures (Gillies et al. 2020). There has been an increase in the use of bio-loggers on animals as technology becomes more miniaturised, and this has allowed for using the loggers on smaller species (Portugal & White, 2018). Smaller corvids, such as Siberian jays (adult mass: approximately 80 grams), offer insights in corvid behaviour and communication, but we caution against the blind use of the five percent rule (Portugal & White, 2018). A study on pigeons showed that effects on locomotion were measured below six percent of body mass (Tian et al., 2020), which is consistent with a study that found tagging impacts to be stronger in smaller species (Brlík et al., 2020). Thus, tagging mass limitations will limit the data that can be collected via attached loggers. Instead, in smaller corvids, bio-loggers can be used in conjunction with other off-body technologies such as passive acoustic monitoring devices (PAM), or video data to answer in-depth questions about corvid acoustic communication and behaviours. In addition to evidence showing that five percent rule has often been broken (Portugal & White, 2018), hazards against well-being such as associated ringing protocols (Griesser et al., 2012) for individual identification of birds, and the use of harnesses that may pose different risks. It is important to note that there are different harnesses used to attach tags to birds (e.g., backpack harnesses, leg loops), as well as material used in harnessing, and selection of the harness type will depend on the physical attributes and flight requirements, with species-specific impacts to animal welfare (Blackburn et al., 2016; Longarini et al., 2023).

In order to avoid the need to re-capture individuals to retrieve equipment, a tag selfrelease mechanism can be pivotal, as demonstrated by Rutz and Troscianko (2013), who describe a simple and effective release technique. It is important to thoroughly investigate the impacts of all aspects of the capture, tagging and deployment protocols before using acoustic tagging technologies (Blackburn et al., 2016; Tian et al., 2020). As the computer chips that underlie data capture are light, the total tag weights are often limited by the capacity to store the data and/or the battery size (Williams et al., 2020). The necessity of decreasing tag weights often requires using a smaller battery, which can result in an increased number of times animals are captured to get sufficient data, and/or decreased time between subsequent captures (to mount and then remove tags), which can increase handling stress in handled birds. Additionally, harness materials and mounting strategy can affect well-being. In whinchats (Saxicola rubetra) tied harnesses significantly decreased resighting rates compared to elastic harnesses (Blackburn et al., 2016), and in five soaring raptor species, tags attached by leg loops had less impacts on ascent speed and time spent in active flights, suggesting fewer impacts associated with drag (Longarini et al., 2023). In addition to these ethical considerations, it is important to remember that loggers may fail under harsh meteorological conditions or get lost, a common occurrence in field studies. Pilot projects designed to estimate failure rates can help researchers plan the number of deployments needed to ensure sufficient data collection. Thus, it is important to consider the effects of attaching biologging acoustic devices when designing studies.

857 858

859

860

861

862

863

864

865

866

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

Finally, audio-loggers often produce large volumes of data, in which vocalisations of interest may be infrequent and challenging to locate. Duty-cycling can address this issue by scheduling recording times to coincide with periods of peak vocal activity. Nevertheless, manually detecting and classifying calls within such recordings still remains time-consuming, highlighting the need for automated methods. Machine-learning techniques are increasingly addressing this challenge (Stowell, Benetos & Gill, 2017; Bergler *et al.*, 2022), although the required expertise and computational power present challenges in terms of inclusivity and sustainability (Kershenbaum *et al.*, 2024).

Analysing corvid calls

Processing data before analyses

Bio-loggers and automated recording units have the ability to record large volumes of data, which requires automated methods for efficient processing prior to subsequent analyses. A frequently applied method, commonly adapted from speech and image recognition, are supervised machine-learning models, which are trained with data that have been manually annotated (Smith & Pinter-Wollman, 2021; Naik *et al.*, 2023). While automated methods allow for high-volume data processing, it is necessary that study designs incorporate protocols that ensure data are usable for automated analysis pipelines.

There are automated methods for identifying vocal activity available, for example classification models (Stowell, 2022). Pre-trained models, such as BirdNET (Kahl *et al.*, 2021), may generally provide good performance in corvids, however for more specific problems, researchers may choose to train their own model (Bergler *et al.*, 2022; Ghani *et al.*, 2023). In studies where it is necessary to know the start- and end-time of each vocalisation, more advanced sound event detection methods may be required (Martin *et al.*, 2022). One regular problem in acoustic recordings are multiple conspecifics vocalising simultaneously, which can be dealt with by adopting object detection methods (Mahon *et al.*, 2025).

Beyond detection, it is often important to identify the sender of a vocalisation. When there exists some ground-truth data about which vocalisation belongs to which individual, supervised machine learning methods may be adapted to predict the origin of each vocalisation (Martin *et al.*, 2022). When this data does not exist, but the recordings come from bio-loggers, the relative amplitude of vocalisations in synchronized recordings may be used to infer the identity of the sender (Zeh *et al.*, 2024). If multiple synchronized bio-loggers are not available, cues available within a single recording such as relative amplitude, presence of environmental filtering, and changes in these features over time may be a last resort (Baglione *et al.*, under review).

When recording audio outside of a controlled environment, noise will be present. Sources of noise may be environmental (wind, rain), biological (vocalisations from non-focal individuals), or mechanical (body movements against microphone; Grinfeder et al. 2022). Audio detection and classification methods can be made reasonably resilient to these types of noises through data augmentation, which can

expose an algorithm to artificially degraded sounds during training (Zhang *et al.*, 2018). When analyses rely on the specific acoustic properties of recorded vocalisations, removing noise may be necessary. In vocal repertoire studies relying on the construction of a latent representation, the representation obtained can inadvertently reflect the background noise profile of recorded vocalisations (Thomas *et al.*, 2022). Stationary noise, such as rain or cicadas can be mitigated through signal processing methods (Sainburg, Thielk & Gentner, 2020). Non-stationary noise, such as wind, wing flapping or vocalisations of non-focal species presents a greater challenge, however recent machine learning efforts in denoising (Miron *et al.*, 2025) and source separation (Denton, Wisdom & Hershey, 2022) may provide tools for this challenge.

<u>Identifying meaningful acoustic features and classifying vocalisations</u>

Characterising corvid vocalisations can present analytical and conceptual challenges, due to their diversity, gradedness and complexity as discussed above (for fuller discussions of vocalisation analysis, see Kershenbaum et al. 2016; Odom et al. 2021). The features important for traditional analysis such as fundamental frequency measures are often not detectable. Corvid calls tend to contain many non-linear phenomena which makes automatic extractions of parameters like fundamental frequency or amplitude modulations challenging and requires manual annotations (Massenet et al., 2022). Semi-automated feature extraction, e.g., existing Praat codes that allow for point-by-point corrections can maximise accuracy while speeding up the process (Reby & McComb, 2003). Going beyond 'simple feature extraction' or frequency contours can be particularly important for vocalisations with significant non-linear contributions. One method still rarely used but of high importance to such calls are modulation spectra (Singh & Theunissen, 2003), providing detailed time average envelope statistics of the entire sound structure rather than specific values such as maximum or minimum frequencies (see application on Egyptian fruit bat (Rousettus aegyptiacus) vocalisations in (Elie et al., 2024).

Representations of vocalisations range from the measurement of expert-chosen features that may be tailored to the vocalisations under study such as the 'caws' of 28 corvid species (Laiolo & Rolando, 2003), to general-purpose choices such as spectrograms (Sainburg *et al.*, 2020; Martin *et al.*, 2024) or embeddings derived from the intermediate layers of a neural network (Sethi *et al.*, 2020; McGinn *et al.*,

2023; Best et al., 2023). Expert-chosen acoustic features are interpretable but can be difficult to choose, design and measure robustly. This can apply to commonly used features such as fundamental frequency, as well as more complex or subtle features. Currently, non-linear phenomena are typically manually annotated. Anikin and Herbst (2024) provide a set of current best practices for annotating and measuring non-linear phenomena as well as a suite of visualization tools for aiding in their detection and classification. General-purpose analyses can be relatively easily applied to audio waveforms, but they may not adequately reflect perceptible features and may also be sensitive to extraneous information (e.g., due to recording conditions). Furthermore, especially if involving neural networks, they are not immediately interpretable. Here, best practice includes visualization and validation (see Thomas et al. 2022). One option is to utilize these general-purpose features as an aid to manual annotation (Merino Recalde, 2023; Poupard et al., 2024). Validation may also be based on whether the features can correctly predict perceptual judgments of the species themselves, as collected in discrimination tasks (Zandberg et al., 2024; Elie et al., 2025), although this may not currently be feasible for all species or comparative studies (Odom et al., 2021). Finally, graded variation can complicate the notion of a repertoire of call types (Kershenbaum et al., 2016; Fischer, Wadewitz & Hammerschmidt, 2017; Cusano, Noad & Dunlop, 2021). Representing vocal complexity which consists of a combination of graded variation and stereotyped call types remains an ongoing area of research.

Preliminary data on cooperatively breeding carrion crows equipped with bio-loggers that allow continuous sound recording for up to six days suggest that a substantial proportion of their vocalisations consist of 'soft calls', which are characterised by low amplitude (Baglione et al. under review). These vocalisations are detectable only through animal-borne recording devices, as conventional directional microphones lack the sensitivity required to capture them at a distance. Furthermore, the ambiguous acoustic structure and highly variable duration of these soft calls present significant challenges for classification, whether based on human perception or current machine learning algorithms.

Linking vocalisations to behaviour and context

To assess the functions and semantic meaning of vocalisations, they must be linked to contextual factors such as environmental variables, caller and receiver identities, life histories, behaviours and past interactions. Such long term factors may be

especially relevant to understanding vocalisations in corvids with long term memory for social interactions (Bugnyar, 2013; Taylor, 2014; Cunha & Griesser, 2021). For some corvids, vocalisations have been difficult to exclusively identify with a particular context (Siriwardena 1995), suggesting the potential in developing additional methods of observation and of associating vocalisations with context. For a brief review of methodologies used to study corvid behaviour and associated ethical considerations, see Rutz (2018).

Studying vocalisations and behaviour of corvids synchronously can be challenging, especially in wild animals, who are freely moving over large areas and often difficult to follow. Technological advances like animal-borne loggers (e.g., proximity and video loggers in New Caledonian crows, St Clair et al. 2015; Troscianko and Rutz 2015; accelerometers and audio loggers in carrion crows, Baglione et al. under review) and camera-based systems (e.g., flight tracking in jackdaws and rooks, Ling et al. 2018; nest cameras to document cooperative behaviours in carrion crows, Trapote et al. 2024) increasingly allow to analyse behaviour associated with vocalisations. Importantly, the mitigation of ethical risks, such as disturbance of focal animals need to be taken into account when applying technology such as camera setups. Although several studies report neutral effects of camera use for remotely observing bird behaviour, even when cameras are placed near or within nests (López-López, 2022), it is important to acknowledge that the installation of electronic devices may still influence avian behaviour (Harrison et al., 2019). This concern is particularly relevant for corvid species, which are highly neophobic. Additionally, disturbances may arise when video cameras require frequent maintenance, such as battery recharging or troubleshooting technical issues, potentially exacerbating behavioural disruptions.

Improved recording technology increasingly results in large datasets and machine learning can aid in extending manual annotations of behaviour (Tuia *et al.*, 2022). Once contextual factors are measured, machine learning has the potential to play a key role in discovering their associations with vocalisations (Rutz *et al.*, 2023). In marmosets, supervised machine learning has been used to demonstrate that vocalisations contain sufficient information to identify the receiver of a vocalisation (Oren *et al.*, 2024). Such analyses require accounting for confounds in observational data (Demartsev *et al.*, 2023) and must be complemented with playbacks and other field experiments.

While environmental noise presents a challenge when working with vocal data, it may present opportunities for identifying behavioural conditions salient to communication. Hoffman et al. (2024) uses wing flapping recorded in bio-loggers to identify periods of flight in carrion crows. In jackdaws, Stowell et al. (2017) characterize a broad array of behavioural contexts using audio recorded by biologgers. In cetaceans, flow noise has been used to identify feeding lunges in humpback whales (Friedlaender *et al.*, 2013).

What is a segment?

In terms of understanding animal vocalisations, it is not only relevant to categorize calls into different call types, but also understand vocal sequences. As such, it is fundamentally important to be able to distinguish between biologically meaningful sequences, which at times can be challenging as these are not necessarily the same units, which seems intuitive to a human eye and ear. Some new methods segment animal vocal sequences automatically (Mann *et al.*, 2021). Similarly, vocalisations within sequences can be grouped to types using unsupervised machine learning techniques rather than subjective grouping by an investigator based on spectral shapes (Xie et al. 2024). In all such cases, the question remains open whether the extent to which segmentation corresponds to the structure of communication.

Experimental approaches

Experiments provide valuable opportunities for testing hypotheses related to the evolution of communication and the cognitive mechanisms underlying vocal behaviour. However, the neophobic nature of many corvid species (Miller *et al.*, 2022) along with their fear of human observers, can make field experiments challenging. On the other hand, some corvids habituate well to human presence (Ekman, Sklepkovych & Tegelstrom, 1994) and individuals in urban areas are generally less neophobic compared to their rural counterparts (Matsyura, Jankowski & Zimaroyeva, 2015). Thus, the scope of field experiments in corvids varies widely, from experiments that do not require observers to be close to test subjects, such as automated camera and recording systems (Trapote *et al.*, 2024), to those that involve direct interactions between individuals and human experimenters (e.g., Horn et al. 2020).

Playback experiments lend themselves to test different aspects of vocal

communication in corvids and can be conducted in captivity (Boeckle & Bugnyar, 2012; Wascher et al., 2012; Massen et al., 2014) as well as in the field (Griesser 2008, Szipl et al. 2015; Lee et al. 2019; Davídková et al. 2020). A wide range of stimuli can be used, e.g., conspecific calls (Boeckle & Bugnyar, 2012; Kondo et al., 2012; Zandberg et al., 2014; Szipl et al., 2015; Wascher et al., 2015b), non-human heterospecifics calls (Wascher et al., 2012), human voices (Wascher et al., 2012; Schalz & Ei-Ichi, 2020; McIvor, Lee & Thornton, 2022), or anthropogenic sounds (Federspiel et al., 2023). Playbacks can be used to test different behavioural and cognitive aspects related to vocal communication, e.g., individual recognition (Boeckle & Bugnyar, 2012; Kondo et al., 2012; Cunha & Griesser, 2021), recognition of relationships (Massen et al., 2014; Lee et al., 2019a), function of vocalisations (McCaig, Brown & Jones, 2015; Davídková et al., 2020), theory of mind (Bugnyar, Reber & Buckner, 2016). A wide range of setups are available, from fully automated remote systems (Suraci et al., 2017; Palmer et al., 2022) to more interactive approaches, which require the presence of a human observer (King, 2015). Playback experiments can make use of audio- and video-recordings to analyse the behavioural responses of focal individuals (Palmer et al. 2022; Mennill and Vehrencamp 2008). Importantly, experimental equipment should be placed out of sight of focal individuals or carefully camouflaged to minimise potentially negative effects of visible loudspeakers. In addition to minimising potential interference and disturbance to the animals, it also avoids habituation to the playback setup and individuals recognising the artificial setup, e.g. calls being emitted from playback speakers. Besides consideration of potential disturbance playback experiments can cause when studying animals, other ethical risks need to be carefully considered and mitigated, for example simulated territory intrusion can cause territory abandonment or increased risk of predation (Watson, Znidersic & Craig, 2019). Another key challenge in playback experiments is stimulus preparation and setup, e.g., sound volume, in order to ensure stimuli are perceived as realistically as possible by focal individuals.

