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Abstract 

Addressing global declines in insect biodiversity requires both ecological restoration and high-

quality monitoring data. While long-term participatory schemes have been foundational, recent 

advances in automated recording and AI-based identification offer transformative but 

undocumented potential. Here, we show how leveraging insect camera traps, deep learning 

models and statistics drives a step-change in ecological knowledge. We highlight four key areas 

of ecological understanding: phenology, abundance, richness, and community dynamics, and 

show how automated data can correct phenological estimates by weeks and improve biodiversity 

assessments. Data from insect camera traps offer unprecedented resolution and scalability, 

making them powerful tools for tracking insect communities and informing conservation 

strategies. 

 

  



1. Introduction 

 

The recent well documented changes in global biodiversity have drawn concern across the 

conservation community 1, prompting a concerted effort to improve data collection and deepen 

understanding of these rapid transformations 2–5. High impact reports of declines in insect 

abundance 6,7, biomass 8 and diversity 9, likely driven by myriad anthropogenic pressures 1, are 

alarming not least due to their impact on ecosystem functioning and human well-being 10,11. 

Efforts to reduce or even reverse these trends are anchored by agreed international objectives, 

such as the Kunming-Montreal Global Biodiversity Framework 12. However, assessing the 

progress of the international community in meeting these targets is only possible with high-

quality data 13,14, of which there is a lamentable paucity for many insect groups 15,16. Such long-

term, standardised and high-resolution data are essential to advancing ecological research and 

informing conservation priorities 2,14,17,18. 

 

Collecting such gold-standard data on insect populations and communities has traditionally been 

challenging. Long-term datasets on insect abundance exist in a few countries such as the UK and 

the Netherlands, and have provided important insights into declines in butterflies 19,20 and moths 

16,21, as well as into the wide range of species-specific responses to anthropogenic drivers and 

climate variability. To some extent, a broader perspective on insect biodiversity trends can also 

be achieved by combining long-term datasets covering a variety of taxa and regions 22. However, 

these monitoring initiatives have been developed incrementally over decades, are supported by a 

dedicated network of volunteers in the absence of consistent funding, and boast many other 

features of an effective monitoring system 5,14. Establishing comparable data streams in new 



regions will require great effort and the rapid development of scalable and standardised 

monitoring protocols that can be implemented globally 23,24. Such protocols are key to providing 

comparable biodiversity indicators, such as the Essential Biodiversity Variables (EBVs) 

suggested by the Group on Earth Observations Biodiversity Observation Network (GEO BON; 

25,26.  

 

Automated monitoring systems can make a major contribution to meeting these challenges in the 

near future, and have been developing rapidly 24,27,28. For example, advances in DNA 

metabarcoding have enabled rapid taxonomic identification from the preservative that samples of 

specimens are stored in 29, bulk-trapped specimens 30, or from water and soil samples 31,32. 

Similarly, the use of automatic sensors such as those capturing visual or audio data enables 

remote collection of data across multiple locations simultaneously 33,34. Such technological 

innovations have enormous potential to increase the quantity and quality of data available to 

ecologists and conservationists, both spatially and temporally 2,27. For the taxonomic groups on 

which they are trained, automated systems can deliver information on key EBVs such as the 

abundance and distribution of individual species, community diversity and composition and the 

timing of key life history events at high temporal resolution 24,27,35. Furthermore, emerging 

evidence suggests that data generated through automated monitoring may provide species 

richness, abundance and trend information comparable to traditional destructive sampling 

methods 36,37. 

 



The promise of such data is both exciting and daunting. Insect species richness is many orders of 

magnitude greater than that of mammals and birds, and taxonomic identification of automatically 

collected data (i.e., photographs, videos, or sounds recordings) is typically limited by the 

availability of skilled experts. Furthermore, advances in autonomous operation of the monitoring 

system, such that species identification is incorporated in the process, have suffered from three 

main constraints: 

1) Hardware development has often focused on ad hoc combinations of microcomputers 

and cameras with too little attention to data management, reproducibility and durability.  

2) Deployment efforts have generally lacked the scale and ambition needed to enable 

meaningful comparisons across regions and seasons. 

3) Image analysis workflows and machine learning classifiers have not yet achieved the 

robustness required to allow for efficient, rigorous and comprehensive processing of 

images collected from insect camera traps 38. 

 

However, one approach to the automated monitoring of nocturnal insects has begun to lift these 

constraints 34,39–41. The development and widespread deployment of the Automated Monitoring 

of Insects (AMI) trap system have now generated sufficient data to capture ecological signals of 

relevance to conservation at scale. As a result, we are now able to begin visualising the 

transformative potential of this technology. In this paper, we highlight some of the key insights 

that an automated insect monitoring system can provide to ecologists, decision makers and 

society in general by sharing initial results of three years of data collection with twelve AMI 

traps across three regions of Denmark. 



 

2. Automated monitoring of insects (AMI) traps 

 

The AMI trap was developed to monitor nocturnal insects, but the automatic species 

identification aspect of the system is particularly well developed for moths. Night-active moths 

have been well studied because of their ease of capture, diverse life histories and the tight links 

between community composition and variation in local habitat and plant diversity 42,43. Similarly, 

moth biodiversity tends to closely reflect even fine-scale changes in environmental factors and 

management gradients, promoting the group as candidate bioindicator taxa 42–44. As their 

responses to drivers of change may also reflect changes in other species groups and ecosystem 

functioning 16, moths are an ideal target group for a scalable and standardised data collection 

system. 

