

Global offsetting of the outsourced biodiversity footprint of consumption

Hanna Kalliolevo^{ab*}, Sami El Geneidy^{bc}, Janne S. Kotiaho^{ab}

^a Department of Biological and Environmental Science, University of Jyväskylä, Finland

^b School of Resource Wisdom, University of Jyväskylä, Finland

^c School of Business and Economics, University of Jyväskylä, Finland

*corresponding author: hanna.m.kalliolevo@jyu.fi

ABSTRACT

1 International trade outsources environmental impacts of consumption through complex value
2 chains causing biodiversity loss across Earth. There is a need to examine the negative
3 biodiversity impacts and the opportunities to mitigate and offset the impacts, as a global
4 systemic phenomenon. Traditional biodiversity offsetting is used to offset local land use
5 impacts but no means to offset the outsourced biodiversity impacts exist. Here we explore
6 location-independent global offsetting based on biodiversity equivalent, an analogue of the
7 carbon dioxide equivalent, and scrutinize the assumptions behind the suggestion in the context
8 of operationally important planning decisions of traditional biodiversity offsets. We find global
9 offsetting to be operational but emphasize that it should not replace, but rather complement,
10 the traditional offsetting. We conclude that until a global degrader pays -principle has been
11 worked out and adopted, global offsetting is a viable option to offset at least some of the
12 outsourced biodiversity impacts of consumption.

13 **INTRODUCTION**

14 In the global economy, international trade causes ecosystem degradation and biodiversity loss
15 typically far removed from the place of consumption (Lenzen et al. 2012; Hoekstra & Wiedmann
16 2014). Indeed, unsustainable land use (Winkler et al. 2021; Jaureguiberry et al. 2022) and
17 overexploitation of natural resources (Maxwell et al. 2016) to produce the commodities
18 necessary to satisfy the needs and desires of consumers cause threats to ecosystem integrity
19 to a degree that in many places ecosystems are in risk of losing their ability to support the
20 diversity of life (Cardinale et al. 2012; Willemen et al. 2020; Kortetmäki et al. 2021; Qu et al.
21 2024). In addition to land and sea use change and direct exploitation of species, climate
22 change, pollution and spread of invasive alien species are the main anthropogenic drivers of
23 biodiversity loss (Bellard 2012; Maxwell et al. 2016; Díaz et al. 2019; Roy et al. 2024).
24 Environmental changes such as biodiversity loss resultant of the drivers are called footprints
25 (Hoekstra & Wiedmann 2014).

26 International trade outsources the environmental impacts of consumption through complex
27 value chains and causes biodiversity loss all over the planet. Therefore, there is a clear need to
28 examine the negative biodiversity impacts, but also the opportunities to mitigate the impacts,
29 as a global systemic phenomenon. Moreover, while local land use change has been the
30 dominant driver of biodiversity loss (Jaureguiberry et al. 2022), the weight of global climate
31 change as a driver of biodiversity loss is increasing (Pigot et al. 2023; Urban 2024). Thus, we
32 must start thinking biodiversity offsetting more broadly than in the local land use planning
33 context only.

34 Biodiversity offsetting is one impact mitigation instrument with which the negative impacts of
35 development and other land use are compensated by generating equivalent gains for nature
36 elsewhere (Moilanen & Kotiaho 2018; zu Ermgassen et al. 2019; Maron et al. 2025). Biodiversity
37 offsetting is commonly framed as being the last step of mitigation hierarchy (Arlidge et al. 2018)

38 and it has become a globally popular, albeit controversial (Maron et al. 2016; Damiens et al.
39 2021) instrument with over 100 countries applying it in thousands of cases (Bull & Strange
40 2018). Biodiversity offsetting is traditionally applied to compensate for the local project-level
41 impacts only, but the need to extend the logic to addressing all impacts associated with
42 economic activity, including throughout value chains, has sometimes been touched upon
43 (Arlidge et al. 2018; Bull et al. 2020; Milner-Gulland et al. 2021; Balmford et al. 2025; Maron et
44 al. 2025). The shift from targeting no net loss of biodiversity towards targeting net positive
45 impacts for biodiversity (Bull et al. 2020; Moilanen & Kotiaho 2021) can be seen to have evolved
46 the biodiversity offsetting from an impact mitigation instrument to a biodiversity conservation
47 and adaptation instrument (Barral et al. 2025).

48 A challenge for the traditional biodiversity offsetting in a global value chain setting is that it
49 requires comprehensive and relatively detailed knowledge on the biodiversity values lost on the
50 development site and gained on the offset site (Marshall et al. 2020). In reality it is operationally
51 impossible to do biodiversity offsetting in all the locations around the world the value chains
52 outsource the biodiversity impacts. Thus, when we are interested in mitigating the biodiversity
53 footprint of consumption, we need to consider alternative approaches. One possibility is to
54 focus on life cycle assessments (Hellweg and Milà i Canals 2014; Verones et al 2020), which
55 aim to consider the environmental impacts of products throughout their entire life cycle. A few
56 different biodiversity indicators have been utilized in life cycle assessment (Damiani et al. 2023;
57 Marques et al. 2017; Sanyé-Mengual et al. 2023), and the one we will focus on here is the
58 biodiversity equivalent (El Geneidy et al. 2025a). The biodiversity equivalent is derived from the
59 potentially disappeared fraction of species (PDF), which accounts for the share of species that
60 are potentially lost due to different drivers of biodiversity footprints, and which is customarily
61 calculated separately for the species in terrestrial, freshwater and marine realms (Verones et al.
62 2017, 2020; Crenna et al. 2020). To arrive at the biodiversity equivalent, the PDFs in the different
63 realms are combined by taking a number-of-species weighted average of biodiversity loss

64 across the realms (El Geneidy et al. 2025a). In essence, the biodiversity equivalent indicates the
65 share of all species on the planet that are likely to go extinct due to human activities, and its
66 utility for biodiversity is like what carbon dioxide equivalent is for climate. Hence, El Geneidy et
67 al. (2025a) suggested that biodiversity equivalent might be used as an indicator for globally
68 offsetting biodiversity footprints anywhere on the planet independent from the location of the
69 biodiversity loss. Bull et al. (2025) have recently estimated the biodiversity footprint of Dutch
70 dairy sector and discussed the need to address biodiversity impacts not only from direct
71 economic activities but also those embedded in global supply chains. They developed a
72 safeguards approach for impact compensation but did not specifically include offsetting in their
73 model despite noting that biodiversity offsets are likely needed in achieving net positive
74 outcomes. Thus, there is a clear need for thorough exploration of how such a global system of
75 offsetting the biodiversity footprint could work.

