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Abstract The Hutchinsonian niche, a pervasive metaphor in ecology, is a sister concept to Sewall 26 

Wright’s adaptive landscape, with a shared focus on fitness.  Characterizing what fitness means (and how 27 

to measure it) is a fundamental conceptual issue in both evolutionary biology and ecology.  After a brief 28 

overview of adaptive landscapes and issues with fitness, this essay contrasts G.E. Hutchinson’s 1978 29 

formalization of the niche as a surface of intrinsic growth rate across environments, with his earlier 1957 30 

formulation focused on population persistence across environments.  The former has come to be a 31 

prevalent usage of “niche” discourse in the ecological and evolutionary literature, but the latter 32 

conceptualization warrants attention, if one for instance wishes to relate niche concepts to species’ 33 

geographical distributions. Conceptualizing a species’ niche as a surface of probabilities of persistence 34 

across environments requires consideration of factors beyond intrinsic growth rate when rare, including 35 

dispersal, demographic stochasticity, and density dependence, among other factors – all elements needed 36 

for the metaphor of the Hutchinsonian niche to fully capture its original meaning as a statement about 37 

what a species requires from its environment in order to persist.  38 
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“Perhaps our ultimate understanding of scientific topics is measured in terms of our ability to generate 50 

metaphorical pictures of what is going on.  Maybe understanding is coming up with metaphorical 51 

pictures.” Bak (1996).  52 

“If I can't picture it, I can't understand it.” — Albert Einstein, attributed to Einstein by physicist John 53 

Archibald Wheeler in Horgan (1991).    54 

 55 

Introduction 56 

 Powerful metaphors, including visual images encapsulating key ideas, are central to scientific 57 

discourse (Bailer-Jones 2002).   Metaphors can have problems (Silvertown 2016), including vagueness, 58 

reification, and the conceptual shackles of hidden assumptions. Nonetheless, metaphors provide 59 

inspiration and facilitate communication among scientists, as well as with the broader public (Olson et al. 60 

2019), and play a crucial role in the construction of scientific theories.   One of the most famous 61 

metaphors in evolutionary biology is the “adaptive landscape” of Sewall Wright (1932). Below, I touch 62 

on subtleties in terminology and usage, but in this essay I use the phrase “adaptive landscape” as an 63 

umbrella term, spanning several inter-related topographic metaphors in evolutionary biology (as do 64 

others, see e.g. Svensson and Calsbeek 2012). This visual metaphor evokes a vivid image of evolution as 65 

being akin to a hill walker (Wright 1959, p. 130) or mountain climber (Lewontin 1963) struggling ever 66 

upwards towards a peak.  When a population has neared that peak, the adaptations of its members reflect 67 

the past action of natural selection culling out traits and genes of lower fitness (Rosales 2017).  This essay 68 

is crafted as a belated response to receipt of the Sewall Wright Award from the American Society of 69 

Naturalists a few years back (received summer 2011), so I start with a short reflection on this enduring 70 

contribution of Wright to our discipline, before moving on to a related, equally pervasive ecological 71 

metaphor – the Hutchinsonian niche.   As is the case for adaptive landscapes in evolutionary biology, the 72 

concept of “niche” is a metaphor (actually, more than one metaphor) that plays a central role in ecological 73 

thinking. The two metaphors are linked by a common concern with “fitness.” 74 
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  I use simple models to make conceptual points, and along the way tie together different strands of 75 

the existing ecological literature, in I hope a novel and useful way. I will extend a cluster of ideas 76 

sketched briefly in Holt (2009a), outlining needed refinements in the Hutchinsonian niche concept, and in 77 

particular an expansion to encompass three missing ingredients: i. an explicit concern with space and 78 

movement; ii. stochasticity (both demographic and environmental); and iii. density dependence (direct, 79 

and indirect), encompassing the combination of that species’ impacts on the environment, and feedbacks 80 

from those effects on the environment onto the species itself.  The evolutionary dimension of the niche 81 

warrants attention, but this essay focuses on ecological issues.  A companion essay (Holt, in prep.) 82 

grapples with intraspecific variation, conservatism and evolution in the niche, a topic squarely at the 83 

interface of ecology and evolutionary biology.   84 

A meditation on Wright’s adaptive landscape, and fitness: A preamble to the Hutchinsonian niche 85 

 Sewall Wright himself (A. Rosales, pers. comm.; e.g., p. 244, Wright 1942) invoked ecological 86 

niches as relevant to evolutionary outcomes, but as best I can discern, he does not explicitly define the 87 

term “niche,” but rather uses it to denote (rather vaguely) ecological “opportunities,” which could 88 

correspond to adaptive peaks in a surface of selective values.  Wright himself seems not to have used the 89 

term “adaptive landscape,” but other authors in the Modern Synthesis came close (and it is common for 90 

writers to refer to “Wright’s adaptive landscape” as if he coined the term; e.g. Wade 2012).  For instance, 91 

George Gaylord Simpson said “Wright … has suggested a figure of speech and a pictorial representation 92 

that graphically portray the relationship between selection, structure, and adaptation. The field of possible 93 

structural variation is pictured as a landscape with hills and valleys…” (p. 89, in the 1984 reprint edition), 94 

and Simpson utilized the notion of “adaptive zones” to interpret evolutionary patterns in the fossil record.  95 

Theodosius Dobzhansky (pp. 26-27, 1970) refers to “adaptive peaks,” “adaptive valleys,” and 96 

“topographic maps” in reference to Wright’s ideas; in a seminal paper, Russ Lande (1976) tied together 97 

the perspectives of Simpson and Wright by focusing on “an adaptive topography for the average 98 

phenotype in a population."   The first explicit usage of the term “adaptive landscape” that I can find is 99 

Lewontin and White (1960), who present “maps” of mean population fitness as a function of mean 100 
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genotype frequency in an Australian grasshopper, and use the term “adaptive landscape” (with the phrase 101 

in quotes, without citations), suggesting this may indeed be the mutational event creating this minor 102 

cultural meme. 103 

 Natural selection may not always move populations towards higher average fitness (due to 104 

frequency dependence, multi-locus effects, etc.), but as Charlesworth and Charlesworth (2012, p. 63) 105 

remark, the adaptive landscape metaphor nonetheless “… provides a useful way of visualizing the action 106 

of selection in complicated situations.”  The metaphor has enduring value well beyond Wright’s own 107 

focus on his shifting balance theory.  As many authors have noted (e.g., Gavrilets 2004; Dietrich and 108 

Skipper 2012 and others in Svensson and Calsbeek 2012), the adaptive landscape metaphor arises in 109 

various renditions and terms (e.g., “surfaces of selective value,” Wright 1988; “fitness landscapes” 110 

Gavrilets 2004; as well as “adaptive landscapes,” e.g., Vincent and Brown 2005).  Sometimes an adaptive 111 

landscape portrays the fitnesses of each of a set of individual genotypes or phenotypes (e.g. the “holey” 112 

fitness landscapes of Gavrilets 2004). Wright himself referred to “surfaces of selective value” (Wright 113 

1988), which are fitnesses of individual genotypes, in an abstract space of genotypic possibilities.  114 

Populations have heritable variation in fitness, and so are represented as discs of varying sizes 115 

superimposed on this landscape (fig. 4 in Wright 1932). Sometimes, the landscape describes mean 116 

population fitness, as a function of gene frequency or mean phenotype in a population (Lande 1976; Fear 117 

and Price 1998; Arnold et al. 2001; Svensson and Calsbeek 2012; Hendry 2017).  Indeed, Dan Bolnick 118 

(pers. comm.) suggests that current usage is largely for the term “fitness landscape” to refer to fitnesses of 119 

individuals (with a given phenotype and genotype), and “adaptive landscape” instead to denote population 120 

mean fitness as a function of mean phenotypes or gene frequencies. Despite such heterogeneity in 121 

meaning, and skepticism from some as to the utility or conceptual coherence of the term at all (e.g., 122 

Kaplan 2008; Pigliucci 2012), references to adaptive landscapes in one flavor or another pervade the 123 

current literature of evolutionary biology.  Representative recent examples include Dickson and Pierce 124 

(2019), Voje (2020), and Anderson et al. (2021} (see Fragata et al. 2019 for a review).  For instance, 125 

Brady et al. (2019a) added causal arrows to a figure of an adaptive landscape to creatively characterize 126 
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different ways maladaptation might arise; Childs et al. (2004) constructed fitness landscapes for flowering 127 

time in a stochastic environment; Lawrence et al. (2019) drew on adaptive landscape imagery to interpret 128 

protective coloration in poison frogs; and, Kokko et al. (2017) reflect on how ecological and genetic 129 

complexities challenge simplistic views of adaptation as simply hill-climbing.   All these authors find the 130 

adaptive landscape metaphor to have continuing value as a conceptual “hook” for their studies, providing 131 

a way to help shape theory development and to communicate complex and subtle ideas.  As Skipper and 132 

Dietrich (2012) remark, the adaptive landscape is a robust heuristic in evolutionary theory.  133 

 Gavrilets (2004) perceptively notes that the fitness landscape describing the relationship of 134 

individual phenotype or genotype to fitness is more fundamental than that relating mean population 135 

fitness to mean phenotypic or genotypic state, for the former is required to derive the latter.  Dan Bolnick 136 

has remarked to me, “Practically, we pretty much only ever empirically measure fitness landscapes, not 137 

adaptive landscapes.” Evolutionary biologists typically focus on relative fitness, which drives changes in 138 

frequency of alternative alleles in selection (e.g., Orr 2009; Bertram and Masel 2019). Ecologists by 139 

contrast traffic in absolute fitness (Brady et al. 2019b).   Even if selection is frequency-independent, 140 

because relative fitness of a given allele is measured as its absolute fitness in comparison to mean fitness 141 

in its population, relative fitness depends upon allele frequency (Orr 2007). The most straightforward 142 

rendition of fitness surfaces is absolute fitness or components of fitness of individuals (e.g., viability from 143 

birth to reproduction in a discrete generation model where individuals vary only in survival) as a function 144 

of their genotype or phenotype.  145 

 The metaphor of an adaptive landscape thus rests on a somewhat subtle (even slippery) concept – 146 

fitness (Wade 2012).   English usage of the word “fit” broadly denotes either of two things: the aptness of 147 

an object or person for a particular role or task (e.g., the fit of a key to a lock), and the vigor or health of 148 

an individual (e.g., the fitness of a star athlete). There has been a long debate among biologists and 149 

philosophers about what the term “fitness” in an evolutionary context means and how it should be 150 

measured (e.g., Sober 2001; Ramsey and Pence 2013; Pence and Ramsey 2015), and the word has been 151 

used in biology in many ways, and quantified variously (Brommer 2000; Roff 2008). Dawkins (1982) in a 152 
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chapter titled “An Agony in Five Fits” identified five distinct usages of “fitness”  --and he would prefer to 153 

avoid the term “fitness” entirely.    154 

 Ultimately, the dynamics addressed by ecological and evolutionary theory rest on patterns of 155 

individual births and deaths across time and space (and changes in state in individuals between those 156 

events) for lineages of ancestors and their descendants, where those births and deaths (and state changes) 157 

are causally related to both the traits of organisms (and thus the genotypes that underly those traits), and 158 

their environments.  A fitness metric provides a convenient shorthand of this complex nexus of causes, an 159 

emergent property, aggregate cause, or accounting summary of the flux of demographic events that drives 160 

both ecology and evolution, taking into accounts factors such as density and frequency dependence 161 