 

Some of the traditional moth biodiversity monitoring schemes and studies have already given us 

high quality information for certain taxa and regions. For example, the Rothamsted Insect Survey 

has tracked insect distributions across the UK since the 1960s, revealing declines in 

approximately two-thirds of the studied macro-moth species 45. Similarly, organised data 

collection in the Netherlands provided similar findings between 1980 and 2009 46, while data 

from the National Moth Monitoring scheme in Finland revealed spatially variable patterns in 

abundance, richness and population trends 47,48.  However, most assessments are based on data 

from voluntary monitoring schemes, which provide patchy data often with low temporal 

resolution, limited standardization and bias towards geographically accessible areas 5. These 



limitations are inevitable in voluntary schemes, because participants cannot be expected to 

monitor plots daily or to brave all kinds of weather. While data imbalances can to some extent be 

dealt with using appropriate modelling techniques 49, we demonstrate below that inference from 

traditional insect monitoring may be biased due to the limited temporal resolution and the 

requirement to sample only during favourable weather conditions. 

 

The design and functionality of the AMI moth traps have been detailed elsewhere 39,40, but 

briefly, a UV light attracts adult night-flying moths to the trap location, and they land on a white 

screen towards which a web camera is focussed. The camera is assisted by a light source that 

ensures diffuse illumination and is connected to a Raspberry Pi 4 micro-computer installed with 

a motion program that captures images whenever the movement of insects above a 

predetermined size (~40 mm2) is detected on the white screen between 11pm and 3am. The 

motion-triggered images, saved every 2 seconds, are supplemented with time-lapse images saved 

every 10 minutes. Together, this often results in >6 000 images per night, which are stored on a 

portable SSD hard drive. The system is powered by a 12V battery and can be accompanied by a  

solar panel to ensure continuous recording through the summer 40. 

 

The images from the cameras are processed by a deep learning algorithm (Moth Classification 

and Counting; Open source code: https://github.com/kimbjerge/MCC24-trap), which 

automatically detects, identifies and counts known moth species using a classifier trained on 

GBIF data of 2530 moth species found in the UK and Denmark 41,50. As an individual moth can 

remain on the white sheet across several images, “tracking” is also used to follow the movement 



of individuals and reduce multiple observations of the same individual 39. While a moth could 

leave and return to the trap later to be counted as a new individual, tracking is a step toward 

prevention of double-counting. Nevertheless, what the system captures is best understood as an 

index of relative rather than absolute abundance. Although activity is often closely related to 

abundance, the strength of this relationship can vary among taxa and contexts, and comparative 

studies with established approaches such as capture–mark–recapture are still lacking. We 

therefore use the term “relative abundance” in the sense of a standardized activity index that 

allows comparisons across space and time, while acknowledging its current limitations. 

 

The dataset analysed here includes data from 12 AMI traps, four in each of three managed nature 

reserve sites in Denmark: Lille Vildmose (hereafter “LV”), Ovstrup Hede (“OH”), and Søholt 

Storskov (“SS”). Traps in a site were spaced between 1 and 10 km apart in a variety of habitats 

including bogs, heathlands and forests. The traps recorded images from April to October in 2022, 

2023 and 2024. In 2022 alone, the traps were in operation for 1399 nights, capturing over 3.4 

million images containing over 45.2 million instances of insects, comprising over 1.1 million 

valid insect “tracks”. The moth species classifier distinguished over 1600 species, although 

model performance was evaluated using 47 905 images of only 497 species that were verified by 

a Danish moth taxonomist. We found average classification precision values of 66.4% (macro - 

average of precision across all classes) and 77.0% (micro - total number of true positives divided 

by the total number of classifications). However, to reduce computation time for some of the 

analyses in this paper, we focused on the observations of a target list of species that were 

classified with the best precision (detailed below and in Methods). 

 



3. Ecological knowledge from high quality data 

 

In their review of biodiversity monitoring best practice, Montgomery et al. 5 highlight that 

monitoring data should at least capture one of four key attributes of biodiversity: 1) occurrence 

and distribution, 2) phenology, 3) abundance and 4) species diversity and community 

composition. These are also among the suggested EBVs by GEO BON for future global 

biodiversity monitoring programmes 25,26. In this section, we demonstrate how the AMI traps 

provide data for three of these four attributes, outlining analyses for community and species 

phenology (section 3.1), community and species abundance (3.2), species richness (3.3) and 

community composition (3.4). In parallel, we highlight the key advantages of the traps over 

traditional methods of data collection.  

 

3.1 Community- and species-level phenology 

 

For many species of insect, plant, bird and mammal, phenology is advancing with climate 

change because the climatic cues that trigger life history events (e.g., emergence, bud burst, 

migration) are occurring earlier 51. These changes can have species level impacts, but can also 

affect the interactions between species, particularly as there is much variability in the degree to 

which species respond to these changes 52. Studies of moths have shown considerable variation 

in phenological response to climate change, sometimes linked to species traits such as larval diet, 

seasonality or overwintering stage 53–56. However, these findings come from a range of data 

collection methods and there is a pressing need for more standardised, high-frequency data to 

fully capture the complexity and variability of insect phenology 5.  



