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Summary

Understanding how global change reshapes mountain plant communities is
essential for predicting biodiversity and ecosystem function in a warming world.
Using resurvey data from over 1,400 alpine and subalpine vegetation plots across
the European Alps, we show that community-weighted means of key functional
traits — specific leaf area, leaf nitrogen, and seed mass — have increased
significantly over recent decades, reflecting a widespread shift toward more
resource-acquisitive strategies. Yet trait-environment relationships along the
elevational gradient have remained remarkably stable, pointing to persistent
abiotic filtering. Contrary to expectations, plant height declined slightly, and
increases in seed mass were confined to lowland communities mainly, likely due
to edaphic constraints and reduced uphill dispersal by large herbivores,
respectively. These findings indicate that global change is reshaping the
functional structure of montane plant communities by shifting baseline trait

composition while leaving the underlying elevational filters largely intact.

Key words: European Alps, diversity, elevation, eutrophication, global change,

grassland, montane, trait, warming
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Introduction

Mountains are globally important for their remarkable biodiversity (Testolin,
Attorre, et al., 2021) and the critical ecosystem services they provide (Korner,
2004). These ecosystems play an essential role in regulating hydrological cycles,
sequestering carbon and supporting unique flora and fauna adapted to steep
environmental gradients (Grét-Regamey & Weibel, 2020). Mountains also
provide essential resources and livelihoods for millions of people. Furthermore,
they serve as natural laboratories for understanding ecological and evolutionary
processes, including species interactions, adaptation, and resilience, particularly

relevant in the context of global environmental change (Korner, 2007).

Plant communities are shaped by the interplay of three fundamental processes:
environmental filtering, biotic interactions, and dispersal limitations (Kraft et al.,
2015; Weiher & Keddy, 2001). Environmental filtering acts on the regional
species pool, favouring local establishment of species whose traits are suited to
prevailing abiotic conditions, such as temperature, moisture and soil fertility
(Bello et al., 2013). Biotic interactions, including competition, facilitation, and
herbivory, further influence plant community composition and structure by
mediating the coexistence of species (Choler et al., 2001; Maestre et al., 2009).
Dispersal limitations constrain the pool of species that can colonize and persist in

a given area (Myers & Harms, 2009; Poschlod et al., 2013).
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In mountain ecosystems, elevational gradients strongly influence alter the relative
influence of these abiotic factors on plant communities. Harsher environmental
conditions at higher elevations, such as shorter growing seasons, lower
temperatures and soil fertility, and stronger UV radiation, intensify environmental
filtering, favouring stress-tolerant species adapted by specific traits (Bello et al.,
2013; Pellissier et al., 2010). In contrast, negative biotic interactions like
competition often diminish in importance but the role of facilitation increases due
to lower resource availability and reduced species richness (Choler et al., 2001).
Due to rough terrain and slow soil formation, vegetation becomes more
fragmented at higher elevations, thereby reducing habitat connectivity (Korner,
2007) which leads to an increasing impact of dispersal limitations (Helm et al.,

2024; Rosbakh et al., 2022).

The complex interactions between these three fundamental processes result in
distinct community assembly patterns along elevational gradients. A typical
alpine plant community is composed of short-statured, slow-growing, long-lived
species with conservative resource-use strategies and small, light-weighted seeds
that facilitate dispersal in the steep, fragmented terrain (Korner, 2021; Rosbakh
et al., 2022; Testolin, Carmona, et al., 2021). In contrast, lowland communities
are shaped predominantly by biotic interactions such as competition, with
reduced influence of environmental filtering due to more favourable abiotic

conditions and fewer dispersal limitations facilitated by a greater abundance and
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diversity of dispersal vectors. (Pellissier et al., 2010; Rosbakh et al., 2022). As a
result, typical lowland species are taller, faster-growing, shorter-lived plants with

acquisitive resource-use strategies and larger, heavier seeds.