(Doebeli et al. 2017; Coulson et al. preprint ).  Characterizing what metric is appropriate, however, can be 162 

subtle. As Crewe et al. (2018) state, “The technical definitions of reproductive value and fitness, with all 163 

their apparatus, are complicated.”  Indeed. 164 

 There have been long-standing debates about which combination of births and deaths provides 165 

the best fitness metric for understanding evolution; for instance, is it the intrinsic growth rate r, or lifetime 166 

reproductive success R (Pásztor et al. 1996; Metcalf and Pavard 2007; Roff 2008)?  The two metrics can 167 

give different results about the expected outcome of selection.  It is simplest to characterize fitness for 168 

clonal organisms, where in the absence of mutation genotypes move as a package across generations, but 169 

even here there are subtleties.   The “phenotypic gambit” (Grafen 1984) in behavioral ecology and 170 

adaptive dynamics basically assumes that phenotypes are transmitted faithfully across generations (as is 171 

expected with asexual reproduction); with sex and recombination, however, the “environment” of a given 172 

allele or other heritable unit includes a shifting genetic environment, and so the realized fitness of any 173 

allele has to account for the effects of this genetic milieu, and the genotype-to-phenotype mapping.  174 

Rousset (2004, p. xvi) states that fitness is “the expected number of adult offspring of an adult” and Rice 175 

(2004, p. 6) comparably remarks “… fitness [is] the reproductive contribution of an individual to the next 176 

generation.”  These are starting points, but not the end of the story (how does one define “adult,” for 177 

instance?).  In populations with continuous, overlapping generations, Ronald Fisher (1930) considered 178 



8 
 

fitness to be the Malthusian growth parameter (r), a population parameter, calculated from individuals’ 179 

birth and death schedules (as well as reproductive values, which are population-level attributes, 180 

Charlesworth 1980, 1994; Grafen 2015).  Current thinking (Metz et al. 1992; Metz 2014) has identified a 181 

general fitness metric called “invasion fitness.”  This is a generalization of exponential growth or decline, 182 

a dominant Lyapunov exponent, for example that of an ergodic multiplicative sequence of transition 183 

matrices describing population growth as time gets large, for a clone introduced at trace numbers into a 184 

persistent ancestral population (which implies the ancestor has an average long-term growth rate of zero).  185 

Sometimes this abstract quantity matches up with either the intrinsic growth rate, r, or lifetime 186 

reproductive success, R, depending upon assumptions made about density dependence and the magnitude 187 

of environmental fluctuations (Engen and Saether 2016). However, in many realistic scenarios (e.g., with 188 

temporally fluctuating environments, or with stage and/or spatial structure) these familiar proxies for 189 

fitness are inadequate for identifying those strategies that will be evolutionarily and convergently stable 190 

strategies (Orzack 1993; Metz 2014; Lion and Metz 2018).  191 

 Maynard Smith (1989, p. 38) remarks that ascribing fitness to individuals is not quite right 192 

"Fitness is a property, not of an individual, but of a class of individuals—for example of individuals 193 

homozygous for allele A at a particular locus. Thus the phrase ’expected number of offspring’ means the 194 

average number, not the number produced by some one individual. If the first human infant with a gene 195 

for levitation were struck by lightning in its pram, this would not prove the new genotype to have low 196 

fitness, but only that the particular child was unlucky.”  The “class” that is most relevant, I suggest, is not 197 

any old class, but that comprised of lineages emerging from the successive ancestor-descendent 198 

relationships of individuals or heritable units (individual A begets individual B, who begets C, etc., or 199 

replicator A copies itself to A′,  A′′ etc.; Akcay and Van Cleve 2015, Queller 2020). The term “lineage 200 

selection” was first coined in the context of levels-of-selection issues (Nunney 1999), but a perspective on 201 

lineages (rather than solely individual organisms) pertains more broadly and indeed critically, I think, 202 

particularly when considering population dynamics and evolution in more complex environments.  (One 203 

realistic complication that I  mention, just to put aside, is that the trait may not be a fixed attribute such as 204 
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a given body size, but a suite of trait values across environments – norms of reaction, expressions of 205 

phenotypic plasticity. These terms pertain to lineages experiencing a range of environmental settings, not 206 

a single individual in its own singular environment.)  The structure of environmental variability 207 

influences the outcome of selection in heterogeneous environments, and in particular average 208 

reproductive success can fail as a fitness metric (Frank 2011).  When there is variability in birth and death 209 

rates, over space, or through time, or as a function of social and genetic context, genealogical perspectives 210 

are required to make accurate evolutionary predictions (Graves and Weinreich 2017).  211 

 In any case, the basic idea underlying the adaptive landscape metaphor is that there is a mapping 212 

of evolutionary possibilities (lineages of alternative phenotypes or genotypes among which selection can 213 

draw) onto a fitness metric – for a given (and usually unspecified) environment. The shape of the adaptive 214 

landscape will often differ among fitness metrics, and considering how these shapes differ (e.g., in the 215 

position of optimal phenotypes) can help one perceive the different evolutionary implications of 216 

alternative metrics.   217 

 The evolutionary metaphor of the adaptive landscape, I suggest, is sister to a principal usage of 218 

the word ”niche” in ecology – with the twist that rather than expressing fitness as a function of 219 

genotype/phenotype, for a given environment, the Hutchinsonian niche is a fitness metric for a given 220 

genotype/phenotype (or lineage), as a function of environmental states (very broadly conceived). This 221 

function can often (but not always) be pictured visually as a landscape.   It is not widely recognized (Mark 222 

McPeek, pers. comm.), but this Hutchinsonian niche concept (Holt 2009a) is at base the ecological 223 

counterpart to fitness surfaces or adaptive landscapes in evolutionary biology – maybe two sides of the 224 

same coin.  Or, in a nod to the landscape metaphor, maybe they can be viewed as two complementary 225 

views of a unified fitness surface landscape (see fig. 3.13 in McPeek 2017).   As we will see, issues about 226 

the choice of metrics of fitness, and the need to consider lineages rather than just individuals, pertain to 227 

niche concepts.  One arena where the two metaphors diverge is that ecologists are concerned with 228 

persistence and extinction, which as we will see may involve considerations other than those that arise 229 

when considering the fitnesses that drive selection. 230 
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An ecological metaphor based on fitness – the Hutchinson niche 231 

 Many authors have provided excellent discussions of the history of the niche concept (or 232 

concepts) in ecology (e.g., Whittaker and Levin, 1975; Hurlbert 1981; Schoener 1989; Chase and Leibold 233 

2003; Pedruski et al. 2016; Sales et al. 2021).  My emphasis here is on its connection with demography.  234 

The original English meaning of the word “niche” denotes a concrete place, such as the cavity in a church 235 

wall where the statue of a saint resides.  Elton (p. 64, 1927) made the word “place” more abstract and 236 

referred to niches as the “place in the community” of a species, like the role of a vicar in an English 237 

village.  This sense lives on robustly in ecological discourse.  As two examples among many that could be 238 

cited, Barraclough (p. 2, 2019) remarks that the causes of speciation include “… the availability of new 239 

ecological niches,” and Gauzere et al. (2020) suggest that there are many vacant niches for tree species in 240 

central European forests.  So, Elton’s meaning of “niche” persists. 241 

 When a statue fills its niche, it preempts a space where another statue might instead reside.  This 242 

is a form of “impact” of that first statue on its world.   Understanding impacts of species on their 243 

environments (broadly defined) (Leibold 1995; Chase and Leibold 2003), and how those impacts in turn 244 

feed back onto the species themselves, is essential for understanding population regulation and species 245 

coexistence in interacting webs (Meszéna et al. 2006).  Whittaker et al. (1973) suggested the word 246 

“niche” should refer just to the interactions of a species with other members of its local community, with 247 

“habitat” denoting its dependence on non-interactive environmental conditions (e.g., temperature), for 248 

instance influencing its geographical distributions.  (These authors also suggested “ecotope” as a term 249 

encompassing both “niche + habitat”; the word is rarely used this way, and has acquired another distinct 250 

meaning in landscape ecology.)  Hutchinson’s own use of the word “niche” was in the context of 251 

community structure (competitive exclusion, species packing, etc.), but contemporary references to 252 

species’ niches pervade discourse as well about the causes of species’ geographical ranges over broad 253 

areas (e.g., Peterson et al. 2011), not just local community interactions.  254 

 Hutchinson (1957) re-cast usage of the term “niche” to provide a compact language for 255 

encapsulating what a species requires in the world in order to persist.  He stated (p. 416) that the 256 
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fundamental niche of a species is that suite of environmental states in which “every point … corresponds 257 

to a state of the environment that would permit the species … to exist indefinitely” (one presumes without 258 

recurrent immigration from external sources).  His original rendition of this concept was set-theoretic (the 259 

famed “n-dimensional hypervolume”, Blonder 2018; Blonder et al. 2018).   Later, he linked his niche 260 

concept to the most basic concept of population ecology – exponential population growth or decline 261 

(Hutchinson 1978).  Hutchinson (p. 194, 1978) envisaged that one could plot per capita birth and death 262 

rates b(E) and d(E) for a species with continuously overlapping generations as a function of a suite of 263 

environmental attributes (a vector, E, with elements such as e.g., mean daily temperature, pH, and 264 

predator abundance).  Relevant environmental features in general include not just abiotic variables such 265 

as temperature, but also the abundance and trait values of interacting species, including the abundance 266 

and trait composition of the species itself.   However, for many purposes, one focuses on a focal species 267 

when it is rare and density dependence is ignored.   “Rarity” for example is assumed when analyzing 268 

invasibility in community ecology (McPeek 2017); the Hutchinsonian niche in its 1978 formulation is 269 

thus a visual map of invasibility.  For the moment, we ignore realistic complications such as age and stage 270 

structure, spatial location, and the discreteness of individuals, and assume a constant environment over 271 

the time scales in question.   272 

 An abstract example is shown in figure 1.  Demographic rates are functions of two environmental 273 

variables (these plots are “demographic response functions,” sensu Pulliam 2000).  Birth rates are a 274 

Gaussian bulging out of the page (fig. 1, left), whereas death rates are a parabola, sinking into the page 275 

(fig. 1, right) (light tones indicate “better,” i.e., higher births, or lower deaths).  The optimal environment 276 

for births differs from that for deaths.  Stage-specific vital rates such as survival, fecundity, growth, and 277 

germination often do have distinct patterns of variation in response to environmental variation in space or 278 

time (Villellas et al. 2015; Pironen et al. 2018; Andrello et al. 2020), so discrepancies in which 279 

environments are optimal for different vital rates are likely quite general.  280 
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 The difference between these two demographic rates, evaluated at low densities in a constant, 281 

closed environment, leads to the core model of population ecology, namely density-independent 282 

exponential growth,  283 

  ( )
dN

r E N
dt

 , where  284 

  ( ) ( ) ( )r E b E d E           (1) 285 

where r is the intrinsic per capita rate of growth, and as before E is a vector of factors in the environment 286 

(very broadly conceived).  As noted above with respect to “fitness” in evolutionary biology, these 287 

demographic rates are population attributes describing a lineage, not really properties of individuals.  288 