 

The AMI traps are uniquely positioned to meet this need, offering dense intra-annual replication 

and extremely consistent data collection across years to detail community- and species-level 

alterations to flight seasons. To demonstrate this, we used Generalised Additive Modelling 

(GAMs) to model the daily abundance of the 100 most common and most precisely identified 

species in the dataset, both as a community and individually (see Box 1). This technique fits a 

smoothed curve to the abundance data over time to represent the phenological pattern of the 

community and individual species. The phenology curves can then be further analysed to identify 

key phenological events such as the onset, peak and end of adult activity. Using the three years 

of data, the community peak phenology and length and shape of the flight season curve exhibited 

high interannual variability (Fig. 1a). For example, the bimodal seasonal cycle reported for other 

moth communities 42, is only present in two out of three years, and the timing of the spring peak 

varies considerably. Similarly, species-level phenological events demonstrate substantial 

interspecific variability across years, but are relatively consistent within species from year to 

year (Fig. 1b). Species level differences in phenology and phenological shifts are likely to be a 

function of varied responses to weather variables, but may also reflect species interactions, 

dynamic inter-annual effects or trait-based responses to changing site level factors 16,45,56. Future 

statistical analysis of this type of data collected over longer time periods will help to pinpoint the 

drivers behind the sensitivity of species to a range of drivers.  

 



 

Figure 1: Moth phenology metrics from the AMI traps estimated by Generalised Additive 

Modelling: a) the estimated community-level distribution curves based on the most abundant and 

precisely identified 100 species for the three years, with the peak phenology (50% cumulative 

abundance) highlighted by a dashed line, and maximum abundance by a dotted line; b) the 

phenology of the 10 most abundant species estimated: left edge of box = activity onset date, right 

edge of box = activity end date, central dot = peak phenology date. Uncertainty in these three 

dates is shown by the box whiskers and the central line overlapping the dots; c) For 2024 only, 

we drew a “weekly sample” using the data from every seventh day and repeated the model to 

demonstrate the increase in uncertainty and shift in peak phenology in the community curve, and 

d) in the species level metrics.  

 



To quantify the added value of daily abundance data, we constructed and compared similar 

estimates with a weekly subsample of data. This would replicate the more typical sampling 

interval of traditional monitoring approaches, by using only data from every seventh day to 

quantify changes in phenology estimates and their uncertainty. This subsampled dataset provided 

estimates with considerably greater uncertainty and different peak phenology dates (shown in Fig 

1c & d for 2024 only). Furthermore, at the community level, the bimodal nature of the 

community curve was exaggerated, while uncertainty at the beginning of the season was 

particularly high (Fig. 1c). At the species level, some estimates of peak phenology differed 

markedly, certain activity seasons appeared to become elongated, and uncertainty often increased 

(Fig. 1d). For many species, the additional information provided by daily observations is critical 

to producing precise estimates of vital phenological metrics over time, and accurately track 

changes in phenology 5. Furthermore, combining daily, and potentially even hourly data with 

weather variables collected at each trap location will provide highly detailed estimates of species 

and community responses to climate. Such data are highly sought after as the basis for more 

realistic predictions from mechanistic models 57. 

 

3.2 Relative abundance 

 

In addition to tracking changes in phenology, recording total and species-level abundance is a 

desirable objective of monitoring systems 5. Abundance is arguably the most recognisable metric 

for non-ecologists and is typically linked with ecosystem function and with the success or failure 

of conservation and management actions 1, or with changes in environmental conditions 8. For 

example, data from the UK National Moth Recording Scheme revealed a 31% decline in total 



moth abundance over 35 years from 1968, with significant declines particularly in the southern 

half of the country where habitat degradation has been more pronounced 45. However, spatial and 

species-specific trends in these declines highlight the importance of local environmental factors 

and species-level sensitivities to such environmental factors 16,45–47. 

 

While no survey method can produce perfect measures of abundance, total and species-level 

relative abundance trends can be approximated using the phenology curves shown in Fig 1. The 

area under the curve offers a practical abundance index that accounts for seasonal variation, 

sampling effort and the amount of time the species is active see Box 1; ,58. These indices provide 

standardised inter-annual comparisons and may help mitigate potential biases from double 

counting in automated tracking systems. Such estimates are widely used for butterfly monitoring 

data (Schmucki et al. 2016), and offer considerable improvements over single-date snapshots of 

abundance which are highly sensitive to sample timing 59. However, it should be reiterated that 

such indices are only comparable across similar trapping regimes, due to limited understanding 

of the relationship between activity and abundance.  

 

To further illustrate the potential of automated trapping, we computed relative abundance indices 

for our dataset of 100 species recorded daily, as well as the weekly subsampled dataset described 

above. For this demonstration we also used a third “good weather” dataset, for which we 

extracted only the observations collected on nights with temperatures above 12ᵒC, wind speed 

below 1 m/s, and no rain. This latter dataset was intended to represent a more traditional survey 

regime, where researchers or volunteers must ensure maximum insect activity before deciding to 



sample. In addition, we explored the impact of incorporating trap-level weather conditions 

(temperature, wind speed, relative humidity and a covariate to account for general moth activity 

sensu 60) into our models to estimate abundance while controlling for weather effects on activity. 

Thus, six GAMs were constructed in total: models with and without weather variables for the full 

daily dataset, the weekly dataset and the good weather dataset.  

 

At the community level, abundance index estimates from the daily dataset were generally lower 

than the Weekly and Good weather samples (Fig. 2a). Similarly, there were differences in trend 

and uncertainty among the data types, and models that excluded weather variables tended to 

produce higher estimates of total abundance in most years. At the species level, we focussed on 

the differences in estimates between models with and without weather variables, and a selection 

of contrasting patterns demonstrate the potential impact of including or excluding weather 

conditions from abundance estimates (Fig. 2b). Moth species are well known to respond 

variously to different weather variables 61; for some apparently weather sensitive species, models 

without weather variables produced higher abundance estimates, greater uncertainty and 

sometimes opposite trends (e.g. Deltote pygarga, Marbled White Spot). Conversely, less 

sensitive species tended to exhibit index estimates that were unaffected by the inclusion of 

weather variables (e.g. Anania lancealis, the Long Winged Pearl).  

