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Abstract

Addressing global declines in insect biodiversity requires both ecological restoration and high-
quality monitoring data. While long-term participatory schemes have been foundational, recent
advances in automated recording and Al-based identification offer transformative but
undocumented potential. Here, we show how leveraging insect camera traps, deep learning
models and statistics drives a step-change in ecological knowledge. We highlight four key areas
of ecological understanding: phenology, abundance, richness, and community dynamics, and
show how automated data can correct phenological estimates by weeks and improve biodiversity
assessments. Data from insect camera traps offer unprecedented resolution and scalability,
making them powerful tools for tracking insect communities and informing conservation

strategies.



1. Introduction

The recent well documented changes in global biodiversity have drawn concern across the
conservation community !, prompting a concerted effort to improve data collection and deepen
understanding of these rapid transformations 2. High impact reports of declines in insect
abundance 7, biomass ® and diversity °, likely driven by myriad anthropogenic pressures !, are
alarming not least due to their impact on ecosystem functioning and human well-being '*!!.
Efforts to reduce or even reverse these trends are anchored by agreed international objectives,
such as the Kunming-Montreal Global Biodiversity Framework 2. However, assessing the
progress of the international community in meeting these targets is only possible with high-

13,14

quality data '*!4, of which there is a lamentable paucity for many insect groups '>!¢. Such long-

term, standardised and high-resolution data are essential to advancing ecological research and

informing conservation priorities %!417-18,

Collecting such gold-standard data on insect populations and communities has traditionally been
challenging. Long-term datasets on insect abundance exist in a few countries such as the UK and

19,20

the Netherlands, and have provided important insights into declines in butterflies and moths

1621 "as well as into the wide range of species-specific responses to anthropogenic drivers and
climate variability. To some extent, a broader perspective on insect biodiversity trends can also
be achieved by combining long-term datasets covering a variety of taxa and regions 2. However,
these monitoring initiatives have been developed incrementally over decades, are supported by a

dedicated network of volunteers in the absence of consistent funding, and boast many other

features of an effective monitoring system >'*. Establishing comparable data streams in new



regions will require great effort and the rapid development of scalable and standardised
monitoring protocols that can be implemented globally 2. Such protocols are key to providing
comparable biodiversity indicators, such as the Essential Biodiversity Variables (EBVs)

suggested by the Group on Earth Observations Biodiversity Observation Network (GEO BON;

25,26

Automated monitoring systems can make a major contribution to meeting these challenges in the
near future, and have been developing rapidly >*?”?%, For example, advances in DNA
metabarcoding have enabled rapid taxonomic identification from the preservative that samples of
specimens are stored in 2°, bulk-trapped specimens 3, or from water and soil samples *'*.
Similarly, the use of automatic sensors such as those capturing visual or audio data enables
remote collection of data across multiple locations simultaneously -4, Such technological
innovations have enormous potential to increase the quantity and quality of data available to
ecologists and conservationists, both spatially and temporally >*’. For the taxonomic groups on
which they are trained, automated systems can deliver information on key EBVs such as the
abundance and distribution of individual species, community diversity and composition and the
timing of key life history events at high temporal resolution >*?7->. Furthermore, emerging
evidence suggests that data generated through automated monitoring may provide species
richness, abundance and trend information comparable to traditional destructive sampling

methods 3%,



The promise of such data is both exciting and daunting. Insect species richness is many orders of
magnitude greater than that of mammals and birds, and taxonomic identification of automatically
collected data (i.e., photographs, videos, or sounds recordings) is typically limited by the
availability of skilled experts. Furthermore, advances in autonomous operation of the monitoring
system, such that species identification is incorporated in the process, have suffered from three

main constraints:

1) Hardware development has often focused on ad hoc combinations of microcomputers
and cameras with too little attention to data management, reproducibility and durability.

2) Deployment efforts have generally lacked the scale and ambition needed to enable
meaningful comparisons across regions and seasons.

3) Image analysis workflows and machine learning classifiers have not yet achieved the
robustness required to allow for efficient, rigorous and comprehensive processing of

images collected from insect camera traps %.

However, one approach to the automated monitoring of nocturnal insects has begun to lift these
constraints **¥*#! The development and widespread deployment of the Automated Monitoring
of Insects (AMI) trap system have now generated sufficient data to capture ecological signals of
relevance to conservation at scale. As a result, we are now able to begin visualising the
transformative potential of this technology. In this paper, we highlight some of the key insights
that an automated insect monitoring system can provide to ecologists, decision makers and
society in general by sharing initial results of three years of data collection with twelve AMI

traps across three regions of Denmark.



2. Automated monitoring of insects (AMI) traps

The AMI trap was developed to monitor nocturnal insects, but the automatic species
identification aspect of the system is particularly well developed for moths. Night-active moths
have been well studied because of their ease of capture, diverse life histories and the tight links
between community composition and variation in local habitat and plant diversity ***. Similarly,
moth biodiversity tends to closely reflect even fine-scale changes in environmental factors and
management gradients, promoting the group as candidate bioindicator taxa ****. As their
responses to drivers of change may also reflect changes in other species groups and ecosystem
functioning '®, moths are an ideal target group for a scalable and standardised data collection

system.