Expressed graphically against components of E (see fig. 2, left), equation (1) defines a niche response 289 

surface (e.g., fig. 12-4 in Hutchinson 1978, based on Maguire 1973) – which, metaphorically, is a 290 

landscape.  (Some authors, such as Pásztor et al. 2016, avoid use of the word “niche” in this way, and 291 

instead refer simply to a species growth potential.  I think current usage for now (but see Discussion) 292 

favors continued use of Hutchinson’s term.)  The exponential model for population growth provides the 293 

foundation upon which almost the entire elaborate edifice of theoretical ecology rests (Case 2000; Pásztor 294 

et al. 2016), if E is interpreted appropriately, with equations for the dynamics of each interacting species 295 

and for the abiotic components of ecosystems.   296 

 There is growing emphasis on this demographic perspective on species’ niches in analyses of 297 

geographic ranges (Schurr et al. 2012).  Almost always, the fitness metric used to characterize niche 298 

response surfaces is the instantaneous growth rate (eq. [1]) (e.g., Peterson et al. 2011, p. 27; representative 299 

citations include Merow et al. 2014; Greiser et al. 2020; Pagel et al. 2020; Treurnicht et al. 2020).  The 300 

shape of the niche surface defined by equation (1) matters (see below), but in practice the focus has often 301 

been on the boundary subset of E where  302 

  r(E) = 0.          (2) 303 

This expression cleaves the world into two domains – those where a species should go extinct (r(E) < 0), 304 

and those where it might persist, deterministically (r(E) > 0).  Expressed graphically, with E described by 305 
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continuous Cartesian axes, in simple cases this is a bounded, compact set demarcating the set envisaged in 306 

Hutchinson (1957) (e.g., the oval describing the niche boundary in fig. 2, left).  In more complex cases 307 

this simple geometric representation breaks down (e.g., in strongly seasonal environments, Soberón and 308 

Peterson 2020), reminiscent of the inadequacy of simple shapes for adaptive landscapes when considering 309 

complex genotype-to-fitness mappings (e.g., the ”holey” landscape of Gavrilets 2004).  310 

 The shape of the niche response surface, away from the niche boundary defined by (2), matters, 311 

not just that boundary.  Sax et al. (2013), for instance, coin the term “tolerance niche” to denote 312 

environments in which populations are not self-sustaining, but individuals can survive for some period, 313 

and possibly reproduce to some degree.  This might describe habitats with sink populations maintained by 314 

recurrent immigration (Holt 1985; Pulliam 2000; Keddy 1982; Loreau et al. 2013). The more gradual 315 

decline is in the sink, the more abundant is the population sustained there by immigration (Holt 1993).   316 

Within the niche boundary given by equation (2), niche shape and optima are important, for instance to 317 

tackle applied problems such as the effective control of invasive species.  Near equilibrium, the shape of 318 

the niche response surface determines how sensitive population growth rate is to small environmental 319 

perturbations; such sensitivities enter into the environmental feedbacks that govern species coexistence 320 

(Meszéna et al. 2006), and determine how species respond to temporal environmental variation.  321 

Feedbacks also help determine equilibrial or average abundances, given persistence.  Below I touch on 322 

this feedback aspect of the niche, but for now put it aside. 323 

 The emphasis on assessing demographic performance at low densities reflects the fact that 324 

Hutchinson viewed the niche as a summary of what a species needs to “indefinitely persist,” which means 325 

one focuses primarily on episodes when that species is pushed to low numbers, and then asks if it can 326 

increase and therefore persist.  If a population is abundant, one assumes that over the short run, one need 327 

not worry about extinction – so the emphasis is on when it is rare. To a first approximation, characterizing 328 

the niche thusly describes conditions for invasibility of a community (ability to increase when rare), a 329 

central focus of community assembly and coexistence theory (McPeek 2017; HilleRis Lambers et al. 330 

2012; the “invasion criterion” of Grainger et al. 2019).   The protocol of describing the niche of a species 331 
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as a surface of intrinsic growth rates across environments informs analyses of geographic range limits 332 

(e.g., Soberón 2010; Peterson et al. 2011; Eckhart, et al. 2011) and of the relationship of functional traits 333 

to community assembly (Laughlin et al. 2020; Treurnicht et al. 2020). A focus on demography is 334 

increasingly recognized as being essential for understanding the dynamics and limits of species’ 335 

geographical ranges (Eckhart et al. 2011; Normand et al. 2014). Niche discourse focused on the 336 

environmental dependencies of the intrinsic growth rate provides a crisp way of talking about these 337 

issues.  338 

 Quantifying the Hutchinsonian niche in practice is challenging, because one has to measure 339 

growth rates across a range of environmental conditions. Though difficult (Holt 2009a; Laughlin et al. 340 

2020), there are a growing number of examples quantifying demographic variables across geographical 341 

ranges both observationally (e.g. Treurnicht et al. 2016) and using experimental approaches such as 342 

transplants or lab measurements.  Hooper et al. (2008) provide an excellent example of experimental 343 

quantification of key niche dimensions for Daphnia magna in Yorkshire, England.   They brought a clone 344 

of this daphnid into the lab, initiated populations at low densities, and measured intrinsic growth rate as a 345 

function of two key abiotic variables of this zooplankter’s niche – pH (important for osmotic balance of 346 

all aquatic organisms), and Ca2+ concentration (calcium is needed by crustaceans for their exoskeleton, 347 

shed frequently during development).  They then compared the niche response surface of these lab 348 

populations to observed presences and absences across the permanent waterbodies of Yorkshire.  Almost 349 

invariably, where the niche response surface predicted r < 0 for the observed chemistry of a waterbody, 350 

the zooplankter was absent.   This illustrates how understanding a species’ Hutchinsonian niche can be 351 

used to interpret distributional patterns.  352 

 Some authors have argued that the Hutchinsonian niche concept is so ambiguous and difficult to 353 

nail down that the term “niche” should be abandoned entirely (McInerny and Etienne 2012a; Angilletta et 354 

al. 2019).  As with the adaptive landscape in evolutionary biology, one practical and conceptual challenge 355 

is that metrics of absolute fitness are aggregate properties of births and deaths within lineages. The actual 356 

causes of population change are individual births and deaths occurring in the different physical, biotic, 357 
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and genetic environments of those individuals (Doebeli et al. 2017), as well changes in states (including 358 

spatial location) between these events, averaged in some apt fashion across the environments experienced 359 

by a lineage.  This problem of accounting for heterogeneity in defining the niche for a lineage matches the 360 

conceptual problem noted above for adaptive landscapes (does the niche pertain to individuals, or instead 361 

to lineages?). The next section suggests one formal approach to constructing an appropriate average, 362 

accounting for the fact that different members of a lineage likely live in different places and so experience 363 

somewhat different environments.  Another important issue, which I will not focus on here, is that within 364 

local populations and species there is likely heritable variation in niche properties, however the niche is 365 

defined.  If that were not the case, then species would not evolve in their niches, and yet adaptive 366 

radiations show clearly that they do.   In a companion essay (Holt in prep.), I will dwell on issues of 367 

intraspecific genetic variation in niches, and issues of niche conservatism and evolution, but here, I focus 368 

on conceptual issues that arise even for characterizing what counts as the “niche” of a single genetic 369 

clone. 370 

Weaving dispersal into the Hutchinsonian niche  371 

 Expositions of the Hutchinsonian niche typically focus on the intrinsic per capita growth rate r, 372 

with no reference whatsoever to movement.  For instance, in their fine monograph relating ecological 373 

niches to geographical distributions, Peterson et al. (2011, pp. 27-28) divide a geographical region 374 

occupied by a species into a spatially explicit grid of contiguous cells. Within each cell, one determines 375 

the local intrinsic growth rate; if positive, that cell is deemed to have an environment within that species’ 376 

niche.  Local dynamics can then be modified by movement among grid cells.  This can be a useful 377 

approximation but is also in some ways misleading.  Movement is essential to life at all scales (Nathan et 378 

al. 2008; Holt 2009b).  Environments for most organisms are spatially heterogeneous.  As Hutchinson 379 

(1959) remarked “… [one must consider] the mosaic nature of the environment. Except perhaps in open 380 

water when only uniform quasi- horizontal surfaces are considered, every area colonized by organisms 381 

has some local diversity [in habitat conditions] .”  He remarks that how heterogeneity is experienced by 382 

an organism depends on its body size.  It also (not explicitly noted by Hutchinson) depends upon how 383 
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movement strategies filter the available environmental heterogeneity to define the actual, experienced 384 

environment of an organism even at small spatial scales.  In general, biologists are better at measuring the 385 

traits of organisms than identifying and measuring the relevant feature of those organism’s environments.  386 

As Levins (1979) noted, organisms “determine by their movements and physiological activity the 387 

effective statistical pattern of environment.”   388 

 This observation pertains at all spatial scales. There is substantial variability in environmental 389 

conditions over short distances (e.g. 1 m2 or less for plants in terrestrial systems), and variance in 390 

conditions grows with spatial scale (Lechowicz and Bell 1991; Bell et al. 1993; Richard et al. 2000).   391 

Microscale heterogeneity is experienced by almost all organisms, including rainforest denizens (Scheffers 392 

et al. 2017), soil taxa (Nunan et al. 2020), and bacteria in the open ocean (Stocker and Seymour 2012).  393 

Landscape heterogeneity can influence where species’ range limits occur (Oldfather et al. 2019), and 394 

within species’ ranges, there is substantial variability among sites in local densities, even at fine spatial 395 

resolutions, suggesting the impact of local heterogeneity in conditions (Holt et al. 2002). To characterize 396 

the Hutchinsonian niche across spatial scales, we need to focus on invasibility at each scale and take into 397 

account movements at each scale that govern how organisms bias their experience of their local 398 

environments. A formalism providing insights into scale dependence in the Hutchinson niche as 399 

modulated by movement is “scale transition theory” (e.g., Snyder and Chesson 2004; Chesson et al. 2005; 400 

Roy et al. 2005), described by Chesson (p. 52, 2012) as follows: 401 

 “Scale transition theory is an approach to understanding population and community dynamics in 402 

the presence of spatial or temporal variation in environmental factors or population densities. It focuses 403 

on changes in the equations for population dynamics as the scale enlarges. These changes are explained in 404 

terms of interactions between nonlinearities and variation on lower scales, and they predict the 405 

emergence of new properties on larger scales that are not predicted by lower scale dynamics in the 406 

absence of variation on lower scales.”  407 

 How can scale transition theory inform the ecological niche concept, across spatial scales?  408 

Godsoe et al. (2017) suggest the following protocol.  Consider a large, spatially closed continuous area, 409 
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subdivided into a grid of n contiguous cells, among which individuals disperse (this procedure could also 410 

be carried out within each cell, leading to a hierarchy of nested cells; we will not explore this elaboration 411 

here).  There is spatial heterogeneity, so birth and/or death rates vary among cells.  Local population 412 

growth within grid cell k (k = 1, … , n), with environment Ek is  (net local growth) + (inflow, Ik) – 413 

(outflow, Ok), or 414 

 ( )k
k k k k k

dN
r E N I O

dt
   .            (3) 415 

What are the regional dynamics of the entire population?  If we assume dispersal among cells comes 416 

without cost (i.e., no death during movement; Kortessis and Holt (ms.) refine this formalism to 417 

encompass such costs), we can simply add up (3) over all localities; inputs and outputs cancel out.  Using 418 

standard definitions of means and covariances leads to 419 

 ( cov( , )) s
d N

rN r r v N r N
dt

    .        (4) 420 

Here r  is the spatial average intrinsic growth of the species (the average is over cells), ν is the fraction of 421 

the total population found in each locality, and cov( , )r v  is the covariance between local r and that 422 

fraction.  The quantity 423 

 ( , ) cov( ( ), )sr E v r r E v            (5) 424 

is the instantaneous growth rate of the population at the landscape scale, where E is a vector of local 425 

environmental conditions (which can vary among cells across the grid).   426 

 The spatial average growth rate suffices to characterize the Hutchinsonian niche if the covariance 427 

term is near zero.  This occurs given i) negligible spatial heterogeneity in growth rates, ii) rapid, uniform 428 

movement across the landscape, homogenizing the spatial distribution of individuals, or iii) spatial 429 

variation in abundance arising for reasons uncorrelated with spatial variance in local growth rates.  But 430 

often, none of these hold.  Even if the spatially averaged growth rate across the landscape is negative, the 431 

population as a whole may nonetheless grow if the covariance term is positive and sufficiently large. So, 432 
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at a broad scale, the landscape is within that species’ Hutchinsonian niche.  This can happen with passive 433 

dispersal (see below), and is enhanced with active, adaptive habitat selection, where individuals 434 

preferentially seek out sites with higher expected fitness (Schmidt 2004; Schmidt and Massol 2019).   435 