1078

1079

1080

1081

1082

1083

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

Training corvids in laboratory settings allows researchers to set and control a variety of conditions and complement field studies and playback experiments. With tools like touchscreens and automated feeders, researchers can precisely control the set-up and present a variety of stimuli (Rust & Movshon, 2005; Hauber et al., 2015). These setups can help separate factors like arousal and vocal control (Brecht et al., 2019;

1084 Liao et a
1085 individu
1086 further i
1087 behavio
1088 training
1089 or exper
1090 require
1091 vocal be
1092 controll
1093 (Lanzari
1094 and rec
1095 physiolo

Liao et al., 2024a), or explore how different acoustic features or call types relate to individual recognition (Elie & Theunissen, 2018). Complex training paradigms can further reveal cognitive mechanisms that shape evolutionary processes. However, behaviours, brains, and bodies are inseparable (Gomez-Marin & Ghazanfar, 2019), and training paradigms should integrate with ecological knowledge from field observations or experiments. Moreover, experimental paradigms that involve training typically require many more trials, which are crucial for establishing quantitative links between vocal behaviour and neural activity. Understanding whether the results from these controlled experiments are consistent or vary in more naturalistic contexts is essential (Lanzarini et al., 2025). Exciting methodological improvements in behavioural tracking and recording technologies hold great promise to deepen our understanding of the physiology behind corvid communication.

IV. Future directions

A deeper understanding of animal vocal communication is not only crucial for fundamental research on the evolution of communication, but has practical applications in animal welfare and conservation. In particular, studying corvid vocal communication can help address societal challenges such as reducing human-wildlife conflict, improving animal care and enrichment in captivity, and enhancing conservation efforts by informing strategies for reintroducing species or managing populations. Understanding how corvids communicate in both wild and human-modified environments can also contribute to mitigating the negative impacts of urbanisation.

Advancing animal welfare

Vocalisations provide an opportunity for non-invasive assessment of emotional and psychological states, and improving ethical and animal care standards. Animal welfare assessments have evolved to include both negative-focused and positive-focused assessments, such as the 'five freedoms' framework (freedom from hunger and thirst, freedom from discomfort, freedom from pain, injury, or disease, freedom to express normal behaviour, and freedom from fear and distress), and the 'opportunities to thrive' model (Woods, Eyer & Miller, 2022). Bioacoustic methods are increasingly used to assess welfare in captive animals (Coutant, Villain & Briefer, 2024). For example, emotional arousal is expressed in call typical non-linear phenomena (Marx et al., 2021), or call frequency (Gosselin et al., 2025).

Avian welfare research has lagged behind work on mammals, accounting for less than ten percent of welfare research in zoos in the last decade (Woods *et al.*, 2022), despite many species, including corvids being kept in captivity, including for research (Miller et al. 2024; see Appendix Table 1 and Table 2). In these settings, forced social groupings, overcrowding, or solitary living can alter vocal patterns and other behaviours in social birds such as corvids, often revealing distress (Harvey et al. 2002; Munteanu et al. 2017; Wolff and Stevens 2024). Interactions with human visitors and carers can further disrupt captive birds' lives and compromise their welfare, especially in species with pronounced neophobia (Wascher *et al.*, 2021). Captive environments and social grouping also shape individuals' development, as shown in a captive breeding programme of the critically endangered 'alalā, where autonomous audio and video recordings revealed that captive birds had a smaller vocal repertoire, compared to wild birds, notably losing crucial alarm and broadcast calls essential for survival in the wild (Tanimoto *et al.*, 2017).

Altered and reduced vocal repertoire in captive birds highlights how stressors, limited learning opportunities, and unnatural social environments can have lasting impacts on welfare—or, in the case of 'alalā, compromise reintroduction success. Given the central role of vocal communication in corvids' social lives, this raises the question of how enriching environments can stimulate natural vocal behaviours. Enrichment may include 'unnatural' stimuli; for example, music was found to encourage vocal activity and reduce stress-related behaviours in temporarily captive hooded crows during rehabilitation (Jablonska, Golik & Burnat, 2023). However, while responses to both auditory enrichment and acoustic stressors likely vary across individuals and species, excessive noise, including vocalisations from nearby species, create welfare concerns (Bílá *et al.*, 2017; Broad, 2024; Miller *et al.*, 2024). Understanding how corvids perceive and respond to different sounds can inform facilities to design cognitively stimulating environments that engage these birds meaningfully and minimise welfare concerns.

Keeping wild birds in captivity is strongly regulated, with a focus on research, conservation, and education. Zoos, wildlife parks, and research institutes housing corvids not only facilitate research that informs evidence-based conservation programmes (Sabol *et al.*, 2022), but also help raise public awareness of these birds' natural behaviours, ecological roles, as well as welfare concerns and conservation threats they face, both globally and locally (Keulartz, 2015).

Studying corvid vocal communication within zoos also has broader implications for impacting the zoos missions of research, conservation, and education. Housing local corvid species allows for a strong educational message related to these species and the problems they face, which can encourage local involvement and action. Zoo research findings can be used to inform public awareness about the complexity and intelligence of these birds, fostering a greater understanding of their ecological roles locally. This can be demonstrated to visitors within the corvid's enclosure by utilising forms of enrichment such as intellectually stimulating feeding enrichment e.g., solving puzzles or finding hidden food (Hawkins, 2010). Furthermore, corvids are well-suited for training, as they can habituate to human presence and environmental pressures (Deventer et al., 2016). This makes corvids potentially useful for educational demonstrations within zoos, whilst also allowing for greater research potential in the form of cognitive testing as demonstrated by Dufour et al (2012), and the facilitation of multi-institutional studies as shown by Miller et al (2022). Additionally, zoos can use vocalisation research to improve reintroduction programs for endangered corvid species, by maintaining their calls needed for survival and reproduction in the wild as demonstrated by the work on 'alalā (Greggor et al., 2021). Ultimately, by researching, educating visitors on, and preserving the vocal repertoire of corvids, zoos can play a critical role in advancing avian welfare, conservation, and the public understanding of these remarkable birds.

Corvids are not only a useful group for educating the public about nature but throughout history and across cultures, corvids have also held profound symbolic and cultural significance, appearing in myths, folklore, and traditions around the world (Marzluff & Angell, 2007). To Hawaiian's, the 'alalā are sacred 'aumakua (Banko, Ball & Banko, 2002), family messengers and protectors that originate from deified ancestors (Barrow, 1999). These birds were included in meetings between ali'i (royalty and chiefs) and, during battles, it is said that warriors would imitate the 'alala's haunting caws that were able to reach long distances (Walters, 2012). Similarly, the Siberian jay holds cultural significance, particularly among the indigenous Sámi people and other communities in northern Europe and Siberia. They are often regarded as a protective spirit, a harbinger of good luck, and a messenger between the living and deceased ancestors or spirits. Thus, their presence is often seen as a positive omen (Bergman & Östlund, 2022; Joy, Armstrand & Helander, 2024).

Human-wildlife interactions

Vocal monitoring offers valuable insights beyond captivity. Wild animal welfare is an emerging field in need of effective methods (Browning & Veit, 2023), and shifts in vocal activity may indicate environmental disturbance, with potentially cascading effects on population resilience. Broad et al (2024) found that noise pollution disrupted jackdaws' vocal communication at winter roosts, delaying settlement and increasing nocturnal calling, highlighting how anthropogenic disturbance may disrupt sleep and cognition, elevate stress, and impair vocal consensus during group coordination and collective behaviours.

Many corvid species, such as carrion crows or large-billed crows, are highly adapted to human environments and therefore present an ideal model system to study the effects of urbanisation on wildlife (Benmazouz *et al.*, 2021). Urbanisation is a major driver of biodiversity loss and a better understanding of how animals adapt to human modified environments can help inform conservation strategies, mitigate negative impacts, and promote coexistence between wildlife and urban populations.

In the context of vocal communication, urbanisation represents a rapid and drastic change in the environment, often associated with a higher cover in impervious structures that prevent sound propagation, but also with increased light pollution and noise levels (Swaddle *et al.*, 2015; Moll *et al.*, 2019; Halfwerk & Jerem, 2021). Recent studies have pointed out how urban habitats can influence, and even shape animal communication (Patricelli & Blickley, 2006; Singh *et al.*, 2023). For instance, urban birds shift their vocal activity to an earlier time (Bergen & Abs, 1997; Warren *et al.*, 2006) or use a higher-frequency signal (Wood and Yezerinac, 2006). Anthropogenic disturbance on communication could potentially have fitness consequences, e.g., by reducing coordination between group members (Broad, 2024). As many corvid species have successfully established themselves within cities, comparing the vocal behaviour between urban and rural corvid populations could be an interesting approach to understand the acoustic adaptations of urban individuals (Slabbekoorn, 2013). Understanding how habitat structure can be linked to vocal behaviour is of prime importance, especially as the earth becomes increasingly urbanized.

Because of their closeness to humans, corvids are also an ideal model system to study human-wildlife conflicts and attitudes of people towards animals. Corvids evoke strong and polarized emotions in human societies, ranging from admiration to aversion (Jürgens *et al.*, 2022). Corvids are widely believed to prey on other bird

species and nests, including threatened species (Strong et al., 2021), however a comprehensive review failed to find evidence for the widespread effect of corvids on prey species (Madden, Arroyo & Amar, 2015). In a survey of London residents, the majority of people (57%) felt positive towards carrion crows (Schalz, 2021). American crows in Seattle showed a longer flight initiation distance in areas where levels of discouragement (e.g. chasing or scaring crows away) were higher compared to areas with lower discouragement levels (Clucas & Marzluff, 2012), Similarly, large-billed crows (Corvus macrorhynchos) and carrion crows in Japan show a greater flight initiation distance in areas where crows are shot, rather than captured (Fujioka, 2020). For wild crows, the risk of being chased, captured or killed may be partially reduced by detecting early signs of human presence, such as human voices. Largebilled crows who were wild-caught in Japan showed more behavioural responses to playback of an unfamiliar language (Dutch) compared to a familiar language (Japanese) (Schalz & Ei-Ichi, 2020), while captive carrion crows also responded more often to unfamiliar than familiar human voices (Wascher et al., 2012). Carrion crows in the UK responded more to playback of speech than to avian control sounds, though their response did not differ between the local language and a foreign, presumably unfamiliar language (Schalz, 2023). Note that behavioural responses differed, and ranged from taking flight to approaching and investigating the sound source. Jackdaws are more wary of male compared to female human voices, but do not discriminate between different dialects of a language (McIvor et al., 2022). Future studies on corvid responses to human vocalisations could explore whether corvids' abilities to discriminate aspects of human speech patterns reflects abilities evolved for interspecific communication, and what the wider fitness benefits of this behaviour may be.

12551256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Human-wildlife conflict with corvids is particularly prevalent in agricultural landscapes, where corvids are considered to raid crops and cause significant economic losses for farmers (Khan, Javed & Zeeshan, 2015) and airport environments, where groups of corvids pose a risk to aviation safety (Kukhta & Matsyura, 2018). As a consequence over four million corvids are killed annually across Europe (Jiguet, 2020), with local cullings often resulting in little impact, as local turnover is high and larger metapopulations exist (Marchand *et al.*, 2018). Vocal communication can provide non-lethal methods to mitigate these conflicts, particularly through playback, by broadcasting alarm calls or distress calls deterring corvids from specific areas (Baxter & Robinson, 2007; Belant, 2011). While such methods can be temporarily effective, corvids often habituate to repeated playbacks, necessitating ongoing modifications in

acoustic deterrents. Understanding how corvids use vocal communication in response to threats is crucial for developing long-term, non-lethal management strategies that balance human interests with conservation goals.

V. Conclusion

As outlined in this review, we argue that corvids present a key model group to advance our understanding of animal communication. Recent conceptual, technological, and methodological advances are suited to address challenges and new questions in the field. With their complex vocal repertoires, social learning abilities, and cognitive skills, corvids offer a particularly valuable opportunity to study the flexibility and function of vocal signals in both natural and human-modified environments. Future research integrating key evolutionary concepts, field experiments and powerful analytical tools will provide deeper insights into how corvids use vocalisations to navigate their social and ecological landscapes.

Additionally, understanding corvid vocal communication has practical applications, from improving animal welfare, and mitigating human-wildlife conflict, to informing conservation strategies. By continuing to explore the intricacies of corvid vocalisation, we can not only refine our knowledge of avian communication but also gain broader insights into the evolution of complex signalling systems across species.

VI. Author contributions

This article arose from an investigative virtual workshop 'Corvid Vocal Communication' organised by C.A.F.W. and V.D. in September 2024. The workshop was advertised broadly within personal networks and on social media and participation at the workshop was free. Authorship was offered to everybody making a significant contribution according to the International Committee of Medical Journal Editors recommendations for defining the roles of authors and contributors (https://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html).

VII. ACKNOWLEDGEMENTS

M.G. is supported by a Heisenberg Grant, German Research Foundation DFG (Grant no. GR 4650/2-1) DFG project grant (FP 589/20). C.G.B. is supported by the CNRS. L.G.H. is supported by DTP3: BB/T008741/100. B.C.K. is supported by the Vienna Science and Technology Fund (WWTF) [10.47379/VRG21011]. E.J.G.L. is supported by BBSRC (BB/S018484/1). A.N.O. is supported by Bourse France Excellence SSHN

1303	and Alexander von Humboldt Foundation fellowship. S.R. is supported by CENTA.
1304	C.R. is supported by funding from BBSRC (BB/S018484/1) and the National
1305	Geographic Society. A.S. is supported by funding from UKRI. M.W. is supported by
1306	an Oxford Brookes University Emerging Leaders Research Fellowship. A.T. is
1307	supported by a Leverhulme Trust Grant RGP-2020-170. TB is supported by the
1308	Austrian Science Fund (FWF Grant: P33960, W1262). JEE is supported by the NIH.