Some of the traditional moth biodiversity monitoring schemes and studies have already given us
high quality information for certain taxa and regions. For example, the Rothamsted Insect Survey
has tracked insect distributions across the UK since the 1960s, revealing declines in
approximately two-thirds of the studied macro-moth species *°. Similarly, organised data
collection in the Netherlands provided similar findings between 1980 and 2009 *°, while data
from the National Moth Monitoring scheme in Finland revealed spatially variable patterns in
abundance, richness and population trends *’**. However, most assessments are based on data
from voluntary monitoring schemes, which provide patchy data often with low temporal

resolution, limited standardization and bias towards geographically accessible areas °. These



limitations are inevitable in voluntary schemes, because participants cannot be expected to
monitor plots daily or to brave all kinds of weather. While data imbalances can to some extent be
dealt with using appropriate modelling techniques *°, we demonstrate below that inference from
traditional insect monitoring may be biased due to the limited temporal resolution and the

requirement to sample only during favourable weather conditions.

The design and functionality of the AMI moth traps have been detailed elsewhere ***°, but
briefly, a UV light attracts adult night-flying moths to the trap location, and they land on a white
screen towards which a web camera is focussed. The camera is assisted by a light source that
ensures diffuse illumination and is connected to a Raspberry Pi 4 micro-computer installed with
a motion program that captures images whenever the movement of insects above a
predetermined size (~40 mm?) is detected on the white screen between 11pm and 3am. The
motion-triggered images, saved every 2 seconds, are supplemented with time-lapse images saved
every 10 minutes. Together, this often results in >6 000 images per night, which are stored on a
portable SSD hard drive. The system is powered by a 12V battery and can be accompanied by a

solar panel to ensure continuous recording through the summer *°.

The images from the cameras are processed by a deep learning algorithm (Moth Classification
and Counting; Open source code: https://github.com/kimbjerge/MCC24-trap), which
automatically detects, identifies and counts known moth species using a classifier trained on
GBIF data of 2530 moth species found in the UK and Denmark *'~°°. As an individual moth can

remain on the white sheet across several images, “tracking” is also used to follow the movement



of individuals and reduce multiple observations of the same individual **. While a moth could
leave and return to the trap later to be counted as a new individual, tracking is a step toward
prevention of double-counting. Nevertheless, what the system captures is best understood as an
index of relative rather than absolute abundance. Although activity is often closely related to
abundance, the strength of this relationship can vary among taxa and contexts, and comparative
studies with established approaches such as capture—mark-recapture are still lacking. We
therefore use the term “relative abundance” in the sense of a standardized activity index that

allows comparisons across space and time, while acknowledging its current limitations.

The dataset analysed here includes data from 12 AMI traps, four in each of three managed nature
reserve sites in Denmark: Lille Vildmose (hereafter “LV”’), Ovstrup Hede (“OH”), and Seholt
Storskov (““SS”). Traps in a site were spaced between 1 and 10 km apart in a variety of habitats
including bogs, heathlands and forests. The traps recorded images from April to October in 2022,
2023 and 2024. In 2022 alone, the traps were in operation for 1399 nights, capturing over 3.4
million images containing over 45.2 million instances of insects, comprising over 1.1 million
valid insect “tracks”. The moth species classifier distinguished over 1600 species, although
model performance was evaluated using 47 905 images of only 497 species that were verified by
a Danish moth taxonomist. We found average classification precision values of 66.4% (macro -
average of precision across all classes) and 77.0% (micro - total number of true positives divided
by the total number of classifications). However, to reduce computation time for some of the
analyses in this paper, we focused on the observations of a target list of species that were

classified with the best precision (detailed below and in Methods).



3. Ecological knowledge from high quality data

In their review of biodiversity monitoring best practice, Montgomery et al. > highlight that
monitoring data should at least capture one of four key attributes of biodiversity: 1) occurrence
and distribution, 2) phenology, 3) abundance and 4) species diversity and community
composition. These are also among the suggested EBVs by GEO BON for future global
biodiversity monitoring programmes 2>, In this section, we demonstrate how the AMI traps
provide data for three of these four attributes, outlining analyses for community and species
phenology (section 3.1), community and species abundance (3.2), species richness (3.3) and
community composition (3.4). In parallel, we highlight the key advantages of the traps over

traditional methods of data collection.

3.1 Community- and species-level phenology

For many species of insect, plant, bird and mammal, phenology is advancing with climate
change because the climatic cues that trigger life history events (e.g., emergence, bud burst,
migration) are occurring earlier °'. These changes can have species level impacts, but can also
affect the interactions between species, particularly as there is much variability in the degree to
which species respond to these changes 2. Studies of moths have shown considerable variation
in phenological response to climate change, sometimes linked to species traits such as larval diet,
seasonality or overwintering stage >*>%. However, these findings come from a range of data
collection methods and there is a pressing need for more standardised, high-frequency data to

fully capture the complexity and variability of insect phenology °.



