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Abstract

Almost all animal species transfer endogenously produced substances to conspecifics, either horizontally or
vertically, through eggs, seminal fluid, milk, or other specialized materials. These socially transferred materials
(STMs) can have substantial evolutionary consequences, are exceptionally plastic, and may enable organisms to
adapt to environmental change. The world is facing rapid anthropogenic environmental changes that challenge
the adaptive capacity of most species, with important consequences for biodiversity and ecosystem functioning.
We suggest that STMs should be urgently investigated as functional traits, as diagnostic biomarkers for negative
responses to environmental change, and as potential channels for mitigation. Here, we first outline the three main
types of STMs and how global change is influencing their production, transmission, and effects on recipients.
Then we discuss theory-based predictions about the role of STMs in potential translation, mitigation and
adaptation. Finally, we outline an interdisciplinary research program to provide insights into the roles of STMs in

addressing the biodiversity crisis in a rapidly changing world.

Terminology box

Socially transferred materials (STMs): materials transferred between conspecifics that (i) include components

metabolized by the donor, (ii) induce a direct physiological response in the receiver, bypassing sensory organs,
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and (iii) benefit the donor on an evolutionary timescale'. STMs are taxonomically widespread and show broad

diversity.

Primary component: material being transferred, such as nutrition, genetic material, or symbionts, that is the

evolutionary driver for the origin of the transfer.

Secondary components: over evolutionary time, materials that supplemented the primary component. The
functions of the various secondary components are not necessarily related to the functions of the primary

components.

Global change: the suite of environmental changes that are occurring due to human activities (Figure 1)

1. Introduction

Human activities have fundamentally altered the earth's environments at unprecedented scales and rates. This
global change—encompassing climate warming, pollution, habitat fragmentation, species invasions, and altered
biogeochemical cycles—challenges the adaptive capacity of most organisms?’. Understanding how animals cope

with these changes has become perhaps the most important challenge of ecological and conservation research.

Socially transferred materials (STMs) offer a novel framework for studying animal adaptation in the face of global
change. STMs, such as eggs, milk, ejaculates, and social regurgitates, differ from sensor-based communication
channels in that STMs involve direct transfer of biochemical substances that induce physiological responses in
recipients with long-lasting effects!. Unlike other communication channels, STMs serve multiple functions
beyond signalling: they transfer nutrients, genetic material, symbionts, hormones, and immune factors that can

fundamentally alter recipient phenotypes'.

The composition of STMs often reflects donor condition and environment®, making them both responsive to
environmental change and influential in translating the environment to conspecifics, increasing their impact by
cither detrimental effects or enabling adaptation. Transfer occurs between parents and offspring®, between sexes!”
and between nestmates!! mediating interdependence and influencing evolutionary dynamics!. Particularly, STMs
enable parents to buffer offspring!? or prepare offspring for environmental challenges through phenotypic
plasticity'}(Figure 1). However, when environmental changes are too recent for evolution to have realized

adaptation, or exceed adaptive capacity, STMs may negatively impact survival and reproduction.

Global change can disrupt the composition of STMs, as observed across diverse species, including humans, and
across ecosystems from deserts to Antarctica!*!®. Yet we lack a comprehensive understanding of how STMs, as
private physiological channels, modulate animals’ risks and adaptation potential in the face of environmental

challenges!'”.
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The objectives of this perspective paper are to 1) characterize how STMs are affected by changing environments
and lead to adaptive or maladaptive responses; 2) pose hypotheses of short- and long-term consequences for
adaptive capacity through STMs; and 3) indicate future directions and potential fruitful study systems for
understanding STMs under global change. By highlighting the importance of STMs in evolutionary adaptation,

Figure 1. The socially transferred materials

(STM) framework can help in understanding

animal responses to global change. Animal
POLLUTION populations and their various STMs are shaped
by a complex web of environmental factors that
can affect STM composition, their function, and
their transfers between individuals (shown in
the center, indicating in red STM transfer by
milk, regurgitation, eggs and ejaculate). Some
direct stressors, such as changing temperature
and different types of pollution, have already
been demonstrated to affect STMs, as we
BIODIVERSITY discuss in section 2 of this paper. Others, such

%\//? @. - el as habitat degradation and biodiversity loss,
POC O, : e : may have more cascading effects through

o
& ® ecological communities and the loss of genetic

Tt . .
b@"}’ diversity of each population. All the stressors
& may affect the plasticity and adaptation

£e!
e Gov noL” . . . . .
-20cially Tre> potential of the STMs, in ways we discuss in
section 3.