 

The nine patterns in Fig. 2b represent the range of differences in abundance estimates between 

models with and without weather variables and suggest that it can be an important species- and 

research-specific decision in monitoring data analysis. Weather affects moth activity and 



detectability in the short-term influencing trap catches independent of population size, and 

through longer-term effects on survival and reproduction resulting in real abundance fluctuations 

42,61. Models with weather variables can account for daily or even hourly variation in activity, 

producing smoother seasonal patterns with lower uncertainty, but may underestimate abundance 

during years with favourable conditions that support larger populations. Conversely, models 

excluding weather capture realised population dynamics that are partly produced by weather-

driven fluctuations but do not allow the separation of activity patterns and true abundance 

changes and may overestimate abundance on favourable days. This exploration highlights that 

the treatment of weather variables in abundance modelling warrants careful consideration based 

on research objectives, and that abundance estimates from fine resolution datasets could be 

invaluable additions to the monitoring toolbox if camera trapping is employed over long time 

periods. 

 



Figure 2: Abundance index estimates derived from GAMs for a) the community comprised of the 

most abundant 100 species with identification precision above 80%, and b) selected species that 

show a range of sensitivity to weather conditions. For the community level graph (a), points are 



median abundance indices computed across 1000 posterior draws, and error bars are 95% 

credible intervals (see Box 1). The panels represent the full day-resolution dataset, and the 

Weekly and Good weather subsampled datasets. Note the different y-axes. Abundance indices 

were estimated using the area under the curve method for each species, trap, site and year before 

summing estimates to derive an overall community abundance during the trapping period. 

Species selected in b) all have identification accuracy above 86%.  

 

3.3 Species richness 

 

Many biodiversity monitoring programmes also focus on providing information on diversity 

metrics, such as species richness, which can indicate how entire communities respond to 

environmental change 62 and is likely to contribute positively to community stability and 

ecosystem function 44. For example, moth species richness has been shown to increase under less 

intensive agricultural practices reviewed by 16, and species richness losses in Hungary have been 

linked to land use and climate changes 62. In Finland, species richness increases have been 

reported alongside general declines in abundance, probably reflecting a climate driven poleward 

expansion of geographical ranges 47,48. These examples highlight the need to monitor both 

diversity and abundance across a wide network of sites. 

 

To ensure comparability of species richness records across sampling units, variations in sampling 

effort must be accounted for using methods such as rarefaction and extrapolation 63, which 

estimate species richness at equivalent levels of sampling effort (Box 2). While high-resolution 

automated monitoring data minimises the need to rely on these methods, technical issues 



affecting any of the cameras can lead to variations in sampling effort. We therefore used 

rarefaction here and focus on the data of species that were verified by a Danish moth taxonomist 

(449 species). However, rather than only comparing species richness estimates across three 

biodiverse sites in Denmark, we also used this method to explore the estimates between different 

sampling frequencies with the aim of identifying an ideal balance between recording effort and 

estimation accuracy. To do this, we repeated the rarefaction process for different sampling 

regimes including our Weekly sample from above, as well as a dataset generated by subsampling 

every three days. We found that increasing intervals between sampling days led to greater levels 

of uncertainty in species richness estimates in all years, and underestimates of the number of 

species (Fig. 3a). The Weekly data estimate even re-ordered the sites in terms of the most 

diverse. 

 

The reasons for the variability in uncertainty may be partly explained by the estimation method 

and its sensitivity to the number of species recorded during only one or two trapping days (Box 

2). However, an illustration of the amount of information collected under the differing sampling 

regimes throughout the season also highlights the benefits of regular samples (Fig 3b). Under 

daily sampling, considerably more information about species occurrence is collected compared 

to less regular samples, and when a GAM is fit to species number with a smoother for day of the 

year, the uncertainty around the smoothed line is much reduced. Although the heights of the lines 

do not differ dramatically in Fig. 3b, species identity is not captured here and many species may 

be missed or underrepresented with longer sampling intervals, particularly at the peak of activity. 

The richness distribution curves in Fig. 3b also reiterate the point that continuous sampling 

through the season is likely to provide more complete estimates than snapshots (single sampling 



occasions in a season), and that a missed datapoint due to technical faults during weekly 

sampling is likely to be more costly than during daily sampling. Notably, however, sampling 

every third day provided relatively comparable estimates of diversity, which may be of interest 

for AMI trap users concerned with the impact of artificial UV light, the attraction of predators of 

nocturnal insects such as bats, birds, spiders and wasps and the overall storage and processing 

time of daily data.  

  



 

Figure 3: Moth species richness analysis results: a) species accumulation curves for the three 

sites in 2024 only, under different sampling regimes (Daily = data from every day, Three day = 

data from every third day, Weekly = data subsampled weekly). The point on each curve 

represents the actual sampled species richness. To compare sites at equal sampling effort (camera 

days), requires interpolation (solid line) or extrapolation (dashed line); b) the number of species 

captured by the three different sampling regimes. Points are median species richness values 

across all sites and years, curves are GAM smoothers of richness over time with 95% credible 

intervals based on 1000 posterior samples.  The relatively large error ribbon for the early part of 

the season of the weekly sampling occurs due to a lack of data.  



3.4 Community composition dynamics 

 

While abundance and diversity are popular metrics to communicate and interpret the state of an 

ecosystem or habitat, they provide only a partial view of the condition of an ecological 

community. In the context of climate change, ecologists are particularly concerned about the 

prospect of biohomogenisation: the process by which ecological communities become more 

similar across regions due to the dominance of common or generalist species 62,64. For example, 

in Mediterranean forest reserves, moth community structure is linked to local weather conditions 

and vegetation structure, with dietary specialist species being especially sensitive to vegetation 

characteristics 43. Similarly, long-term community analysis in Hungary has shown that species 

with narrow ecological niches are more likely to be replaced by larger and more generalist 

species 62. These findings underscore the importance of monitoring changes in community 

structure and the underlying drivers of species co-occurrence, beyond basic diversity metrics. 