Table 1 – Number of Crows, Choughs, Jackdaws, Ravens, and Rooks kept in zoos globally and the number of zoos holding each species

Species	Total Kept Number	Institution Amount	Europe	Institution Amount	North America	Institution Amount	South America	Institution Amount	Asia	Institution Amount	Africa	Institution Amount	Oceania	Institution Amount
Crows	-	•	•	•	•	•	•	•	*	•	•	•	•	•
American crow (Corvus brachyrhynchos)	39	31			38	30							1	1
- C. b. hesperis	4	2			1	1					3	1		
- C. b. brachyrhynchos	1	1			1	1								
Cape crow (Corvus capensis)	3	2		•	•	•	•	•		•	3	2	•	•
Carrion crow (Corvus corone)	10	6	10	6	•			•	•		•	•	•	•
- C. c. cornix	15	11	15	11										
Fish crow (Corvus ossifragus)	7	5			7	5								
Hawaiian crow (Corvus hawaiiensis)	129	2			129	2			_					
House crow (Corvus splendens)	3	2							3	2				
Large-billed crow (Corvus macrorhynchos)	2	2	1	1					1	1				
- C. m. macrorhynchos	1	1							1	1				
Mariana crow (Corvus kubaryi)	29	1			29	1								
New Caledonian crow (Corvus moneduloides)	6	1											6	1
Papuan crow (Corvus orru)	1	1											1	1
Pied crow (Corvus albus)	65	34	30	18	23	11	-	-	9	3	3	2	•	
Piping crow (Corvus typicus)	4	1	4	1										
Sinaloa crow (Corvus sinaloae)	1	1			1	1								
Sunda crow (Corvus enca)	2	1							2	1				
Tasmanian crow (Corvus tasmanicus)	3	1		.		•	-	-				•	3	1
Choughs														
Alpine chough (Pyrrhocorax graculus)	4	2	4	2										
Red-billed chough (Pyrrhocorax pyrrhocorax)	178	21	178	21	•			•	•		•	•	•	•
Jackdaws			•											
Daurian jackdaw (Coloeus dauuricus)	1	1	1	1										
Western jackdaw (Coloeus monedula)	25	13	25	13	•	•	•	•		•		•	•	•
Ravens														
Australian raven (Corvus coronoides)	7	1											7	1
Brown-necked raven (Corvus ruficollis)	7	3			•		-	•	7	3		•		
Common Raven (Corvus Corax)	236	127	164	83	65	40		-	6	3		•	1	1
- C. c. Corax	24	14	23	13	1	1								
- C. c. principalis	21	17	1	1	20	16								
- C. c. tingitanus	5	1			5	1								
Chihuahuan raven (Corvus cryptoleucus)	5	3			5	3								
Fan-tailed raven (Corvus rhipidurus)	1	1	-	<u>.</u>	•		-	·	1	1	.		-	
White-necked raven (Corvus albicollis)	62	25	23	10	38	14			1	1				
Rooks			1											
Rook (Corvus frugilegus)	15	9	15	9	•		•	•		•				•
- C. f. frugilegus		1	I 10	1										

Table 2 – Number of Jays, Jayshrikes, Magpies, Nutcrackers, Piapiac, Scrub-jays, and Treepies kept in zoos globally and the number of zoos holding each species

Species	Total Kept	Institution	Europe	Institution	North	Institution	South	Institution	Asia	Institution	Africa	Institution	Oceania	Institution
•	Number	Amount		Amount	America	Amount	America	Amount		Amount		Amount		Amount
Jays														
Azure jay (Cyanocorax caeruleus)	6	3					6	3						
Black-chested jay (Cyanocorax affinis)	10	6	Į.				10	6						
- C. a. affinis	1	1					1	1						
Black-throated magpie-jay (Cyanocorax colliei)	61	21	8	3	53	18								
Blue jay (Cyanocitta cristata)	13	10	l .		13	10								
- C. c. cristata	1	1	00			1								
Eurasian jay (Garrulus glandarius)	24	17	20	14					4	3				
- G. g. glandarius Curl-crested jay (Cyanocorax cristatellus)	3	3	-	1			3	3						
Inca jay (Cyanocorax yncas)	56	17	17	7	35	7	4	3				-		
- C. y. yncas	8	6	17	1	8	6	4	3						
- C. y. luxuosus	1	1	1	1	0	U								
Lidth's jay (<i>Garrulus lidthi</i>)	22	3	+ '					.	22	3				
Plush-crested jay (Cyanocorax chrysops)	61	26	5	1	54	23	2	2						
- C. c. chrysops)	1	1	3	•	1	1	2	_						
Purplish-backed jay (Cyanocorax beecheii)	4	2	2	1	2	1								
						- '								
San Blas jay (Cyanocorax sanblasianus)	2		2	1										
Steller's jay (Cyanocitta stelleri)	2	1			1	1		- 4						
White-naped jay (Cyanocorax cyanopogon)	21	6	5	3	16	3	2	1						
White-throated magpie-jay (Cyanocorax formosus) - C. f. azureus	1	1	5	3	16	3 1								
White-tailed jay (Cyanocorax mystacalis)	2	2	1	1	1						1	1		
Yucatan jay (Cyanocorax riystacalis) Yucatan jay (Cyanocorax yucatanicus)	4	1	4	1								<u> </u>		
Javshrikes	<u> </u>	•	1 7											
Crested jayshrike (Platylophus galericulatus)	1	1	1						1	1		-		
- P. g. galericulatus)	4	1	ł						4	1				
Magpies	<u> </u>	•	1											
Azure-winged magpie (Cyanopica cyanus)	150	43	68	20	73	19			9	4				
,					13	19			9	4				
- C. c. cyanus	54	10	54	10										
American magpie (Pica hudsonia)	3	2			3	2								
Common green magpie (Cissa chinensis)	15	7	8	4	2	1			5	2				
Eurasian magpie (Pica pica)	21	10	21	10								•		
Iberian magpie (Cyanopica cooki)	30	13	29	12					1	1				-
Javan green magpie (Cissa thalassina)	112	11	25	7					87	4				
Maghreb magpie (<i>Pica mauritanica</i>)	1	1	1	1										
Racket-tailed treepie (<i>Crypsirina temia</i>)	12	3	2	1				.	10	2				
Red-billed blue magpie (<i>Urocissa erythroryncha</i>)	243	90	181	71	35	12		<u> </u>	27	7		<u>.</u>		
- U. e. erythroryncha	17	10	1 '0'		17	10			۷.	•				
- U. e. occipitalis	8	3	2	2					6	1				
Sumatran treepie (Dendrocitta occipitalis)	1	1	1	1		<u> </u>		·				•		
Taiwan blue magpie (<i>Urocissa caerulea</i>)	4	1	T i	· · ·		<u> </u>		·	4	1		•		
Yellow-billed magpie (Pica nuttalli)	1	1							1	1				
Yellow-breasted magpie (Cissa hypoleuca)	7	2	2	1					5	1				
Scrub-jays	-		•			•	•			•				
California scrub jay (Aphelocoma californica)	1 1	1			1	1						-		
Woodhouse's scrub jay (Aphelocoma woodhouseii)	1	1	1		1	<u>·</u> 1								
	<u> </u>					- '	,	· · · · · · · · · · · · · · · · · · ·		,				
Others	1 40	•	40	•										
Northern nutcracker (Nucifraga caryocatactes)	10	2	10	<u>6</u> 1					2	1				
Piapiac (Ptilostomus afer)	4	۷	2	1						I				

	Rufous treepie (Dendrocitta vagabunda) 9 3 7 2 2 1
5	
6	
	References
	AKÇAY, Ç. & BEECHER, M.D. (2019) Multi-modal communication: song sparrows increase signal redundancy in noise. <i>Biology Letters</i> 15 , 20190513.
	AMPHAERIS, J., BLUMSTEIN, D.T., SHANNON, G., TENBRINK, T. & KERSHENBAUM, A. (2023) A multifaceted framework to establish the presence of meaning in non-human communication. <i>Biological Reviews</i> 98 , 1887–1909.
	ANIKIN, A. & HERBST, C. (2025) How to analyze and manipulate nonlinear phenomena in voice recordings. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> 380 , 20240003.
	AOTA, I., TAKANO, M. & IZAWA, EI. (2025) Effects of a short-term removal of the dominant male on vocalization in captive groups of large-billed crows (Corvus macrorynchos). Royal Society Open Science 12, 241458.
	ARAK, A. (1983) Vocal interactions, call matching and territoriality in a Sri Lankan treefrog, Philautus leucorhinus (Rhacophoridae). <i>Animal Behaviour</i> 31 , 292–302.
	ARNOLD, K. & ZUBERBÜHLER, K. (2006) Semantic combinations in primate calls. <i>Nature</i> 441 , 303–303.
	BAGLIONE, V., CANESTRARI, D., CUSIMANO, M., HOFFMAN, B., MORENO, V. & TRAPOTE, E. (under review) Capturing vocal communication in a free-living corvid: high-resolution data from low-impact miniaturized tags. <i>Animal Cognition</i> .
	BAGLIONE, V., CANESTRARI, D., MARCOS, J.M. & EKMAN, J. (2006) Experimentally increased food resources in the natal territory promote offspring philopatry and helping in cooperatively breeding carrion crows. <i>Proceedings of the Royal Society B: Biological Sciences</i> 273, 1529–1535.
	BAGLIONE, V., MARCOS, J.M., CANESTRARI, D., GRIESSER, M., ANDREOTTI, G., BARDINI, C. & BOGLIANI, G. (2005) Does year-round territoriality rather than habitat saturation explain delayed natal dispersal and cooperative breeding in the carrion crow? <i>Journal of Animal Ecology</i>

- **74**, 842–851.
- BANKO, P.C., BALL, D.L. & BANKO, W.E. (2002) Hawaiian crow Corvus hawaiiensis. In *The Birds of North America* p. Cornell Lab of Ornithology, lthaca, USA.
- BARROW, L.J. (1999) Aumakua (Guardian Ancestors) in the context of contemporary Hawaiian religious beliefs. *Rapa Nui Journal: Journal of the Easter Island Foundation* **13**.
- BAXTER, A.T. & ROBINSON, A.P. (2007) A comparison of scavenging bird deterrence techniques at UK landfill sites*. *International Journal of Pest Management* **53**, 347–356.
- 1343 BEECHER, M. & BRENOWITZ, E. (2005) Functional aspects of song learning in songbirds. *Trends in Ecology & Evolution* **20**, 143–149.
- BEKOFF, M. (1994) Cognitive ethology and the treatment of non-human animals: How matters of mind inform matters of welfare. *Animal Welfare* 3, 75–96.
- 1346 BELANT, J.L. (2011) Bird harassment, repellent, and deterrent techniques for use on and near airports. Transportation Research Board.
- BEN MOCHA, Y. & BURKART, J.M. (2021) Intentional communication: solving methodological issues to assigning first-order intentional signalling. Biological Reviews **96**, 903–921.
- BEN MOCHA, Y., MUNDRY, R. & PIKA, S. (2019) Joint attention skills in wild Arabian babblers (Turdoides squamiceps): a consequence of cooperative breeding? *Proceedings of the Royal Society B: Biological Sciences* **286**, 20190147.
- BENMAZOUZ, I., JOKIMÄKI, J., LENGYEL, S., JUHÁSZ, L., KAISANLAHTI-JOKIMÄKI, M.-L., KARDOS, G., PALÁDI, P. & KÖVÉR, L. (2021) Corvids in urban environments: A systematic global literature review. *Animals* **11**, 3226.
- BENTI, B., CURÉ, C. & DUFOUR, V. (2019) Individual signature in the most common and context-independent call of the Rook (Corvus frugilegus). *Journal of Ornithology* **131**, 373.
- BERGEN, F. & ABS, M. (1997) Verhaltensökologische Studie zur Gesangsaktivität von Blaumeise (Parus caeruleus), Kohlmeise (Parus major) und Buchfink (Fringilla coelebs) in einer Großstadt. *Journal of Ornithology* **138**, 451–467.
- BERGLER, C., SMEELE, S.Q., TYNDEL, S.A., BARNHILL, A., ORTIZ, S.T., KALAN, A.K., CHENG, R.X., BRINKLØV, S., OSIECKA, A.N., TOUGAARD, J.,
 JAKOBSEN, F., WAHLBERG, M., NÖTH, E., MAIER, A. & KLUMP, B.C. (2022) ANIMAL-SPOT enables animal-independent signal detection
 and classification using deep learning. *Scientific Reports* **12**, 21966.

- BERGMAN, I. & ÖSTLUND, L. (2022) A sacred tree in the boreal forest: A narrative about a Sámi Shaman, her tree, and the forest landscape.

 Human Ecology **50**, 1023–1033.
- 1362 BERTHET, M., COYE, C., DEZECACHE, G. & KUHN, J. (2023) Animal linguistics: a primer. *Biological Reviews* **98**, 81–98.
- 1363 BERTHET, M., SURBECK, M. & TOWNSEND, S.W. (2025) Extensive compositionality in the vocal system of bonobos. *Science* **388**, 104–108.
- 1364 BEST, P., PARIS, S., GLOTIN, H. & MARXER, R. (2023) Deep audio embeddings for vocalisation clustering. *PLOS ONE* **18**, e0283396.
- 1365 BÍLÁ, K., BERÁNKOVÁ, J., VESELÝ, P., BUGNYAR, T. & SCHWAB, C. (2017) Responses of urban crows to con- and hetero-specific alarm calls in predator and non-predator zoo enclosures. *Animal Cognition* **20**, 43–51.
- BILLERMAN, S.M., KEENEY, B.K., RODEWALD, P.G. & SCHULENBERG, T.S. (eds) (2022) *Birds of the World.* Cornell Lab of Ornithology, Ithaca, NY, USA.
- BLACKBURN, E., BURGESS, M., FREEMAN, B., RISELY, A., IZANG, A., IVANDE, S., HEWSON, C. & CRESSWELL, W. (2016) An experimental evaluation of the effects of geolocator design and attachment method on between-year survival on whinchats *Saxicola rubetra*. *Journal of Avian Biology* **47**, 530–539.
- BLUFF, L.A., KACELNIK, A. & RUTZ, C. (2010) Vocal culture in New Caledonian crows, Corvus moneduloides. *Biological Journal of the Linnean Society* **101**, 767–776.
- BLUM, C.R., FITCH, W.T. & BUGNYAR, T. (2020) Rapid learning and long-term memory for dangerous humans in ravens (Corvus corax).

 Frontiers in Psychology 11, 581794.
- BLUMSTEIN, D.T. & ARMITAGE, K.B. (1997) Does sociality drive the evolution of communicative complexity? A comparative test with ground-dwelling sciurid alarm calls. *The American Naturalist* **150**, 179–200.
- 1378 BOECKLE, M. & BUGNYAR, T. (2012) Long-Term memory for affiliates in ravens. *Current Biology* **22**, 801–806.
- 1379 BOECKLE, M., SZIPL, G. & BUGNYAR, T. (2012) Who wants food? Individual characteristics in raven yells. *Animal Behaviour* **84**, 1123–1130.
- 1380 BOECKLE, M., SZIPL, G. & BUGNYAR, T. (2018) Raven food calls indicate sender's age and sex. Frontiers in Zoology 15, 5.
- BONCORAGLIO, G. & SAINO, N. (2007) Habitat structure and the evolution of bird song: a meta-analysis of the evidence for the acoustic adaptation hypothesis. *Functional Ecology* **21**, 134–142.