The AMI traps are uniquely positioned to meet this need, offering dense intra-annual replication
and extremely consistent data collection across years to detail community- and species-level
alterations to flight seasons. To demonstrate this, we used Generalised Additive Modelling
(GAMs) to model the daily abundance of the 100 most common and most precisely identified
species in the dataset, both as a community and individually (see Box 1). This technique fits a
smoothed curve to the abundance data over time to represent the phenological pattern of the
community and individual species. The phenology curves can then be further analysed to identify
key phenological events such as the onset, peak and end of adult activity. Using the three years
of data, the community peak phenology and length and shape of the flight season curve exhibited
high interannual variability (Fig. 1a). For example, the bimodal seasonal cycle reported for other
moth communities %, is only present in two out of three years, and the timing of the spring peak
varies considerably. Similarly, species-level phenological events demonstrate substantial
interspecific variability across years, but are relatively consistent within species from year to
year (Fig. 1b). Species level differences in phenology and phenological shifts are likely to be a
function of varied responses to weather variables, but may also reflect species interactions,
dynamic inter-annual effects or trait-based responses to changing site level factors 943>, Future
statistical analysis of this type of data collected over longer time periods will help to pinpoint the

drivers behind the sensitivity of species to a range of drivers.
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Figure 1: Moth phenology metrics from the AMI traps estimated by Generalised Additive

Modelling: a) the estimated community-level distribution curves based on the most abundant and

precisely identified 100 species for the three years, with the peak phenology (50% cumulative

abundance) highlighted by a dashed line, and maximum abundance by a dotted line; b) the

phenology of the 10 most abundant species estimated: left edge of box = activity onset date, right

edge of box = activity end date, central dot = peak phenology date. Uncertainty in these three

dates is shown by the box whiskers and the central line overlapping the dots; c¢) For 2024 only,

we drew a “weekly sample” using the data from every seventh day and repeated the model to

demonstrate the increase in uncertainty and shift in peak phenology in the community curve, and

d) in the species level metrics.



To quantify the added value of daily abundance data, we constructed and compared similar
estimates with a weekly subsample of data. This would replicate the more typical sampling
interval of traditional monitoring approaches, by using only data from every seventh day to
quantify changes in phenology estimates and their uncertainty. This subsampled dataset provided
estimates with considerably greater uncertainty and different peak phenology dates (shown in Fig
Ic & d for 2024 only). Furthermore, at the community level, the bimodal nature of the
community curve was exaggerated, while uncertainty at the beginning of the season was
particularly high (Fig. 1¢). At the species level, some estimates of peak phenology differed
markedly, certain activity seasons appeared to become elongated, and uncertainty often increased
(Fig. 1d). For many species, the additional information provided by daily observations is critical
to producing precise estimates of vital phenological metrics over time, and accurately track
changes in phenology °. Furthermore, combining daily, and potentially even hourly data with
weather variables collected at each trap location will provide highly detailed estimates of species
and community responses to climate. Such data are highly sought after as the basis for more

realistic predictions from mechanistic models *’.

3.2 Relative abundance

In addition to tracking changes in phenology, recording total and species-level abundance is a
desirable objective of monitoring systems . Abundance is arguably the most recognisable metric
for non-ecologists and is typically linked with ecosystem function and with the success or failure
of conservation and management actions !, or with changes in environmental conditions ®. For

example, data from the UK National Moth Recording Scheme revealed a 31% decline in total



moth abundance over 35 years from 1968, with significant declines particularly in the southern
half of the country where habitat degradation has been more pronounced **. However, spatial and
species-specific trends in these declines highlight the importance of local environmental factors

and species-level sensitivities to such environmental factors %4347,

While no survey method can produce perfect measures of abundance, total and species-level
relative abundance trends can be approximated using the phenology curves shown in Fig 1. The
area under the curve offers a practical abundance index that accounts for seasonal variation,
sampling effort and the amount of time the species is active ¢ B 1:-3 These indices provide
standardised inter-annual comparisons and may help mitigate potential biases from double
counting in automated tracking systems. Such estimates are widely used for butterfly monitoring
data (Schmucki et al. 2016), and offer considerable improvements over single-date snapshots of
abundance which are highly sensitive to sample timing >. However, it should be reiterated that
such indices are only comparable across similar trapping regimes, due to limited understanding

of the relationship between activity and abundance.

To further illustrate the potential of automated trapping, we computed relative abundance indices
for our dataset of 100 species recorded daily, as well as the weekly subsampled dataset described
above. For this demonstration we also used a third “good weather” dataset, for which we
extracted only the observations collected on nights with temperatures above 12°C, wind speed
below 1 m/s, and no rain. This latter dataset was intended to represent a more traditional survey

regime, where researchers or volunteers must ensure maximum insect activity before deciding to



sample. In addition, we explored the impact of incorporating trap-level weather conditions
(temperature, wind speed, relative humidity and a covariate to account for general moth activity
sensu °°) into our models to estimate abundance while controlling for weather effects on activity.
Thus, six GAMs were constructed in total: models with and without weather variables for the full

daily dataset, the weekly dataset and the good weather dataset.

At the community level, abundance index estimates from the daily dataset were generally lower
than the Weekly and Good weather samples (Fig. 2a). Similarly, there were differences in trend
and uncertainty among the data types, and models that excluded weather variables tended to
produce higher estimates of total abundance in most years. At the species level, we focussed on
the differences in estimates between models with and without weather variables, and a selection
of contrasting patterns demonstrate the potential impact of including or excluding weather
conditions from abundance estimates (Fig. 2b). Moth species are well known to respond
variously to different weather variables ¢!; for some apparently weather sensitive species, models
without weather variables produced higher abundance estimates, greater uncertainty and
sometimes opposite trends (e.g. Deltote pygarga, Marbled White Spot). Conversely, less
sensitive species tended to exhibit index estimates that were unaffected by the inclusion of

weather variables (e.g. Anania lancealis, the Long Winged Pearl).