76 In this article, we scrutinize the assumptions of global offsetting with the biodiversity equivalent
77 in the context of the operationally important decisions in the planning of traditional biodiversity
78 offsets (Moilanen & Kotiaho 2018; see also Gardner et al. 2013). Furthermore, we explore the
79 consequences of adopting the biodiversity equivalent to offset the global consumption-based
80 biodiversity footprint outsourced through the international value chains.

81 **ASSESSING BIODIVERSITY FOOTPRINT OF CONSUMPTION**

82 While we have been able to quantify and communicate the impact of local land use on
83 biodiversity loss, assessing the impacts of the consumption of individuals and organizations
84 has, until relatively recently, remained more elusive. After the first examinations of the
85 biodiversity impacts of consumption (Lenzen et al. 2012; Wilting et al. 2017), an increasing
86 number of studies are being published concentrating on biodiversity footprint of individual
87 products (Asselin et al. 2020), citizens (El Geneidy et al. 2025b) organizations (El Geneidy et al.
88 2021; Bull et al. 2022), regions (Crenna et al. 2020), and global consumption (Bjelle et al. 2021).

89 To assess the biodiversity footprint of consumption four key pieces of information are needed
90 (El Geneidy & Kotiaho 2023; El Geneidy et al. 2025a): We need to know i) what was consumed
91 and how much, ii) the type and amount of environmental impact caused by the consumption,
92 iii) the geographic location of the environmental impact caused by the consumption and iv) the
93 biodiversity loss in each of the geographic locations due to the environmental impact caused by
94 the consumption. These four components are embedded in the Biodiversity Equivalent Impact
95 Assessment (BIOVALENT) methodology (El Geneidy et al. 2025a). Currently there are few
96 emerging tools and databases allowing the assessment of biodiversity loss due to the
97 environmental impact in certain locations. One such database is the LC-IMPACT database
98 (Verones et al. 2020), another is the ReCiPe framework (Huijbregts et al. 2017) and a third the
99 IMPACTWorld+ (Bulle et al. 2019).

100 **Biodiversity equivalent**

101 Potentially disappeared fraction of species (PDF) metric accounts for a fraction of species that
102 are potentially lost due to environmental impact (Goedkoop et al. 1999; Verones et al. 2020).
103 PDF indicates the biodiversity impacts relative to a counterfactual natural state without any
104 human impact. PDF ranges from 0 to 1, where 1 means that all estimated species are at risk of
105 extinction and 0 means that no species is at risk of extinction. The metric is based on species
106 area relationship models, geographic ranges of species, the vulnerability of species to different
107 human impacts, and the extinction risk classification of species. Currently the PDF indicator is
108 derived from data covering vascular plants, mammals, reptiles, birds and fish and it is
109 calculated separately for terrestrial, freshwater and marine realms. Global PDF indicates risk of
110 extinction of species in each of the realms globally while regional PDF indicates the potential
111 biodiversity loss in each of the realms at the regional scale. Openly available characterization
112 factors (also known as impact factors) (e.g., PDF/m² or PDF/kg) exist currently e.g. for several
113 different forms of land use, water stress, several pollutants and climate change (Verones et al.

114 2020). The PDF can currently be calculated for all 804 terrestrial ecoregions and 200
115 countries/geographical regions.

116 The biodiversity equivalent is derived from the potentially disappeared fraction of species (PDF).
117 To arrive at the biodiversity equivalent, the PDFs in the different realms are combined by taking a
118 number-of-species weighted average of biodiversity loss across the realms (El Geneidy et al.
119 2025a). This makes biodiversity equivalent a location-independent common currency
120 accounting for all the species in all impacted ecosystem types as a single global value. As the
121 biodiversity equivalent indicates the share of all species on the planet that are likely to go
122 extinct due to human activities, its utility for biodiversity can be considered to be what carbon
123 dioxide equivalent is for climate (El Geneidy et al. 2025a).

124 In essence, biodiversity equivalent tells what fraction of the species of the world are at risk of
125 going extinct globally if for example 1 km² of land is continuously exploited by a specific driver of
126 biodiversity loss, such as land use for intensive forestry (Verones et al. 2020), in any given
127 country. A feature of the biodiversity equivalent is that the same amount of area occupied by the
128 same driver causes less global biodiversity loss in relatively species poor areas than what it
129 causes in relatively species rich areas. On the other hand, if both areas experienced a loss of
130 the same amount of biodiversity equivalent, this would indicate that the global biodiversity loss
131 is the same. Different species would be lost in different parts of the world, but the fraction of
132 globally potentially lost species would be the same. With global offsetting therefore, it would be
133 possible to offset impacts at any place, but offsetting in a species-poor country would require
134 larger areas for conservation and restoration than in tropics or other species-rich regions.

135 **GLOBAL OFFSETTING WITH THE BIODIVERSITY EQUIVALENT**

136 As the starting point we take the framework that allows systematic and transparent examination
137 of the main biodiversity offsetting design decisions that significantly impact the meaning of, and
138 outcome expected from the traditional biodiversity offsetting plan (Fig. 1) (Moilanen & Kotiaho

139 2018). This framework is built around the three main dimensions of ecological reality: what
140 biodiversity you lose and gain, where does the loss and gain happen (space), and when does the
141 loss and gain realize (time) (Wissel and Wätzold 2010). In addition, we examine the decisions
142 around objectives i.e. around what do you aim at, and considerations around offset actions.