- BORTOLATO, T., FRIEDERICI, A.D., GIRARD-BUTTOZ, C., WITTIG, R.M. & CROCKFORD, C. (2023) Chimpanzees show the capacity to communicate about concomitant daily life events. *iScience* **26**, 108090.
- BOSSHARD, A.B., BURKART, J.M., MERLO, P., CATHCART, C., TOWNSEND, S.W. & BICKEL, B. (2024) Beyond bigrams: call sequencing in the common marmoset (*Callithrix jacchus*) vocal system. *Royal Society Open Science* **11**, 240218.
- 1387 BRADBURY, J.W. & VEHRENCAMP, S.L. (2011) Principles of Animal Communication. Sinauer Associates.
- BRECHT, K.F., HAGE, S.R., GAVRILOV, N. & NIEDER, A. (2019) Volitional control of vocalizations in corvid songbirds. *PLOS Biology* **17**, e3000375.
- BRENOWITZ, E.A., MARGOLIASH, D. & NORDEEN, K.W. (1997) An introduction to birdsong and the avian song system. *Journal of Neurobiology* 33, 495–500.
- BRIEFER, E., OSIEJUK, T.S., RYBAK, F. & AUBIN, T. (2010) Are bird song complexity and song sharing shaped by habitat structure? An information theory and statistical approach. *Journal of Theoretical Biology* **262**, 151–164.
- BRIEFER, E.F. (2012) Vocal expression of emotions in mammals: mechanisms of production and evidence. *Journal of Zoology* **288**, 1–20.
- BRLÍK, V., KOLEČEK, J., BURGESS, M., HAHN, S., HUMPLE, D., KRIST, M., OUWEHAND, J., WEISER, E.L., ADAMÍK, P., ALVES, J.A., ARLT, D., BARIŠIĆ, S., BECKER, D., BELDA, E.J., BERAN, V., ET AL. (2020) Weak effects of geolocators on small birds: A meta-analysis controlled for phylogeny and publication bias. *Journal of Animal Ecology* **89**, 207–220.
- 1398 BROAD, H. (2024) Acoustic signals and social information transmission in jackdaws (Corvus monedula). University of Exeter.
- BROWN, E.D. (1985) The role of song and vocal imitation among common crows (Corvus brachyrhynchos). *Zeitschrift für Tierpsychologie* **68**, 1400 115–136.
- 1401 BROWNING, H. & VEIT, W. (2023) Positive wild animal welfare. *Biology & Philosophy* 38, 14.
- 1402 BRUNER, J. (1981) The social context of language acquisition. *Language & Communication* **1**, 155–178.
- 1403 BUGNYAR, T. (2013) Social cognition in ravens. Comparative Cognition & Behavior Reviews 8, 1–12.
- BUGNYAR, T. & KOTRSCHAL, K. (2001) Movement coordination and signalling in ravens (Corvus corax): an experimental field study. *Acta Ethologica* **3**, 101–109.

- 1406 BUGNYAR, T., REBER, S.A. & BUCKNER, C. (2016) Ravens attribute visual access to unseen competitors. *Nature Communications* 7, 10506.
- BURCHARDT, L.S., BRIEFER, E.F. & KNÖRNSCHILD, M. (2021) Novel ideas to further expand the applicability of rhythm analysis. *Ecology and Evolution* **11**, 18229–18237.
- BURCHARDT, L.S. & KNÖRNSCHILD, M. (2020) Comparison of methods for rhythm analysis of complex animals' acoustic signals. *PLOS Computational Biology* **16**, e1007755.
- 1411 CARLSON, N.V., GREENE, E. & TEMPLETON, C.N. (2020) Nuthatches vary their alarm calls based upon the source of the eavesdropped signals.

 1412 Nature Communications 11, 526.
- 1413 CHARRIER, I., PITCHER, B.J. & HARCOURT, R.G. (2009) Vocal recognition of mothers by Australian sea lion pups: individual signature and environmental constraints. *Animal Behaviour* **78**, 1127–1134.
- 1415 CHEN, Z. & WIENS, J.J. (2020) The origins of acoustic communication in vertebrates. *Nature Communications* **11**, 369.
- 1416 CHENEY, D. & SEYFARTH, R. (1990) Attending to behaviour versus attending to knowledge: examining monkeys' attribution of mental states.

 Animal Behaviour **40**, 742–753.
- 1418 CHERRY, C. (1995) 'Communication theory'-and human behavior. Studies in Communication 1, 45–67.
- 1419 CHIVERS, L.S., HATCH, S.A. & ELLIOTT, K.H. (2016) Accelerometry reveals an impact of short-term tagging on seabird activity budgets. *The Condor* **118**, 159–168.
- 1421 CLAES, R., MUYSHONDT, P.G.G., VAN HOOREBEKE, L., DHAENE, J., DIRCKX, J.J. & AERTS, P. (2017) The effect of craniokinesis on the middle ear of domestic chickens (*Gallus gallus domesticus*). *Journal of Anatomy* **230**, 414–423.
- 1423 CLEMENTS, J.F., RASMUSSEN, P.C., SCHULENBERG, T.S., ILIFF, M.J., FREDERICKS, T.A., GERBRACHT, J.A., LEPAGE, D., SPENCER, A., BILLERMAN, S.M., SULLIVAN, B.L., SMITH, M. & WOOD (2024) The eBird/Clements checklist of Birds of the World: v2024.
- 1425 CLUCAS, B. & MARZLUFF, J.M. (2012) Attitudes and actions toward birds in urban areas: Human cultural differences influence bird behavior. *The* 1426 *Auk* **129**, 8–16.
- 1427 COOMBS, F. (1978) *The Crows: a study of the Corvids of Europe*1. Aufl. B. T. Batsford, London.
- 1428 CORNELL, H.N., MARZLUFF, J.M. & PECORARO, S. (2012) Social learning spreads knowledge about dangerous humans among American crows.

- 1429 Proceedings of the Royal Society B: Biological Sciences **279**, 499–508.
- 1430 CORVIN, S., FAUCHON, C., PATURAL, H., PEYRON, R., REBY, D., THEUNISSEN, F. & MATHEVON, N. (2024) Pain cues override identity cues in baby cries. *iScience* 27, 110375.
- 1432 COSTALUNGA, G., CARPENA, C.S., SELTMANN, S., BENICHOV, J.I. & VALLENTIN, D. (2023) Wild nightingales flexibly match whistle pitch in real time. *Current Biology* **33**, 3169-3178.e3.
- 1434 COURTER, J.R. & RITCHISON, G. (2010) Alarm calls of tufted titmice convey information about predator size and threat. *Behavioral Ecology* **21**, 936–942.
- 1436 COUTANT, M., VILLAIN, A.S. & BRIEFER, E.F. (2024) A scoping review of the use of bioacoustics to assess various components of farm animal welfare. *Applied Animal Behaviour Science* **275**, 106286.
- 1438 CROCKFORD, C., WITTIG, R.M., MUNDRY, R. & ZUBERBÜHLER, K. (2012) Wild chimpanzees inform ignorant group members of danger. *Current Biology* **22**, 142–146.
- 1440 CUNHA, F.C.R. & GRIESSER, M. (2021) Who do you trust? Wild birds use social knowledge to avoid being deceived. *Science Advances* **7**, 1441 eaba2862.
- 1442 CUSANO, D.A., NOAD, M.J. & DUNLOP, R.A. (2021) Fuzzy clustering as a tool to differentiate between discrete and graded call types. *JASA*1443 *Express Letters* **1**, 061201.
- DAROLOVÁ, A., KRIŠTOFÍK, J., HOI, H. & WINK, M. (2012) Song complexity in male marsh warblers: does it reflect male quality? *Journal of Ornithology* **153**, 431–439.
- DAVÍDKOVÁ, M., VESELÝ, P., SYROVÁ, M., NÁCAROVÁ, J. & BUGNYAR, T. (2020) Ravens respond to unfamiliar corvid alarm calls. *Journal of Ornithology* **161**, 967–975.
- DAVIDSON, G.L., CLAYTON, N.S. & THORNTON, A. (2015) Wild jackdaws, Corvus monedula, recognize individual humans and may respond to gaze direction with defensive behaviour. *Animal Behaviour* **108**, 17–24.
- DEECKE, V.B., FORD, J.K.B. & SPONG, P. (2000) Dialect change in resident killer whales: implications for vocal learning and cultural transmission. *Animal Behaviour* **60**, 629–638.
- DEMARTSEV, V., GERSICK, A.S., JENSEN, F.H., THOMAS, M., ROCH, M.A., MANSER, M.B. & STRANDBURG-PESHKIN, A. (2023) Signalling in groups:

- New tools for the integration of animal communication and collective movement. *Methods in Ecology and Evolution* **14**, 1852–1863.
- DENNETT, D.C. (1983) Intentional systems in cognitive ethology: The "Panglossian paradigm" defended. *Behavioral and Brain Sciences* **6**, 343–4455 355.
- DENTON, T., WISDOM, S. & HERSHEY, J.R. (2022) Improving bird classification with unsupervised sound separation. In *ICASSP* 2022 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 636–640. IEEE, Singapore, Singapore.
- DEONIZIAK, K. & OSIEJUK, T.S. (2019) Habitat-related differences in song structure and complexity in a songbird with a large repertoire. *BMC Ecology* **19**, 40.
- DEVENTER, S.A., UHL, F., BUGNYAR, T., MILLER, R., FITCH, W.T., SCHIESTL, M., RINGLER, M. & SCHWAB, C. (2016) Behavioural type affects space use in a wild population of crows (Corvus corone). *Ethology* **122**, 881–891.
- DUFOUR, V., WASCHER, C.A.F., BRAUN, A., MILLER, R. & BUGNYAR, T. (2012) Corvids can decide if a future exchange is worth waiting for. Biology Letters 8, 201–204.
- DUTOUR, M., KALB, N., SALIS, A. & RANDLER, C. (2021) Number of callers may affect the response to conspecific mobbing calls in great tits (Parus major). *Behavioral Ecology and Sociobiology* **75**, 29.
- 1466 EKMAN, J. & GRIESSER, M. (2016) Siberian jays: delayed dispersal in absence of cooperative breeding., 6-18. In *Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior* p. Cambridge University Press.
- 1468 EKMAN, J., SKLEPKOVYCH, B. & TEGELSTROM, H. (1994) Offspring retention in the Siberian jay (Perisoreus infaustus): the prolonged brood care hypothesis. *Behavioral Ecology* **5**, 245–253.
- ELEMANS, C.P.H., RASMUSSEN, J.H., HERBST, C.T., DÜRING, D.N., ZOLLINGER, S.A., BRUMM, H., SRIVASTAVA, K., SVANE, N., DING, M., LARSEN, O.N., SOBER, S.J. & ŠVEC, J.G. (2015) Universal mechanisms of sound production and control in birds and mammals. *Nature Communications* **6**, 8978.
- 1473 ELIE, J.E., DE WITASSE-THÉZY, A., THOMAS, L., MALIT, B. & THEUNISSEN, F.E. (2025) Categorical and semantic perception of the meaning of call-types in zebra finches. *Science* **389**, 1210–1215.
- ELIE, J.E., MUROY, S.E., GENZEL, D., NA, T., BEYER, L.A., SWIDERSKI, D.L., RAPHAEL, Y. & YARTSEV, M.M. (2024) Role of auditory feedback for vocal production learning in the Egyptian fruit bat. *Current Biology* **34**, 4062-4070.e7.

- 1477 ELIE, J.E. & THEUNISSEN, F.E. (2018) Zebra finches identify individuals using vocal signatures unique to each call type. *Nature Communications* **9**, 4026.
- 1479 ENGESSER, S. & TOWNSEND, S.W. (2019) Combinatoriality in the vocal systems of nonhuman animals. *WIREs Cognitive Science* **10**, e1493.
- 1480 ENGGIST-DUEBLIN, P. & PFISTER, U. (2002) Cultural transmission of vocalizations in ravens, Corvus corax. *Animal Behaviour* **64**, 831–841.
- 1481 ERB, W.M., ROSS, W., KAZANECKI, H., MITRA SETIA, T., MADHUSUDHANA, S. & CLINK, D.J. (2024) Vocal complexity in the long calls of Bornean orangutans. *PeerJ* **12**, e17320.
- EVANS, T.J., YOUNG, R.C., WATSON, H., OLSSON, O. & ÅKESSON, S. (2020) Effects of back-mounted biologgers on condition, diving and flight performance in a breeding seabird. *Journal of Avian Biology* **51**, jav.02509.
- 1485 EY, E. & FISCHER, J. (2009) The 'acoustic adaptation hypothesis' A review of the evidence from birds, anurans and mammals. *Bioacoustics* 1486 **19**, 21–48.
- 1487 EY, E., PFEFFERLE, D. & FISCHER, J. (2007) Do age- and sex-related variations reliably reflect body size in non-human primate vocalizations? A review. *Primates* **48**, 253–267.
- FEDERSPIEL, I.G., SCHMITT, V., SCHUSTER, R., ROCKENBACH, C., BRAUN, A., LORETTO, M.-C., MICHELS, C., FISCHER, J., MUSSWEILER, T. & BUGNYAR, T. (2023) Are you better than me? Social comparisons in carrion crows (Corvus corone). *Animal Cognition* **26**, 1353–1368.
- FEDUREK, P., TKACZYNSKI, P.J., HOBAITER, C., ZUBERBÜHLER, K., WITTIG, R.M. & CROCKFORD, C. (2021) The function of chimpanzee greeting calls is modulated by their acoustic variation. *Animal Behaviour* **174**, 279–289.
- FISCHER, J. & HAMMERSCHMIDT, K. (2020) Towards a new taxonomy of primate vocal production learning. *Philosophical Transactions of the Royal Society B: Biological Sciences* **375**, 20190045.
- FISCHER, J., WADEWITZ, P. & HAMMERSCHMIDT, K. (2017) Structural variability and communicative complexity in acoustic communication.

 Animal Behaviour 134, 229–237.
- FITCH, W.T. & HAUSER, M.D. (1995) Vocal production in nonhuman primates: acoustics, physiology, and functional constraints on "honest" advertisement. *American Journal of Primatology* **37**, 191–219.
- FITCH, W.T., NEUBAUER, J. & HERZEL, H. (2002) Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. *Animal Behaviour* **63**, 407–418.

- 1501 FORREST, T.G. (1994) From sender to receiver: propagation and environmental effects on acoustic signals. *American Zoologist* **34**, 644–654.
- FREEBERG, T.M. (2006) Social complexity can drive vocal complexity: Group size influences vocal information in Carolina chickadees.