The nine patterns in Fig. 2b represent the range of differences in abundance estimates between
models with and without weather variables and suggest that it can be an important species- and

research-specific decision in monitoring data analysis. Weather affects moth activity and



detectability in the short-term influencing trap catches independent of population size, and
through longer-term effects on survival and reproduction resulting in real abundance fluctuations
4261 Models with weather variables can account for daily or even hourly variation in activity,
producing smoother seasonal patterns with lower uncertainty, but may underestimate abundance
during years with favourable conditions that support larger populations. Conversely, models
excluding weather capture realised population dynamics that are partly produced by weather-
driven fluctuations but do not allow the separation of activity patterns and true abundance
changes and may overestimate abundance on favourable days. This exploration highlights that
the treatment of weather variables in abundance modelling warrants careful consideration based
on research objectives, and that abundance estimates from fine resolution datasets could be
invaluable additions to the monitoring toolbox if camera trapping is employed over long time

periods.
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Figure 2: Abundance index estimates derived from GAMs for a) the community comprised of the

most abundant 100 species with identification precision above 80%, and b) selected species that

show a range of sensitivity to weather conditions. For the community level graph (a), points are



median abundance indices computed across 1000 posterior draws, and error bars are 95%
credible intervals (see Box 1). The panels represent the full day-resolution dataset, and the
Weekly and Good weather subsampled datasets. Note the different y-axes. Abundance indices
were estimated using the area under the curve method for each species, trap, site and year before
summing estimates to derive an overall community abundance during the trapping period.

Species selected in b) all have identification accuracy above 86%.

3.3 Species richness

Many biodiversity monitoring programmes also focus on providing information on diversity
metrics, such as species richness, which can indicate how entire communities respond to
environmental change ®? and is likely to contribute positively to community stability and
ecosystem function *. For example, moth species richness has been shown to increase under less

intensive agricultural practices "Viewed by 16

, and species richness losses in Hungary have been
linked to land use and climate changes . In Finland, species richness increases have been
reported alongside general declines in abundance, probably reflecting a climate driven poleward

expansion of geographical ranges *"**. These examples highlight the need to monitor both

diversity and abundance across a wide network of sites.

To ensure comparability of species richness records across sampling units, variations in sampling
effort must be accounted for using methods such as rarefaction and extrapolation ®, which
estimate species richness at equivalent levels of sampling effort (Box 2). While high-resolution

automated monitoring data minimises the need to rely on these methods, technical issues



affecting any of the cameras can lead to variations in sampling effort. We therefore used
rarefaction here and focus on the data of species that were verified by a Danish moth taxonomist
(449 species). However, rather than only comparing species richness estimates across three
biodiverse sites in Denmark, we also used this method to explore the estimates between different
sampling frequencies with the aim of identifying an ideal balance between recording effort and
estimation accuracy. To do this, we repeated the rarefaction process for different sampling
regimes including our Weekly sample from above, as well as a dataset generated by subsampling
every three days. We found that increasing intervals between sampling days led to greater levels
of uncertainty in species richness estimates in all years, and underestimates of the number of
species (Fig. 3a). The Weekly data estimate even re-ordered the sites in terms of the most

diverse.

The reasons for the variability in uncertainty may be partly explained by the estimation method
and its sensitivity to the number of species recorded during only one or two trapping days (Box
2). However, an illustration of the amount of information collected under the differing sampling
regimes throughout the season also highlights the benefits of regular samples (Fig 3b). Under
daily sampling, considerably more information about species occurrence is collected compared
to less regular samples, and when a GAM is fit to species number with a smoother for day of the
year, the uncertainty around the smoothed line is much reduced. Although the heights of the lines
do not differ dramatically in Fig. 3b, species identity is not captured here and many species may
be missed or underrepresented with longer sampling intervals, particularly at the peak of activity.
The richness distribution curves in Fig. 3b also reiterate the point that continuous sampling

through the season is likely to provide more complete estimates than snapshots (single sampling



occasions in a season), and that a missed datapoint due to technical faults during weekly
sampling is likely to be more costly than during daily sampling. Notably, however, sampling
every third day provided relatively comparable estimates of diversity, which may be of interest
for AMI trap users concerned with the impact of artificial UV light, the attraction of predators of
nocturnal insects such as bats, birds, spiders and wasps and the overall storage and processing

time of daily data.
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Figure 3: Moth species richness analysis results: a) species accumulation curves for the three
sites in 2024 only, under different sampling regimes (Daily = data from every day, Three day =
data from every third day, Weekly = data subsampled weekly). The point on each curve
represents the actual sampled species richness. To compare sites at equal sampling effort (camera
days), requires interpolation (solid line) or extrapolation (dashed line); b) the number of species
captured by the three different sampling regimes. Points are median species richness values
across all sites and years, curves are GAM smoothers of richness over time with 95% credible
intervals based on 1000 posterior samples. The relatively large error ribbon for the early part of

the season of the weekly sampling occurs due to a lack of data.