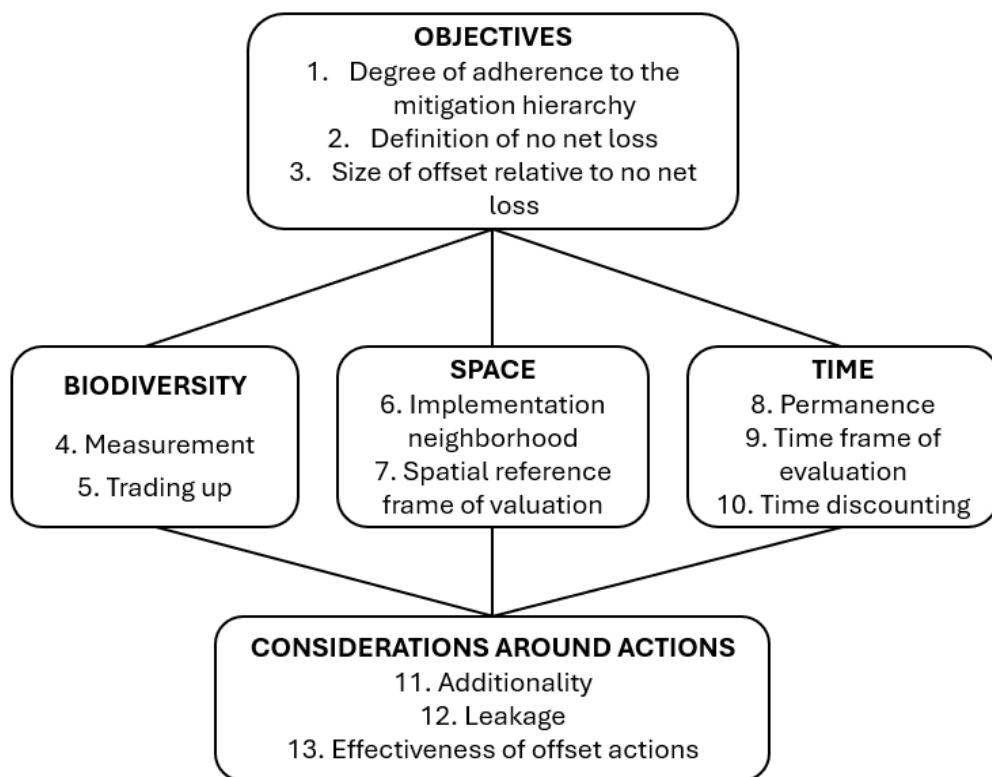


Fig. 1. Important operational design decisions in traditional biodiversity offsetting focusing on biodiversity objectives (what do you aim at), what do we lose and gain (biodiversity), where (space) and when (time). There are also a few important general considerations when implementing the offsetting actions (adapted from Moilanen & Kotiaho 2018).

143 **Degree of adherence to the mitigation hierarchy**

144 Mitigation hierarchy is designed to address local impacts on biodiversity through first seeking to
145 avoid impacts wherever possible, then minimizing impacts and finally repairing the damages by
146 means of restoration either locally or elsewhere (Arlidge et al. 2018; Moilanen & Kotiaho 2021).
147 Policies requiring the mitigation hierarchy are emerging (Bull & Strange 2018), but in practice the

148 implementation of even the first step, to avoid the impacts, is often not considered or
149 implemented in development projects (Phalan et al. 2018; Jones et al. 2022).

150 To apply mitigation hierarchy successfully, one needs relatively detailed spatial information
151 about the biodiversity values or the location of the priority areas for biodiversity conservation at
152 the minimum. The data on the environmental drivers caused by consumption and their impacts
153 on biodiversity behind the biodiversity equivalent are spatially explicit. However, the resolution
154 of the data is currently too coarse to allow detailed spatial planning of impact avoidance.

155 Moreover, consumers of products manufactured across complex supply chains generally have
156 little if any power to influence production decisions in other parts of the world. Nevertheless, we
157 can think of three ways of employing the mitigation hierarchy as part of global offsetting. The
158 first is to reduce consumption overall, then replace high impact products with low impact
159 products, and finally to avoid products originating from globally biodiverse regions.

160 **Definition of no net loss**

161 At first it might seem that the meaning of no net loss is clear, but it is not. Operationally, fully
162 measuring all components of biodiversity in any given area over any period of time is virtually
163 impossible (Moilanen & Kotiaho 2018). In reality, no net loss cannot mean for example that
164 every species impacted would be fully compensated for. A critical task, therefore, is to
165 determine how biodiversity can best be described and measured to adequately assess the
166 losses and gains of biodiversity (Gardner et al. 2013; Maron et al. 2018). Once the adequate
167 representation of biodiversity is determined, no net loss is simple enough to define as the
168 situation where losses are balanced with equivalent gains.

169 The logic is similar in global offsets: if we assume that the biodiversity equivalent provides an
170 adequate representation of the global biodiversity, then in a situation where the biodiversity
171 equivalents lost correspond to the biodiversity equivalents gained, the share of species under
172 risk of extinction globally has not changed and therefore there is no net loss of biodiversity.

173 **Size of compensation required relative to no net loss**

174 Biodiversity offsetting is commonly framed such that the offset should deliver no net loss or net

175 positive outcomes for biodiversity (Bull et al. 2020). Despite this convention, where there is no

176 obligation to offset damages, even a partial offset is likely to be better than no offset at all.

177 Whatever the argument for the size of the offset relative to the loss, be it no net loss, net positive

178 or partial, we find the arguments likely to be equally applicable to both the traditional and global

179 offsetting.

180 **Biodiversity measurement**

181 Traditional biodiversity offsetting requires biodiversity assessment at the development and

182 offset sites. The assessment of biodiversity in traditional offsetting is commonly based on

183 habitat attributes reflecting the habitat condition (Marshall et al. 2020; Jalkanen et al. 2025),

184 which is determined relative to the same habitat type in its natural or undisturbed condition

185 (Parkes et al. 2003). As it is impossible to measure all aspects of biodiversity in any focal area at

186 any great detail, the most important design decision in biodiversity measurement is how much

187 simplification is allowed (Moilanen & Kotiaho 2018).

188 In traditional biodiversity offsetting ecological equivalency i.e. the identity of the lost and gained

189 biodiversity values is often expected to be the same (Bull et al. 2015). For instance, in Finland

190 the Nature Conservation Act (9/2023) requests that the losses and gains are assessed on a

191 biotope type or species habitat level, and losses of condition in each must be offset with gains

192 of condition in the same biotope type or species habitat. Knowing the identity of biotopes and

193 habitats of species allows identifying irreplaceable biodiversity values the degradation of which

194 should not be allowed.