Furthermore, with international restoration targets such as the Nature Restoration Regulation 

requiring EU member states to restore 30% of degraded habitats by 2030 (European Commission 

2024), advanced monitoring tools will be required to track the progress of these large scale 

ecological changes 65,66. 

 

In light of these considerations, we explored the potential of automated sampling to generate 

informative data on community assemblages. For simplicity, we focused on data from two sites: 

Lille Vildmose and Ovstrup Hede, collected during 2024, and selected only those species that 

were present for at least 5 days and met arbitrary classification precision criteria (see Methods 

for details). This resulted in a pool of 142 species. Rather than employing the conventional 



approach of pooling data by site to compare overall community composition, we opted to 

analyse temporal patterns in community development (Box 3). To simplify visualization and 

analysis, we pooled data into weeks and then analysed the trajectory of community change 

throughout the season for the two sites; that is, the rate at which the relative abundance of species 

for each week changes through the season 67. Our results demonstrated that the two communities 

diverged and converged at different points of the season, but with LV lagging behind OH during 

early summer before “catching up” in late summer (Fig. 4a). This temporal nuance would be 

obscured by single-time-point sampling or whole-season aggregation. Furthermore, the 

trajectories of two community similarity curves were almost circular, with early spring (April) 

and late autumn (October) communities showing greater resemblance to each other than to mid-

summer communities (i.e., July & August = Weeks 28 to 35 = Day of the year 181 to 243). Early 

spring and late summer communities are likely to resemble each other due to the presence of 

“multivoltine” species (those with more than one flight period in a year) and species that are 

persistently present throughout the year (Fig 4b & c). Conversely, those groups showing strong 

seasonal peaks drive the turnover in species composition during the richest part of the year. This 

cyclical pattern was consistent for all three years (not shown), and longer term data could be 

further examined to explore changes in the timing of community “states” between years and their 

drivers 67. These findings highlight the value of regular, automated sampling in capturing 

dynamic community processes, and emphasize that temporal turnover in community composition 

is an inherent feature of moth communities in this region and possibly more generally. This 

needs to be taken into consideration when drawing conclusions about spatial or interannual 

comparisons or when comparing the composition of communities before and after management 

interventions. 



  

 

Figure 4: a) Community trajectory analysis of the 2024 moth communities of LV (Lille 

Vildmose) and OH (Ovstrup Hede), summed by week and across traps (a), and weighted average 

species scores plotted in the same ordination space (b). Species are coloured by their 

membership of a seasonal cluster (c). In ecological trajectory analysis, each week’s community is 

treated as a separate ecosystem “state” in a Principal Coordinates Analysis (PCoA), and the 

changes from one week to the next are analysed geometrically. Thus, the length of an arrow in a) 

represents the speed of change in community states (i.e., the rate of species turnover). 

Arrowheads close together in ordination space are similar in composition, and those far apart are 

dissimilar. Although PCoA does not automatically compute species scores, the weighted average 

scores can be interpreted in a similar way: species close together in b) are likely to be associated 

with same community states, and with the states in the same area of plot a). 

 

 

 



4. Summary and future outlook 

 

We demonstrate that automated insect monitoring systems can transform ecological monitoring 

and deepen our understanding of community and species-level dynamics. With the high temporal 

resolution of the data, and the potential for large spatial coverage, these systems can deliver data 

that provide more precise estimates of phenological events, more accurate estimates of 

abundance, standardised measures of diversity and detailed insights into community dynamics. 

These metrics are of fundamental importance to standardised monitoring schemes 5, and to track 

the success of restoration efforts 65. With appropriate upscaling, automated systems could meet 

the criteria for cost-effective generation of indices fulfilling criteria for EBVs 25. With data 

collection covering the entire season across a range of weather conditions, automated systems 

provide monitoring schemes with statistical power to overcome shortfalls of traditional systems, 

such as accounting for weather variability and avoiding the misleading focus on single time-

point sampling. When combined with relevant abiotic information such as weather and land use 

variables, automated monitoring can also enable the modelling of future scenarios under 

potential ecological restoration and/or climate change with unprecedented precision. 

 

Beyond statistical power, automated systems can confer other advantages. The AMI trap 

presented here and elsewhere 40,41 offers the opportunity to collect less destructive data on a wide 

range of species, and to deliver monitoring information while preserving human resources. 

Furthermore, the system can provide a standardised method of data collection with the potential 

to fit into a scientific sampling design, with automated data entry and quality assured data 14, and 

possibilities for spatial, inter- and intra-annual, and within-sample replication 5. The system can 



be further enhanced to provide timely reporting of species and community trends over time using 

appropriate statistical approaches 14.  

 

While the approach presented here does not resolve all analytical challenges associated with 

insect camera trap data such as the multiple counting of individuals and the availability of 

suitable training data, the resulting datasets provide a remarkable level of detail that can only be 

matched by committed and extensive long-term monitoring programmes. This level of resolution 

opens up a wide range of monitoring and research possibilities that can assist with understanding 

trends, assessing management interventions, addressing fundamental and applied research 

questions and contributing to mechanistic modelling for future projections 2. These possibilities 

can benefit new monitoring schemes, but also complement existing systems 14. 