 Psychological Science 17, 557–561.
- 1505 Psychological Science 11, 557–561
- FRIEDLAENDER, A., TYSON, R., STIMPERT, A., READ, A. & NOWACEK, D. (2013) Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. *Marine Ecology Progress Series* **494**, 281–289.
- FUJIOKA, M. (2020) Alert and flight initiation distances of crows in relation to the culling method, shooting or trapping. *Ornithological Science* **19**, 1507 125–134.
- GALLEGO-ABENZA, M., BOUCHERIE, P.H. & BUGNYAR, T. (2022) Early social environment affects attention to social cues in juvenile common ravens, *Corvus corax. Royal Society Open Science* **9**, 220132.
- 1510 GARCIA, M. & FAVARO, L. (2017) Animal vocal communication: function, structures, and production mechanisms. *Current Zoology* **63**, 417–419.
- GARCIA, M., THEUNISSEN, F., SÈBE, F., CLAVEL, J., RAVIGNANI, A., MARIN-CUDRAZ, T., FUCHS, J. & MATHEVON, N. (2020) Evolution of communication signals and information during species radiation. *Nature Communications* **11**, 4970.
- 1513 GARCÍA-NAVAS, V., FELIU, N. & BLUMSTEIN, D.T. (2023) Changes in the acoustic structure of Australian bird communities along a habitat complexity gradient. *Behavioral Ecology* **34**, 930–940.
- 1515 GAUNET, F. & DEPUTTE, B.L. (2011) Functionally referential and intentional communication in the domestic dog: effects of spatial and social contexts. *Animal Cognition* **14**, 849–860.
- 1517 GAUNT, A.S. & NOWICKI, S. (1998) Sound Production in Birds: Acoustics and Physiology Revisited. In *Animal Acoustic Communication*. p. 1518 Springer, Berlin, Heidelberg.
- 1519 GHANI, B., DENTON, T., KAHL, S. & KLINCK, H. (2023) Global birdsong embeddings enable superior transfer learning for bioacoustic classification. *Scientific Reports* **13**, 22876.
- 1521 GILL, F., DONSKER, D. & RASMUSSEN, P. (2023) IOC World Bird List (v13.2).
- GILL, L.F., VAN SCHAIK, J., VON BAYERN, A.M.P. & GAHR, M.L. (2020) Genetic monogamy despite frequent extrapair copulations in "strictly monogamous" wild jackdaws. *Behavioral Ecology* **31**, 247–260.

- 1524 GILL, S.A. & BIEREMA, A.M. -K. (2013) On the meaning of alarm calls: A review of functional reference in avian alarm calling. *Ethology* **119**, 1525 449–461.
- GIRARD-BUTTOZ, C., SURBECK, M., SAMUNI, L., TKACZYNSKI, P., BOESCH, C., FRUTH, B., WITTIG, R.M., HOHMANN, G. & CROCKFORD, C. (2020)
 Information transfer efficiency differs in wild chimpanzees and bonobos, but not social cognition. *Proceedings of the Royal Society B:*Biological Sciences **287**, 20200523.
- GIRARD-BUTTOZ, C., ZACCARELLA, E., BORTOLATO, T., FRIEDERICI, A.D., WITTIG, R.M. & CROCKFORD, C. (2022) Chimpanzees produce diverse vocal sequences with ordered and recombinatorial properties. *Communications Biology* **5**, 410.
- GOLLER, F. (2019) Sound production and modification in birds -- mechanisms, methodology, and open questions. In *Comparative Bioacoustics;*An Overview p. Bentham Science Publishers, Sharjah, UAE.
- 1533 GOLLER, F. (2022) The syrinx. *Current Biology* **32**, R1095–R1100.
- 1534 GOMEZ-MARIN, A. & GHAZANFAR, A.A. (2019) The life of behavior. Neuron 104, 25–36.
- 1535 GOSSELIN, R.P., FLANAGAN, A.M., MENDL, M., EARNEST, K., MASUDA, B. & GREGGOR, A.L. (2025) Individual behavior and housing setup interact to influence markers of welfare in the critically endangered Hawaiian crow. *Applied Animal Behaviour Science* **282**, 106475.
- 1537 GREEN, S. (1975) Dialects in Japanese monkeys: vocal learning and cultural transmission of locale-specific vocal behavior? *Zeitschrift für Tierpsychologie* **38**, 304–314.
- 1539 GREGGOR, A.L., CLAYTON, N.S., PHALAN, B. & THORNTON, A. (2014) Comparative cognition for conservationists. *Trends in Ecology & Evolution* 29, 489–495.
- GREGGOR, A.L., MASUDA, B., GAUDIOSO-LEVITA, J.M., NELSON, J.T., WHITE, T.H., SHIER, D.M., FARABAUGH, S.M. & SWAISGOOD, R.R. (2021)

 Pre-release training, predator interactions and evidence for persistence of anti-predator behavior in reintroduced `alalā, Hawaiian crow.
- 1543 Global Ecology and Conservation 28, e01658.
- 1544 GRIESSER, M. (2008) Referential calls signal predator behavior in a group-living bird species. *Current Biology* **18**, 69–73.
- 1545 GRIESSER, M. (2009) Mobbing calls signal predator category in a kin group-living bird species. *Proceedings of the Royal Society B: Biological Sciences* **276**, 2887–2892.
- 1547 GRIESSER, M. & EKMAN, J. (2004) Nepotistic alarm calling in the Siberian jay, Perisoreus infaustus. *Animal Behaviour* **67**, 933–939.

- 1548 GRIESSER, M., SCHNEIDER, N.A., COLLIS, M.-A., OVERS, A., GUPPY, M., GUPPY, S., TAKEUCHI, N., COLLINS, P., PETERS, A. & HALL, M.L. (2012)
 1549 Causes of ring-related leg injuries in birds evidence and recommendations from four field studies. *PLoS ONE* **7**, e51891.
- 1550 GRIEVES, L.A., GILLES, M., CUTHILL, I.C., SZÉKELY, T., MACDOUGALL-SHACKLETON, E.A. & CASPERS, B.A. (2022) Olfactory camouflage and communication in birds. *Biological Reviews* **97**, 1193–1209.
- 1552 GRINFEDER, E., LORENZI, C., HAUPERT, S. & SUEUR, J. (2022) What do we mean by "soundscape"? A functional description. *Frontiers in Ecology* and Evolution **10**, 894232.
- GULTEKIN, Y.B., HILDEBRAND, D.G.C., HAMMERSCHMIDT, K. & HAGE, S.R. (2021) High plasticity in marmoset monkey vocal development from infancy to adulthood. *Science Advances* **7**, eabf2938.
- 1556 GUSTISON, M.L. & BERGMAN, T.J. (2016) Vocal complexity influences female responses to gelada male calls. Scientific Reports 6, 19680.
- GWINNER, E. (1964) Untersuchungen über das Ausdrucks und Sozialverhalten des Kolkraben (Corvus corax corax L.). Zeitschrift für Tierpsychologie **21**, 657–674.
- HALFWERK, W. & JEREM, P. (2021) A systematic review of research investigating the combined ecological impact of anthropogenic noise and artificial light at night. *Frontiers in Ecology and Evolution* **9**, 765950.
- HAO, Z., WANG, C., SUN, Z., VAN DEN BOSCH, C.K., ZHAO, D., SUN, B., XU, X., BIAN, Q., BAI, Z., WEI, K., ZHAO, Y. & PEI, N. (2021) Soundscape mapping for spatial-temporal estimate on bird activities in urban forests. *Urban Forestry & Urban Greening* **57**, 126822.
- HARRISON, J.T., KOCHERT, M.N., PAULI, B.P. & HEATH, J.A. (2019) Using motion-activated trail cameras to study diet and productivity of cliffnesting golden eagles. *Journal of Raptor Research* **53**, 26.
- HARVEY, N.C., FARABAUGH, S.M. & DRUKER, B.B. (2002) Effects of early rearing experience on adult behavior and nesting in captive Hawaiian crows (*Corvus hawaiiensis*). *Zoo Biology* **21**, 59–75.
- HAUBER, M.E., TONG, L., BÁN, M., CROSTON, R., GRIM, T., WATERHOUSE, G.I.N., SHAWKEY, M.D., BARRON, A.B. & MOSKÁT, C. (2015) The value of artificial stimuli in behavioral research: Making the case for egg rejection studies in avian brood parasitism. *Ethology* **121**, 521–528.
- HAWKINS, P. (2010) The welfare implications of housing captive wild and domesticated birds. In *The welfare of domestic fowl and other captive birds* pp. 53–102. Springer.
- 1571 HEINRICH, B. & MARZLUFF, J.M. (1991) Do common ravens yell because they want to attract others? Behavioral Ecology and Sociobiology 28.

- HERSH, T.A., RAVIGNANI, A. & BURCHARDT, L.S. (2023) Robust rhythm reporting will advance ecological and evolutionary research. *Methods in Ecology and Evolution* **14**, 1398–1407.
- 1574 HOFFMAN, B., CUSIMANO, M. & LIU, J.-Y. (2024) voxaboxen (v0.1). Zenodo. https://doi.org/10.5281/zenodo.12728029.
- HOLLÉN, L.I. & RADFORD, A.N. (2009) The development of alarm call behaviour in mammals and birds. *Animal Behaviour* **78**, 791–800.
- HOPKINS, W.D. & LEAVENS, D.A. (1998) Hand use and gestural communication in chimpanzees (Pan troglodytes). *Journal of Comparative Psychology* **112**, 95–99.
- HOPP, S.L., JABLONSKI, P. & BROWN, J.L. (2001) Recognition of group membership by voice in Mexican jays, Aphelocoma ultramarina. *Animal Behaviour* **62**, 297–303.
- HORN, L., BUGNYAR, T., GRIESSER, M., HENGL, M., IZAWA, E.-I., OORTWIJN, T., RÖSSLER, C., SCHEER, C., SCHEER, M., SUYAMA, M., TAYLOR, A.H., VANHOOLAND, L.-C., VON BAYERN, A.M., ZÜRCHER, Y. & MASSEN, J.J. (2020) Sex-specific effects of cooperative breeding and colonial nesting on prosociality in corvids. *eLife* **9**, e58139.
- 1583 IGIC, B., RATNAYAKE, C.P., RADFORD, A.N. & MAGRATH, R.D. (2019) Eavesdropping magpies respond to the number of heterospecifics giving alarm calls but not the number of species calling. *Animal Behaviour* **148**, 133–143.
- 1585 INGER, R., PER, E., COX, D.T.C. & GASTON, K.J. (2016) Key role in ecosystem functioning of scavengers reliant on a single common species.

 1586 Scientific Reports 6, 29641.
- JABLONSKA, A., GOLIK, P. & BURNAT, K. (2023) Case study: Providing music as auditory environmental enrichment to improve the welfare of hooded crows during rehabilitation. *Journal of Wildlife Rehabilitation*, **43**.
- JANIK, V.M. & KNÖRNSCHILD, M. (2021) Vocal production learning in mammals revisited. *Philosophical Transactions of the Royal Society B:*Biological Sciences **376**, 20200244.
- JANIK, V.M. & SLATER, P.J.B. (2000) The different roles of social learning in vocal communication. *Animal Behaviour* **60**, 1–11.
- JENKINS, P.F. (1978) Cultural transmission of song patterns and dialect development in a free-living bird population. *Animal Behaviour* **26**, 50–1593 78.
- 1594 JIGUET, F. (2020) The fox and the crow. A need to update pest control strategies. *Biological Conservation* **248**, 108693.

- JOLLES, J.W., KING, A.J., MANICA, A. & THORNTON, A. (2013) Heterogeneous structure in mixed-species corvid flocks in flight. *Animal Behaviour* **85**, 743–750.
- JOY, F., ARMSTRAND, P. & HELANDER, E.-M. (2024) The spiritual significance of birds in Sámi tradition. *Journal of Ethnology and Folkloristics* **18**, 49–74.
- JÜRGENS, U.M., HACKETT, P.M.W., HUNZIKER, M. & PATT, A. (2022) Wolves, crows, spiders, and people: A qualitative study yielding a three-layer framework for understanding human–wildlife relations. *Diversity* **14**, 591.
- KAHL, S., WOOD, C.M., EIBL, M. & KLINCK, H. (2021) BirdNET: A deep learning solution for avian diversity monitoring. *Ecological Informatics* **61**, 101236.
- KAWAJI, T., FUJIBAYASHI, M. & ABE, K. (2024) Goal-directed and flexible modulation of syllable sequence within birdsong. *Nature Communications* **15**, 3419.
- KEENAN, S., MATHEVON, N., STEVENS, J.M.G., NICOLÈ, F., ZUBERBÜHLER, K., GUÉRY, J.-P. & LEVRÉRO, F. (2020) The reliability of individual vocal signature varies across the bonobo's graded repertoire. *Animal Behaviour* **169**, 9–21.
- KERSHENBAUM, A., AKÇAY, Ç., BABU-SAHEER, L., BARNHILL, A., BEST, P., CAUZINILLE, J., CLINK, D., DASSOW, A., DUFOURQ, E., GROWCOTT, J.,
 MARKHAM, A., MARTI-DOMKEN, B., MARXER, R., MUIR, J., REYNOLDS, S., ET AL. (2024) Automatic detection for bioacoustic research: a practical guide from and for biologists and computer scientists. *Biological Reviews*, brv.13155.
- KERSHENBAUM, A., BLUMSTEIN, D.T., ROCH, M.A., AKÇAY, Ç., BACKUS, G., BEE, M.A., BOHN, K., CAO, Y., CARTER, G., CÄSAR, C., COEN, M.,
 DERUITER, S.L., DOYLE, L., EDELMAN, S., FERRER-I-CANCHO, R., ET AL. (2016) Acoustic sequences in non-human animals: a tutorial review and prospectus. *Biological Reviews* **91**, 13–52.
- KERSHENBAUM, A., SAYIGH, L.S. & JANIK, V.M. (2013) The encoding of individual identity in dolphin signature whistles: how much information Is needed? *PLoS ONE* **8**, e77671.
- 1615 KEULARTZ, J. (2015) Captivity for Conservation? Zoos at a Crossroads. *Journal of Agricultural and Environmental Ethics* **28**, 335–351.
- KHAN, H.A., JAVED, M. & ZEESHAN, M. (2015) Damage assessment and management strategies for house crow (Corvus splendens L) on the seedling stages of maize and wheat in an irrigated agricultural farmland of Punjab, Pakistan. *Journal of Entomology and Zoology* Studies 3.
- 1619 KING, S.L. (2015) You talkin' to me? Interactive playback is a powerful yet underused tool in animal communication research. *Biology Letters*

- **16**20 **11**, 20150403.
- KLUMP, B.C., ST CLAIR, J.J. & RUTZ, C. (2021) New Caledonian crows keep 'valuable' hooked tools safer than basic non-hooked tools. *eLife* **10**, e64829.
- KONDO, N. (2021) A report on a characteristic vocalization in Corvus macrorhynchos osai with an indication of vocal learning. http://biorxiv.org/lookup/doi/10.1101/2021.09.21.461160 [accessed 10 December 2024].
- KONDO, N., IZAWA, E.-I. & WATANABE, S. (2012) Crows cross-modally recognize group members but not non-group members. *Proceedings of the Royal Society B: Biological Sciences* **279**, 1937–1942.
- KONDO, N. & WATANABE, S. (2009) Contact calls: Information and social function: The information and function of contact calls. *Japanese Psychological Research* **51**, 197–208.
- KUBITZA, R.J., BUGNYAR, T. & SCHWAB, C. (2015) Pair bond characteristics and maintenance in free-flying jackdaws *Corvus monedula*: effects of social context and season. *Journal of Avian Biology* **46**, 206–215.
- KUKHTA, A.E. & MATSYURA, A.V. (2018) Analysis of bird mortality caused by transport incidents In flight safety management. *Ukrainian Journal* of Ecology **8**, 351–356.
- LAIOLO, P. & ROLANDO, A. (2003) The evolution of vocalisations in the genus Corvus: effects of phylogeny, morphology and habitat. *Evolutionary Ecology* **17**, 111–123.
- LAIOLO, P., ROLANDO, A. & DELESTRADE, A. (2001) Geographical variation in the calls of the choughs. *Condor* **103**, 287–297.
- LANZARINI, F., MARANESI, M., RONDONI, E.H., ALBERTINI, D., FERRETTI, E., LANZILOTTO, M., MICERA, S., MAZZONI, A. & BONINI, L. (2025)
 Neuroethology of natural actions in freely moving monkeys. *Science* **387**, 214–220.
- LEE, V.E., MCIVOR, G.E. & THORNTON, A. (2019a) Testing relationship recognition in wild jackdaws (Corvus monedula). *Scientific Reports* **9**, 6710.
- LEE, V.E., RÉGLI, N., MCIVOR, G.E. & THORNTON, A. (2019b) Social learning about dangerous people by wild jackdaws. *Royal Society Open Science* **6**, 191031.
- LIAO, C.-C., MAGRATH, R.D., MANSER, M.B. & FARINE, D.R. (2024a) The relative contribution of acoustic signals versus movement cues in group coordination and collective decision-making. *Philosophical Transactions of the Royal Society B: Biological Sciences* **379**, 20230184.