3.4 Community composition dynamics

While abundance and diversity are popular metrics to communicate and interpret the state of an
ecosystem or habitat, they provide only a partial view of the condition of an ecological
community. In the context of climate change, ecologists are particularly concerned about the
prospect of biohomogenisation: the process by which ecological communities become more
similar across regions due to the dominance of common or generalist species >4, For example,
in Mediterranean forest reserves, moth community structure is linked to local weather conditions
and vegetation structure, with dietary specialist species being especially sensitive to vegetation
characteristics **. Similarly, long-term community analysis in Hungary has shown that species
with narrow ecological niches are more likely to be replaced by larger and more generalist
species %2, These findings underscore the importance of monitoring changes in community
structure and the underlying drivers of species co-occurrence, beyond basic diversity metrics.
Furthermore, with international restoration targets such as the Nature Restoration Regulation
requiring EU member states to restore 30% of degraded habitats by 2030 (European Commission
2024), advanced monitoring tools will be required to track the progress of these large scale

ecological changes -6,

In light of these considerations, we explored the potential of automated sampling to generate
informative data on community assemblages. For simplicity, we focused on data from two sites:
Lille Vildmose and Ovstrup Hede, collected during 2024, and selected only those species that
were present for at least 5 days and met arbitrary classification precision criteria (see Methods

for details). This resulted in a pool of 142 species. Rather than employing the conventional



approach of pooling data by site to compare overall community composition, we opted to
analyse temporal patterns in community development (Box 3). To simplify visualization and
analysis, we pooled data into weeks and then analysed the trajectory of community change
throughout the season for the two sites; that is, the rate at which the relative abundance of species
for each week changes through the season ¢’. Our results demonstrated that the two communities
diverged and converged at different points of the season, but with LV lagging behind OH during
early summer before “catching up” in late summer (Fig. 4a). This temporal nuance would be
obscured by single-time-point sampling or whole-season aggregation. Furthermore, the
trajectories of two community similarity curves were almost circular, with early spring (April)
and late autumn (October) communities showing greater resemblance to each other than to mid-
summer communities (i.e., July & August = Weeks 28 to 35 = Day of the year 181 to 243). Early
spring and late summer communities are likely to resemble each other due to the presence of
“multivoltine” species (those with more than one flight period in a year) and species that are
persistently present throughout the year (Fig 4b & c). Conversely, those groups showing strong
seasonal peaks drive the turnover in species composition during the richest part of the year. This
cyclical pattern was consistent for all three years (not shown), and longer term data could be
further examined to explore changes in the timing of community “states” between years and their
drivers ®’. These findings highlight the value of regular, automated sampling in capturing
dynamic community processes, and emphasize that temporal turnover in community composition
is an inherent feature of moth communities in this region and possibly more generally. This
needs to be taken into consideration when drawing conclusions about spatial or interannual
comparisons or when comparing the composition of communities before and after management

interventions.
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Figure 4: a) Community trajectory analysis of the 2024 moth communities of LV (Lille
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with same community states, and with the states in the same area of plot a).



4. Summary and future outlook

We demonstrate that automated insect monitoring systems can transform ecological monitoring
and deepen our understanding of community and species-level dynamics. With the high temporal
resolution of the data, and the potential for large spatial coverage, these systems can deliver data
that provide more precise estimates of phenological events, more accurate estimates of
abundance, standardised measures of diversity and detailed insights into community dynamics.
These metrics are of fundamental importance to standardised monitoring schemes °, and to track
the success of restoration efforts %°. With appropriate upscaling, automated systems could meet
the criteria for cost-effective generation of indices fulfilling criteria for EBVs 2. With data
collection covering the entire season across a range of weather conditions, automated systems
provide monitoring schemes with statistical power to overcome shortfalls of traditional systems,
such as accounting for weather variability and avoiding the misleading focus on single time-
point sampling. When combined with relevant abiotic information such as weather and land use
variables, automated monitoring can also enable the modelling of future scenarios under

potential ecological restoration and/or climate change with unprecedented precision.

Beyond statistical power, automated systems can confer other advantages. The AMI trap

presented here and elsewhere 04!

offers the opportunity to collect less destructive data on a wide
range of species, and to deliver monitoring information while preserving human resources.
Furthermore, the system can provide a standardised method of data collection with the potential

to fit into a scientific sampling design, with automated data entry and quality assured data '#, and

possibilities for spatial, inter- and intra-annual, and within-sample replication . The system can



be further enhanced to provide timely reporting of species and community trends over time using

appropriate statistical approaches 4.

While the approach presented here does not resolve all analytical challenges associated with
insect camera trap data such as the multiple counting of individuals and the availability of
suitable training data, the resulting datasets provide a remarkable level of detail that can only be
matched by committed and extensive long-term monitoring programmes. This level of resolution
opens up a wide range of monitoring and research possibilities that can assist with understanding
trends, assessing management interventions, addressing fundamental and applied research
questions and contributing to mechanistic modelling for future projections 2. These possibilities

can benefit new monitoring schemes, but also complement existing systems ',

Insect populations and communities are extremely variable and dynamic, and recent evidence of
alarming declines should be tempered by the knowledge that responses are heterogeneous 6%,
This diversity of responses is important to capture across large spatial and temporal scales to
better understand biodiversity changes and provide suitable conservation solutions >,
Automated systems such as the AMI trap form a solution with an exciting level of detail and
potential, and, as complimentary features in the monitoring toolbox, they will dramatically

enhance biodiversity monitoring and our ability to meet conservation priorities in the future **”.