GLOBALWARMING

we aim to inspire researchers to adopt the STM framework to study adaptive plasticity and inform conservation
and management strategies. We call on researchers to prioritize STM studies in three areas: (1) establishing
baseline STM compositions in threatened species before they are lost, (2) testing whether adaptive STM responses
can buffer populations against ongoing environmental change, and (3) developing STM-informed conservation
interventions while there is still time to implement them effectively. Overall, we hope this perspective paper will
lead to increased awareness of STMs as tools for research, biodiversity conservation, and environmental change

mitigation strategies.
2. How global change impacts STMs and phenotypic outcomes

Broadly, STMs can provide a read-out of individual physiology'. They are often excellent indicators of donor
condition, environment, phenotype, and fitness. Environmental change, such as rising temperature'®, pollution'®,
and land and water use change'® has been demonstrated to affect STMs, either via alteration of STM composition
or the behaviors that facilitate their transfer. Here, we address the consequences of global change on three main
classes of STMs: genetic material, nutritional factors, and symbionts. Although most studies focus on maladaptive
and short-term consequences of STMs, we also highlight examples of how STMs enable adaptive responses to
environmental change, underscoring the need for future studies on the long-term evolutionary responses to

ecological challenges.

The transfer of genetic material through sperm, eggs and their associated fluids serves as the primary vehicle for
genetic and epigenetic information transfer between generations and all can be profoundly affected by

environmental factors?®. Eggs contain not only genetic material but also the molecular machinery, nutrients, and

t21A

signalling molecules necessary for embryonic development* Environmental stressors can disrupt this complex



90
91
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117

118
119
120

121
122
123
124
125
126
127
128

transfer system at multiple levels, affecting fertilization success, embryonic gene expression, and long-term
offspring fitness. Both maternal and paternal environmental conditions have been repeatedly linked to offspring

fitness®.

Rising temperatures have been shown to have negative effects on the transfer of genetic material in both eggs and
sperm, leading to distorted sex ratios?? or increased offspring mortality®®. Yet, some evidence suggests that STMs
may support animals in adapting to higher temperatures®*. In wild guinea pigs (Cavia aperea), males exposed to
increased temperature produced offspring with distinct DNA methylation changes in the liver and testis, reflecting

the fathers’ epigenetic response to heat?

. This paternally induced epigenetic shift is hypothesised to modulate
gene expression in ways that enhance thermal tolerance in the whole organism beyond just gametes, potentially
offering an adaptive advantage in a warming climate. In Takydromus septentrionalis, offspring from parents
exposed to experimental warming survived well under simulated warming climate conditions but not under
present climate scenarios, demonstrating anticipatory parental effects that prepare offspring for predicted thermal
environments through epigenetic mechanisms in eggs®®. Heat stress during pregnancy in dairy cattle affected not
only immediate offspring but persisted through the maternal lineage for at least three generations?’. In sheepshead
minnows (Cyprinodon variegatus), offspring grew best when their rearing temperature matched the thermal
experience of their parents®. Growth was poorest under mismatched conditions, indicating strong

transgenerational plasticity via epigenetic mechanisms in sperm and eggs, which may buffer against climate-

induced stress.

Environmental changes disrupt the transfer of genetic material through multiple pathways: direct DNA damage,
alteration of ejaculate components, interference with fertilization mechanisms, and systematic alteration of
epigenetic programming. For example, the presence of per- and polyfluoroalkyl substances in adult humans has
been directly associated with reduced sperm motility, sperm concentration, and total sperm count, affecting male
fertility®. Heavy metals accumulate in both sperm and eggs, with consequent impacts on fertility*°. Chemicals in
microplastics are also known to impact sperm quality, reducing sperm count and motility’!. Many pollutants
preferentially accumulate in egg yolks due to their lipophilic nature, creating concentrated exposure of genetic
material during the vulnerable period of early embryonic development®2. Thus far, animals are thought to cope
with anthropogenic pollutants poorly, as the pollutants have increased at a faster rate than animals can adapt.

Long-term research on most pollutants is still lacking, and new substances are continuously being created.

Transfers of nutritional materials—such as in eggs, milk, social regurgitation, and viviparity—are critical for
offspring survival in species that rely on them. Compositions of nutritional STMs are highly variable and shift

with donor environment and condition'.