 

Insect populations and communities are extremely variable and dynamic, and recent evidence of 

alarming declines should be tempered by the knowledge that responses are heterogeneous 1,68. 

This diversity of responses is important to capture across large spatial and temporal scales to 

better understand biodiversity changes and provide suitable conservation solutions 5,14. 

Automated systems such as the AMI trap form a solution with an exciting level of detail and 

potential, and, as complimentary features in the monitoring toolbox, they will dramatically 

enhance biodiversity monitoring and our ability to meet conservation priorities in the future 24,27. 

 

 



Methods 

 

Phenology and abundance 

To model the community and species level phenology patterns, we used a Generalised Additive 

Model (GAM) with a negative binomial error distribution, fit in the R programming environment 

v4.3.0, 69 with the package mgcv 70 and thin plate regression spline as the smoothing basis. As these 

models are computationally intensive, we selected 100 species from the full dataset of >1600 

species that met the following criteria: 1) species classification had been verified by a Danish 

moth taxonomist; 2) a total of more than 10 images were used in testing the precision of the 

identification algorithm, 3) precision was more than 80%, 4) species were present in all years for 

at least 5 days of camera trap recording. From the remaining species, we selected the 100 most 

abundant.  

 

The phenology GAM used abundance as the response variable, and as explanatory variables we 

used a factor smooth for day of the year (doy) with year as the factor, to model the “global” 

community phenology curve, and smoothers for doy for each species to model species-specific 

phenology 71. In full models including weather variables, we also fit smoothers to wind speed, 

relative humidity and temperature. These variables were recorded at each site by a weather 

station featuring the ZL6 advanced data logger (Meter, Munich, Germany).  

 



We also included a “residuals covariate” to capture the daily relative activity of all moth species 

following the procedure described in Lindén et al. 60. Briefly, to calculate the residuals covariate, 

a separate GAM was fitted for each species to the daily abundance of all other moth species (i.e. 

excluding the focal species), with a smoother for doy, factor smooth interactions (bs = “sz”) for 

doy and year and doy and trap location, and a random effect for site. From this model, log-scale 

residuals were calculated as  

xt = ln[Mt +1] – ln[E(Mt) + 1] 

where M is the abundance of all other moths on the tth day, and E(M) is the fitted value for M 

from the GAM. As described by Lindén et al. 60, this covariate can be seen as an alternative to a 

lagged autocovariate to account for autocorrelation, and describes relative moth activity in that 

those days with above average activity will have positive values, and days with below average 

activity have negative values. The inclusion of this covariate improved overall model fit of the 

phenology GAM and is likely to capture variation not explained by the three chosen weather 

variables above.  

 

Finally, in the phenology GAM we included random effects for species and trap location. The 

model was fit with the bam function of the mgcv library with the fREML method, and k was set 

to 20 to ensure we captured the complexity of all seasonal patterns.  

 

To make predictions with this phenology GAM, we computed a prediction grid that represented 

realistic weather conditions throughout the year, rather than use a constant for each variable (e.g. 

mean temperature, wind speed, humidity) that may provide unrealistic predictions during cooler 



or warmer periods of the year. To do this, we first fit GAMs to each weather variable (including 

the residuals covariate). Each weather model had random effects for trap location and year. We 

then made predictions of each variable for every day of the study periods, across all 

combinations of species, traps, sites and years. These predictions were combined into an overall 

prediction grid consisting of 686,600 observations and variables representing all those in the 

phenology GAM.  

 

For predicting the community level phenology curves, we used this grid to draw 1000 samples 

from the posterior distribution of the model using a Gaussian approximation 72, using the 

fitted.samples function from the gratia package 73, providing 1000 abundance estimates for each 

species, trap, sites, year and day of the year. We aggregated these estimates across species, traps 

and sites to provide a 1000 total abundance values per day per year. For each day in each year, 

we then extracted the median total abundance to draw the predicted phenology curve, and the 

0.025 and 0.975 quantiles to draw the 95% credible intervals. The community peak phenology 

date for each year was calculated both as the median date when peak abundance occurred in the 

samples and the date when 50% of the cumulative abundance predictions were reached.  

 

For species level phenological metrics we used the same posterior samples, but for each species 

we calculated the day of the year when 10% (onset), 50% (peak) and 90% (end) of the 

cumulative abundance predictions were reached. In addition, we used the trapezoid rule to 

estimate relative abundance as the area under the curve using the trapz function from the pracma 

package 74. These predictions for peak, onset, end and abundance were then summarised for each 



year by taking the median value of all fitted samples as the point estimate, and the 0.025 and 

0.975 quantiles as the 95% credible intervals.  

 

The modelling and predictions were repeated for a reduced phenology GAM, to compare the 

predictions for a model that does not include weather variables. The model structure was the 

same as above, except that it did not contain temperature, wind speed, relative humidity or the 

residuals covariate (which may represent other weather conditions important to moth activity). 

Finally, the two model types and the prediction process were repeated for two subsampled 

datasets for comparison of predictions between the full daily recorded observations, and 

observation sets based on reduced sampling capacity. The first of these was a “Weekly” dataset, 

which comprised observations subsampled from the full set every seven days, starting with the 

first day of sampling. The second was a “Good weather” dataset, which comprised all 

observations that met the following criteria during the four hours of sampling: temperature above 

12 ᵒC, wind speed below 1.5 m/s and precipitation below 1 mm. These values and variables were 

chosen to represent the kind of weather conditions that observers may choose to sample in to 

maximise data collection. 

 

Species richness analysis 

To analyse patterns in species richness we used the data for those species verified by a Danish 

moth taxonomist (449 species). To compare estimates of species richness across differing 

sampling regimes, we created two subsampled datasets: a weekly dataset as described above, and 



a “Third day” dataset, comprising observations subsampled from the full set every three days, 

starting with the first day of sampling.  