- LIAO, D.A., BRECHT, K.F., VEIT, L. & NIEDER, A. (2024b) Crows "count" the number of self-generated vocalizations. *Science* **384**, 874–877.
- LING, H., MCLVOR, G.E., NAGY, G., MOHAIMENIANPOUR, S., VAUGHAN, R.T., THORNTON, A. & OUELLETTE, N.T. (2018) Simultaneous
- measurements of three-dimensional trajectories and wingbeat frequencies of birds in the field. Journal of The Royal Society Interface
- **1647 15**, 20180653.
- LONGARINI, A., DURIEZ, O., SHEPARD, E., SAFI, K., WIKELSKI, M. & SCACCO, M. (2023) Effect of harness design for tag attachment on the flight performance of five soaring species. *Movement Ecology* **11**, 39.
- LÓPEZ-LÓPEZ, P. (2022) Potential negative effects of the installation of video surveillance cameras in raptors' nests. *Scientific Reports* **12**, 21969.
- LÜ, Z., SHI, Y., LÜ, L., HAN, D., WANG, Z. & YU, F. (2024) Dual-feature fusion learning: An acoustic signal recognition method for marine mammals. *Remote Sensing* **16**, 3823.
- LUEF, E.M., TER MAAT, A. & PIKA, S. (2017) Vocal similarity in long-distance and short-distance vocalizations in raven pairs (Corvus corax) in captivity. *Behavioural Processes* **142**, 1–7.
- LYNCH, E., ANGELONI, L., FRISTRUP, K., JOYCE, D. & WITTEMYER, G. (2013) The use of on-animal acoustical recording devices for studying animal behavior. *Ecology and Evolution* **3**, 2030–2037.
- 1658 MADDEN, C.F., ARROYO, B. & AMAR, A. (2015) A review of the impacts of corvids on bird productivity and abundance. *Ibis* 157, 1–16.
- MAHON, L., HOFFMAN, B., JAMES, L.S., CUSIMANO, M., HAGIWARA, M., WOOLLEY, S.C. & PIETQUIN, O. (2025) Robust detection of overlapping bioacoustic sound events. arXiv. http://arxiv.org/abs/2503.02389 [accessed 19 March 2025].
- MALDARELLI, G., DISSEGNA, A., RAVIGNANI, A. & CHIANDETTI, C. (2024) Chicks produce consonant, sometimes jazzy, sounds. *Biology Letters* **20**, 20240374.
- MANN, D.C., FITCH, W.T., TU, H.-W. & HOESCHELE, M. (2021) Universal principles underlying segmental structures in parrot song and human speech. *Scientific Reports* **11**, 776.
- MARCHAND, P., LORETTO, M.-C., HENRY, P.-Y., DURIEZ, O., JIGUET, F., BUGNYAR, T. & ITTY, C. (2018) Relocations and one-time disturbance fail to sustainably disperse non-breeding common ravens Corvus corax due to homing behaviour and extensive home ranges. *European Journal of Wildlife Research* **64**, 57.

- MARIYAPPAN, M., RAJENDRAN, M., VELU, S., JOHNSON, A.D., DINESH, G.K., SOLAIMUTHU, K., KALIYAPPAN, M. & SANKAR, M. (2023) Ecological role and ecosystem services of birds: A review. *International Journal of Environment and Climate Change* **13**, 76–87.
- 1670 MARLER, P. (1967) Animal communication signals. *Science* **157**, 769–774.
- MARLER, P. (2004) Bird calls: Their potential for behavioral neurobiology. *Annals of the New York Academy of Sciences* **1016**, 31–44.
- MARLER, P. & PETERS, S. (1987) A sensitive period for song acquisition in the song sparrow, Melospiza melodia: a case of age-limited learning. *Ethology* **76**, 89–100.
- MARSHALL, A.J., WRANGHAM, R.W. & ARCADI, A.C. (1999) Does learning affect the structure of vocalizations in chimpanzees? *Animal Behaviour* **58**, 825–830.
- MARTIN, K., ADAM, O., OBIN, N. & DUFOUR, V. (2022) Rookognise: Acoustic detection and identification of individual rooks in field recordings using multi-task neural networks. *Ecological Informatics* **72**, 101818.
- MARTIN, K., CORNERO, F.M., CLAYTON, N.S., ADAM, O., OBIN, N. & DUFOUR, V. (2024) Vocal complexity in a socially complex corvid: gradation, diversity and lack of common call repertoire in male rooks. *Royal Society Open Science* **11**, 231713.
- MARX, A., LENKEI, R., PÉREZ FRAGA, P., BAKOS, V., KUBINYI, E. & FARAGÓ, T. (2021) Occurrences of non-linear phenomena and vocal harshness in dog whines as indicators of stress and ageing. *Scientific Reports* **11**, 4468.
- 1682 MARZLUFF, J.M. & ANGELL, T. (2007) In the company of crows and ravens. Yale University Press, Yale.
- MARZLUFF, J.M., WALLS, J., CORNELL, H.N., WITHEY, J.C. & CRAIG, D.P. (2010) Lasting recognition of threatening people by wild American crows. *Animal Behaviour* **79**, 699–707.
- MASSEN, J.J.M., PAŠUKONIS, A., SCHMIDT, J. & BUGNYAR, T. (2014) Ravens notice dominance reversals among conspecifics within and outside their social group. *Nature Communications* **5**, 3679.
- MASSENET, M., ANIKIN, A., PISANSKI, K., REYNAUD, K., MATHEVON, N. & REBY, D. (2022) Nonlinear vocal phenomena affect human perceptions of distress, size and dominance in puppy whines. *Proceedings of the Royal Society B: Biological Sciences* **289**, 20220429.
- MATES, E.A., TARTER, R.R., HA, J.C., CLARK, A.B. & MCGOWAN, K.J. (2015) Acoustic profiling in a complexly social species, the American crow: caws encode information on caller sex, identity and behavioural context. *Bioacoustics* **24**, 63–80.

- MATHEVON, N., CASEY, C., REICHMUTH, C. & CHARRIER, I. (2017) Northern elephant seals memorize the rhythm and timbre of their rivals' voices. *Current Biology* **27**, 2352-2356.e2.
- MATSYURA, A., JANKOWSKI, K. & ZIMAROYEVA, A. (2015) Corvidae tolerance to human disturbance in settlement landscapes of Zhytomir (Ukraine). *Romanian Journal of Biology Zoology* **60**, 39–47.
- MCCAIG, T., BROWN, M. & JONES, D.N. (2015) Exploring possible functions of vocalisations in the Torresian Crow Corvus orru. *Australian Field Ornithology* **32**, 201–208.
- MCCOWAN, B. & REISS, D. (2001) The fallacy of 'signature whistles' in bottlenose dolphins: a comparative perspective of 'signature information' in animal vocalizations. *Animal Behaviour* **62**, 1151–1162.
- MCGINN, K., KAHL, S., PEERY, M.Z., KLINCK, H. & WOOD, C.M. (2023) Feature embeddings from the BirdNET algorithm provide insights into avian ecology. *Ecological Informatics* **74**, 101995.
- MCIVOR, G.E., LEE, V.E. & THORNTON, A. (2022) Nesting jackdaws' responses to human voices vary with local disturbance levels and the gender of the speaker. *Animal Behaviour* **192**, 119–132.
- MENDES, S.B., OLESEN, J.M., MEMMOTT, J., COSTA, J.M., TIMÓTEO, S., DENGUCHO, A.L., CRAVEIRO, L. & HELENO, R. (2024) Evidence of a European seed dispersal crisis. *Science* **386**, 206–211.
- MENNILL, D. & ODOM, K. (2010) Vocal duets in a nonpasserine: an examination of territory defence and neighbour–stranger discrimination in a neighbourhood of barred owls. *Behaviour* **147**, 619–639.
- MENNILL, D.J. & VEHRENCAMP, S.L. (2008) Context-dependent functions of avian duets revealed by microphone-array recordings and multispeaker playback. *Current Biology* **18**, 1314–1319.
- MERINO RECALDE, N. (2023) pykanto: A python library to accelerate research on wild bird song. *Methods in Ecology and Evolution* **14**, 1994–1710 2002.
- 1711 MILLER, R., LAMBERT, M.L., FROHNWIESER, A., BRECHT, K.F., BUGNYAR, T., CRAMPTON, I., GARCIA-PELEGRIN, E., GOULD, K., GREGGOR, A.L.,
- 1712 IZAWA, E.-I., KELLY, D.M., LI, Z., LUO, Y., LUONG, L.B., MASSEN, J.J.M., ET AL. (2022) Socio-ecological correlates of neophobia in corvids.
- 1713 *Current Biology* **32**, 74-85.e4.
- MILLER, R., SCHIESTL, M. & CLAYTON, N.S. (2024) Corvids. In *The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals* (eds H. GOLLEDGE & C. RICHARDSON), pp. 839–852, 1st edition. Wiley.

- MIRON, M., KEEN, S., LIU, J.-Y., HOFFMAN, B., HAGIWARA, M., PIETQUIN, O., EFFENBERGER, F. & CUSIMANO, M. (2025) Biodenoising: animal vocalization denoising without access to clean data. In *ICASSP 2025* pp. 1–5. Hyderabad, India.
- MOLL, R.J., CEPEK, J.D., LORCH, P.D., DENNIS, P.M., TANS, E., ROBISON, T., MILLSPAUGH, J.J. & MONTGOMERY, R.A. (2019) What does urbanization actually mean? A framework for urban metrics in wildlife research. *Journal of Applied Ecology* **56**, 1289–1300.
- MORTON, E.S. (1975) Ecological Sources of Selection on Avian Sounds. *The American Naturalist* **109**, 17–34.
- MORTON, E.S. (1977) On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. *The American Naturalist* **111**, 855–869.
- MULLET, T.C., FARINA, A. & GAGE, S.H. (2017) The acoustic habitat hypothesis: an ecoacoustics perspective on species habitat selection. *Biosemiotics* **10**, 319–336.
- MUNTEANU, A.M., STOCKER, M., STÖWE, M., MASSEN, J.J.M. & BUGNYAR, T. (2017) Behavioural and hormonal stress responses to social separation in ravens, Corvus corax. *Ethology* **123**, 123–135.
- NAIK, H., CHAN, A.H.H., YANG, J., DELACOUX, M., COUZIN, I.D., KANO, F. & NAGY, M. (2023) 3D-POP -- An automated annotation approach to facilitate markerless 2D-3D tracking of freely moving birds with marker-based motion capture. In *Proceedings of the IEEE/CVF* conference on computer vision and pattern recognition pp. 21274–21284. arXiv.
- NETOSKIE, E.C., PAXTON, K.L., PAXTON, E.H., ASNER, G.P. & HART, P.J. (2023) Linking vocal behaviours to habitat structure to create behavioural landscapes. *Animal Behaviour* **201**, 1–11.
- NIETO-MORA, D.A., RODRÍGUEZ-BURITICA, S., RODRÍGUEZ-MARÍN, P., MARTÍNEZ-VARGAZ, J.D. & ISAZA-NARVÁEZ, C. (2023) Systematic review of machine learning methods applied to ecoacoustics and soundscape monitoring. *Heliyon* **9**, e20275.
- NOWAK, M.A. & KOMAROVA, N.L. (2001) Towards an evolutionary theory of language. *Trends in Cognitive Science* **5**, 288–296.
- NOWAK, M.A., PLOTKIN, J.B. & JANSEN, V.A. (2000) The evolution of syntactic communication. *Nature* **404**, 495–498.
- NOWICKI, S. & CAPRANICA, R.R. (1986) Bilateral syringeal interaction in vocal production of an oscine bird sound. *Science* **231**, 1297–1299.
- 1737 ODOM, K.J., ARAYA-SALAS, M., MORANO, J.L., LIGON, R.A., LEIGHTON, G.M., TAFF, C.C., DALZIELL, A.H., BILLINGS, A.C., GERMAIN, R.R., PARDO, M., DE ANDRADE, L.G., HEDWIG, D., KEEN, S.C., SHIU, Y., CHARIF, R.A., ET AL. (2021) Comparative bioacoustics: a roadmap for
- 1739 quantifying and comparing animal sounds across diverse taxa. *Biological Reviews* **96**, 1135–1159.