Conversely, the covariance term may be sufficiently negative that, even with a positive spatial average 436 

growth rate, the species fails to persist.  In a constant environment, if all growth rates are negative, the the 437 

overall growth rate will still be negative; the covariance term matters given spatial heterogeneity, if 438 

growth is positive in some local sites and negative at others, as might be expected near range margins 439 

(Godsoe et al. 2017). In temporally varying environments, however, the overall growth rate can be 440 

positive, even if the average local growth rate is negative (Roy et al. 2005; and see below). 441 

 Expression (5) does not completely characterize a niche response service, because ν is not yet 442 

determined.   In some cases, there is a “preferred” value for ν.  In equation (3), let the birth and death rate 443 

at each location be constant, i.e., no density dependence or temporal variation, and also assume per capita 444 

movement rates are density-independent; “output” and “input” are then linear functions of local densities.  445 

The dynamics now match a system of linear ordinary differential equations, 446 

 
d N

AN
dt


 

           (6) 447 

where N


 is a vector of local densities, and A is a square matrix.  The diagonal elements of A are per 448 

capita (local growth – emigration) rates, and the off-diagonal elements are immigration rates (Ajk is the 449 

per capita movement rate out of j into k).  In a temporally constant environment, the population eventually 450 

settles into a stable stage (= among-location) distribution (Caswell 2006), growing at a rate determined by 451 

the dominant eigenvalue of A.  The stable habitat distribution is the right eigenvector of A.  If this 452 

eigenvector is substituted for ν in expression (5), we have a compact (if schematic) expression for the 453 

long-term growth rate of the species across a landscape.   In graphical depictions of the niche, niche axes 454 

should in some fashion capture spatial variation in local growth rates, and the emergent imprint of 455 

covariation of local abundances with local growth rates.  Because of the covariance term, rates and pattern 456 
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of dispersal are implicitly embedded in the absolute fitness of a lineage across the environments it 457 

encounters, and so can influence the shape of the overall niche response surface.    458 

 After a species invades, there will often be a transient phase during which its realized growth rate 459 

changes, because the population has not yet reached its stable stage (spatial) distribution.  After this 460 

transient phase, with random, non-directional dispersal, more individuals will occur in local sites with 461 

higher growth rates.  This implies positive covariance between local abundance and local growth, so the 462 

regional growth rate may be positive, even though the spatially averaged local growth rate is negative, 463 

and even if the initial rate of decline happened to be negative (because the species was not yet in its stable 464 

stage distribution).  In a temporally constant environment, this requires that some sites have a positive 465 

local growth rate (below, we touch on temporally variable environments, in which a species may persist 466 

in a landscape even if its long-term growth rate in each site is negative.) Figure 3 shows a simple example 467 

for two habitats with different intrinsic growth rates.  At high movement rates, the population 468 

asymptotically experiences the spatial average growth rate (which is negative).  At lower movement, 469 

relatively more individuals occupy the better habitat, and growth is positive. If individuals directionally 470 

disperse towards or stay in microenvironments with higher growth rates (Schmidt 2004; Schmidt and 471 

Massol 2019; Resetarits et al. 2019, Matthiapolous 2021), this further facilitates persistence in spatially 472 

variable environments.  Thus, local patterns of movement are woven into the emergent birth and death 473 

rates that determine persistence. 474 

 Asymmetric dispersal can generate negative covariances between local growth rates and local 475 

density.  Keddy (1982) described a clear example of such a negative covariance for the sea rocket Cakile 476 

edentula in Nova Scotia sand dunes.  The sea rocket is denser mid-dune than seaward.  One might 477 

surmise that growth rates are higher mid-dune, but Keddy showed the instantaneous growth rate is 478 

actually negative there across all densities.   By contrast, growth rates were positive near the sea.  This 479 

puzzling spatial pattern arises because a persistent wind from the ocean strips seeds near the beach, 480 

lowering density there, and deposits them inland in the dune, boosting abundance there.  This generates a 481 
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negative spatial covariance between local growth rate and local density. An increase in average wind 482 

speed might cause extinction, because of an aggravated mismatch of local abundance and growth rates.    483 

 Therefore, given spatial heterogeneity in environmental conditions, understanding the “indefinite 484 

persistence” of a species at any given spatial scale (Hutchinson 1957) requires paying close attention to 485 

patterns and rates of movement at finer scales of spatial resolution, not just spatial average birth and death 486 

rates. The scale transition expression (5) does not fully capture all the ways movement influences niches. 487 

In the future, the formalism should account for the demographic costs of movement (Kortessis and Holt 488 

ms.).  Moreover, many lifestyles mandate shuttling among habitats, because of seasonal variation (e.g., 489 

migratory species, Holt and Fryxell 2011) or complex life histories where different stages use different 490 

habitats (e.g., McCoy et al. 2009), or because of local extinctions mandating recurrent colonization for 491 

persistence in a metapopulation context (Hanski 1999); this dependence of persistence on movement 492 

strategies was dubbed “stitching the niche” in Holt (2009a). [McInerny and Etienner 2012b use the phrase 493 

“stitch the niche” differently, to exhort the reader to ponder how they use the term “niche,” and then “fix 494 

it up.”] Matthiapolous (2021) has recently also argued that movement in heterogeneous environments can 495 

alter the shape of the fundamental niche, and used this to inform interpretation of the spatial distribution 496 

of the house sparrow. The bottom line is that the patterns and fitness consequences of dispersal at lower 497 

spatial scales implicitly enter into determining the shape and boundary of the niche response surface at a 498 

higher spatial scale.  Movement ecology (Nathan et al. 2008) should be woven more fully into the 499 

ecological niche concept than it is at present. Whether or not this suggestion, when fully developed, 500 

permits simple visual renditions of niche surfaces (the landscape niche metaphor) remains to be 501 

determined. 502 

The ecological niche as a surface of persistence probability across environments  503 

 Now, I return to the most basic equation in ecology (exponential growth, eq. [1]) and point out a 504 

subtlety in how one relates demography to species’ niches, pertinent to our meditation on Hutchinson’s 505 

(1957) view of the niche as those environments “permitting persistence.”  I have briefly touched on the 506 

debate in evolutionary biology about alternative fitness metrics.  Likewise, one can use the vital rates of 507 
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births and death in different ways than usual to characterize niches.  Above (as is typical in ecology and 508 

biogeography, e.g. Hooper et al. 2008; Soberon 2010), the intrinsic growth rate r = b - d was the measure 509 

of absolute fitness used to define a niche response surface (e.g., fig. 2a).  Yet, this same simple population 510 

model (1) has another measure of absolute fitness, which can imply niche response surfaces differing 511 

substantially in shape, and which may better characterize persistence across environments.   512 

 Given the assumptions of model (1) for exponential growth or decline, an individual is expected 513 

to live 1/d time units, during which it reproduces at rate b.  So the total expected number of offspring per 514 

individual over its lifetime (which in behavioral ecology is called lifetime reproductive success, and in 515 

epidemiology, the basic reproductive ratio), is 516 

 
( )

( )
( )

b E
R E

d E
 .           (7) 517 

A simple graphical way to envisage the relationship between r and R away from equilibrium is shown in 518 

figure 4, where two complementary families of our two fitness metrics (r and R) describing exponential 519 

population growth or decline are plotted in a parameter space of birth and death rates (assumed constant).  520 

The family of lines comprised of parallel lines with slope 1 correspond to different values of the intrinsic 521 

growth rate r = b – d.  The family of lines radiating from the origin correspond to values of the alternative 522 

fitness metric, R = b/d, with slopes 1/d.   The only members of these two families of lines coinciding are r 523 

= 0, and R = 1 (when a population is in equilibrium, deterministically).  For any r ≠ 0 or R ≠ 1 (i.e., away 524 

from equilibrium), for any value of one metric there are an infinite number of alternative values of the 525 

other metric.  Below, we argue that for a given r, extinction risk is higher in the direction shown by the 526 

arrow, where high values of b go along with high values of d, because for a given r, these vital rate 527 

combinations imply a lower R.   528 

 For now, we focus on the different niche response surfaces implied by this alternative fitness 529 

metric. One can construct a niche response surface using R instead of r.   This has no effect on the 530 

deterministic conditions for persistence versus extinction, because r > 0   R > 1, and r < 0   R < 1. So 531 

the set of environments allowing “indefinite persistence” might be expected to be the same. But the 532 
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overall shape of the niche response surface for populations away from equilibrium can differ sharply 533 

between the two fitness metrics, because the two metrics depend upon births and deaths in different ways.  534 

Figure 2 juxtaposes these alternative niche response surfaces, for the abstract demographic profiles of 535 

figure 1.  The optimal environment for r differs from that for R. Moreover, the niche response surfaces are 536 

asymmetric, with the sharpest change in r for shifts in environmental conditions to the left – opposite to 537 

the asymmetry in R.    538 

 Does this matter?  I suggest this difference in niche shapes given by the two complementary 539 

fitness metrics for exponential growth has real consequences for a causal understanding of species’ 540 

distributions.  Recall that Hutchinson’s (1957) verbal statement of what a niche “is” emphasizes 541 

persistence.  Much of community ecology rests on invasion analyses – the ability of species to increase, 542 

when rare, as measured by deterministic instantaneous rates of increase, as in equation (1) (e.g., 543 

MacArthur 1972; McPeek 2017; Grainger et al. 2019).  There is a huge literature crafted around this 544 

protocol, yet there is increasing attention being given to ascertaining the role of demographic and 545 

environmental stochasticity in determining the outcome of interspecific interactions (e.g. Pedruski et al. 546 

2015).  There is a lively ongoing debate in coexistence theory as to whether or not the rate of invasion 547 

adequately measures persistence in competitive interactions (Jeltsch et al. 2019; Pande et al. 2020; Ellner 548 

et al. 2020; Schreiber et al. 2020).  The basic issue, however, does not require one to grapple with the 549 

complexity of community interactions; it arises, quite simply, for a single species all on its own, in the 550 

absence of interspecific interactions.  In the next few paragraphs, I suggest that rather than intrinsic 551 

growth rate r, one might envisage niche responses surfaces as probabilities of persistence across 552 

environments (over some time scale, and conditional on initial conditions), and an alternative fitness 553 

measure such as R might be more informative about persistence than is r.  554 

 My suggestion means that niche theory should be fused with population extinction theory.  There 555 

is a huge literature on the mathematics of population extinction (key references include MacArthur and 556 

Wilson 1967; Leigh 1981; Foley 1994; Ludwig 1996; Orzack 1997; Lande et al. 2003, Lande and Orzack 557 