Many nutritional STMs are enriched with secondary components (components with functions beyond nutrition),
including hormones and microRNAs, which play essential roles in regulating physiology. For example, in many
taxa, mothers transfer thyroxine—a hormone essential for normal development—along with nutritional materials
to their offspring®. This process relies on adequate environmental iodine. Both excessive iodine (e.g., due to
nuclear pollution) and iodine deficiency (e.g., from habitat degradation leading to malnutrition) can have
detrimental effects on offspring development*. In aphids, females transfer hormones and other molecules to
embryos, causing a developmental switch that leads to later-season nymphs being born with wings, and some of

them male, unlike all-female early-season nymphs. This allows these aphids to disperse and reproduce sexually™.
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Such regulation relies on environmental cues and hence is sensitive to rising temperatures and ecological change.
As a final example, environmental disruptors (e.g., feminizing herbicide*®) can interfere with hormone receptors,

affecting sexual differentiation and population dynamics.

Further, nutritional STMs are often contaminated by anthropogenic pollutants, such as herbicides’,
pharmaceuticals®®, and even microplastics®®, leading to negative effects on the offspring®’*. Also in this case,
species that might have STM-based mechanisms to fine-tune offspring phenotypes might be especially at risk of
perturbations by anthropogenic substances. For instance, mothers sometimes adjust the quantity of nutrients and
hormones transferred to offspring to optimise development in a specific environment*'. This balance can be
disrupted by plastic additives, which mimic hormonal activity, leading to mismatched developmental outcomes

and impaired fitness®.

Nutritional transfers occur not only in the parent-offspring contexts, but they also happen in other situations, such
as when an animal gives a "nuptial gift" metabolized by the donor to a mate or when social insects, birds, and
other species regurgitate for each other with processed external materials'. Such behaviors extend the potential
impacts of anthropogenic change to other conspecifics. For example, increased temperature affects nuptial-gift-

related behaviours in Drosophila subobscura, impacting sex-specific mate choice and population dynamics*.

Transfer of symbionts can be critically important for many animals relying on the metabolic capabilities of their
associated microbes or microbiomes. Usually, these associations enhance the nutritional or defensive physiology

of their host animals*.

Some socially transferred symbionts are highly sensitive to changes in temperature*, with a critical effect on host
fitness*6, For example, Hamiltonella defensa, a facultative, vertically transmitted symbiont of aphids that
protects against parasitoids, becomes less effective in defending its host at higher temperatures*’. Interestingly,
the few instances where another aphid endosymbiont Buchnera has been replaced by a novel microbe have

occurred in especially warm climates®.

Microbes in STMs can also underlie and facilitate the survival of insects in a pesticide-rich environment. Female
Nilaparvata lugens planthoppers vertically transmit Wolbachia symbionts to their offspring that aid in the
detoxification of insecticides. However, rising temperatures reduce bacterial titers, hindering insect resistance to
pesticides*®. These studies highlight how the transferred symbionts can be replaced over evolutionary time,

fuelling adaptation and ecological novelties, especially under environmental change*-*°,

3. Building hypotheses about short- and long-term consequences for adaptive capacity

Although we now know that anthropogenic environmental changes can profoundly affect STMs (see previous
section), an integrative approach of chemical, physiological, and eco-evolutionary studies is needed to predict
how environmental effects on STMs will influence short- and long-term adaptive capacity across levels of
biological organization. In this section, we discuss several concepts relevant to predicting how the effects of

environmental change on STMs will impact fitness and scope for adaptation (Figure 2).

In contrast to many behavioral signals, STMs are private channels of communication between donors and
receivers. Because STMs are transferred through direct contact, there is reduced environmental interference. This
might make STM signals more efficient and effective in some systems compared with, for example, birdsong

masked by urban noise. However, due to their more personalized transmission modes, STM signals are less
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efficient for communicating with large groups. Depending on the network of transfer, STMs may induce larger

individual differences within a population, creating scope for evolution and adaptation.
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Figure 2. Modes by which organisms can respond plastically to their environments and to anthropogenic
changes through the use of and response to socially transferred materials (STM). (A) Under original
ecological conditions, donors produce STMs and recipients respond to them, with adaptive plasticity

maintaining the interaction without detrimental effects. (B) When anthropogenic changes (elevated COs,
temperature, pollution) occur, plasticity within the range of adaptive capacity in both donor and recipient
allows mitigation of environmental impacts through adjustment of STM production and response. (C) When
the anthropogenic changes push the organisms outside the range of adaptive plasticity, two outcomes are
possible: if the environmental change is moderate and sufficient genetic variation exists, adjustment by
evolutionary adaptation can occur over generations, potentially restoring adaptive capacity, alternatively, if
the change is too severe or rapid, extinction can occur due to the inability to adapt. (D) Under conditions
where there is a mismatch between the donor’s ecological conditions and anthropogenic changes, a lack of
plasticity in either donor or recipient (or both) to adjust STM production or response leads to extinction
through inability to adapt. The outcomes depicted across all scenarios have consequences for biodiversity,
ecosystem functioning, and human well-being.