195 Global offsetting with the biodiversity equivalent operates on a different logic. Biodiversity

196 equivalent tracks but is not concerned about the identity of biodiversity as it operates on the

197 share of the global biodiversity under risk of extinction. Hence, although technically potentially
198 possible, in its' current form the biodiversity equivalent does not allow identifying irreplaceable
199 biodiversity values. Generally, the logic of global offsetting aiming for no net loss relies on
200 keeping the extinction risk of species on the planet constant whereas traditional offsetting
201 aiming for no net loss relies on keeping the condition of each local biotope or species habitat
202 condition constant.

203 As the risk of extinction globally is generally not zero, keeping it constant with global offsetting
204 means we are likely to lose some species in the future. Similarly, as the local habitat condition
205 is generally degraded already before development, keeping it constant with traditional offsetting
206 means the areas may lose biodiversity locally due to delayed extinctions known as extinction
207 debt (Tilman et al. 1994). Thus, even if the mechanisms are different, both global and traditional
208 offsetting may achieve no net loss only relative to the pre-development baseline.

209 **Trading up**

210 Trading up in traditional biodiversity offsetting refers to a situation where flexibility in ecological
211 equivalence is allowed such that less threatened biotope types or species habitats can be
212 offset with those that are more threatened (Bull et al. 2015). It is worth noting that in this case
213 the value of biotopes and habitats of species are based on human valuation and often on
214 national assessments of the risk of extinction of biotopes and species.

215 Trading up is possible in traditional offsetting as the lost and gained biodiversity values are
216 identified. In global offsetting trading up is not operational as the biodiversity equivalent is not
217 concerned about the identity of biodiversity. Nevertheless, the biodiversity equivalent does
218 track species distributions and is affected by human valuation of species through the global
219 vulnerability scoring based on the IUCN threat levels. Occurrence of anthropogenic biodiversity
220 loss drivers in an area that has threatened species cause greater loss measured in biodiversity
221 equivalents than the occurrence of the same driver in an area that has the same number but

222 less threatened species. Thus, targeting global offsets to areas with threatened species
223 translates into smaller total area needed for the offsets, but it cannot be considered trading up.

224 **Implementation neighborhood**

225 Implementation neighborhood refers to the distance allowed between the impact and offset
226 area. In traditional offsetting, offsets are advised to be located as close as possible to the
227 impacts to guarantee ecological equivalency (BBOP 2012). As explained above, global offsetting
228 with the biodiversity equivalent operates on a different logic and is not concerned about the
229 identity and thus ecological equivalency of biodiversity. As its name implies, global offsetting
230 expands the implementation area of offset from the local scale to the global scale. When the
231 implementation neighborhood is global, options for offset implementation are increased and
232 consequently the per-unit offset costs are likely to be reduced (Moilanen & Kotiaho 2018).

233 **Spatial reference frame**

234 Spatial reference frame refers to the spatial context where biodiversity is valued. A species can
235 be considered endangered if a national reference frame is adopted even when the same species
236 might be of least concern at the global reference frame. Choice of the spatial reference frame
237 can impact trading up in traditional offsetting, but for global offsetting the choice is not
238 applicable as the reference frame is always global.

239 **Permanence of offsets**

240 Development projects often cause permanent or at least long-lasting local biodiversity loss.
241 Therefore, traditional offsets are often also expected to be permanent or last at least as long as
242 the biodiversity loss drivers remain (BBOP 2012). As the biodiversity footprint of consumption
243 that is outsourced through the value chains translates into local land use and other drivers
244 somewhere around the planet, there is no reason to believe such impacts would be any less
245 permanent. Moreover, as consumption cannot ever be completely ended, some permanent

246 pressure on biodiversity will remain. Therefore, it seems reasonable to consider most losses as
247 permanent and require global offsets to be permanent as well.

248 **Time delays and time discounting**

249 Delayed financial payment is routinely not considered equally valuable to immediate payment
250 and the same logic can be applied to delayed biodiversity gains (Moilanen & Kotiaho 2018).

251 Damage or biodiversity loss is typically relatively fast while ecosystem recovery is slow. In
252 traditional offsetting the timing of the damage is usually known, and the value of delayed gains
253 can be easily adjusted based on a yearly time discounting percentage (Laitila et al. 2014).

254 Additionally, knowing the time of damage can enable offsetting the losses before they occur,
255 which would be ideal for biodiversity. However, the timing of biodiversity impacts of the
256 production of consumables across the value chain is typically unknown. The time lag between
257 the impact and consumption can be especially long in long lasting products. As there are
258 definite time delays, time discounting of the gains could be considered in both traditional and
259 global offsets.

260 It is worth noting that when we consider the different drivers of biodiversity loss, all losses may
261 not be immediate either. For example, the biodiversity impacts caused by climate change can
262 realize decades after the greenhouse gases were emitted (Pigot et al. 2023; Urban 2024).

263 **Time frame of evaluation**

264 Time frame of evaluation refers to the time frame over which losses should be balanced with
265 offset gains. As the recovery of biodiversity is slow, a shorter time frame implies less gains per
266 area and thus on average larger offset areas and higher offsetting costs. However, very long
267 timeframes decrease the credibility of offsets (Moilanen & Kotiaho 2018). For example, in the
268 Finnish Nature Protection Act (9/2023) an evaluation time frame of 30 years is requested for no
269 net loss to be reached.

270 In global offsetting, the difficulty is again the international value chain and the uncertainties
271 regarding the timing of the biodiversity impacts. For simplicity, it could be reasonable to assume
272 that the losses occur, and the time frame of evaluation begins at the point of purchasing of the
273 products either by the consumer or the retailer.

274 **Additionality**

275 Additionality means that offsetting actions must deliver biodiversity benefits that would not
276 have been gained without offsetting. In other words, double counting of the ecological gains is
277 not allowed (van Oosterzee et al., 2012). Ensuring additionality is essential in both traditional
278 and global offsetting. Additionality may be tricky to assess in traditional offsetting because of
279 the many national and international obligations to restore and protect nature. In global
280 offsetting we can offset biodiversity losses across many different jurisdictions, which can make
281 assessment of the additionality even more complicated.