1988; Ovaskainen and Meerson 2010; Carlson et.al. 2019), but there is, as yet, scant connection between 558 
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that literature and niche concepts. This is an important direction for future development.   If we 559 

reconceptualize niches as statements about probabilities of persistence, we need to specify our 560 

assumptions about initial conditions, to define the time scale over which persistence is gauged, and to 561 

recognize that no single measure of “fitness” may suffice to characterize persistence across environments. 562 

Density-dependent processes regulating abundance for instance are important, not only metrics of growth 563 

rate when rare.  Here, I just touch on a few conceptual issues and use a simple model to illustrate these 564 

points about initial conditions, time scale, and fitness metrics, and then turn to density dependence.  565 

 Interpreted literally, Hutchinson’s encapsulation of the niche as those environments where a 566 

species “exists indefinitely” would mean that species do not have niches at all!  The reason is simply that 567 

all individuals die, there is a non-zero probability that any individual will not have offspring before its 568 

death, and populations are bounded (which must hold, given conservation of mass in our finite world).  569 

Given these very general propositions, extinction is inevitable as one lets time go to infinity (Jagers 1992; 570 

Halley and Iwasa 1998; Haccou et al. 2005).   This might be a well-nigh astronomical span of time, but it 571 

will happen.  As John Maynard Keynes famously quipped, “In the long run, we are all dead.”  Thus, in 572 

using the term “indefinitely” one must implicitly refer to some time scale over which persistence us to be 573 

gauged, starting with some assumed initial condition.   574 

 Classic results from branching processes and more recent extinction theory help sharpen this 575 

suggestion.  Consider the seminal results of Kendall (1948), who presented a model that may be the 576 

earliest extinction model in ecology.  Kendall examined a population growing with density-independent 577 

demographic rates in continuous time (for textbook presentations, see Allen 2011, pp. 251-253, and 578 

Renshaw 2013, pp. 74-76).  We start at time t = 0 with a single individual in a clonal species. Given n(t) 579 

individuals at time t, Kendall assumed the probability in dt of a birth is b(t)n(t)dt, and of a death is 580 

d(t)n(t)dt.   We assume the environment is constant, so b(t) = b, and d(t)=d, and ignore density 581 

dependence.  Kendall showed the probability that the initial individual has at least one descendent at some 582 

later time T (i.e., its lineage persists up to then) is 583 
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As T gets large, then if b < d, asymptotically 0survivalP  , whereas if b > d,  585 

  
1

1survivalP
R

  .           (9) 586 

Thus, outside the niche as defined in terms of r < 0, extinction is inevitable.  But, within the niche as 587 

usually defined (r > 0), persistence is not guaranteed, but depends on the fitness metric R.    588 

 Figure 5A shows the probability of long-term persistence for an asexual colonist, within its 589 

Hutchinsonian niche defined as r > 0, as a function of r and d.  For a suite of species with the same 590 

positive r, those with high births and deaths leading to a lower R are more likely to suffer extinction.   At 591 

low r, persistence is quite sensitive to d. In figure 4, those species in an equivalency class as measured by 592 

r fall along a line of slope 1; to the right along the arrow (along a line of constant r) in figure 4, R 593 

declines, and so does the probability of persistence.  Thus, a suite of species with identical values for r 594 

can differ strongly in their probability of persistence.  The intrinsic growth rate still matters in a transient 595 

phase, as it influences how quickly the asymptotic probability of persistence is reached (see eq. [8]).  596 

 Rather than using only intrinsic growth rate r, I suggest we might conceptualize complementary 597 

niche response surfaces as probabilities of persistence across environments.  In crafting such surfaces, one 598 

might consider using alternative metrics having to do with persistence, such as expected mean or median 599 

times to extinction.  Grimm and Wissel (2004) usefully observe that in many models of extinction 600 

dynamics, after an initial transient phase there is a negative exponential distribution of times to extinction.  601 

The characteristic time scale of exponential decay describing times to extinction might constitute an 602 

“intrinsic time to extinction,” and this could be used to construct niche response surfaces.  The online 603 

Supplement examines mean and median times to extinction for the above model.  For the remainder of 604 

this essay, for simplicity, I focus on the probability of persistence, as a function of environmental 605 

variables (for given initial conditions and time scales), as a niche response surface. 606 
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 Environmental dependencies in vital rates will determine the shape and peak of these niche 607 

response surfaces, but they may have different shapes than surfaces based on intrinsic growth rates. There 608 

is growing empirical evidence that environments with the highest probability of occurrence need not be 609 

those with the highest population growth rates (e.g., Thuiller et al. 2014). Figure 5B uses the schematic 610 

example of figures 1 and 2 to depict such a surface, based on expression (9).  In this abstract example, the 611 

environment where persistence is most likely differs from that with the highest expected intrinsic growth 612 

rate.  There are challenges in empirically implementing this suggestion for refining the Hutchinsonian 613 

niche (in effect returning to Hutchinson 1957), as it requires more knowledge about population dynamics 614 

and history than one usually has. The above model nonetheless usefully illustrates two simple points 615 

about characterizing niche response surfaces as probabilities of persistence: the need to be explicit about 616 

time scale, and the importance of specifying initial conditions. After touching on these, I then turn the 617 

third key ecological ingredient needed for re-interpretation of the Hutchinsonian niche based on 618 

probability of persistence: density dependence, in various flavors.   619 

Time scale.  620 

The simple expression (9) is an extrapolation to large T.  Over shorter time scales, both r and R 621 

enter into the probability of persistence after colonization (expression [8]).  Ideally, one would keep track 622 

not of a single metric of fitness, but its component (and causally underpinning) birth and death rates, since 623 

both have distinct influences on persistence.  So, we see that even in this classic model, i. intrinsic growth 624 

rate (r) need not map neatly onto the probability of persistence, ii. alternative fitness metrics (R) may be 625 

more informative about persistence, iii. sometimes multiple metrics are required, and iv. a specification of 626 

time scale is needed to quantify the probability of persistence.  Time scale is even more important when 627 

there is temporal environmental variability, since one must gauge persistence not just in a fixed 628 

environment, but along trajectories of shifting environmental states.  629 

Initial conditions.  630 

We have considered a specific initial condition: a lineage spawned by a single, clonally 631 

reproducing colonist introduced into a stable environment, ignoring density dependence.  If instead there 632 
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are n colonists, and they and their descendants do not experience density dependence among themselves, 633 

then each lineage spawned by a single colonist grows independently. So, the probability of establishment, 634 

per colonizing episode, is 635 

  1 (1 )n
e survivalP P            (10) 636 

If there are I independent introduction events, each with n colonizing propagules, we can replace n in 637 

equation (10) with In. With a large number of colonists aggregated over time, given a non-zero 638 

probability of persistence for a solitary colonist, expression (10) will approach unity; a species should 639 

thus be expected to quickly fill all its niche, i.e., all sites with r > 0 should be occupied, if dispersal is 640 

unlimited.  641 

 However, in dispersal-limited species, having one to just a few dispersers in rare colonization 642 

bouts might be typical; such species might thus be expected to be absent from many sites within their 643 

niche, based on their intrinsic growth rate.  This is particularly likely where R is low.  For a given r, 644 

extinction rather than persistence is more likely after a single colonization bout with few colonizers, for 645 

species with a “fast” lifestyle (high b and d), than for species with a “slow” lifestyle (low b and d) (i.e., 646 

comparing species along the arrow in fig. 4).  When there is population structure (e.g., age or stage 647 

dependence in vital rates), one also needs to specify the initial structure of the invasive propagule to 648 

determine the probability of persistence.  The online Supplement provides two worked examples 649 

demonstrating the importance of initial conditions and persistence, one for a population with stage 650 

structure (juveniles and adults), the other for a population introduced into two distinct habitats, coupled 651 

by dispersal.  652 

 The conceptual framework of ecology does not usually emphasize historical contingencies and 653 

context.  Spencer (2020) has recently emphasized the importance of considering history in ecology, 654 

including the temporal arc of construction (e.g., routes of community assembly, priority effects, Fukami 655 

2015), long transients and nonequilibrial dynamics, and the potential for alternative states.  It is a 656 

historical contingency if colonization at a location typically involves rare bouts of very low numbers of 657 
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dispersing individuals, rather than frequent episodes with many. This is the usual assumption in analyses 658 

of community assembly, and frequently arises in invasion biology.  But ecologists and biogeographers are 659 

often concerned with populations that seem to be already well-established. This is another reasonable 660 

initial condition that one can assume (itself reflecting historical contingency) for characterizing a species’ 661 

niche, and considering it brings me to the next topic. 662 

Density dependence 663 

 Populations persisting over many generations will necessarily be bounded in their abundance, and 664 

fluctuate around a long-term mean abundance, their “carrying capacity.” This requires feedbacks of 665 

population size on either birth or death rates (Royama 1992), mediated through abiotic and biotic factors 666 

(e.g., depletion of essential resources supply, aggravation of natural enemy attacks, buildup of toxins).  667 

Such feedbacks strongly influence persistence.  The web of direct and indirect density dependencies 668 

within and between species are at the core of coexistence theory (Pásztor et al. 2016), but issues of 669 

feedbacks and equilibrial abundance are not normally captured in the “requirement” dimension of 670 

standard niche theory, but rather (in part) in the “impact” facet of the niche (Leibold 1995; Chase and 671 

Leibold 2003).   All else being equal, if two (non-interacting) species have the same intrinsic growth rate 672 

when rare, the one with weaker density dependence should increase to higher abundance, and thereby be 673 

more likely to persist over longer time scales.    674 

 The flip side of persistence is, of course, extinction. A huge literature in mathematical ecology 675 

explores the role of population size and density dependence on extinction, starting with MacArthur and 676 

Wilson (1967) and many authors since.  This is a large, complex, and not fully resolved topic, and I will 677 

not pretend to summarize it comprehensively.  As Barbour (p. 189 in Haccou et al. 2005) states, “… 678 

Unfortunately, the expected time to extinction is a quantity that depends very much on the detail of the 679 

random processes that govern the population size. Simple rules of thumb are unreliable, except perhaps as 680 

qualitative guides…”  Here I will just touch on a few such qualitative rules-of-thumb from this rich body 681 

of literature, suggesting what else needs to enter into the formulation of niche surfaces, construed as 682 

surfaces of probabilities of persistence across environments.  683 
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Allee effects 684 

 Given strong Allee effects (positive density dependence in growth rates at low densities; Keitt et 685 

al. 2001; Courchamp et al. 2008), even in a deterministic world there can be strong effects of initial 686 

conditions on establishment and persistence.  Some Allee effects are immediate (e.g., the need for sexual 687 

partners to find each other, or for a prey species to be sufficiently abundant to satiate a predator). Others 688 

may be time-lagged, via shifts in the external environment that benefit a species increasingly over time, 689 

because of its own impacts on the environment (including at times long feedback loops).  Drake (2014) 690 

for instance describes a power-law distribution of times to extinction in experimental water flea 691 

populations, and he ascribes this pattern to directional amelioration of the environment due to changes in 692 

the microbiota, induced by the water fleas themselves.  This pattern differs sharply from the negative 693 

exponential distribution of times to extinction observed in nearly all formal extinction models.  Most 694 

extinction theory to date does not address how a species might cause directional changes in its 695 

environment (possibly with long time lags) that in turn alters its own extinction risk.  Drake’s results 696 

suggests an emergent, time-lagged Allee effect.  In Holt (2009a), I suggested one implication of strong, 697 

positive density dependence (direct or indirect) is that the range of environments in which a species can 698 

persist, once established and at reasonable abundance for a while (what I called the “persistence niche”), 699 

may exceed those where it can establish successfully in the first place when initially rare (the 700 