- OLSON, D.M., DINERSTEIN, E., WIKRAMANAYAKE, E.D., BURGESS, N.D., POWELL, G.V.N., UNDERWOOD, E.C., D'AMICO, J.A., ITOUA, I., STRAND,
 H.E., MORRISON, J.C., LOUCKS, C.J., ALLNUTT, T.F., RICKETTS, T.H., KURA, Y., LAMOREUX, J.F., ET AL. (2001) Terrestrial Ecoregions of the
 World: A New Map of Life on Earth. *BioScience* **51**, 933.
- OPENTREEOFLIFE, REDELINGS, B., SANCHEZ REYES, L.L., CRANSTON, K.A., ALLMAN, J., HOLDER, M.T. & MCTAVISH, E.J. (2019) Open tree of life synthetic tree. Zenodo (12.3).
- OREN, G., SHAPIRA, A., LIFSHITZ, R., VINEPINSKY, E., COHEN, R., FRIED, T., HADAD, G.P. & OMER, D. (2024) Vocal labeling of others by nonhuman primates. *Science* **385**, 996–1003.
- OSIECKA, A.N., BRIEFER, E.F., KIDAWA, D. & WOJCZULANIS-JAKUBAS, K. (2024a) Strong individual distinctiveness across the vocal repertoire of a colonial seabird, the little auk, Alle alle. *Animal Behaviour* **210**, 199–211.
- OSIECKA, A.N., BURCHARDT, L.S., OLIVA, Q.M., KOUŘIL, J. & PETRUSKOVÁ, T. (2025) Yellowhammer (Emberiza citrinella) males sing using individual rhythms and maximise rhythmic dissimilarity with neighbours. bioRxiv.
- OSIECKA, A.N., LEFÈVRE, R. & BRIEFER, E.F. (2024b) Emotional contexts influence vocal individuality in ungulates. http://biorxiv.org/lookup/doi/10.1101/2024.09.18.613506 [accessed 8 December 2024].
- PALMER, M.S., WANG, C., PLUCINSKI, J. & PRINGLE, R.M. (2022) BoomBox: An Automated Behavioural Response (ABR) camera trap module for wildlife playback experiments. *Methods in Ecology and Evolution* **13**, 611–618.
- 1755 PATEL, A.D. (2014) The evolutionary biology of musical rhythm: was Darwin wrong? *PLoS Biology* **12**, e1001821.
- PATEL, A.D. (2021) Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. *Philosophical Transactions of the Royal Society B: Biological Sciences* **376**, 20200326.
- PATRICELLI, G.L. & BLICKLEY, J.L. (2006) Avian communication in urban noise: causes and consequences of vocal adjustment. *The Auk* **123**, 639–649.
- PECKRE, L., KAPPELER, P.M. & FICHTEL, C. (2019) Clarifying and expanding the social complexity hypothesis for communicative complexity. *Behavioral Ecology and Sociobiology* **73**, 11.
- PENDERGRAFT, L.T. & MARZLUFF, J.M. (2019) Fussing over food: factors affecting the vocalizations American crows utter around food. *Animal Behaviour* **150**, 39–57.

- PESENDORFER, M.B., SILLETT, T.S., KOENIG, W.D. & MORRISON, S.A. (2016) Scatter-hoarding corvids as seed dispersers for oaks and pines: A review of a widely distributed mutualism and its utility to habitat restoration. *The Condor* **118**, 215–237.
- 1766 PIKA, S. & BUGNYAR, T. (2011) The use of referential gestures in ravens (Corvus corax) in the wild. *Nature Communications* **2**, 560.
- PORTUGAL, S.J. & WHITE, C.R. (2018) Miniaturization of biologgers is not alleviating the 5% rule. *Methods in Ecology and Evolution* **9**, 1662–1768
- POUPARD, M., BEST, P., MORGAN, J.P., PAVAN, G. & GLOTIN, H. (2024) A first vocal repertoire characterization of long-finned pilot whales (

 Globicephala melas) in the Mediterranean Sea: a machine learning approach. Royal Society Open Science 11, 231973.
- PUEHRINGER-STURMAYR, V., LORETTO, M.-C.A., HEMETSBERGER, J., CZERNY, T., GSCHWANDEGGER, J., LEITSBERGER, M., KOTRSCHAL, K. & FRIGERIO, D. (2020) Effects of bio-loggers on behaviour and corticosterone metabolites of Northern Bald Ibises (Geronticus eremita) in the field and in captivity. *Animal Biotelemetry* **8**, 2.
- 1774 RADFORD, A.N. (2005) Group-specific vocal signatures and neighbour–stranger discrimination in the cooperatively breeding green woodhoopoe. *Animal Behaviour* **70**, 1227–1234.
- 1776 RATCLIFFE, V.F., TAYLOR, A.M. & REBY, D. (2016) Cross-Modal Correspondences in Non-human Mammal Communication. *Multisensory* 1777 *Research* **29**, 49–91.
- 1778 REBOUT, N., LONE, J.-C., DE MARCO, A., COZZOLINO, R., LEMASSON, A. & THIERRY, B. (2021) Measuring complexity in organisms and organizations. *Royal Society Open Science* **8**, rsos.200895, 200895.
- 1780 REBY, D. & MCCOMB, K. (2003) Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags.

 Animal Behaviour 65, 519–530.
- 1782 RHODES, M.L., RYDER, T.B., EVANS, B.S., TO, J.C., NESLUND, E., WILL, C., O'BRIEN, L.E. & MOSELEY, D.L. (2023) The effects of anthropogenic noise and urban habitats on song structure in a vocal mimic; the gray catbird (Dumetella carolinensis) sings higher frequencies in noisier habitats. *Frontiers in Ecology and Evolution* **11**, 1252632.
- 1785 ROSKAFT, E. & ESPMARK, Y. (1982) Vocal communication by the rook Corvus frugilegus during the breeding season. *Ornis Scandinavica* 13, 38.
- 1786 RUST, N.C. & MOVSHON, J.A. (2005) In praise of artifice. *Nature Neuroscience* **8**, 1647–1650.
- 1787 Rutz, C. (2018) Studying corvids in lab and field. In *Field and Laboratory Methods in Animal Cognition: A Comparative Guide* pp. 127–129.

- 1788 Cambridge University Press.
- 1789 RUTZ, C., BRONSTEIN, M., RASKIN, A., VERNES, S.C., ZACARIAN, K. & BLASI, D.E. (2023) Using machine learning to decode animal communication. *Science* **381**, 152–155.
- 1791 RUTZ, C. & HAYS, G.C. (2009) New frontiers in biologging science. *Biology Letters* **5**, 289–292.
- 1792 RUTZ, C. & HUNT, G.R. (2020) New Caledonian crows afford invaluable comparative insights into human cumulative technological culture.

 1793 Behavioral and Brain Sciences **43**, e177.
- 1794 RUTZ, C. & TROSCIANKO, J. (2013) Programmable, miniature video-loggers for deployment on wild birds and other wildlife. *Methods in Ecology* and Evolution **4**, 114–122.
- SABOL, A.C., GREGGOR, A.L., MASUDA, B. & SWAISGOOD, R.R. (2022) Testing the maintenance of natural responses to survival-relevant calls in the conservation breeding population of a critically endangered corvid (Corvus hawaiiensis). *Behavioral Ecology and Sociobiology* **76**, 21.
- SAINBURG, T., THIELK, M. & GENTNER, T.Q. (2020) Finding, visualizing, and quantifying latent structure across diverse animal vocal repertoires.

 PLOS Computational Biology **16**, e1008228.
- 1801 SANDOVAL, L. & GRAHAM, B. (2025) Songs and calls: Perspectives on creating a global definition. *Ornitología Neotropical* **35**.
- SCARL, J.C. & BRADBURY, J.W. (2009) Rapid vocal convergence in an Australian cockatoo, the galah Eolophus roseicapillus. *Animal Behaviour* **77**, 1019–1026.
- 1804 SCHALZ, S. (2021) Attitudes and behaviours towards carrion crows in London. London Naturalist.
- SCHALZ, S. (2023) Wild carrion crows (Corvus corone) autonomously respond to speech but show no difference in their response to a local and a foreign language. *Animal Behavior and Cognition* **10**, 144–162.
- 1807 SCHALZ, S. & EI-ICHI, I. (2020) Language discrimination by large-billed crows. In p. 363191. Vrije Universiteit Brussel.
- 1808 SCHEL, A.M., TOWNSEND, S.W., MACHANDA, Z., ZUBERBÜHLER, K. & SLOCOMBE, K.E. (2013) Chimpanzee alarm call production meets key criteria for intentionality. *PLoS ONE* **8**, e76674.
- 1810 SCHLENKER, P., CHEMLA, E., SCHEL, A.M., FULLER, J., GAUTIER, J.-P., KUHN, J., VESELINOVIĆ, D., ARNOLD, K., CÄSAR, C., KEENAN, S.,

- 1811 LEMASSON, A., OUATTARA, K., RYDER, R. & ZUBERBÜHLER, K. (2016) Formal monkey linguistics. *Theoretical Linguistics* **42**, 1–90.
- 1812 SCHLENKER, P., COYE, C., SALIS, A., STEINERT-THRELKELD, S., RAVAUX, L. & CHEMLA, E. (2025) Anti-Babel: Three degrees of interspecies comprehension. *Mind & Language*, mila.12529.
- SCHLENKER, P., COYE, C., STEINERT-THRELKELD, S., KLINEDINST, N. & CHEMLA, E. (2022) Beyond Anthropocentrism in Comparative Cognition:
 Recentering Animal Linguistics. *Cognitive Science* **46**, e13220.
- 1816 SEMPLE, S., FERRER-I-CANCHO, R. & GUSTISON, M.L. (2022) Linguistic laws in biology. *Trends in Ecology & Evolution* **37**, 53–66.
- SETHI, S.S., JONES, N.S., FULCHER, B.D., PICINALI, L., CLINK, D.J., KLINCK, H., ORME, C.D.L., WREGE, P.H. & EWERS, R.M. (2020) Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set. *Proceedings of the National Academy of Sciences* **117**, 17049–17055.
- SEWALL, K.B., YOUNG, A.M. & WRIGHT, T.F. (2016) Social calls provide novel insights into the evolution of vocal learning. *Animal Behaviour* **120**, 163–172.
- 1822 SEYFARTH, R.M. & CHENEY, D.L. (2010) Production, usage, and comprehension in animal vocalizations. *Brain and Language* **115**, 92–100.
- 1823 SEYFARTH, R.M. & CHENEY, D.L. (2017) The origin of meaning in animal signals. *Animal Behaviour* **124**, 339–346.
- SEYFARTH, R.M., CHENEY, D.L. & MARLER, P. (1980) Vervet monkey alarm calls: Semantic communication in a free-ranging primate. *Animal Behaviour* **28**, 1070–1094.
- 1826 SHETTLEWORTH, S. (2009) Cognition, Evolution, and Behavior. Oxford University Press, Oxford.
- SIBIRYAKOVA, O.V., VOLODIN, I.A. & VOLODINA, E.V. (2024) Rutting calls of harem-holders, harem-candidates and peripheral male Siberian wapiti Cervus canadensis sibiricus: Acoustic correlates of stag quality and individual identity. *Journal of Zoology* **324**, 201–213.
- SIERRO, J., LORETTO, M., SZIPL, G., MASSEN, J.J.M. & BUGNYAR, T. (2020) Food calling in wild ravens (Corvus corax) revisited: Who is addressed? *Ethology* **126**, 257–266.
- SINGH, G., KUMAR, S., CHAUDHARY, K. & SHARMA, G. (2023) Anthropogenic Noise Affects the Bird Song Frequency and Behavioral Response: A Review. In *Birds - Conservation, Research and Ecology* p. IntechOpen.
- 1833 SINGH, N.C. & THEUNISSEN, F.E. (2003) Modulation spectra of natural sounds and ethological theories of auditory processing. The Journal of

- 1834 the Acoustical Society of America **114**, 3394–3411.
- 1835 SIRIWARDENA, G.M. (1995) Aspects of vocal communication in the carrion crow, Corvus corone corone. University of Leicester.
- SLABBEKOORN, H. (2013) Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. *Animal Behaviour* **85**, 1837 1089–1099.
- 1838 SLATER, P.J.B. (1986) The cultural transmission of bird song. *Trends in Ecology & Evolution* 1, 94–97.
- 1839 SLOCOMBE, K.E. & ZUBERBÜHLER, K. (2005) Functionally referential communication in a chimpanzee. *Current Biology* **15**, 1779–1784.
- SLOCOMBE, K.E. & ZUBERBÜHLER, K. (2007) Chimpanzees modify recruitment screams as a function of audience composition. *Proceedings of the National Academy of Sciences* **104**, 17228–17233.
- SMITH, J.E. & PINTER-WOLLMAN, N. (2021) Observing the unwatchable: Integrating automated sensing, naturalistic observations and animal social network analysis in the age of big data. *Journal of Animal Ecology* **90**, 62–75.
- 1844 SMITH, W.J. (1965) Message, meaning, and context in ethology. *The American Naturalist* **99**, 405–409.
- 1845 ST CLAIR, J.J.H., BURNS, Z.T., BETTANEY, E.M., MORRISSEY, M.B., OTIS, B., RYDER, T.B., FLEISCHER, R.C., JAMES, R. & RUTZ, C. (2015)
 - Experimental resource pulses influence social-network dynamics and the potential for information flow in tool-using crows. Nature
- 1847 *Communications* **6**, 7197.

1846

- ST CLAIR, J.J.H. & RUTZ, C. (2013) New Caledonian crows attend to multiple functional properties of complex tools. *Philosophical Transactions* of the Royal Society B: Biological Sciences **368**, 20120415.
- 1850 STAMPS, J. (1993) Begging in birds. *Ethology* **3**, 69–77.
- STEPHAN, C. & ZUBERBÜHLER, K. (2014) Predation affects alarm call usage in female Diana monkeys (Cercopithecus diana diana). *Behavioral Ecology and Sociobiology* **68**, 321–331.
- 1853 STOWELL, D. (2022) Computational bioacoustics with deep learning: a review and roadmap. *PeerJ* **10**, e13152.
- STOWELL, D., BENETOS, E. & GILL, L.F. (2017) On-bird sound recordings: Automatic acoustic recognition of activities and contexts. *IEEE/ACM Transactions on Audio, Speech, and Language Processing* **25**, 1193–1206.