Methods

Phenology and abundance

To model the community and species level phenology patterns, we used a Generalised Additive
Model (GAM) with a negative binomial error distribution, fit in the R programming environment
v4:3.0,69 with the package mgev " and thin plate regression spline as the smoothing basis. As these
models are computationally intensive, we selected 100 species from the full dataset of >1600
species that met the following criteria: 1) species classification had been verified by a Danish
moth taxonomist; 2) a total of more than 10 images were used in testing the precision of the
identification algorithm, 3) precision was more than 80%, 4) species were present in all years for

at least 5 days of camera trap recording. From the remaining species, we selected the 100 most

abundant.

The phenology GAM used abundance as the response variable, and as explanatory variables we
used a factor smooth for day of the year (doy) with year as the factor, to model the “global”
community phenology curve, and smoothers for doy for each species to model species-specific
phenology "!. In full models including weather variables, we also fit smoothers to wind speed,
relative humidity and temperature. These variables were recorded at each site by a weather

station featuring the ZL6 advanced data logger (Meter, Munich, Germany).



We also included a “residuals covariate” to capture the daily relative activity of all moth species
following the procedure described in Lindén et al. *°. Briefly, to calculate the residuals covariate,
a separate GAM was fitted for each species to the daily abundance of all other moth species (i.e.
excluding the focal species), with a smoother for doy, factor smooth interactions (bs = “sz”’) for
doy and year and doy and trap location, and a random effect for site. From this model, log-scale

residuals were calculated as
X; = In[M;+1] — In[E(M,) + 1]

where M is the abundance of all other moths on the tth day, and E(M) is the fitted value for M
from the GAM. As described by Lindén et al. ®°, this covariate can be seen as an alternative to a
lagged autocovariate to account for autocorrelation, and describes relative moth activity in that
those days with above average activity will have positive values, and days with below average
activity have negative values. The inclusion of this covariate improved overall model fit of the
phenology GAM and is likely to capture variation not explained by the three chosen weather

variables above.

Finally, in the phenology GAM we included random effects for species and trap location. The
model was fit with the bam function of the mgcv library with the fREML method, and k was set

to 20 to ensure we captured the complexity of all seasonal patterns.

To make predictions with this phenology GAM, we computed a prediction grid that represented
realistic weather conditions throughout the year, rather than use a constant for each variable (e.g.

mean temperature, wind speed, humidity) that may provide unrealistic predictions during cooler



or warmer periods of the year. To do this, we first fit GAMs to each weather variable (including
the residuals covariate). Each weather model had random effects for trap location and year. We
then made predictions of each variable for every day of the study periods, across all
combinations of species, traps, sites and years. These predictions were combined into an overall
prediction grid consisting of 686,600 observations and variables representing all those in the

phenology GAM.

For predicting the community level phenology curves, we used this grid to draw 1000 samples
from the posterior distribution of the model using a Gaussian approximation 2, using the
fitted.samples function from the gratia package ”*, providing 1000 abundance estimates for each
species, trap, sites, year and day of the year. We aggregated these estimates across species, traps
and sites to provide a 1000 total abundance values per day per year. For each day in each year,
we then extracted the median total abundance to draw the predicted phenology curve, and the
0.025 and 0.975 quantiles to draw the 95% credible intervals. The community peak phenology
date for each year was calculated both as the median date when peak abundance occurred in the

samples and the date when 50% of the cumulative abundance predictions were reached.

For species level phenological metrics we used the same posterior samples, but for each species
we calculated the day of the year when 10% (onset), 50% (peak) and 90% (end) of the
cumulative abundance predictions were reached. In addition, we used the trapezoid rule to
estimate relative abundance as the area under the curve using the trapz function from the pracma

package 7*. These predictions for peak, onset, end and abundance were then summarised for each



year by taking the median value of all fitted samples as the point estimate, and the 0.025 and

0.975 quantiles as the 95% credible intervals.

The modelling and predictions were repeated for a reduced phenology GAM, to compare the
predictions for a model that does not include weather variables. The model structure was the
same as above, except that it did not contain temperature, wind speed, relative humidity or the
residuals covariate (which may represent other weather conditions important to moth activity).
Finally, the two model types and the prediction process were repeated for two subsampled
datasets for comparison of predictions between the full daily recorded observations, and
observation sets based on reduced sampling capacity. The first of these was a “Weekly” dataset,
which comprised observations subsampled from the full set every seven days, starting with the
first day of sampling. The second was a “Good weather” dataset, which comprised all
observations that met the following criteria during the four hours of sampling: temperature above
12 °C, wind speed below 1.5 m/s and precipitation below 1 mm. These values and variables were
chosen to represent the kind of weather conditions that observers may choose to sample in to

maximise data collection.

Species richness analysis

To analyse patterns in species richness we used the data for those species verified by a Danish
moth taxonomist (449 species). To compare estimates of species richness across differing

sampling regimes, we created two subsampled datasets: a weekly dataset as described above, and



a “Third day” dataset, comprising observations subsampled from the full set every three days,

starting with the first day of sampling.