“establishment niche”).  Peay (2016) notes that interspecific mutualisms are quite likely to generate this 701 

pattern; if species A benefits from the presence of species B, and A facilitates B, species A thereby 702 

indirectly positively affects itself, with time lags mediated through population responses.   Allee effects 703 

magnify the importance of historical contingencies (hysteresis, Petraitis 2013) and landscape 704 

configuration (Keitt et al. 2001) in determining how species’ niches map onto geographical ranges.  705 

Stable range limits can arise in patchy environments, even in the absence of environmental gradients 706 

(Keitt et al. 2001).   (One empirical challenge arises in gauging the importance of Allee effects from 707 

population time series is that demographic stochasticity at low densities can lead to patterns resembling 708 

those expected from Allee effects (Lande 1998; Lande et al. 2003).) 709 
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Constraints on abundance 710 

 Ultimately, species stop growing because of negative density dependence, either depressing 711 

births, or boosting deaths (or both). Given density-independent growth up to some population size K, 712 

above which the population stops growing, with demographic stochasticity alone (as in the Kendall 1948 713 

model above), classic results suggest the mean time to extinction Te scales with K as  714 

 aK
eT ce            (11) 715 

(Lande 1993; Ovaskainen and Meerson 2010).  The original analyses leading to equation (11) used 716 

Fokker-Planck approaches, which can be problematic in capturing the effects of large fluctuations (which 717 

often precipitate extinction). More recent analyses employing the Wentzel-Kramers-Brillouin 718 

approximation (from physics, e.g., Doering et al. 2005) account for such fluctuations, and lead to insights 719 

that differ in detail, but qualitatively still match this classic result.  Expressions for mean time to 720 

extinction (e.g., eq. [1] in Ovaskainen and Meerson 2010) often involve the reproductive ratio R, as well 721 

as the equilibrial population size K of the related deterministic model.   Expressions such as (11) imply 722 

that populations with a small carrying capacity do have a short time to extinction, but even modestly 723 

abundant populations, once established, can persist for a very long time scale, particularly if they have 724 

large R.    725 

 The “once established” comment here warrants further consideration, in terms of the niche 726 

metaphor.  If the initial condition is one or a few individuals in rare colonizing episode in any given 727 

location, extinction may be likely and occupancy low, even in environments where, once near carrying 728 

capacity, persistence is expected to stretch to a very long time scale.   This brings out the importance of 729 

being explicit about the initial conditions assumed in characterizing the Hutchinsonian niche.  The niche 730 

space relevant to a high probability of initial invasion may well be much more constrained than that 731 

describing the persistence of already well-established populations.  In an applied context, the “niche” 732 

relevant to invasion biology might differ from that needed in the management and conservation of 733 

populations already at hand. 734 
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 Equation (11) pertains to a constant environment, but not to temporally variable environments, 735 

where it greatly overestimates the expected time to extinction. The influence of population size on 736 

persistence is sharply amplified given temporal variation in vital rates and carrying capacity, in which 737 

case: “extinction risk scales roughly as the inverse of the expected population size in taxa affected by 738 

moderate environmental stochasticity” (Hanski and Ovaskainen 2000; see also Ovaskainen and Meerson 739 

2010).  The word “roughly” here indicates this is a rule-of-thumb, not a precise quantification of 740 

extinction risk (Otso Ovaskainen, pers. comm.). Fluctuations in birth or death rates can push an initially 741 

large population to low levels, where it can then random walk by demographic stochasticity to extinction.  742 

Positive temporal autocorrelation in the environment in particular aggravates extinction risks, because a 743 

species can experience long spells at low densities (Haccou and Vatutin 2003).  744 

 There are several messages one can draw from this body of extinction theory.  One is that in 745 

environments near the edge of niche space (low r and/or R), occupancy should be ragged, particularly 746 

given temporal variation pushing populations occasionally to low numbers.  It is notable that many 747 

absences in the Daphnia study of Hooper et al. (2008) do involve sites with low (albeit positive) intrinsic 748 

growth rates.  Another is that sculpting a niche surface in terms of probability of persistence is inherently 749 

multivariate: one needs to pay attention not only to fitness metrics such as local growth rates and 750 

reproductive ratios, but also to average abundances, and to measures of temporal variation in such fitness 751 

metrics and abundance (variance, autocorrelation, and particularly extrema), not just means. 752 

 This multivariate determination of the probability of persistence might be simplified, given tight 753 

correlations among these population attributes.  The nature of such correlations (and even their sign), 754 

however, is the subject of vigorous debate.   Martinez-Meyer et al. (2013) and Osorio-Olvera et al. (2020) 755 

for instance report that sites near the center of a species’ ecological niche (where its intrinsic growth rate 756 

is presumably highest) also have higher abundances than do more peripheral sites (see also Brown 1984).  757 

In such cases, sites near the edge of niche space should be particularly prone to local extinctions, because 758 

the combination of low r and low K implies sharply aggravated extinction risk. Other authors by contrast 759 

find that local growth rates and abundances are often poorly or even negatively correlated (McGill 2012; 760 
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Santini et al. 2019).  Thuiller et al. (2014) for instance report that high occurrence probability is 761 

associated with high local carrying capacity, but that if anything it was negatively correlated with intrinsic 762 

growth rate.   Pironen et al (2017) reviewed empirical assessments of the “centre-periphery” hypothesis 763 

and concluded that although occupancy often seemed reduced in ecologically marginal habitats 764 

(compared to the center of a species’ niche), there were no consistent patterns in abundance within 765 

occupied sites, or in demographic rates.  There are a number of reasons why intrinsic growth rate might 766 

not correlate strongly with average or equilibrial abundance (Osorio-Olvera et al. 2019; Holt 2020). The 767 

reason this matters in the current context is that in such cases, intrinsic growth rate may be a misleading 768 

metric of extinction risk, and hence by itself be a poor predictor of occupancy (which reflects the 769 

probability of persistence).  770 

 Given that a population persists over a reasonable time scale, its births should roughly match its 771 

deaths.  There is no reason to expect these demographic rates in quasi-equilibrial populations always to 772 

line up squarely with births and deaths at low densities at those same locations (i.e., the ability to grow 773 

when rare).  (Indeed, if they do, it is a puzzle why the population persists at all, since its intrinsic growth 774 

rate will be near zero.) This is a challenge for empirical analyses across species’ ranges: without paying 775 

careful attention to density dependence, it may be difficult to interpret observed patterns in abundance and 776 

occupancy across space. Holt (2020) used a simple model to highlight what might underlay discrepancies 777 

reported in the literature between intrinsic growth rate and local abundances.  Assume a species locally 778 

follows a logistic growth equation at each location i: 779 

( ( ) ( ) )i
i i i i i i

dN
N r E f E N

dt
           (12) 780 

Here, ri(Ei) is intrinsic growth rate, and fi(Ei) the strength of density dependence, both of which may 781 

depend on local environmental conditions.  At equilibrium, * ( ) / ( )i i i i iN r E f E .   Now, assume density 782 

dependence is spatially uniform, so ( ) 'i if E f .  Then, local equilibrial abundance should faithfully track 783 

local intrinsic growth rates.  Sites with low values for ri (and likely, Ri) will have low densities.  784 
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Populations at such sites should be vulnerable to extinction if Ni* is low, because of demographic 785 

stochasticity, aggravated by low growth rates.  Therefore, with constraints on dispersal, occupancy should 786 

be low, given spatially uniform density dependence.   787 

 However, in general it is unlikely that the strength and functional form of density dependence will 788 

be spatially invariant (Holt 2020).  Direct and indirect channels of density dependence reflect many 789 

contingent and spatially variable causal factors, such as renewal rates of depletable resources, and 790 

population and behavioral responses of natural enemies, each with their own independent responses to the 791 

environment, differing from that of ri(E).  Macroecological studies of species distributions suggest that 792 

across the range of widespread species, at the majority of locations where a species occurs, its numbers 793 

can be quite low (Brown et al. 1995).  If such differences among locations persist over time, spatial 794 

variation in abundance likely in part reflects spatial variation in the strength of density dependence.  If fi 795 

varies independently of ri, one would not observe a strong relationship between equilibrial abundance and 796 

niche position, measured in terms of growth rate when rare.  In other words, intrinsic growth rate might 797 

be a poor predictor of the probability of long-term persistence. 798 

 Fast growth rates can even endanger local persistence – given time-lagged density dependence 799 

 Occupancy (reflecting persistence over reasonable time scales) and growth rate when rare might 800 

not only be decoupled, but inversely related. When a population grows rapidly, it can overshoot its 801 

carrying capacity, and crash, endangering its persistence.  Reindeer were introduced into St. Matthew 802 

Island off Alaska, grew exponentially at a rapid rate – and then plummeted to extinction, once they 803 

overexploited their slowly renewing plant food supply (Klein 1968).  In a continental setting, if this 804 

happens in a number of locations coupled by dispersal (but not enough to be synchronized), this strong 805 

consumer-resource interaction can persist nonetheless as a metapopulation (viz., “stitching the niche” 806 

sensu Holt 2009a, as in Huffaker 1958’s classic experiments with mites on oranges).   Ovaskainen et al. 807 

(2016) developed a butterfly metapopulation model (motivated by the famed Glanville fritillary system of 808 

the Aland Islands) where in each locale, butterfly dynamics fit the Ricker model.  In this model, density 809 

dependence is over-compensatory and time-lagged (e.g., due to over-exploitation of depletable biotic 810 
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resources), and an increase in the intrinsic growth rate leads to population cycles or even chaos, with 811 

excursions to low densities.  Their model shows that across the landscape, patches that are higher quality 812 

(i.e., higher intrinsic growth rate), if occupied, do show greater average abundance.  However, these 813 

patches in aggregate also have lower occupancy, because population overshoots followed by crashes 814 

generate heightened, sporadic extinction risks (see fig. 3.11, p. 92 in Ovaskainen et al. 2016).   In 815 

epidemiology, pathogens with high R introduced into naïve host populations can overexploit the supply of 816 

susceptible hosts and go extinct more rapidly than do pathogens facing host populations with partial 817 

immunity; the latter pathogens have a lower initial growth rate when rare, but also are not as prone to 818 

burn rapidly through the supply of susceptible hosts, leading to extinction (Pulliam et al. 2007).   819 

Resource-consumer systems where the resource is alive, and the consumer highly effective at 820 

consumption, quite generally are prone to such “niche destruction” (Holt 2009a), leading to a potential 821 

inverse relationship between occupancy and intrinsic growth rates over part of niche space. 822 

Putting the pieces together: crafting a more robust theory of the ecological niche. 823 