All organisms can respond to environmental change through developmental or phenotypic plasticity. Whether and
how plasticity via STMs helps organisms adapt to the recent anthropogenic challenges®'? This largely depends on

the extent the regulation of STMs is independent of the environment and even anticipatory.

Mechanistically, if and when donors can regulate STM components or volumes somewhat independently from
the donor’s own condition and exposure, the scope for beneficial effects increases®. For example, nutritional

33-55 when donors modulate STM composition (such as lipids®, proteins,

transfers can buffer environmental stress
hormones, and immune factors®®) independent from their environmental conditions, and there is some evidence
that this can also occur in the receiver’*=8. In Gallus gallus, males being chased away by stronger males may
transfer more sperm and ejaculate proteins with each mating because they cannot secure many matings *°.
Receivers may also exert some control by avoiding the intake of harmful STMs, but this is limited when classical
senses do not detect anthropogenic contaminants and there has been insufficient time to evolve aversion to novel
anthropogenic substances. Recipients can also show adaptive behavioural plasticity in responding to changes in

the donor’s STM strategy (e.g., females that receive fewer nuptial gifts/less seminal protein increase their mating

frequency®).
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When STM provision or response is decoupled from the donor’s environment or when donor STMs are adjusted
to an environment that is dissimilar to that of the receiver, it has the potential to create mismatches between STM-
based signals and lived environments when the physiological systems lack plasticity. This can be especially
problematic for long-lived organisms and under increasing anthropogenic unpredictability (e.g., climate change,
food availability, parasite loads). These mismatches are most harmful when STMs act early in development,
hardwiring consequences into place and reducing potential for later plasticity. A well-studied example of such a
mismatch in humans is the effect of the Dutch hunger winter. Epigenetic alterations of the insulin growth factor
led to a suite of detrimental health effects in children born during this winter, despite the later prosperity, because

they were exposed to much better food conditions after the winter than where they were prepared for®'.

On the other hand, STMs may reflect and depend on the environmental concentration, potentially constraining
recipient development and fitness and creating cascading effects across generations®?. For example, poor condition
may lead to altered STM composition and decreased STM transfer®. For receivers, poor condition may lead to a
less effective response to STMs, affecting growth (e.g. poor-condition offspring might gain less growth per unit
of nutrition received)®, or mating strategies (e.g. poor-condition females might respond less to fecundity

stimulation from male seminal proteins)®.

Inherent vulnerability of certain types of STMs is another concept relevant to predicting how the effects of
environmental change on STMs will impact fitness and scope for adaptation. For example, hormonal signals in
STMs, are particularly vulnerable due to their deep conservation, pleiotropy, and strong sensitivity to
environmental cues in their production in the donor. In addition, hormones act via well-conserved receptors in
almost all animal species and have a wide array of pleiotropic effects, making the likely impact of global change-
induced modification relatively strong. Well-known cases include environmental disruptors, such as the
feminizing herbicide atrazine*’, which acts on steroid receptors, affecting sexual differentiation and leading to
population declines. Similarly, immune factors that are ratcheted with STMs are also vulnerable to environmental

changes®.

Generalists versus specialists. STMs often require physiological and behavioral specialization, such as offspring
depending on a sole STM source of nutrition for a proportion of their development, which reduces potential for
plasticity. Evolutionary theory predicts that specialists thrive in stable, optimal habitats, while generalists
dominate in homogenized or changing environments (e.g., urban areas)®. Consistent with these predictions,

6667 "and are more likely to

habitat specialists struggle to colonize urban areas to the same degree as generalists
suffer population declines in urban settings®®®. These predictions can be extended to some STMs, and it remains
to be tested whether the specialization associated with STMs also reduces population growth in non-optimal
habitat conditions. Possible population declines and extinction due to an inflexible reliance on specialized STMs

could have dramatic spillover effects in community-level food webs’.

STM systems can also be viewed through the theoretical lens of Indirect Genetic Effects (IGEs), in which genetic
variation in social partners influences an individual's phenotype®®. For instance, in simultaneously hermaphroditic
flatworms, partner genotype affects ejaculate composition and postcopulatory behavior, influencing receiver
traits’”!. Such heritable social influences can constrain or accelerate evolutionary trajectories under the effect of a
changing environment®. In a meta-analysis, trait heritability increased from 0.27 to 0.45 due to the influence of

IGEs"%, indicating higher adaptation capacity to changing conditions. However, if negative IGE covariance in a
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social partner is strong enough, even maladaptive traits can evolve’?, in which case STMs could become an

adaptive burden.
4. Future directions and appropriate study systems

Understanding environmental effects on STMs and the adaptive capacity of species requires studying both plastic
and evolutionary change and their interplay on survival and reproduction. The physiologically different transfers
of genetic material, nutrition, and symbionts vary in adaptive potential due to different levels of STM reliance and
different balances of costs and benefits. Vertical transfers may cause particularly fast change via plasticity, which
can later become genetically assimilated’®. In this section, we advocate a multifaceted approach to disentangle

the ecological and evolutionary processes.