 

For each of these samples, the number of sampling units was calculated as the number of days of 

working camera data collection for each site and year. Therefore, camera days were summed 

across the four traps at each site. The sampling units and species x site and year matrix were then 

inputs to the iNEXT function of the iNEXT package 75, which computes species diversity metrics 

(including species richness) across a range sampling intensities, utilising interpolation at 

intensities lower than the actual sampling effort, and extrapolation at higher intensities. The data 

type was “incidence frequency”, confidence intervals (CIs) were set to 0.95 and endpoint was set 

to 1000 for each data set to provide comparable plots. 

 

To plot species richness patterns over time, we first calculated species richness per day for each 

site and year (i.e. we combined data to count the number of species observed at each site), and 

again used the three comparison datasets – daily observations, every third day and weekly 

observations. These data were used as input for three separate GAM models, with richness as 

response variable, and a cubic regression spline smoother fit to Day of the year, allowing the 

smoother to interact with year, and for any site level deviations using the “sz” basis. The models 

were fit with the negative binomial error distribution. For each model, we then fitted the 

response (richness) to 1000 samples drawn from the posterior distribution (Gaussian 

approximation) using a full prediction grid. This provided 1000 estimates of richness for each 

day, site and year. We then averaged the richness estimate across site and year to derive 1000 



estimates of species richness across the entire dataset for each day. The median richness for each 

day was then plotted as the best estimate of species richness, and 0.025 and 0.975 quantiles were 

plotted as 95% credible intervals. 

 

Community composition 

To initially group species by seasonal activity profile for visualisation purposes, we used 

hierarchical clustering of distribution patterns using the hclust function of the base R package 

v4.3.0, 69. To select species for this process, we used the same criteria as above (Expert verified, 10 

images, 80 % precision, present for > 5 days), and for simplification we used only those species 

occurring at the LV and OH sites in 2024 (142 species). To estimate seasonal activity, we built a 

GAM for each species, with Day of the year (DOY) fitted as a thin plate regression spline, and 

trap location as a random effect, and the negative binomial error distribution. We then made 

abundance predictions for each day, location and species, and averaged abundance across traps to 

provide a mean abundance per day per species. These predictions were combined into a species x 

DOY matrix, which was then normalised with the decostand function of the vegan package 76. 

This normalised matrix was converted to a Euclidean distance matrix with the vegdist function of 

the vegan package. The Ward.D hierarchical clustering method was used to identify seasonal 

activity clusters for each species. We experimented with the number of clusters by visually 

plotting species from the same cluster and found that 6 clusters provided the best balance 

between simplicity and adequately representing meaningful seasonal clusters.  

 



The same 142 species were used in ecological trajectory analysis (ETA) using the ecotraj 

package 67. For simplicity, and to provide the longest period for comparison, we again focussed 

on the data from 2024 and the sites Lille Vildmose and Ovstrup Hede, which had at least two 

traps running continuously from week 17 to week 40. We first summed the data by week and site 

to aid visualisation, and then prepared a species x site/sampling week abundance matrix. For the 

ETA we therefore had two sites and 24 survey samples. The species x site matrix was normalised 

and a distance matrix was computed using the Canberra method. We then defined the trajectories 

using this distance matrix, the sites and survey times, and ran a trajectory Principle Coordinates 

analysis (PCoA). The first PCoA axis explained 22% of the variation in community “states” and 

the second explained 11%. Finally, to aid visualisation, we smoothed the trajectories using the 

smoothTrajectories function of the ecotraj package, which uses a Gaussian kernel to perform 

multivariate smoothing 67. Finally, to visualise species within the PCoA ordination, we calculated 

Weighted Average Scores using the wascores function of the vegan package, as PCoA does not 

compute species scores. 

  



Box Text 

Box 1 – Daily data improve phenology and abundance estimates 

Generalised Additive Models (GAMs) enable modelling of non-linear patterns between variables 

in a flexible way. This is particularly useful when modelling phenological patterns, where a 

species’ seasonal activity may not conform to a simple parametric shape. The process used to 

estimate phenological events is depicted in the graphs below.   

In panel a), the randomly generated abundance of a single hypothetical species is plotted against 

day of the year (DOY), and a single smoothed line has been fit that best captures the non-linear 

nature of the pattern. Panel b) shows the same abundance points but displays the curves of 20 

“bootstrap” samples – each green line is based on a random resample of the data with 

replacement. Replicated many times (typically 500 or 1000), the sampled smoothed lines provide 

a distribution of predictions, which converge on the most likely scenario given the data and the 

specified model. Each sample can provide a separate estimate on the date of peak activity, and 

other phenological events such as the likely onset of activity (when 10% of all observations have 

been made) and end of activity (90 % of all observations). Panel c), shows how the confidence 

band (shaded in green) represents the range of bootstrapped samples, while the median of the 

peak dates across bootstrap samples is selected as the most likely (the red dashed line). Similarly, 

the blue dashed lines represent the most likely onset and end dates. “Credible intervals” of these 

dates are represented using the 2.5% and 97.5& quantiles across bootstrap samples. If more data 

is available in graph a), the bootstrapped samples in b) are more likely to resemble each other 

and uncertainty will be low. Thus, the high-frequency data provided by daily AMI trap operation 

will provide much more information for predictions than less frequent sampling. 