 Here, I have revisited ideas that I sketched in Holt (2009a), articulating how the enduring niche 824 

metaphor of Hutchinson (1957) – a characterization of those environments that permit persistence of a 825 

species  – could be enriched, in the light of our current understanding of population processes.  Here I 826 

briefly recapitulate the main points dwelt on above. 827 

  One issue is a reconsideration of dispersal.  Many authors recognize that mismatches between 828 

species’ distributions and niche requirements (Pulliam 2000; Pagel et al. 2020) can reflect dispersal.  On 829 

the one hand, dispersal barriers can prevent good habitat from ever being occupied, and on the other, 830 

dispersal can sustain sink populations despite local growth rates being persistently negative.  Above, I 831 

argued that beyond these sensible observations, a consideration of movement across scales is required to 832 

characterize a species’ niche in the first place, since patterns of movement influence how local variability 833 

in the environment even at fine scales is translated into the aggregate, spatially averaged demographic 834 

rates that enter into fitness metrics.  835 
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 The instantaneous intrinsic growth rate r when rare, though necessary, is not sufficient for 836 

understanding the niche as a landscape of probability of persistence across environments.  Even for 837 

exponential growth in a constant environment, the branching process model of Kendall (1948) reveals an 838 

alternative fitness metric (lifetime reproductive success, or finite reproductive ratio, R) to be more 839 

informative about persistence.    In epidemiology, R characterizes performance of an infectious disease 840 

agent across environments.  Mordecai et al. (2019) for example examine how R varies as a function of 841 

temperature for vector-borne infectious diseases and use this thermal dependency to make predictions 842 

about how disease prevalence will shift with climate change.  Such results provide first-order predictions 843 

about when epidemics – or more broadly introductions during community assembly – will likely fade out, 844 

versus persist, along gradients in temperature.   845 

 Moreover, given that all populations are bounded, understanding density-dependent feedbacks 846 

and long-term average abundance is essential to flesh out the niche concept of Hutchinson (1957) in terms 847 

of persistence.  This requires integrating niche theory with the rich theory of extinction in population 848 

ecology.  The niche metaphor interpreted as a statement about persistence may help provide a conceptual 849 

framework for this integration.  Schreiber et al. (2020) recently evaluated conditions for joint persistence 850 

(viz., coexistence) in a guild of serpentine annual plants and concluded that “ecologists must look beyond 851 

invasion growth rates and consider species equilibrium population sizes.”   This empirical finding 852 

matches my conceptual suggestion.   Understanding feedbacks is particularly relevant to persistence given 853 

positive density dependence at low numbers (Allee effects), or time-lagged negative density dependence, 854 

which can ensure that populations with high initial growth rates seal their own fate.  Alirio Rosales (pers. 855 

comm.) has suggested that one could possibly revisit the adaptive landscape, and cast it in terms of 856 

persistence, rather than the more usual fitness metrics. Another way of stating this, I think, is that fitness 857 

metrics, ideally, should include the imprint of demographic stochasticity. 858 

 There are various ways one could put together the elements of space, stochasticity, and density 859 

dependence so as to refine the theory of the niche, keeping in mind the metaphor of the niche as an 860 

expression of performance (e.g. persistence) as a function across a space of environmental factors.  861 
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Hutchinson (1959) referred to the “mosaic” nature of the environment.  Because there is always temporal 862 

variability, spatial (i.e., “real”) landscapes are not merely mosaics, but “kaleidoscopes” of constantly 863 

shifting local conditions.  Because temporal variability can lead to local extinction, even if the long-term 864 

local growth rate in a closed population is positive (Lewontin and Cohen 1969), dispersal is often key to 865 

long-term persistence (the central insight underlying metapopulation ecology). We have assumed 866 

temporally constant growth rates, but scale transition approaches and expressions comparable to equation 867 

(4) also describe population dynamics in spatiotemporally varying environments (Roy et al. 2005).  At a 868 

local level, in a closed population positive autocorrelation in the environment increases extinction risk, 869 

because populations are forced through runs of bad years (Haccou and Vatutin 2003).  But if dispersal 870 

couples a number of such populations that are unsynchronized, local positive autocorrelation can facilitate 871 

metapopulation persistence. Given some dispersal, but not so much as to homogenize abundances across 872 

space, and particularly with temporally autocorrelated variation not completely synchronized across 873 

space, species will be temporarily more abundant where there are runs of good years and provide 874 

immigrants to other locales with later runs of good years.  This can facilitate persistence, even if every 875 

location is on average a sink habitat (Jansen and Yoshimura 1998; Roy et al. 2005; Matthew and 876 

Gonzalez 2007).  Expressions such as equation (5) still describe regional growth (Roy et al. 2005), but the 877 

covariance term now reflects temporal variation in local growth rates. 878 

 Kortessis et al. (2020) apply this insight to the spread of pandemics in human populations – an 879 

epidemic can spread if the local reproductive ratio of the infectious disease varies asynchronously among 880 

locations, coupled by movement, even though on average, disease control in each location would predict 881 

eradication.  So, a region as a whole may be within the Hutchinsonian niche, even though each locale 882 

within it has properties that on average are outside the niche, seemingly dooming the species to 883 

extinction.  A comprehensive extinction theory, combining all the ingredients of space and dispersal, 884 

demographic stochasticity, environmental variation in space and time, and feedbacks determining density-885 

dependent constraints on abundance, is as yet terra incognita in theory-land (however, see Ovaskainen et 886 

al. 2020 for recent derivations of extinction thresholds for systems with localized dispersal and 887 
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demographic stochasticity).   Characterizing the niche requirements of a species in terms of its long-term 888 

persistence will also require that attention be paid to factors such as the availability and configuration of 889 

patches in landscapes, and the degree to which they are synchronized, as well as feedbacks in the context 890 

of interacting species.  With demographic stochasticity, initial conditions (i.e., the site and stage of an 891 

introduced propagule) are important in determining persistence probability (see online Supplement).  I do 892 

not pretend that in this essay I have provided the definitive theory that combines all these disparate 893 

elements into a cohesive whole.  Rather, I have tried to put before you, the reader, the ingredients I think 894 

are needed for such a satisfactory theory – a desideratum for future work.  I believe that the niche 895 

metaphor will continue to play a valuable heuristic role in tying these disparate elements into a cohesive 896 

theoretical whole. 897 

 One general methodological message is that in linking demography to distributions, it is valuable 898 

to keep track of births and deaths, separately, as much as possible, rather than just combining them 899 

immediately into net growth rates or reproductive ratios, because these distinct vital rates likely have 900 

different causal relationships with environmental conditions, and different consequences for persistence, 901 

versus extinction.  Another general issue is that it may not be enough to focus on what a species 902 

immediately needs to grow when rare – for persistence over multi-generational scales, one has to consider 903 

effects of inertia and delayed feedbacks from the environment, leading to overshoots, resource depletion, 904 

unstable natural enemy-victim interactions, and the like, as well.   The niche, conceived as a statement 905 

about probabilities of persistence of populations, has tendrils into and back from the world, mandating a 906 

holistic perspective, well beyond just what individuals in a species need immediately to survive and 907 

reproduce.   908 

 Following Hutchinson (1978), I (Holt 2009a) and others (e.g. Peterson et al. 2011) use the term 909 

“Hutchinsonian niche” to denote a niche response surface, where the response variable is the intrinsic 910 

growth rate of a species across environments.  This rendition of the niche is close to that of Wright’s 911 

adaptive landscape, since both rest on a shared metric of fitness.   This is the usage that may be most 912 

pertinent to the themes of niche conservatism and evolution (Wiens et al. 2010), since birth, death, and 913 
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movement rates as functions of the environment are abstract traits with heritable variation among 914 

lineages, fueling evolution.   Maybe we need another term for another kind of “landscape” – portraying a 915 

surface of the probability of persistence of a lineage across environments (conditioned on initial 916 

conditions and time scale), which is closer to Hutchinson’s 1957 verbal description of the niche. In Holt 917 

(2009a) I used the term “persistence niche,” but in a different and narrower way.  Maybe that could 918 

suggestion could be modified.  How about “probabilistic niche”?  Not particularly euphonious, alas.  I 919 

leave this as an open challenge for some young wordsmith. 920 

 I started this essay with quotes and a brief meditation on the powerful pull of visual metaphors 921 

such as the adaptive landscape of Sewall Wright, and the ecological niche of G.E. Hutchinson.  Both are 922 

abstractions with compelling visual expressions – powerful heuristics that help guide thinking about the 923 

complex dynamical processes at play in ecology and evolution, and that facilitate conceptual integration – 924 

related by their mutual dependence upon a fitness metric.   In some cases (e.g., clonal growth), that metric 925 

may be the same, but in others it might well differ, because population geneticists and evolutionary 926 

biologists more broadly are concerned with comparative, relative fitness within persisting populations, 927 

whereas ecologists focus on absolute fitness and in particular persistence, versus extinction, of 928 

populations.   Variation in the environment that affects absolute fitness of individuals, but not the relative 929 

fitness of alternative genotypes and phenotypes within populations, clearly enters into the probability of 930 

persistence, but not the action of natural selection. The fusion of the two landscapes suggested above (see 931 

also McPeek 2017) may in the end be a kind of mirage that dissolves on closer inspection, because of the 932 

distinct aims of our two disciplines.   933 

 The utility of visual graphs that describe the niche as a surface of probabilities of persistence 934 

should be tried on for size, to determine its utility.  I have argued that multiple population metrics 935 

(intrinsic growth rate, R, average abundance) and context (initial conditions, time scale) all enter into 936 

determining the probability of persistence.  The environment can influence each of these, and different 937 

components could matter more in some circumstances, or questions (e.g., invasion biology vs. 938 

conservation), than in others.  How organisms relate to environments (including other species), and how 939 
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that relationship determines the dynamics that govern organic diversity, the spatial distribution of taxa, 940 

and the abundance of populations, is a central, unifying issue of ecology and evolutionary biology.    The 941 

visual metaphor of the Hutchinson niche, I believe (as with Wright’s adaptive landscape), provides a 942 

perennially helpful conceptual tool for helping clarify how we think through the implications of this 943 

tangled web of causal relationships and aim towards conceptual synthesis.  944 
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 1372 

 1373 

Figure 1. A schematic example of vital rates as a function of two abstract environmental variables, X and 1374 

Y.  On the left, birth rate is represented as a Gaussian, centered at (0,0), with “width” of sqrt(10) in all 1375 

directions, so b = 10 exp{-(X2 + Y2)/20}; inner contour is b = 9, spacing is 1.  On the right, the death rate 1376 

is parabolic with a minimum = 1 at (5,0), with quadratic coefficient = 0.2, so d = 1 + 0.2[(X – 5)2 +Y2]; 1377 

inner contour is 2, spacing is 1.  Lighter shades indicate “better” environments (e.g., higher births, lower 1378 

deaths).  The optimal environment for birth differs from that for death (both indicated with a cross). 1379 

 1380 

 1381 

 1382 

 1383 

 1384 

 1385 
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 1386 

 1387 

Figure 2. The Hutchinsonian niche, constructed using two different fitness metrics computed from the 1388 

same environmental dependencies of vital rates.  Lighter shading denotes higher fitness.  Left panel, a 1389 

niche response surface constructed with Intrinsic growth rates (r = b –d), using the vital rate patterns 1390 

depicted in figure 1. Right panel shows a niche response surface based on lifetime reproductive success 1391 

(R = b/d), with the same vital rates.   In both cases, the dashed white oval is the niche boundary where 1392 

populations are in deterministic equilibrium; this niche boundary is the same for the two metrics.  1393 

However, away from equilibrium, the two metrics diverge. The black plus signs mark the optimal 1394 

environment for each metric; the black crosses indicate the optimal environments, for the other metric.  1395 

The optima differ, as do the shapes of the two niche response surfaces (r is has a steeper slope to the left, 1396 

whereas R is steeper to the right). 1397 

 1398 

 1399 
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 1400 

Figure 3: Low rates of dispersal imply positive covariance between local abundances and growth rates. 1401 

Two habitats of equal area are connected symmetrically by passive dispersal, Abundances are sufficiently 1402 

low to ignore density dependence. Population dynamics are described by 1 1 1 1 2/dN dt r N mN mN    , 1403 

2 2 2 2 1/dN dt r N mN mN   , where Ni  and ri  are respectively abundances and intrinsic rate of increase 1404 

in habitat i, and m is a rate of movement.  The asymptotic growth rate of the whole population is r. The 1405 

stable patch distribution is v (= N1/( N1 + N2)), the fraction of the population in habitat 1.  In the example 1406 

r1 = 2,  r2 = -3.  At high m, the growth rate is the spatial average of the rs, which is negative.  At lower m, 1407 

the asymptotic growth rate increases, because relatively more individuals reside in the better habitat.  1408 
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 1409 