Studying populations of the same species in different conditions is one way to investigate STM plasticity.
Comparisons are valuable between populations affected by recent environmental changes (e.g., pollution, habitat
fragmentation, climate shifts) and those in pre-industrial environments™. Also, invasive species or populations
that have recently undergone range expansions offer contrasts to historical populations for assessing changes in
STMs under a new ecological context®’®, Where feasible, museum specimens can provide historical data for
tracking phenotypic change and STM dynamics over time, for example, via changes in secretory gland

morphology and protein composition”.

Urban ecology is particularly fruitful for studying STMs under multiple stressors like heat, light, pollutants, and
altered diets. It is unknown to what extent these conditions affect STM systems and cause divergence between
urban and rural populations, but since most of humanity already lives in urban conditions, this is an especially
important study direction. Urban-adapted birds, rodents and pet mammals such as cats and dogs are promising
models, and lessen the ethical and practical constraints of studying humans directly’®. It is already known that at
least chemical communication is often altered in cities via shifts in gland morphology”, signal composition®, or
frequency of social contact®!. The same selection pressures are likely affecting STM-producing tissues, signals,

and behaviors.

While STM plasticity alone may lead to short-term adaptation, understanding the underlying genetics is key to
distinguishing it from evolutionary change and long-term adaptation. Although many of the mechanisms that
underpin STM plasticity may be taxon- and context-specific, a search for commonalities in the molecular
composition and evolutionary dynamics of STMs using multi-omics and phylogenetic tools might reveal universal
mechanisms. For example, STMs may harbour protein families that specifically facilitate (or constrain) how
organisms cope with environmental change (e.g. heat-shock proteins like HSP90®?). To further bridge the gap
between plastic and evolutionary outcomes, we should monitor STM-related traits across generations, linking
short-term function to long-term genomic changes. As mentioned in the second section of this paper, research is

also needed on social immunity®* and how STMs facilitate dependency on symbionts343>

, regarding impacts of
temperature or pollutants on nutritional and defensive physiology. Taking such an approach in a multi-

generational context enables bridging of short- and long-term consequences.

Comparative studies of taxa across gradients (e.g., lactation duration, placenta complexity, use of love darts) can
establish dose-response relationships and their consequences in the face of disturbance. Furthermore, some
systems are ripe for paired designs among families, species, or populations with and without an STM, such as

urban birds that feed offspring with crop milk (i.e. pigeons) or do not (i.e. sparrows), viviparous or oviparous
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reptiles®or fish®’, and amphibians that exchange courtship proteins through sensory organs or the skin® in
comparison to related species that do not. Comparative studies of the variation in responses of many species or
clades that have the same STM and are influenced by similar environmental disturbances, for example, pollutants
in eggs, would answer many of our open questions about the evolutionary potential of STMs. It is important to
note that it will be challenging to disentangle the co-evolutionary effects of social dynamics from the direct effects
of the STM, especially in natural populations. To mitigate the confusion, experiments with cross-fostering designs
could be used to quantify the IGE, or STM composition could be manipulated directly with match-mismatch

designs®.
5. Concluding remarks

Given the accelerated pace of environmental change and the extinction risk faced by many taxa®, time is of the
essence to generate knowledge to fill the gaps discussed in this paper. Thus, we must prioritize and innovatively
use existing long-term datasets, short-generation systems, and incorporate underrepresented taxa to maximize
insight before critical natural history knowledge is lost. Given the rapid expansion of methodological and technical
tools in different research fields, it is now possible to integrate and join forces from different fields such as biology,
chemistry, toxicology, medical and veterinary sciences, theorists and others in focused interdisciplinary programs
to address the important societal challenges and take our responsibility to help preserve the planet for future
generations. Ultimately, a better understanding of convergent patterns in STMs’ function across species will allow
us to apply the precautionary principle more broadly, in such key research areas as fertility, nutrition, and exposure
to human-generated chemicals or extreme heat. The aim of these studies is not only to advance knowledge of
STMs but to create actionable knowledge. By illuminating how STMs mediate adaptation, we can inform
conservation strategies and environmental policy in our rapidly changing world, for the benefit of all species,

including our own.
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