For each of these samples, the number of sampling units was calculated as the number of days of
working camera data collection for each site and year. Therefore, camera days were summed
across the four traps at each site. The sampling units and species x site and year matrix were then
inputs to the iINEXT function of the iNEXT package "°, which computes species diversity metrics
(including species richness) across a range sampling intensities, utilising interpolation at
intensities lower than the actual sampling effort, and extrapolation at higher intensities. The data
type was “incidence frequency”, confidence intervals (CIs) were set to 0.95 and endpoint was set

to 1000 for each data set to provide comparable plots.

To plot species richness patterns over time, we first calculated species richness per day for each
site and year (i.e. we combined data to count the number of species observed at each site), and
again used the three comparison datasets — daily observations, every third day and weekly
observations. These data were used as input for three separate GAM models, with richness as
response variable, and a cubic regression spline smoother fit to Day of the year, allowing the
smoother to interact with year, and for any site level deviations using the “sz” basis. The models
were fit with the negative binomial error distribution. For each model, we then fitted the
response (richness) to 1000 samples drawn from the posterior distribution (Gaussian
approximation) using a full prediction grid. This provided 1000 estimates of richness for each

day, site and year. We then averaged the richness estimate across site and year to derive 1000



estimates of species richness across the entire dataset for each day. The median richness for each
day was then plotted as the best estimate of species richness, and 0.025 and 0.975 quantiles were

plotted as 95% credible intervals.

Community composition

To initially group species by seasonal activity profile for visualisation purposes, we used
hierarchical clustering of distribution patterns using the Aclust function of the base R package
V430,69 To select species for this process, we used the same criteria as above (Expert verified, 10
images, 80 % precision, present for > 5 days), and for simplification we used only those species
occurring at the LV and OH sites in 2024 (142 species). To estimate seasonal activity, we built a
GAM for each species, with Day of the year (DOY) fitted as a thin plate regression spline, and
trap location as a random effect, and the negative binomial error distribution. We then made
abundance predictions for each day, location and species, and averaged abundance across traps to
provide a mean abundance per day per species. These predictions were combined into a species X
DOY matrix, which was then normalised with the decostand function of the vegan package °.
This normalised matrix was converted to a Euclidean distance matrix with the vegdist function of
the vegan package. The Ward.D hierarchical clustering method was used to identify seasonal
activity clusters for each species. We experimented with the number of clusters by visually
plotting species from the same cluster and found that 6 clusters provided the best balance

between simplicity and adequately representing meaningful seasonal clusters.



The same 142 species were used in ecological trajectory analysis (ETA) using the ecotraj
package . For simplicity, and to provide the longest period for comparison, we again focussed
on the data from 2024 and the sites Lille Vildmose and Ovstrup Hede, which had at least two
traps running continuously from week 17 to week 40. We first summed the data by week and site
to aid visualisation, and then prepared a species x site/sampling week abundance matrix. For the
ETA we therefore had two sites and 24 survey samples. The species x site matrix was normalised
and a distance matrix was computed using the Canberra method. We then defined the trajectories
using this distance matrix, the sites and survey times, and ran a trajectory Principle Coordinates
analysis (PCoA). The first PCoA axis explained 22% of the variation in community “states” and
the second explained 11%. Finally, to aid visualisation, we smoothed the trajectories using the
smoothTrajectories function of the ecotraj package, which uses a Gaussian kernel to perform
multivariate smoothing ¢’. Finally, to visualise species within the PCoA ordination, we calculated
Weighted Average Scores using the wascores function of the vegan package, as PCoA does not

compute species scores.



Box Text

Box 1 — Daily data improve phenology and abundance estimates

Generalised Additive Models (GAMs) enable modelling of non-linear patterns between variables
in a flexible way. This is particularly useful when modelling phenological patterns, where a
species’ seasonal activity may not conform to a simple parametric shape. The process used to

estimate phenological events is depicted in the graphs below.

In panel a), the randomly generated abundance of a single hypothetical species is plotted against
day of the year (DOY), and a single smoothed line has been fit that best captures the non-linear
nature of the pattern. Panel b) shows the same abundance points but displays the curves of 20
“bootstrap” samples — each green line is based on a random resample of the data with
replacement. Replicated many times (typically 500 or 1000), the sampled smoothed lines provide
a distribution of predictions, which converge on the most likely scenario given the data and the
specified model. Each sample can provide a separate estimate on the date of peak activity, and
other phenological events such as the likely onset of activity (when 10% of all observations have
been made) and end of activity (90 % of all observations). Panel c), shows how the confidence
band (shaded in green) represents the range of bootstrapped samples, while the median of the
peak dates across bootstrap samples is selected as the most likely (the red dashed line). Similarly,
the blue dashed lines represent the most likely onset and end dates. “Credible intervals” of these
dates are represented using the 2.5% and 97.5& quantiles across bootstrap samples. If more data
is available in graph a), the bootstrapped samples in b) are more likely to resemble each other
and uncertainty will be low. Thus, the high-frequency data provided by daily AMI trap operation

will provide much more information for predictions than less frequent sampling.
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the areas for all days summed to provide an abundance estimate. Again, uncertainty can be

addressed by bootstrapping the curve, and repeating the abundance calculation for each sample

(e). The most likely abundance value, shown in f), is then the median of all the bootstrapped

sample estimates, while the 2.5% and 97.5% quantiles provide the credible interval range.
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As with other regression techniques, the addition of covariates will alter the location and

smoothness of the prediction lines and allow predictions to be made for differing levels of the




covariates. Hence, the addition of e.g., weather variables in the GAM of species phenology may

alter the size and shape of the fitted curve and therefore the relative abundance calculation.