282 **Leakage**

283 Leakage happens when instead of canceling the pressures, offsetting actions delivering
284 permanent biodiversity gains cause the pressures to shift elsewhere (van Oosterzee et al. 2012;
285 Moilanen and Laitila 2015). If land use pressures are not cancelled, but shifted fully or in part to
286 another location, then gains through offsetting will be overestimated. Assessing and accounting
287 for leakage is critical in both traditional and global offsetting. In traditional offsetting the risk of
288 leakage can be assessed from historical trends in land use. In principle the same approach can
289 be used in global offsetting. However, if global offsetting is conducted across many different
290 geographical locations assessing leakage is likely to be more challenging.

291 **Effectiveness of offset actions**

292 Offsetting actions in both traditional and global offsetting are predominantly restoration and
293 protection. Traditional offsetting does not typically consider biodiversity loss drivers other than

294 land use change and sometimes direct exploitation of natural resources, such as timber
 295 harvesting. It is relatively easy to see that in traditional offsetting for example the land use
 296 change needs to be offset once to meet the no net loss requirement.
 297 When we adopt the biodiversity equivalent to offset the global consumption-based biodiversity
 298 footprint outsourced through the international value chains, the biodiversity loss drivers
 299 considered are generally much more numerous. We have land use change, land occupation,
 300 water stress, climate change and pollution to name but a few (Verones et al. 2020; Damiani et
 301 al. 2023). Moreover, unlike most development projects on a site that are once off, consumption
 302 continues year after year. Land occupation after the land use change and water stress drivers
 303 are such that once the impact has been inflicted during the transformation phase, there are
 304 generally no great additional losses to be expected provided the consumption causing the
 305 drivers stays the same. However, climate change and pollution drivers are cumulative, and the
 306 negative impacts increase even if the consumption stays the same. Thus, in global offsetting the
 307 offsetting actions need to be considered separately for different sets of biodiversity loss drivers.
 308 For drivers like land occupation and water stress offsetting once may be adequate but for the
 309 climate change and pollution drivers the offsetting must be continued as long as the emissions
 310 continue.

Table 1. Comparison of the operationally important decisions in planning of traditional and global biodiversity offsetting grouped under objectives, the three main dimensions of ecological reality (biodiversity, space, time), and actions.

Decisions	Traditional offsetting	Global offsetting
Objectives		
Degree of adherence to the mitigation hierarchy	Seldomly legislated and difficult to track whether hierarchy is implemented	Hierarchy is based on consumption decisions that may be traceable but not necessarily easy to implement
Definition of no net loss	Losses are balanced with gains in the unit that is decided to be an adequate representation of biodiversity	Same as in traditional offsetting but the unit is different
Size of compensation required relative to no net loss	Depends on what is agreed. Often no net loss or net positive impact	Depends on what is agreed. Similar to traditional offsetting

Biodiversity		
Biodiversity measurement	Based on habitat attributes reflecting the habitat condition, e.g. habitat hectare	Based on biodiversity equivalent reflecting the share of species on the planet that potentially go extinct due to human activities
	Ecological equivalency often requested	Ecological equivalency not applicable
	Allows identifying irreplaceable biodiversity values the degradation of which should not be allowed	Although technically potentially possible, in its' current form the biodiversity equivalent does not allow identifying irreplaceable biodiversity values
Trading up	Possible	Not possible
Space		
Implementation neighborhood	Local, regional	Global
Spatial reference frame	Local, regional	Global
Time		
Permanence of offsets	Permanence required	Permanence required
Time delays and discounting	Time delay known and offsets possible to be established before or after impacts	Time delay difficult to track and offsets established more likely after impacts
	Discounting delayed gains possible	Discounting delayed gains possible
Time frame of evaluation	Timing of losses known, time frame easily defined, e.g. 30 years	Timing of losses often unknown, time frame could be defined as 30 years from purchase
Actions		
Additionality	Complicated because of many restoration and protection obligations	Even more complicated if done across different jurisdictions
Leakage	Can be relatively easily assessed e.g. from historical land use trends	Can be assessed from historical land use trends but is more complex with many geographical regions
Effectiveness of offset actions	Generally considers only land use change driver requiring one-time offsets	Considers various drivers and the required offsets vary from once off to yearly depending on the driver and the impact duration

311 **DISCUSSION**

312 Reducing consumption in the Global North can be argued to be of utmost importance if we are
313 seriously aiming to stop the global biodiversity loss. Indeed, most of the value chains are global,
314 and international trade has resulted in high-income countries outsourcing their negative
315 biodiversity impacts to low-income countries (Bjelle et al. 2021; Koslowski et al. 2020; Marques
316 et al., 2019; Wood et al. 2018). These outsourced impacts are only rarely accounted for never
317 mind offset in any way.

318 While we agree it to be desirable that the traditional offsetting is done where the negative
319 impact has been caused, offsetting the biodiversity footprint of consumption needs other
320 means and global offsetting as imagined here could provide one option. Even if global offsetting
321 would be adopted, it is important to emphasize that global offsetting should not replace the
322 traditional offsetting but be adopted in addition to it (see e.g. Maron et al. 2025). It may also be
323 worthwhile considering the impact compensation safeguards (Bull et al. 2025). Very recently
324 there was a suggestion that only actions achieving ecological equivalence with low uncertainty
325 should be considered actual offsetting (Bang et al. 2025). As global offsetting described here
326 does not follow the like-for-like principle, based on this suggestion we should not be talking
327 about offsetting but rather compensating for the negative impacts. While it is good to discuss
328 and scrutinize the definition of various concepts, we point out that ecological equivalence is
329 dependent on the accuracy of measurement. No biological community is ever absolutely
330 similar to another, and thus no offset site can ever be absolutely similar to the one impacted.