Global change fundamentally alters the processes that govern community
assembly. Mountain ecosystems, where environmental filtering driven by
specific temperature and snow conditions shapes community structure, are
thought to be particularly vulnerable to accelerating climate change (Schmeller
et al., 2022). Warming can relax environmental filtering by reducing climatic
constraints, thereby enabling the establishment of species with traits favouring
rapid growth and high resource acquisition previously restricted to lower
elevations (Lamprecht et al., 2018a; Steinbauer et al., 2022; Vitasse et al., 2021).
Additionally, warmer and longer summers can accelerate microbial
decomposition and nitrogen mineralization, thereby enriching soil nutrient pools
(Rustad et al., 2001). Together with spatially heterogeneous atmospheric nitrogen
deposition, particularly pronounced on the fringes of some mountain ridges (e.g.
the Northern Alps; (Kirchner et al. 2014), this process can further accelerate
community shifts toward species with acquisitive resource-use strategies (Zhu et
al., 2020). Simultaneously, biotic interactions such as competition may be
intensified by climate warming and nutrient enrichment as previously excluded
species establish, potentially favouring competitive dominants over stress-

tolerant species (Alexander et al., 2015). Further, recent land-use changes in
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mountainous regions — such as intensification at lower elevations, and tourism
expansion and grazing cessation at higher elevations — may have contributed to
shifts in plant community composition by favouring species with traits adapted
to these altered land-use regimes (Midolo et al., 2021). Dispersal processes are
also likely disrupted by changes in landscape connectivity due to land-use
intensification (e.g. using seed mixtures to improve grassland productivity at low
and middle elevations) or changes in the population size and activity patterns of
dispersal agents (e.g. wild ungulates and domestic cattle; (Primi et al., 2024)).
Collectively, these alternations to assembly processes are expected to drive
profound changes in montane species composition, leading to the emergence of
novel communities with possible implications for biodiversity (Chauvier-Mendes

et al., 2024).

Here, we use >1,400 resurveyed vegetation plots in the European Alps and an
extensive, original dataset of four plant functional traits — plant height, specific
leaf area (SLA), leaf nitrogen content (LeafN), and seed mass — to analyse long-
term changes in the functional composition of mountain plant communities.
These traits were selected because they represent major ecological axes of plant
specialization (Diaz et al. 2016; Westoby 1998), making them particularly
relevant for understanding the mechanisms that shape plant community structure
and composition across environmental gradients (e.g., Bello et al. 2013; Choler

2005; Rosbakh et al. 2022; Spasojevic & Suding 2012). Changes in their



123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

community-weighted means (CWMs) and community-level variances (i.e.
functional diversity; FD), are widely used in plant ecology to infer how plant
communities are shaped by environmental filtering, biotic interactions, and
dispersal limitations (Ricotta & Moretti 2011). Higher CWMs of mean height,
SLA, LeafN and seed mass are commonly interpreted as indicative of a higher
impact of competition, and a lower impact of environmental filtering on
community assembly. Similarly, higher FD is often correlated with weak
environmental filtering, stronger competitive interactions among plant
community members and lower environmental constraints on colonization (Bello

et al., 2013; Gotzenberger et al., 2012; Rosbakh et al., 2022).

Accordingly, we tested the overarching hypothesis (H) that global change has
altered community assembly processes in mountain plant communities towards a
reduced impact of environmental constraints, an increased importance of
competition and altered dispersal processes. Specifically, we predicted:
(HI) that alleviating cold stress and nutrient limitation would favour fast-

growing, resource-acquisitive species, resulting in higher CWMs of all four traits;

(H2) that upslope migration of acquisitive species (Rumpf et al., 2018a) and/or
increases in their local abundance (Lamprecht et al., 2018a) that would be also
reflected in higher FD values in the recent communities (i.e. increased functional

trait diversity);
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(H3) that weakened abiotic constraints along the elevational gradient would
attenuate trait—environment coupling, producing significantly shallower slopes
in the CWM-—elevation regressions in recent surveys compared to historical

baselines.

Materials and methods

Mountain plant community data

To analyse the temporal changes in the functional composition of mountain plant
communities in the European Alps, we used previously collected historical and
recent vegetation data (Rumpf et al., 2018b, 2019). The initial historical dataset
comprised 1,576 relevés (hereafter referred to as 'plots'; Figure 1) of non-forest
vegetation, recorded before 1970, digitized from published sources. These data
included detailed site descriptions, such as elevation (m a.s.l.), slope inclination
(degrees), aspect (16 compass directions), plot size (m?), total vascular plant
cover (%), plant community type, bedrock type, and survey date. Where survey

years were unspecified, they were estimated as publication year minus two.