Box 2 — Daily monitoring data can improve rarefaction curves

Estimating and comparing species richness from multiple ecological communities can be
challenging, particularly under varying sampling effort (e.g. the number of traps, survey days,
survey area, individuals encountered). Most species in a community are likely to be rare and
many will go undetected, and the number of species encountered will increase non-linearly with
sampling effort up to an unknown asymptotic value. To solve this problem and estimate unbiased
values for species richness in multiple assemblages at equivalent levels of sampling effort,
Colwell et al. ”” and Chao and Jost 7® unified a framework of statistically modelling species
richness using so-called rarefaction curves. The process enables the comparison of species
richness at a common reference point. If the reference point is a smaller number of samples than
was collected, interpolation or “rarefaction” is used to reduce the estimate down to a random
subsample. If the reference point is greater, extrapolation is used following the trajectory of the

rarefaction curve.

However, uncertainty estimates are susceptible to sampling issues and we demonstrate this here
with a small subsample of the AMI trap data. Panel a) shows the species richness curve for 30
randomly selected species from one site during a 30-day period in 2024. This period provided 96
camera days across the four traps, and 28 out of 30 species were detected during this time (the
dashed vertical line). The species accumulation curve provides estimates of the number of
species detected with fewer or more camera days. The uncertainty around the curve highlights
that some rare species may have been missed during sampling (the upper boundary of the shaded
area) while some may have been over-represented (the lower boundary). These uncertainty
estimates are sensitive to the number of “singletons” in the data (species only captured once); in

panel b) the same data are used but 5 species have been altered: instead of occurring on 3 days



they only occur on 1 day (More single day species). The number of “doubletons” (species found
twice) and the ratio between singletons and doubletons is also an important factor: in graph c),
“More singles, less doubles”, the same dataset from b) is used but four doubletons have been
changed to occurring on 3 days. Thus, fewer doubletons and a higher ratio increase uncertainty
values. A third issue is shown in d), “b & ¢ & small sample”, where the same data from c) are
combined with a low sample size (only 50 camera days). Uncertainty is driven up here as small
samples of very diverse communities increase the “guesswork”™ involved in estimating unseen
diversity. Finally, when the sample of data from a) is sub-sampled weekly instead of daily
(resulting in 16 camera days — 4 weeks x 4 traps), the resulting graph is shown in e), “Weekly
data”. Here, the large uncertainty area is due to a combination of all three of the above issues.
Therefore, daily sampled data provide more information about the true abundance distributions
of both common and rare species. Note also that these findings are for a given daily sampling
window (11pm to 3am) with motion detection enabled to detect movement at 2 second intervals.

With lower sampling rates, detection probability would also be reduced.
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Box 3 — Daily data enable Community Trajectory Analysis

In many studies of community composition, the objective is to understand how similar or
dissimilar species assemblages are and why. Communities made up of the same species in
comparable abundances are considered “similar” and will be plotted close together in two
dimensional “ordination plots”. Communities made up of different species are dissimilar and will
be far apart in ordination space, and coplotting values of likely predictors such as climate,
pollution or habitat can help to determine the factors behind dissimilarity. In a basic sense,
community composition data are often pooled across sampling periods and plotted together to
give an overview of a assemblages observed across a season. However, below we demonstrate
with a small subsample that this approach may mask important community dynamics. The data
featured here comprise all species from the traps at all three study sites but limited to weeks 20 to
25 in 2024. Panel a) shows a traditional ordination, using data pooled across this 6-week period,
showing the similarities in the make-up of their moth communities. The grey dots are the

species, and those close to each other and to particular sites are also associated. Here it appears
that each site is relatively distinct. However, given that we have sampled the sites many times
over the season, we could analyse the communities at different times separately. In panel b), we
compare the sites at two distinct points in time, pooling only week 20 and week 25. Here, all
three sites are relatively similar in week 25, but site SS is distinct from the other two in week 20.
This may suggest some hidden dynamics between these time periods, or some unknown event

leading to a dramatic shift in composition.

Community trajectory analysis aims to unmask these patterns, treating repeated samples of the

same sites as different community “states” and then assessing the speed and direction of change



over time. In panel c), this analysis has been performed for the three sites, pooling the data for

each week to provide 6 community states each. Here, longer arrows indicate large changes in

community composition and short arrows indicate the opposite. The direction of arrows also

denotes divergence or convergence of community similarities. For example, site LV starts and

ends with a similar community to site OH, but diverges in weeks 22 and 23. In later analysis, we

might delve deeper into the data to understand why, but such investigation can only be conducted

with data collected frequently and throughout the season. Continuous monitoring of these sites

will also reveal whether such patterns recur, become more extreme or disappear over time.

Similarly, further analyses can help define how appropriate comparisons of community

composition across space and time should account for within-season variability.
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