331 Considering and comparing the allocation of responsibility in traditional and in global offsetting
332 reveals a hidden paradox: in traditional offsetting it is the developer that is held responsible for
333 the damages, while the perspective of analysis in consumption-based biodiversity footprint
334 assessment, and hence global offsetting, is that of the consumer. The paradox in allocation of
335 responsibility appears when we recognize that all local land use anywhere on the planet is

336 locally caused by some form of development. Should it thus always be the degrader after all, i.e.
337 the producer or the developer, that is held responsible for the damage rather than the
338 consumer? Allocating responsibility between producers and consumers has been considered
339 not to be that straightforward because while the producers exert the impacts and control
340 production methods, consumer choice and demand may nevertheless drive production (Lenzen
341 et al. 2007, 2012). Lenzen et al. (2007) concluded that responsibility may lie with both camps
342 and may have to be shared between them.

343 To conclude, we suggest that perhaps a global adoption of a degrader pays -principle, an
344 analogue of the polluter pays -principle, would operationalize the allocation of responsibility
345 between the producers and the consumers. If all producers push the cost of traditional
346 biodiversity offsetting downstream to their value-chain, then the responsibility would be
347 automatically shared between all parties in the value chain. It is worth noting that, at the same
348 time, global offsetting would become redundant. Until a global degrader pays -principle has
349 been worked out and adopted, it is better that at least some of the outsourced biodiversity
350 footprints of consumption are offset, and global offsetting as explained here might be a viable
351 option.

352 **REFERENCES**

353 Arridge, W. N. S. et al. (2018). A global mitigation hierarchy for nature conservation. *BioScience*
354 68, 336–347.

355 Asselin A., Rabaud S., Catalan C., Leveque B., L'Haridon J., Martz P. & Neveux G. (2020). Product
356 Biodiversity Footprint – A novel approach to compare the impact of products on biodiversity
357 combining Life Cycle Assessment and Ecology. *Journal of Cleaner Production*, 248,119262.
358 <https://doi.org/10.1016/j.jclepro.2019.119262>.

359 Balmford, A., Ball, T. S., Balmford, B., Bateman, I. J., Buchanan, G., Cerullo, G., ... & Williams, D.
360 R. (2025). Time to fix the biodiversity leak. *Science*, 387, 720-722.

361 Bang, A.H.Y. et al. (2025). A Typology of Corporate Actions for a Nature-Positive Future. Preprint.
362 EcoEvoRxiv. <https://doi.org/10.32942/X2093V>.

363 Barral, S., Ghosh, R., & Corbera, E. (2025). The politics of influence in biodiversity offsetting.
364 *Nature Sustainability*, 1-8.

365 Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., & Courchamp, F. (2012). Impacts of
366 climate change on the future of biodiversity. *Ecology letters*, 15, 365-377.

367 Bjelle et al. (2021). Trends in national biodiversity footprints of land use. *Ecological Economics*,
368 185, 107059.

369 Bull J.W., Hardy M.J., Moilanen A. & Gordon A. (2015). Categories of flexibility in biodiversity
370 offsetting, and their implications for conservation. *Biological Conservation*, 192, 522-532.
371 <https://doi.org/10.1016/j.biocon.2015.08.003>.

372 Bull J. & Strange N. (2018). The global extent of biodiversity offset implementation under no net
373 loss policies. *Nature Sustainability*, 1, 790-798.

374 Bull, J. W., Milner-Gulland, E. J., Addison, P. F., Arridge, W. N., Baker, J., Brooks, T. M., ... &
375 Watson, J. E. (2020). Net positive outcomes for nature. *Nature ecology & evolution*, 4, 4-7.

376 Bull J.W., Taylor I., Biggs E., Grubb H.M.J., Yearley T., Waters H. & Milner-Gulland E.-J. (2022).
377 Analysis: the biodiversity footprint of the University of Oxford. *Nature*, 604, 420-424.

378 Bull, J.W., Taylor, I., de Valenca, A., IJspeert, R., van Erve, P., Modernel, P. & Poore, J.A.C. (2025).
379 Towards positive net outcomes for biodiversity, and developing safeguards to accompany
380 headline biodiversity indicators. *npj Biodiverse*, 4, 31. <https://doi.org/10.1038/s44185-025-00095-5>.

382 Bulle, C., Margni, M., Patouillard, L., Boulay, A.-M., Bourgault, G., De Bruille, V., ... Jolliet, O.
383 (2019). IMPACT world+: A globally regionalized life cycle impact assessment method.
384 *International Journal of LCA*, 24, 1653–1674.

385 Business and Biodiversity Offsets Programme (BBOP). 2012. Standard on Biodiversity Offsets.
386 BBOP, Washington, D.C. (2012).

387 Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., ... & Naeem, S.
388 (2012). Biodiversity loss and its impact on humanity. *Nature*, 486, 59-67.

389 Crenna E., Marques A., La Notte A. & Sala S. (2020). Biodiversity assessment of value chains:
390 state of the art and emerging challenges. *Environmental Science & Technology*, 54, 9715–9728.

391 Damiani, M., Sinkko, T., Caldeira, C., Tosches, D., Robuchon, M., & Sala, S. (2023). Critical
392 review of methods and models for biodiversity impact assessment and their applicability in the
393 LCA context. *Environmental Impact Assessment Review*, 101, 107134.

394 Damiens, F.L.P., Porter, L. & Gordon, A. 2021a. The politics of biodiversity offsetting across time
395 and institutional scales. *Nature Sustainability*, 4, 170–179.

396 Díaz S et al. (2019). Pervasive human-driven decline of life on Earth points to the need for
397 transformative change. *Science*, 366, eaax3100. DOI:10.1126/science.aax3100

398 El Geneidy, S., Alvarez Franco, D., Baumeister, S., Halme, P., Helimo, U., Kortetmäki, T., Latva-
399 Hakuni, E., Mäkelä, M., Raippalinnan, L.-M., Vainio, V. & Kotiaho, J.S. (2021). Sustainability for
400 JYU: Jyväskylän yliopiston ilmasto- ja luontohaitat. *Wisdom Letters*, 2/2021.
401 <http://urn.fi/URN:NBN:fi:jyu-202104232476>

402 El Geneidy, S., Baumeister, S., Peura, M., & Kotiaho, J. S. (2025a). Value-transforming financial,
403 carbon and biodiversity footprint accounting. arXiv preprint arXiv:2309.14186.