- STRONG, C., NEUMANN, K.K., HUTCHINSON, J.L., MILLER, J.K., CLARK, A.L., CHANG, L., IWANICHA, J., FEUCHT, E., LAU, M.J., LAUTEN, D.J.,
 MARKEGARD, S., PEARL, B., SHERER, D.L., TERTES, R. & THARRATT, S. (2021) Common raven impacts on nesting western snowy
 plovers: Integrating management to facilitate species recovery. *Human–Wildlife Interactions* **15**, 465–478.
- SURACI, J.P., CLINCHY, M., MUGERWA, B., DELSEY, M., MACDONALD, D.W., SMITH, J.A., WILMERS, C.C. & ZANETTE, L.Y. (2017) A new Automated Behavioural Response system to integrate playback experiments into camera trap studies. *Methods in Ecology and Evolution* **8**, 957–964.
- SUTHERS, R.A. & ZOLLINGER, S.A. (2004) Producing song: The vocal apparatus. *Annals of the New York Academy of Sciences* **1016**, 109–129.
- SUZUKI, T.N. (2014) Communication about predator type by a bird using discrete, graded and combinatorial variation in alarm calls. *Animal Behaviour* **87**, 59–65.
- SUZUKI, T.N. (2018) Alarm calls evoke a visual search image of a predator in birds. *Proceedings of the National Academy of Sciences* **115**, 1541–1545.
- 1867 SUZUKI, T.N. (2021) Animal linguistics: Exploring referentiality and compositionality in bird calls. *Ecological Research* **36**, 221–231.
- SUZUKI, T.N. & UEDA, K. (2013) Mobbing calls of japanese tits signal predator type: Field observations of natural predator encounters. *The Wilson Journal of Ornithology* **125**, 412–415.
- SUZUKI, T.N., WHEATCROFT, D. & GRIESSER, M. (2016) Experimental evidence for compositional syntax in bird calls. *Nature Communications* **7**, 10986.
- SWADDLE, J.P., FRANCIS, C.D., BARBER, J.R., COOPER, C.B., KYBA, C.C.M., DOMINONI, D.M., SHANNON, G., ASCHEHOUG, E., GOODWIN, S.E., KAWAHARA, A.Y., LUTHER, D., SPOELSTRA, K., VOSS, M. & LONGCORE, T. (2015) A framework to assess evolutionary responses to anthropogenic light and sound. *Trends in Ecology & Evolution* 30, 550–560.
- SZIPL, G., BOECKLE, M., WASCHER, C.A.F., SPREAFICO, M. & BUGNYAR, T. (2015) With whom to dine? Ravens' responses to food-associated calls depend on individual characteristics of the caller. *Animal Behaviour* **99**, 33–42.
- SZIPL, G. & BUGNYAR, T. (2014) Craving ravens: Individual 'haa' call rates at feeding sites as cues to personality and levels of fission-fusion dynamics? *Animal Behavior and Cognition* **1**, 265.
- SZIPL, G., RINGLER, E. & BUGNYAR, T. (2018) Attacked ravens flexibly adjust signalling behaviour according to audience composition.

 *Proceedings of the Royal Society B: Biological Sciences 285, 20180375.**

- TANIMOTO, A.M., HART, P.J., PACK, A.A. & SWITZER, R. (2017) Vocal repertoire and signal characteristics of 'Alalā, the Hawaiian Crow (*Corvus hawaiiensis*). *The Wilson Journal of Ornithology* **129**, 25–35.
- TAYLOR, A.H. (2014) Corvid cognition. *Wiley Interdisciplinary Reviews: Cognitive Science* **5**, 361–372.
- TAYLOR, A.M. & REBY, D. (2010) The contribution of source–filter theory to mammal vocal communication research. *Journal of Zoology* **280**, 221–236.
- TEMPLETON, C.N., GREENE, E. & DAVIS, K. (2005) Allometry of alarm calls: black-capped chickadees encode information about predator size. Science **308**, 1934–1937.
- TEN CATE, C. (2021) Re-evaluating vocal production learning in non-oscine birds. *Philosophical Transactions of the Royal Society B: Biological Sciences* **376**, 20200249.
- TERRANOVA, F., BETTI, L., FERRARIO, V., FRIARD, O., LUDYNIA, K., PETERSEN, G.S., MATHEVON, N., REBY, D. & FAVARO, L. (2024) Windy events detection in big bioacoustics datasets using a pre-trained Convolutional Neural Network. *Science of The Total Environment* **949**, 174868.
- THOMAS, M., JENSEN, F.H., AVERLY, B., DEMARTSEV, V., MANSER, M.B., SAINBURG, T., ROCH, M.A. & STRANDBURG-PESHKIN, A. (2022) A practical guide for generating unsupervised, spectrogram-based latent space representations of animal vocalizations. *Journal of Animal Ecology* **91**, 1567–1581.
- THOMPSON, N.S. (1982) A comparison of cawing in the European Carrion crow (Corvus corone) and the American common crow (Corvus brachyrhynchos). *Behaviour* **80**, 106–117.
- THOMSEN, H.M., BALSBY, T.J.S. & DABELSTEEN, T. (2019) The imitation dilemma: can parrots maintain their vocal individuality when imitating conspecifics? *Behaviour* **156**, 787–814.
- TIAN, X., GONG, Z., ZHANG, Y., XU, W., LIU, H., ZHOU, Z., LIU, D. & WANG, Z. (2020) The impact of tag position and mass on motor behavior in pigeons. *Journal of Ornithology* **161**, 1167–1174.
- TOBIAS, J.A., SHEARD, C., PIGOT, A.L., DEVENISH, A.J.M., YANG, J., SAYOL, F., NEATE-CLEGG, M.H.C., ALIORAVAINEN, N., WEEKS, T.L., BARBER, R.A., WALKDEN, P.A., MACGREGOR, H.E.A., JONES, S.E.I., VINCENT, C., PHILLIPS, A.G., ET AL. (2022) AVONET: morphological, ecological and geographical data for all birds. *Ecology Letters* **25**, 581–597.
- 1905 TOWNSEND, S.W., KOSKI, S.E., BYRNE, R.W., SLOCOMBE, K.E., BICKEL, B., BOECKLE, M., BRAGA GONCALVES, I., BURKART, J.M., FLOWER, T.,

- GAUNET, F., GLOCK, H.J., GRUBER, T., JANSEN, D.A.W.A.M., LIEBAL, K., LINKE, A., ET AL. (2017) Exorcising Grice's ghost: an empirical approach to studying intentional communication in animals. *Biological Reviews* **92**, 1427–1433.
- TOWNSEND, S.W. & MANSER, M.B. (2013) Functionally referential communication in mammals: The past, present and the future. *Ethology* **119**, 1–11.
- TRAPOTE, E., MORENO-GONZÁLEZ, V., CANESTRARI, D., RUTZ, C. & BAGLIONE, V. (2024) Fitness benefits of alternated chick provisioning in cooperatively breeding carrion crows. *Journal of Animal Ecology* **93**, 95–108.
- TROSCIANKO, J. & RUTZ, C. (2015) Activity profiles and hook-tool use of New Caledonian crows recorded by bird-borne video cameras. *Biology Letters* **11**, 20150777.
- TUBARO, P.L. & LIJTMAER, D.A. (2006) Environmental correlates of song structure in forest grosbeaks and saltators. *The Condor* **108**, 120–129.
- Tuia, D., Kellenberger, B., Beery, S., Costelloe, B.R., Zuffi, S., Risse, B., Mathis, A., Mathis, M.W., Van Langevelde, F., Burghardt, T., Kays, R., Klinck, H., Wikelski, M., Couzin, I.D., Van Horn, G., et al. (2022) Perspectives in machine learning for wildlife conservation. *Nature Communications* **13**, 792.
- 1918 UHL, F., RINGLER, M., MILLER, R., DEVENTER, S.A., BUGNYAR, T. & SCHWAB, C. (2019) Counting crows: population structure and group size variation in an urban population of crows. *Behavioral Ecology* **30**, 57–67.
- UOMINI, N., FAIRLIE, J., GRAY, R.D. & GRIESSER, M. (2020) Extended parenting and the evolution of cognition. *Philosophical Transactions of the Royal Society B: Biological Sciences* **375**, 20190495.
- 1922 U.S. FISH AND WILDLIFE SERVICE (USFWS) (2009) Revised recovery plan for the 'Alala (Corvus hawaiiensis).
- VEIT, L., TIAN, L.Y., MONROY HERNANDEZ, C.J. & BRAINARD, M.S. (2021) Songbirds can learn flexible contextual control over syllable sequencing. *eLife* **10**, e61610.
- VERBEEK, N.A., CAFFREY, C., CLARK, A.B., MCGOWAN, K.J. & PYLE, P. (2024) American Crow Corvus brachyrhynchos. In *Birds of the World* (eds S.M. BILLERMAN, B.K. KEENEY, P.G. RODEWALD & T.S. SCHULENBERG), p. Cornell Laboratory of Ornithology, Ithaca, NY, USA.
- VERNES, S.C., KRIENGWATANA, B.P., BEECK, V.C., FISCHER, J., TYACK, P.L., TEN CATE, C. & JANIK, V.M. (2021) The multi-dimensional nature of vocal learning. *Philosophical Transactions of the Royal Society B: Biological Sciences* **376**, 20200236.
- 1929 VERNES, S.C. & WILKINSON, G.S. (2020) Behaviour, biology and evolution of vocal learning in bats. *Philosophical Transactions of the Royal*

- 1930 Society B: Biological Sciences **375**, 20190061.
- 1931 WALTERS, M.J. (2012) Seeking the sacred raven: Politics and extinction on a Hawaiian island. Island Press.
- WARREN, P.S., KATTI, M., ERMANN, M. & BRAZEL, A. (2006) Urban bioacoustics: it's not just noise. *Animal Behaviour* **71**, 491–502.
- WARRINGTON, M.H., McDonald, P.G., Rollins, L.A. & Griffith, S.C. (2014) All signals are not equal: acoustic signalling of individuality, sex and breeding status in a cooperative breeder. *Animal Behaviour* **93**, 249–260.
- 1935 WASCHER, C.A.F. (2018) Corvids. In *Encyclopedia of Animal Cognition and Behavior* (eds J. VONK & T. SHACKELFORD), pp. 1–12. Springer International Publishing, Cham.
- WASCHER, C.A.F., BAUR, N., HENGL, M., KÖCK, C., PEGGER, T., SCHINDLBAUER, J. & WEMER, L. (2021) Behavioral responses of captive corvids to the presence of visitors. *Animal Behavior and Cognition* **8**, 481–492.
- WASCHER, C.A.F., HEISS, R.S., BAGLIONE, V. & CANESTRARI, D. (2015a) Behavioural responses to olfactory cues in carrion crows. *Behavioural Processes* **111**, 1–5.
- WASCHER, C.A.F., HILLEMANN, F., CANESTRARI, D. & BAGLIONE, V. (2015b) Carrion crows learn to discriminate between calls of reliable and unreliable conspecifics. *Animal Cognition* **18**, 1181–1185.
- 1943 WASCHER, C.A.F. & REYNOLDS, S. (2025) Vocal communication in corvids: a systematic review. *Animal Behaviour* **221**, 123073.
- WASCHER, C.A.F., SZIPL, G., BOECKLE, M. & WILKINSON, A. (2012) You sound familiar: carrion crows can differentiate between the calls of known and unknown heterospecifics. *Animal Cognition* **15**, 1015–1019.
- WASCHER, C.A.F., WATERHOUSE, G. & BEHEIM, B.A. (2025) Vocal mimicry in corvids. http://biorxiv.org/lookup/doi/10.1101/2025.03.26.645457 [accessed 28 May 2025].
- 1948 WASCHER, C.A.F. & YOUNGBLOOD, M. (2025) Vocal efficiency in crows. Animal Cognition 28, 75.
- 1949 WATSON, D.M., ZNIDERSIC, E. & CRAIG, M.D. (2019) Ethical birding call playback and conservation. *Conservation Biology* **33**, 469–471.
- 1950 WEBSTER, M.M. & RUTZ, C. (2020) How STRANGE are your study animals? *Nature* **582**, 337–340.
- 1951 WILBRECHT, L. & NOTTEBOHM, F. (2003) Vocal learning in birds and humans. Mental Retardation and Developmental Disabilities Research

- 1952 Reviews **9**, 135–148.
- WILLIAMS, H.J., TAYLOR, L.A., BENHAMOU, S., BIJLEVELD, A.I., CLAY, T.A., DE GRISSAC, S., DEMŠAR, U., ENGLISH, H.M., FRANCONI, N., GÓMEZ-LAICH, A., GRIFFITHS, R.C., KAY, W.P., MORALES, J.M., POTTS, J.R., ROGERSON, K.F., ET AL. (2020) Optimizing the use of biologgers for movement ecology research. *Journal of Animal Ecology* **89**, 186–206.
- WILSON, M.W., RIDLON, A.D., GAYNOR, K.M., GAINES, S.D., STIER, A.C. & HALPERN, B.S. (2020) Ecological impacts of human-induced animal behaviour change. *Ecology Letters* **23**, 1522–1536.
- WOLFF, L.M. & STEVENS, J.R. (2024) Less activity means improved welfare? How pair housing influences pinyon jay (Gymnorhinus cyanocephalus) behavior. *Animal Welfare* **33**, e49.
- 1960 WOOD, W.E. & YEZERINAC, S.M. (2006) Song sparrow (Melospiza Melodia) song varies with urban noise. *The Auk* **123**, 650–659.
- WOODS, J.M., EYER, A. & MILLER, L.J. (2022) Bird welfare in zoos and aquariums: General insights across industries. *Journal of Zoological and Botanical Gardens* **3**, 198–222.
- WRIGHT, T.F. (1996) Regional dialects in the contact call of a parrot. *Proceedings of the Royal Society B: Biological Sciences* **263**, 867–872.
- 1964 XIE, B., DAUNAY, V., PETERSEN, T.C. & BRIEFER, E.F. (2024) Vocal repertoire and individuality in the plains zebra (Equus quagga). *Royal* Society Open Science **11**, 240477.
- 1966 YOUNGBLOOD, M. (2025) Language-like efficiency in whale communication. *Science Advances* **11**, eads6014.
- YURK, H., BARRETT-LENNARD, L., FORD, J.K.B. & MATKIN, C.O. (2002) Cultural transmission within maternal lineages: vocal clans in resident killer whales in southern Alaska. *Animal Behaviour* **63**, 1103–1119.
- ZANDBERG, L., JOLLES, J.W., BOOGERT, N.J. & THORNTON, A. (2014) Jackdaw nestlings can discriminate between conspecific calls but do not beg specifically to their parents. *Behavioral Ecology* **25**, 565–573.
- ZANDBERG, L., MORFI, V., GEORGE, J.M., CLAYTON, D.F., STOWELL, D. & LACHLAN, R.F. (2024) Bird song comparison using deep learning trained from avian perceptual judgments. *PLOS Computational Biology* **20**, e1012329.
- ZEH, J.M., PEREZ-MARRUFO, V., ADCOCK, D.L., JENSEN, F.H., KNAPP, K.J., ROBBINS, J., TACKABERRY, J.E., WEINRICH, M., FRIEDLAENDER, A.S., WILEY, D.N. & PARKS, S.E. (2024) Caller identification and characterization of individual humpback whale acoustic behaviour. *Royal Society Open Science* **11**, 231608.

1976 1977	ZHANG, H., CISSE, M., DAUPHIN, Y.N. & LOPEZ-PAZ, D. (2018) mixup: Beyond empirical risk minimization. arXiv. http://arxiv.org/abs/1710.09412 [accessed 22 August 2025].
1978 1979	ZOLLINGER, S.A., RIEDE, T. & SUTHERS, R.A. (2008) Two-voice complexity from a single side of the syrinx in northern mockingbird <i>Mimus polyglottos</i> vocalizations. <i>Journal of Experimental Biology</i> 211 , 1978–1991.