Historical plots lacked precise geographical coordinates. Therefore, a
standardized approach was used to approximate their locations based on
metadata. Each described locality was represented as a polygon within which the
plot might be situated. This polygon was intersected with a 25 x 25 m resolution

digital elevation model, matching the metadata for elevation (£50 m), slope
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(£20°), and aspect (+40°). Bedrock information was reclassified as calcareous,
siliceous, or intermediate based on either the original description or
phytosociological classification. These areas were further filtered by proximity
(<200 m) to trails identified using aerial imagery from Google Earth, reflecting

accessibility assumptions of the original studies. Final coordinates were assigned

to the centroid of the largest contiguous area that satisfied all these criteria.

Figure 1. Location of the study sites across the European Alps. The map lines

delineate study areas and do not necessarily depict accepted national boundaries.

In the vegetation periods of 2014 and 20135, the historical plots were re-surveyed
following the same methodology as in the original studies. These plots span an
elevational range from 485 to 3,226 m a.s.l. and cover time intervals from 45 to
104 years. The resolution of the digital elevation model (25 x 25 m) was coarser

than the largest historical plot size (100 m?). Therefore, final resurvey locations
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were fine-tuned in the field based on additional metadata to optimize accuracy
using habitat characteristics (e.g., meadow, tall herbs, bog), micro-topographical
features (e.g., snow beds, ridges), and observers avoided distinct vegetation
boundaries to ensure homogeneity and consistency with historical sampling.
Blind resurveys ensured unbiased comparisons between past and present plant

communities.

Species were identified to the most precise taxonomic level, including subspecies
where applicable. Unidentified specimens were collected for laboratory
identification. Species cover-abundance was recorded using the Braun-Blanquet
scale (levels: +, 1, 2, 3, 4, and 5), and total vascular plant cover was estimated in
percent. Taxonomic adjustments were made post-fieldwork to address species
aggregates, particularly in genera prone to revision (e.g., Festuca, Alchemilla,

Taraxacum).

Trait data

We focused exclusively on vascular flowering plants; trees were excluded from
the analysis. Because it was not feasible to collect trait data for all the species
occurring in the focal plots, we restricted our analysis to the most frequent
and/abundant species. Specifically, we excluded species occurring at fewer than
100 plots and with a maximum abundance of less than 3% across all sites in both

historic and recent surveys. We measured trait data for 396 species, ensuring that

10
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in every sampled plot, species with available trait data represented at least 80%
of the total abundance. Plots for which trait coverage fell below this threshold
were excluded, resulting in a final dataset of 1,442 plots. This approach ensured
a robust estimation of plant community functional diversity and composition
(Bello et al., 2013; Pakeman & Quested, 2007). Due to the laborious nature of
measuring traits across multiple populations per species, we did not account for
intraspecific trait variability. Instead, we treated trait values as species-specific

means.

Most trait data were collected in situ under species’ optimal ecological conditions
between 2009 and 2022 following standardized protocols (Pérez-Harguindeguy
et al., 2016) as part of projects on alpine plant ecology in the Northern Alps (e.g.
(Rosbakh et al., 2022; Rumpf et al., 2018b; Zettlemoyer et al., 2024). In addition,
we incorporated several unpublished functional trait datasets from the Karawanks
and Nock Mountains (S. Rosbakh, unpublished) and the Stubaier Alps (S.
Dullinger, unpublished). For the remaining trait data, we supplemented our
dataset with values extracted from public databases, including the Tundra Trait
Team (Bjorkman et al., 2018), TRY (Kattge et al., 2020), LEDA (Kleyer et al.,

2008), and the Seed Information Database (SER, INSR, RBGK, 2023).

Trait data were available for most species included in the analysis: plant height
(376 out of 396 species), specific leaf area (331 out of 396 species), leaf nitrogen

content (286 out of 396 species), and seed mass (359 out of 396 species). Missing

11
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trait values were imputed using the missForest package (Stekhoven & Biihlmann,
2012). To enhance imputation quality, we incorporated data on species
phylogenetic relatedness (Durka & Michalski, 2012) as well as their ecological
characteristics. For the latter, we used Landolt indicator values for temperature,
continentality, light requirements, soil moisture, nutrients, pH, humus content,
and dispersity (Landolt et al., 2010)). These indicators were selected because they
correlate strongly with species’ habitat requirements, such as air temperature, soil
phosphorus content, and soil depth (e.g. (Rosbakh & Poschlod, 2021)) and are
widely available for the flora of the European Alps. For a few species lacking
Landolt indicator values, we assigned mean values calculated from all congeneric
species present in the dataset. Given that missing trait values accounted for less
than 20% of the dataset, we assumed that imputed values had minimal influence

on the ecological signal in our analysis (Penone et al., 2014).