404 El Geneidy, S., & Kotiaho, J. S. (2023). A planetary well-being accounting system for
405 organizations. In *Interdisciplinary Perspectives on Planetary Well-Being* (pp. 203–215).
406 Routledge.

407 El Geneidy, S., Ollikainen, L., Peura, M., Järvinen, E., Toivonen, L. & Kotiaho, J. S. (2025b).
408 Suomalaisten luontojalanjälki - Miten elämäntapamme vaikuttavat luontoon ja miten
409 vaikutuksia voi pienentää? *Sitran selvityksiä* 247.

410 Gardner, T. A., Von Hase, A., Brownlie, S., Ekstrom, J. M., Pilgrim, J. D., Savy, C. E., ... & Ten Kate,
411 K. (2013). Biodiversity offsets and the challenge of achieving no net loss. *Conservation biology*,
412 27, 1254–1264.

413 Goedkoop, M.J., van Halen, C.J.G., te Riele, H.R.M. & Rommens, P.J.M. (1999). Product Service
414 System, Ecological and Economic Basic. The Report No. 1999/36 Submitted to Ministerje van
415 Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, Hague.

416 Hellweg, S. & Milà i Canals, L. (2014). Emerging approaches, challenges and opportunities in life
417 cycle assessment. *Science*, 344, 1109–1113. <https://doi.org/10.1126/science.1248361>

418 Hoekstra, A. Y. & Wiedmann, T. O. (2014). Humanity's unsustainable environmental footprint.
419 *Science*, 344, 1114–1117.

420 Huijbregts, M.A.J., Steinmann, Z.J.N., Elshout, P.M.F. et al. (2017). ReCiPe2016: a harmonised
421 life cycle impact assessment method at midpoint and endpoint level. *The International Journal
422 of Life Cycle Assessment*, 22, 138–147. <https://doi.org/10.1007/s11367-016-1246-y>

423 Jalkanen, J., Nieminen, E., Ahola, A., Salo, P., Pekkonen, M., Luoma, E., Kettunen, A., Halme, P.,
424 Pappila, M., Kotiaho, J. & Kujala, H. 2025. Heikennys- ja hyvitysalueiden luonnonarvohehtaarien
425 laskeminen luonnonsuojelulain mukaisessa ekologisessa kompensaatiossa. *Suomen
426 ympäristökeskuksen raportteja 1* | 2025.

427 Jaureguierry P, Titeux N, Wiemers M, Bowler DE, Coscieme L, Golden AS, Guerra CA, Jacob U,
428 Takahashi Y, Settele J, Díaz S, Molnár Z, & Purvis A. (2022). The direct drivers of recent global
429 anthropogenic biodiversity loss. *Science Advances*, 8, eabm9982.

430 Jones, K. R., von Hase, A., Costa, H. M., Rainey, H., Sidat, N., Jobson, B., ... & Grantham, H. S.
431 (2022). Spatial analysis to inform the mitigation hierarchy. *Conservation Science and Practice*,
432 4, e12686.

433 Kortetmäki, T., Puurtinen, M., Salo, M., Aro, R., Baumeister, S., Duflot, R., Elo, M., Halme, P.,
434 Husu, H.-M., Huttunen, S., Hyvönen, K., Karkulehto, S., Kataja-aho, S., Kirsi E. Keskinen, K.E.,
435 Kulmunki, I., Mäkinen, T., Näyhä, A., Okkolin, A.-M., Perälä, T., Purhonen, J., Raatikainen, K.J.,
436 Raippalinna, L.-M., Salonen, K., Savolainen, K. & Kotiaho, J.S. 2021. Planetary well-being.
437 *Humanities and Social Sciences Communications*, 8, 258. <https://doi.org/10.1057/s41599-021-00899-3>

439 Koslowski M, Moran DD, Tisserant A, Verones F, Wood R. Quantifying Europe's biodiversity
440 footprints and the role of urbanization and income. *Global Sustainability*, 2020, 3:e1.
441 doi:10.1017/sus.2019.23

442 Laitila, J., Moilanen, A., & Pouzols, F. M. (2014). A method for calculating minimum biodiversity
443 offset multipliers accounting for time discounting, additionality and permanence. *Methods in
444 Ecology and Evolution*, 5, 1247-1254.

445 Lenzen, M., Murray, J., Sack, F. & Wiedmann, T. (2007). Shared producer and consumer
446 responsibility – theory and practice. *Ecological Economics*, 61, 27–42.

447 Lenzen, M., Moran, D., Kanemoto, K., Foran, B., Lobefaro, L., & Geschke, A. (2012). International
448 trade drives biodiversity threats in developing nations. *Nature*, 486, 109-112.

449 Maron, M., Ives, C. D., Kujala, H., Bull, J. W., Maseyk, F. J., Bekessy, S., ... & Evans, M. C. (2016).
450 Taming a wicked problem: resolving controversies in biodiversity offsetting. *BioScience*, 66,
451 489-498.

452 Maron, M., Brownlie, S., Bull, J. W., Evans, M. C., von Hase, A., Quétier, F., ... & Gordon, A.
453 (2018). The many meanings of no net loss in environmental policy. *Nature Sustainability*, 1, 19-
454 27.

455 Maron, M., von Hase, A., Quétier, F., Sonter, L. J., Theis, S., & zu Ermgassen, S. O. (2025).
456 Biodiversity offsets, their effectiveness and their role in a nature positive future. *Nature Reviews
457 Biodiversity*, 1-14.

458 Marshall E., Wintle B.A., Southwell D. & Kujala H. (2020). What are we measuring? A review of
459 metrics used to describe biodiversity in offsets exchanges. *Biological Conservation*, 241,
460 108250. <https://doi.org/10.1016/j.biocon.2019.108250>.

461 Marques, A., Verones, F., Kok, M. T., Huijbregts, M. A., & Pereira, H. M. (2017). How to quantify
462 biodiversity footprints of consumption? A review of multi-regional input–output analysis and life
463 cycle assessment. *Current Opinion in Environmental Sustainability*, 29, 75–81.
464 <https://doi.org/10.1016/j.cosust.2018.01.005>

465 Marques, A., Martins, I.S., Kastner, T. et al. (2019) Increasing impacts of land use on biodiversity
466 and carbon sequestration driven by population and economic growth. *Nature Ecology &
467 Evolution*, 3, 628–637. <https://doi.org/10.1038/s41559-019-0824-3>.