 

 

The abundance curves can be used to generate robust estimates of abundance in a given year. In 

panel d), a section of the curve from a) is in focus and each day has been separated into a 

polygon or “trapezoid”. The area of each day’s trapezoid can be estimated using integration, and 

the areas for all days summed to provide an abundance estimate. Again, uncertainty can be 

addressed by bootstrapping the curve, and repeating the abundance calculation for each sample 

(e). The most likely abundance value, shown in f), is then the median of all the bootstrapped 

sample estimates, while the 2.5% and 97.5% quantiles provide the credible interval range. 

 

As with other regression techniques, the addition of covariates will alter the location and 

smoothness of the prediction lines and allow predictions to be made for differing levels of the 



covariates. Hence, the addition of e.g., weather variables in the GAM of species phenology may 

alter the size and shape of the fitted curve and therefore the relative abundance calculation.  

 

  



Box 2 – Daily monitoring data can improve rarefaction curves 

Estimating and comparing species richness from multiple ecological communities can be 

challenging, particularly under varying sampling effort (e.g. the number of traps, survey days, 

survey area, individuals encountered). Most species in a community are likely to be rare and 

many will go undetected, and the number of species encountered will increase non-linearly with 

sampling effort up to an unknown asymptotic value. To solve this problem and estimate unbiased 

values for species richness in multiple assemblages at equivalent levels of sampling effort, 

Colwell et al. 77 and Chao and Jost 78 unified a framework of statistically modelling species 

richness using so-called rarefaction curves. The process enables the comparison of species 

richness at a common reference point. If the reference point is a smaller number of samples than 

was collected, interpolation or “rarefaction” is used to reduce the estimate down to a random 

subsample. If the reference point is greater, extrapolation is used following the trajectory of the 

rarefaction curve.  

However, uncertainty estimates are susceptible to sampling issues and we demonstrate this here 

with a small subsample of the AMI trap data. Panel a) shows the species richness curve for 30 

randomly selected species from one site during a 30-day period in 2024. This period provided 96 

camera days across the four traps, and 28 out of 30 species were detected during this time (the 

dashed vertical line). The species accumulation curve provides estimates of the number of 

species detected with fewer or more camera days. The uncertainty around the curve highlights 

that some rare species may have been missed during sampling (the upper boundary of the shaded 

area) while some may have been over-represented (the lower boundary). These uncertainty 

estimates are sensitive to the number of “singletons” in the data (species only captured once); in 

panel b) the same data are used but 5 species have been altered: instead of occurring on 3 days 



they only occur on 1 day (More single day species). The number of “doubletons” (species found 

twice) and the ratio between singletons and doubletons is also an important factor: in graph c), 

“More singles, less doubles”, the same dataset from b) is used but four doubletons have been 

changed to occurring on 3 days. Thus, fewer doubletons and a higher ratio increase uncertainty 

values. A third issue is shown in d), “b & c & small sample”, where the same data from c) are 

combined with a low sample size (only 50 camera days). Uncertainty is driven up here as small 

samples of very diverse communities increase the “guesswork” involved in estimating unseen 

diversity. Finally, when the sample of data from a) is sub-sampled weekly instead of daily 

(resulting in 16 camera days – 4 weeks x 4 traps), the resulting graph is shown in e), “Weekly 

data”. Here, the large uncertainty area is due to a combination of all three of the above issues. 

Therefore, daily sampled data provide more information about the true abundance distributions 

of both common and rare species. Note also that these findings are for a given daily sampling 

window (11pm to 3am) with motion detection enabled to detect movement at 2 second intervals. 

With lower sampling rates, detection probability would also be reduced.  

 



 

Box 3 – Daily data enable Community Trajectory Analysis 

In many studies of community composition, the objective is to understand how similar or 

dissimilar species assemblages are and why. Communities made up of the same species in 

comparable abundances are considered “similar” and will be plotted close together in two 

dimensional “ordination plots”. Communities made up of different species are dissimilar and will 

be far apart in ordination space, and coplotting values of likely predictors such as climate, 

pollution or habitat can help to determine the factors behind dissimilarity. In a basic sense, 

community composition data are often pooled across sampling periods and plotted together to 

give an overview of a assemblages observed across a season. However, below we demonstrate 

with a small subsample that this approach may mask important community dynamics. The data 

featured here comprise all species from the traps at all three study sites but limited to weeks 20 to 

25 in 2024. Panel a) shows a traditional ordination, using data pooled across this 6-week period, 

showing the similarities in the make-up of their moth communities. The grey dots are the 

species, and those close to each other and to particular sites are also associated. Here it appears 

that each site is relatively distinct. However, given that we have sampled the sites many times 

over the season, we could analyse the communities at different times separately. In panel b), we 

compare the sites at two distinct points in time, pooling only week 20 and week 25. Here, all 

three sites are relatively similar in week 25, but site SS is distinct from the other two in week 20. 

This may suggest some hidden dynamics between these time periods, or some unknown event 

leading to a dramatic shift in composition.  

Community trajectory analysis aims to unmask these patterns, treating repeated samples of the 

same sites as different community “states” and then assessing the speed and direction of change 



over time. In panel c), this analysis has been performed for the three sites, pooling the data for 

each week to provide 6 community states each. Here, longer arrows indicate large changes in 

community composition and short arrows indicate the opposite. The direction of arrows also 

denotes divergence or convergence of community similarities. For example, site LV starts and 

ends with a similar community to site OH, but diverges in weeks 22 and 23. In later analysis, we 

might delve deeper into the data to understand why, but such investigation can only be conducted 

with data collected frequently and throughout the season. Continuous monitoring of these sites 

will also reveal whether such patterns recur, become more extreme or disappear over time. 

Similarly, further analyses can help define how appropriate comparisons of community 

composition across space and time should account for within-season variability.  
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