Statistical analysis

To assess long-term changes in the functional structure of mountain plant
communities, we calculated community-weighted means (CWMs) and functional
diversity (FD) — two measures explaining community assembly processes and
ecosystem functioning (Ricotta & Moretti, 2011). CWMs represent the average
trait value of a community, weighted by species relative abundance. This metric

primarily reflects the traits of dominant species, providing insight into the

12
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community's main adaptation strategies to local environmental conditions (De
Bello et al., 2021). Functional diversity (FD) quantifies the variation in functional
traits among species in a community and incorporates both species relative
abundances and trait dissimilarities. FD reflects the balance between trait
convergence, driven by environmental filtering, and trait divergence, associated
with niche partitioning and resource complementarity. A low FD indicates
functional similarity among species, suggesting strong environmental filtering,
while a high FD represents greater trait differentiation, promoting species
coexistence (Cadotte, 2017; Kraft et al., 2015). The FD was computed as Rao's
quadratic entropy (Rao, 1982); both CWMs and FD were calculated for each of
the 1,442 plots in both the original survey and the re-survey, based on species
abundance data and available trait values using the F'D package in R (Lalibert¢ et

al., 2014).

The change in CWM and FD values over time were estimated with linear mixed-
effect models with year and plot included as fixed and random factor,
respectively. We included plot elevation as an interaction term (i.e. CWM/FD ~
Year*Elevation + (1|Plot)) to test whether changes CWM and FD were elevation-
specific. The differences in regression lines (both intercepts [i.e. average
CWM/FD value] and slopes [i.e. the strength of trait-elevation relationship])

between the historic and recent data were estimated with the help of posthoc
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Tukey test. Model assumptions were met in all cases. All statistical analyses were

conducted in the statistical environment R (R Core Development Team, 2025).

We used ChatGPT to improve the language of the originally written text.

Results

Changes in individual traits

We observed significant changes in the community-weighted means (CWMs) of
all studied traits over the observation period (Figure 2; Table 1). Average plant
height slightly but significantly decreased from 0.15 m in historical surveys to
0.14 m in recent surveys (p < 0.001, Figure 2A). In contrast, specific leaf area
(SLA) significantly increased from 15.7 mm?/mg historically to 18.7 mm*mg
recently (p < 0.001, Figure 2B). Leaf nitrogen content (LeafN) also increased
significantly from 2.10% to 2.34% (p < 0.001, Figure 2C), and seed mass
increased from 0.77 mg historically to 0.85 mg in recent communities (p < 0.001,
Figure 2D). In ecological terms, these trait changes indicate a shift towards plant
communities composed of relatively shorter species characterized by faster

growth rates, higher nutrient demands, and greater reproductive investment.
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Table 1. Summary of linear mixed-effects model results for plant height, specific
leaf area, leaf nitrogen content and functional diversity (estimated as Rao’s Q) in
historical and recent vegetation surveys across an elevational gradient. For each
trait, the table shows the estimated intercepts (mean predicted value at the average
elevation) and slopes (change per meter elevation). Estimates are shown as mean
+ standard error. Asterisks (*) indicate statistically significant differences (p <
0.05) either between time periods (intercepts) or difference from zero within a

time period (slopes). Models include survey period (Historical vs. Recent),

elevation, and their interaction as fixed effects, and Site as a random effect.