468 Maxwell, S. L., Fuller, R. A., Brooks, T. M., & Watson, J. E. (2016). Biodiversity: The ravages of
469 guns, nets and bulldozers. *Nature*, 536, 143-145.

470 Milner-Gulland, E. J. et al. (2021). Four steps for the Earth: mainstreaming the post-2020 global
471 biodiversity framework. *One Earth* 4, 75–87.

472 Moilanen, A. & Laitila, J. (2015). Indirect leakage leads to a failure of avoided loss biodiversity
473 offsetting. *Journal of Applied Ecology*, 53, 106-111.

474 Moilanen A. & Kotiaho JS. (2018). Fifteen operationally important decisions in the planning of
475 biodiversity offsets. *Biological Conservation*, 227, 112-120.

476 Moilanen, A. & Kotiaho, J. S. (2021). Three ways to deliver a net positive impact with biodiversity
477 offsets. *Conservation Biology*, 35, 197-205. <https://doi.org/10.1111/cobi.13533>

478 Parkes D, Newell G, Cheal D. (2003). Assessing the quality of native vegetation: The 'habitat
479 hectares' approach. *Ecological Management and Restoration*, 4, S29-S38.

480 Phalan, B., Hayes, G., Brooks, S., Marsh, D., Howard, P., Costelloe, B., Vira, B., Kowalska, A., &
481 Whitaker, S. (2018). Avoiding impacts on biodiversity through strengthening the first stage of the
482 mitigation hierarchy. *Oryx*, 52, 316–324. doi:10.1017/S0030605316001034

483 Pigot, A.L., Merow, C., Wilson, A. et al. (2023). Abrupt expansion of climate change risks for
484 species globally. *Nature Ecology & Evolution*, 7, 1060–1071. <https://doi.org/10.1038/s41559-023-02070-4>.

486 Qu, X., Li, X., Bardgett, R. D., Kuzyakov, Y., Revillini, D., Sonne, C., ... & Delgado-Baquerizo, M.
487 (2024). Deforestation impacts soil biodiversity and ecosystem services worldwide. *Proceedings
488 of the National Academy of Sciences*, 121, e2318475121.

489 Roy, H.E., Pauchard, A., Stoett, P.J. et al. (2024). Curbing the major and growing threats from
490 invasive alien species is urgent and achievable. *Nature Ecology & Evolution* 8, 1216–1223.
491 <https://doi.org/10.1038/s41559-024-02412-w>.

492 Sanyé-Mengual, E., Biganzoli, F., Valente, A., Pfister, S. & Sala, S. (2023). What are the main
493 environmental impacts and products contributing to the biodiversity footprint of EU
494 consumption? A comparison of life cycle impact assessment methods and models. *The
495 International Journal of Life Cycle Assessment*. <https://doi.org/10.1007/s11367-023-02169-7>.

496 Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. (1994). Habitat destruction and the
497 extinction debt. *Nature*, 371, 65-66.

498 Urban, M.C. (2024) Climate change extinctions. *Science*, 386, 1123-1128.
499 <https://doi.org/10.1126/science.adp4461>.

500 Van Oosterzee, P., Blignaut, J. & Bradshaw, C. J. (2012). iREDD hedges against avoided
501 deforestation's unholy trinity of leakage, permanence and additionality. *Conservation Letters*, 5,
502 266-273.

503 Verones F., J. Bare, C. Bulle, R. Frischknecht, M. Hauschild, et al. (2017). LCIA framework and
504 cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. *Journal of Cleaner
505 Production*, 161, 957-967.

506 Verones, F., Hellweg, S., Antón, A., Azevedo, L. B., Chaudhary, A., Cosme, N., Cucurachi, S., de
507 Baan, L., Dong, Y., Fantke, P., Golsteijn, L., Hauschild, M., Heijungs, R., Jolliet, O., Juraske, R.,
508 Larsen, H., Laurent, A., Mutel, C. L., Margni, M., ... Huijbregts, M. A. J. (2020a). LC-IMPACT: A
509 regionalized life cycle damage assessment method. *Journal of Industrial Ecology*, 24, 1201–
510 1219. <https://doi.org/10.1111/jiec.13018>.

511 Verones, F., Huijbregts, M.A.J., Azevedo, L.B., Chaudhary, A., ... Hellweg, S. (2020b). LC-Impact
512 version 1.0. A spatially differentiated life cycle impact assessment approach.

513 Willemen, L., Barger, N. N., Brink, B. T., Cantele, M., Erasmus, B. F., Fisher, J. L., Gardner, T.,
514 Holland, T. G., Kohler, F., Kotiaho, J. S., von Maltitz, G. P., Nangendo, G., Pandit, R., Parrotta, J.
515 A., Potts, M. D., Prince, S. D., Sankaran, M., Brainich, A., Montanarella, L. & Scholes, R. (2020).
516 How to halt the global decline of lands. *Nature Sustainability*, 3, 164-166.

517 Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R. & Huijbregts, M. A. (2017). Quantifying
518 biodiversity losses due to human consumption: a global-scale footprint analysis. *Environmental*
519 *science & technology*, 51, 3298-3306.

520 Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. (2021). Global land use changes are four
521 times greater than previously estimated. *Nature communications*, 12, 2501.

522 Wissel, S. & Wätzold, F. (2010). A conceptual analysis of the application of tradable permits to
523 biodiversity conservation. *Conservation Biology*, 24, 404-411.

524 Wood, R., Stadler, K., Simas, M., Bulavskaya, T., Giljum, S., Lutter, S. & Tukker, A. (2018). Growth
525 in environmental footprints and environmental impacts embodied in trade: resource efficiency
526 indicators from EXIOBASE3. *Journal of Industrial Ecology*, 22, 553–564.

527 zu Ermgassen, S. O., Baker, J., Griffiths, R. A., Strange, N., Struebig, M. J. & Bull, J. W. (2019). The
528 ecological outcomes of biodiversity offsets under “no net loss” policies: A global review.
529 *Conservation Letters*, 12, e12664.