Model Survey Intercept Slopes
Historical 0.15+0.01 -0.01 £0.001 *
Canopy height
Recent 0.14+0.01 * -0.01 = 0.001 *
Historical | 15.7 +0.09 -0.49 +0.03 *
Specific leaf area
Recent 18.7 £0.09 * -0.36 £0.03 *
Historical 2.10£0.01 -0.03 £0.01 *
Leaf nitrogen content
Recent 2.34+£0.01 * -0.02+0.01 *
Historical 0.77 £0.01 -0.01 £0.01 n.s.
Seed mass
Recent 0.85+0.01 * -0.04 £0.01 *
Historical 1.68 £0.02 -0.10£0.01 *

15
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Figure 2. Changes in community-weighted means of A) plant height, B) specific
leaf area, C) leaf nitrogen content and D) seed mass with elevation in 1,442
historic (green) and recent (orange) European mountain plant communities as
estimated by linear mixed-effect models. Solid lines indicate significant
relationships (p <0.05), the shaded areas denote the 95% confidence interval. See

Table 1 for specific model intercepts and slopes.
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Changes in functional diversity

The observed change in all trait means corresponded to a significant increase in
functional diversity (FD) from historical (average FD = 1.7) to recent plant
communities (average FD = 2.6; p < 0.001; Figure 3, Table 1). Ecologically, this
increase indicates that recent communities host species with a broader range of
ecological strategies compared to historical communities. FD exhibited a
consistent negative relationship with elevation in both historical and recent
datasets, with similar slopes (-0.10 historically vs. -0.12 recently) that did not
differ statistically, demonstrating that the overall elevational pattern remained

stable over time (Figure 3, Table 1).
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Figure 3. Changes in functional diversity of the four traits with elevation in 1,442
historic (green) and recent (orange) European alpine plant communities as
estimated by linear mixed-effect models. Solid lines indicate significant

relationships (p <0.05), the shaded areas denote the 95% confidence intervals.

Role of elevation in structuring mountain plant communities

Elevation consistently structured mountain plant communities, influencing both
trait variation and functional diversity (FD) in the historical as well as in the
recent data. Plant height had a stable negative relationship with elevation, with

slopes unchanged between historical and recent surveys (Figure 2A; Table 1).
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Specific leaf area (SLA) also displayed a significant negative relationship with
elevation in both datasets, though this relationship weakened slightly in recent
surveys (-0.49 historically vs. -0.36 recently, both statistically different from
zero; Figure 2B; Table 1). Leaf nitrogen content (LeafN) similarly exhibited a
consistent negative relationship with elevation, with minimal differences between
historical and recent slopes (-0.03 historically vs. -0.02 recently, both statistically
different from zero; Table 1; Figure 2C). In contrast, seed mass, which had
historically no significant elevational trend, developed a significant negative
relationship with elevation recently (Table 1; Figure 2D). Functional diversity
also had a consistent negative relationship with elevation, with slopes remaining
similar over time (-0.10 historically vs. -0.12 recently; Figure 3, Table 1), further
highlighting the stable influence of elevation on mountain plant community

structure.
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Discussion

Our resurvey of 1,442 mountain vegetation plots across the European Alps
revealed clear shifts in functional trait composition and diversity over the past
decades. Consistent with our expectations, recent communities are dominated by
species with higher specific leaf area (SLA), larger leaf nitrogen content (LeafN)
and increased seed mass, indicated by the significantly larger community-
weighted means (CWMs). The shift in CWMs coincides with higher functional
diversity at all elevations, as novel trait combinations become more common.
Despite this trait turnover, the classic signature of trait variation along the
elevational gradient remains largely intact; slopes for plant height, SLA and
LeafN differed little from historical values, suggesting that global change has
weakened but not erased the mountains’ abiotic filters. This suite of patterns
points to a mountain ecosystem in transition, where relaxed environmental
constraints are opening colonization opportunities for new species without

fundamentally redrawing the elevational template.

Trait turnover towards more resource-acquisitive strategies

Across the European Alps, specific leaf area (SLA) increased by nearly 20%
(from 15.7 to 18.7 mm? mg!), leaf nitrogen content by about 11% (from 2.10%
to 2.34%), and seed mass by approximately 10% (from 0.77 mg to 0.85 mg),

whereas mean plant height declined by 7% (from 0.15 m to 0.14 m). Although
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our observational design cannot definitively isolate individual drivers, several
lines of evidence from both observational and manipulative studies conducted in
similar cold ecosystems support regional climate warming as a primary force. For
example, the increases in SLA and LeafN align with previously observed patterns
along elevational gradients, where reductions in low-temperature stress favour
species producing larger, thinner, and less dense leaves capable of higher
photosynthetic rates (Midolo et al., 2019). Likewise, a downslope translocation
experiment of intact plant-soil mesocosms demonstrated a comparable shift from
resource-conservative to resource-acquisitive leaf traits under warmer conditions,
marked by significant increases in SLA and leaf nitrogen (Schuchardt et al.,
2023). Concurrently, ongoing atmospheric nitrogen deposition at the Alps’
fringes (Kirchner et al., 2014) likely reinforce this community-level shift toward
acquisitive trait syndromes as supported by e.g. fertilization trials in montane
grasslands (Quétier et al., 2007; Rose et al., 2013). Additionally, the ongoing
abandonment of traditional grazing in many European mountain regions (e.g.
(Cernusca et al. 1999; Orlandi et al. 2016)) likely relaxed disturbance filters, thus
contributing to the observed shifts in community trait composition. This change
might have facilitated the (re)establishment of species characterized by higher
SLA values, higher leaf nitrogen content, and larger seeds — traits typically
selected against under grazing, as herbivores preferentially consume nutrient-
rich, high-SLA foliage (Diaz et al., 2001; Laliberté et al., 2012). Taken together,

these interacting global change drivers — regional warming, increased nutrient
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availability, and decreased grazing pressure — appear to collectively drive the
observed functional shifts towards resource-acquisitive species traits in montane

grassland communities across the Alps.

Decoupling of plant height from other acquisitive traits under global change

Unlike SLA, leaf nitrogen content, and seed mass, community-weighted mean
(CWM) plant height declined slightly but significantly over time, a finding that
contradicted our expectations of a shift toward taller species under global change.
In trait-based frameworks, plant height is often linked to competitive dominance,
rapid growth, and light acquisition, and is expected to increase with warming,
eutrophication, and grazing cessation (Diaz et al., 2016; Laliberté et al., 2012;
Westoby, 1998). However, several ecological and methodological factors likely
explain this unexpected result. First, our analysis excluded shrubs and trees to
focus on herbaceous vegetation, thereby omitting one of the most visible signals
of global change in alpine ecosystems: woody plant expansion (Cannone et al.,
2022; Gehrig-Fasel et al., 2007). In this context, height increases occurring via
the establishment or expansion of woody plants are simply not visible in our
dataset. Second, our trait dataset relies on species-level means and does not
account for the substantial intraspecific variation in plant height (Rixen et al.,
2022): real trait responses to the changing montane environments may involve

plastic or locally adapted shifts in height that are not captured in CWMs based on
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fixed averages. Finally, and more importantly, many of our sites are situated on
shallow, often skeletal soils, a common feature of montane landscapes. These
edaphic conditions physically limit root development, imposing allometric
constraints on aboveground biomass: plants cannot grow tall without sufficient
rooting depth (Schenk & Jackson, 2002; Tumber-Davila et al., 2022). As a result,
even when climatic conditions relax, tall-statured lowland species may be unable
to establish or persist due to edaphic limitations. In this context, the persistence
or even slight decline in plant height may reflect ongoing filtering by substrate
physical properties, which continue to limit vertical growth despite broader
functional shifts in leaf and seed traits. Collectively, these observations suggest
that global change has not uniformly driven all traits in the same direction, and
that height may respond to a different or more constrained set of environmental

drivers than SLA, nutrient content, or seed mass.

Shifts in functional trait diversity

From a community-assembly perspective, the simultaneous shift in the
community weighted means of specific leaf area, leaf nitrogen and seed size
toward acquisitive strategies and the increase in functional diversity point to a
weakening of abiotic filters under global change. These findings confirmed our
second hypothesis. Warming has reduced frost frequency and lengthened

growing seasons (Pepin et al., 2022), opening thermal niches (Gottfried et al.,
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2012) that allow species with previously excluded trait combinations to establish
and expand the trait space. As species with higher temperature requirements for
growth increase their abundance in their existing populations (Lamprecht et al.,
2018b) and/or shift upslope in response to warmer conditions (Rumpf et al.,
2018a), they introduce new trait values into resident assemblages, driving large
gains in functional diversity. Moreover, the intensified grassland management at
lower elevations (Cernusca et al., 1999) and localized nitrogen deposition at the
fringes of the Alps (Kirchner et al., 2014) might have increased soil fertility
(Rumpf et al., 2025), further relaxing nutrient-based constraints. At the same
time, the cessation of traditional grazing and the shrubification (Dullinger et al.,
2004; Gehrig-Fasel et al., 2007) have created a mosaic of habitats that support
both stress-tolerant and resource-acquisitive species, broadening the range of co-
existing trait syndromes. Taken together, we assume that the relaxation of
temperature, nutrient and, in part, grazing disturbance have made a larger
proportion of local sites colonizable to a larger proportion of species from the
regional metacommunity. Real colonization dynamics have probably been
fostered by small-scale heterogeneity (variation in aspect, slope and soil depth)
which tends to increase species turn-over and hence propagule input from species
with diverse traits over small distances (Helm et al., 2024; K6rner & Hiltbrunner,
2021; Scherrer & Korner, 2011). In fact, this short- to mid-term increase in
functional diversity may, at least in part, be transitional and characterize non-

equilibrium assemblages that follow environmental changes with a delay
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(Svenning & Sandel, 2013). When approaching a new equilibrium, eventual trait
change might become more clearly directional, with species with resource-
conservative strategies replaced by species with resource-acquisitive strategies,
and functional diversity might decrease again, as supposed for taxonomic
diversity (Jackson & Sax, 2010). In summary, we suppose that global change has,
in many local assemblages, unlocked portions of the trait space that were once
inaccessible which led to functionally novel, but likely transitional plant

communities.

Elevation-driven abiotic filters continue to structure mountain plant
communities

Although trait means (i.e. community-weighted means; [CWM]) and overall
functional diversity have increased considerably across the elevational gradient,
the slopes of all CWM-elevation relationships remained consistently negative,
indicating that environmental filtering continues to structure mountain plant
communities. Plant height declined at an almost identical rate in both historical
and recent surveys, reflecting persistent constraints imposed by low temperatures,
increased wind exposure and shallow and nutrient-poorer soils (Bello et al., 2013;
Pellissier et al., 2010; Rosbakh et al., 2022). Similarly, specific leaf area and leaf
nitrogen content decline with elevation, indicating ongoing selection from the
regional species pool for species with conservative growth strategies in

increasingly harsh environments (Bello et al., 2013; Rosbakh et al., 2015).
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Although the magnitude of some of these slopes has decreased slightly, their
persistent negativity suggests that cold stress and nutrient limitation associated
with elevation remain key environmental filters. Together with the concurrent
increase in mean trait intercepts across all elevations, these persistent negative
gradients suggest that global change has only partially relaxed environmental
filtering, raising baseline trait values without eliminating the fundamental
elevational sieve. Finally, dispersal limitation likely reinforces this pattern by
constraining species turnover within each elevational band. Because most species
cannot rapidly shift their ranges uphill in response to warming, community
reassembly at a given elevation is primarily restricted to species already present
in the historical meta-community of that zone. As a result, the enduring structure
of elevational trait gradients may reflect not only persistent abiotic filters, but also
the inertia imposed by limited species movement across elevation, a legacy of
historical community composition that continues to shape present-day trait—
environment relationships.

Notably, seed mass deviated from the otherwise stable trait—elevation
relationships: while it was historically unrelated to elevation, it developed a
significant negative slope in recent surveys. This shift complements the overall
increase in seed mass community-weighted means, but suggests that this trend is
primarily driven by lowland communities becoming increasingly dominated by
species with heavier seeds. This likely reflects warmer conditions, elevated

nutrient availability, and reduced grazing pressure, factors that favor species with
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greater reproductive investment. In contrast, the contribution of heavy-seeded
species appears to have declined in high-elevation plots, contributing to the
emergence of the recent negative elevation trend. A likely explanation for this
asymmetry lies in changing dispersal dynamics. Historically, transhumance (i.e.
seasonal migration of large domestic animals such as cows and horses across
elevations) facilitated the uphill transport of large seeds across elevation bands.
The substantial decline of transhumance in the European Alps in recent decades
(Cernusca et al., 1999; Gehrig-Fasel et al., 2007) might have weakened this
mechanism, particularly above the treeline where such animals are now largely
absent. As a result, seed arrival at higher elevations has likely become more
limited, constraining the establishment of heavy-seeded species and reinforcing
the filtering effects of harsh environmental conditions. Seed mass has thus
emerged as a trait shaped both by the relaxation of ecological constraints in

lowlands and the erosion of anthropogenic seed dispersal across elevation.
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