Figure 4. Alternative fitness metrics, constructed from the basic vital rates for unstructured populations: 1410 

birth and death rates (exponential growth or decline in a constant environment).  In the b-d plane, the 1411 

intrinsic growth rate r = b - d defines a family of parallel lines of slope 1, whereas lifetime reproduction R 1412 

= b/d defines a family of lines that all emanate from the origin. The two family of lines coincide for 1413 

populations in equilibrium, but not for populations that are either growing or declining. Using the 1414 

argument presented in the main text for long-term persistence of a clonal species,  for clones with 1415 

equivalent rs,  those with higher ds are more likely to suffer extinction, and so more likely to be absent in 1416 

habitats within their Hutchinsonian niche (as traditionally defined), if dispersal opportunities are limited. 1417 

 1418 
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    1419 

A.                                                                            B. 1420 

 1421 

Figure 5. Probability of lineage survival or persistence, using the 1948 Kendall model.  A single clonal 1422 

colonist has been introduced into a habitat, and its fate is followed.  A. Probability its lineage survives, as 1423 

a function of death rate d, and intrinsic growth rate, r.  For any given r > 0 (the lines of slope 1 in fig. 5), 1424 

the probability of lineage survival declines with increasing d.  As d increases, the benefit of increasing r 1425 

on lineage survival is diminished.  B.  Using the hypothetical birth and death rates as a function of 1426 

environmental variables X and Y of Figure 1, leading to the R-profile of figure 2, implies the surface of 1427 

the probability of persistence shown here.  The environment where persistence probability is optimized 1428 

differs from the one where the intrinsic growth rate is greatest. 1429 

 1430 

 1431 

 1432 

 1433 

  1434 
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Online Appendix 1435 

Michael Barfield and Robert D. Holt 1436 

Department of Biology, The University of Florida 1437 

Initial conditions and probability of persistence 1438 

Appendix A: Introduction 1439 

 In deterministic treatments of the niche expressed as a response surface of intrinsic growth rate as 1440 

a function of environmental variables, initial conditions often fade away.  For instance, in an age-1441 

structured population without density dependence, the asymptotic growth rate of the population does not 1442 

depend upon its initial age structure.  This does not hold, given demographic stochasticity.  In this 1443 

Appendix, we show for two simple examples of population structure (juveniles and adults, and two 1444 

habitats coupled by dispersal), that initial conditions influence the probability of persistence, even in the 1445 

absence of density dependence.   We use a branching process approach to illustrate this basic point.  1446 

 With no density dependence and clonal reproduction, the fate of a population (e.g., extinction 1447 

versus persistence) can be analyzed in terms of the fates of lineages starting from each individual in the 1448 

initial population. If the focal organism (or variety) is rare, demographic stochasticity is important, and 1449 

branching process analyses include the effects of this stochasticity. Density dependence for organisms 1450 

that are rare during colonization is usually not important (unless there are Allee effects), and branching 1451 

process analyses usually assume no density dependence. The use of branching processes to determine 1452 

probability of extinction for a real population assumes that by the time the lineage of the initial individual 1453 

is large enough for density dependence to be important, it is large enough that extinction due to 1454 

demographic stochasticity is very unlikely. Branching processes in effect give the probability of entering 1455 

this state.  1456 

 Branching processes have many applications in ecology, particularly in organisms with clonal 1457 

growth and in systems in which density dependence can be ignored (for example, when the focal 1458 

organism is rare).   The basic mathematical approach is laid out in fine textbooks in applied mathematics 1459 
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(e.g., Hacccou et al. 2005; Renshaw 2013), but it is useful to walk through the basic approach before we 1460 

get to specific examples, so as to define some basic terms and introduce useful notation.  1461 

 Branching processes are often analyzed using probability generating functions (PGFs), which are 1462 

functions of the probability distribution of one or more discrete random variables (representing 1463 

individuals). For example, a PGF can be defined representing the probability distribution of the number of 1464 

offspring of an individual (or, more generally, the number of individuals at one time that result from one 1465 

individual at a previous time) as a power series, in effect an alternative representation of that distribution.  1466 

If there is only one type of individual, this PGF is given by  1467 
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f s p j s
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

  ,        (A1) 1468 

where pt(j) is the probability that one individual at the current time (t) gives rise to j individuals at the 1469 

next time (t + t ; pt can include the parent as well as offspring if generations are overlapping). If the 1470 

probabilities are independent of time, the subscripts are generally omitted. For example, in some cases the 1471 

number of offspring can be assumed to follow a Poisson distribution with mean R, in which case  1472 

( ) exp{ } / !jp j R R j    (assuming discrete generations, so the parent reproduces and dies, leaving only 1473 

its offspring). Substituting this into (A1) gives 1474 
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If there are overlapping generations, then p(j) should include the parent, in which case p(0) is the 1476 

probability that there are no offspring and the parent dies, p(1) is the probability that there is one offspring 1477 

and the parent dies, or there are no offspring and the parent survives (since both these result in one 1478 

individual at the next time), etc.   1479 

 The PGF for a population can be defined using an equation analogous to equation (A1): 1480 

0

( ) ( ) j
t t

j

F s P j s




  ,        (A3) 1481 

where Pt(j) is the probability that there are j individuals in the population at time t. 1482 
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If all individuals are assumed to be the same and their parameters do not change with time, then 1483 

eventually the probability of extinction of a population initiated by a single individual at time 0 will 1484 

change very little with time (because after a long time the population either has gone extinct or become 1485 

large enough that it is very unlikely to go extinct in the future).  If qt is the probability that the population 1486 

is extinct at time t, then the probability that it is extinct at time t + t can be written in terms of qt and the 1487 

number of individuals at time t  (assuming one individual at time 0, and so counting at time t  later), 1488 

using Pr( ) Pr( )t t j t t jj
q A E A   where Pr(X) is the probability of event X, Et+t is extinction at time 1489 

t + t, and Aj is the event that there are j individuals at time t. (For a discrete-time models, t is often set 1490 

to 1, while for continuous-time models, it is often set to an infinitesimal interval dt.) If there were no 1491 

individuals at time t, which happens if the initial individual dies without reproducing [and has 1492 

probability Pt(0)], the population is extinct at that and all subsequent times, so qt+t = 0. If there was 1 1493 

individual at time t [probability Pt (1)], then qt+t = qt (since in this case we have one individual at time 1494 

t, and the probability that its lineage survives to time t +  t  is the same as the probability that the 1495 

lineage of one individual at time 0 survives until time t). If there were 2 individuals at time t [probability 1496 

Pt (2)], for example if the initial individual produces two offspring and dies in the initial interval, then 1497 

qt +t = 2
tq , since there will be 2 individuals at time t and the lineages of both must go extinct for the 1498 

population to go extinct. Extinctions of the two lineages are independent and each equal to qt. The 1499 

probability of lineages of n offspring going extinct is similarly n
tq , so this is qt+t given n individuals at 1500 

time t.  Summing these values weighted by the probability of each number of individuals at time t 1501 

gives 1502 

 2 3

0
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       ,  (A4) 1503 

in which the last step uses the definition of the PGF in equation (A3). ( )tF s  is the PGF for the number 1504 

of individuals at time t that result from a single individual at time 0. Therefore, it is equivalent to f(s) 1505 
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defined in equation (A1) (time independence has been assumed, so no subscript is needed). Since the 1506 

probability of extinction eventually becomes almost constant, then for a sufficiently large time qt+t = qt = 1507 

q in equation (A4), which gives an equation for probability of extinction, called a fixed point equation, for 1508 

this scenario: 1509 

( )q f q .         (A5) 1510 

There is always a solution to (A5) at q = 1. The probability of extinction is less than 1 only if there is a 1511 

solution to (A5) that is less than 1 (and nonnegative).  1512 

 Equation (A5) assumes that conditions do not change over time. If this is not the case, then the 1513 

probability of extinction can still be found. The population is generally started with one individual, so 1514 

initially for the population P0(1) = 1 and P0(j) = 0 for all other j (the population size is 1 with probability 1515 

1), making F0(s) = s. For discrete-time models, the population PGF at time t + 1 is found from its PGF at 1516 

time t by substituting 1( )tf s , the PGF for individuals produced in generation (or time step) t + 1, for s in 1517 

the population PGF, so 1 1( ) ( ( ))t t tF s F f s  . This recursion can be used to find the probability of 1518 

extinction at generation t, which is Ft(0) [taking the limit as s approaches 0 in (A3) gives Pt(0), the 1519 

probability that there are no individuals at generation t].  Generally, a numerical solution is required. 1520 

 If the population consists of n types of individuals, then an n-type branching process is used. In 1521 

this case, there is a PGF for each type i of individual: 1522 

  1 2 1 2
, , , 0

( , , , ) ( , , , ) j k l
i n i n

j k l

f s s s p j k l s s s




 


   ; 1,i n ,   (A6) 1523 

where now ( , , , )ip j k l  is the probability that one type-i individual gives rise to j type-1 individuals, k 1524 

type-2 individuals, … , and l type-n individuals. (This assumes that probabilities are independent of time, 1525 

and the subscript here is the individual type. If the probabilities change with time, a second subscript for 1526 

time can be included.) Assuming that the probabilities (pi) are constant, there are n fixed point equations,  1527 

 1 2( , , , )i i nq f q q q  ;     1,i n ,   (A7) 1528 
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which can be solved for qi, which is the probability of extinction of a population starting with one 1529 

individual of type i.  This set of fixed point equations is the basis of many of the results presented below. 1530 

 The different types for an n-type branching process can be different stages (in which case pi can 1531 

include elements of the transition matrix), individuals in different habitats, or with different genotypes 1532 

(such as wild types and mutants, in which case pi can include mutation rates).  1533 

Single-stage population  1534 

 We start with the simplest case (a version of the Kendall model used in the main text). An 1535 

individual can die (at per capita rate d) or give rise to an offspring (per capita rate b). In an infinitesimal 1536 

time dt, at most one of these events can happen (such as if b and d are Poisson processes). The probability 1537 

that the initial individual dies is d dt, the probability that it produces an offspring is b dt, and the 1538 

probability that neither happens is 1 – d dt – b dt. Therefore p(0) = d dt (if the individual dies, there are no 1539 

individuals), p(1) = 1 – d dt – b dt (if nothing happens, the one individual remains), and p(2) = b dt 1540 

(offspring production results in two individuals).  Plugging these into (A5) (assuming the rates are 1541 

constant) yields the fixed point equation  1542 

2 (1   )   q d dt b dt d dt q b dt q     .      (A8) 1543 

Subtracting q from both sides and dividing by dt gives, 20 ( )  d b d q b q     , the solutions of which 1544 

are 1 and d/b. If d > b, the probability of extinction is 1; otherwise, it is / 1/d b R , where /R b d  is 1545 

the reproduction number (average number of offspring per adult; new individuals are produced at rate b 1546 

for the average lifetime 1/d). Therefore, the probability of persistence is  1 1/ R  (eq. [9] in the main 1547 

text).  1548 

 If the population instead initially had n individuals, the probability of the population surviving 1549 

would be the probability that the lineage of any of the founders survived, which would be1 ( / )nd b .  1550 

Appendix B: Two-stage population  1551 

 Branching processes can also be used to find the probability of persistence of an initially sparse 1552 

population consisting of individuals with two stages, juveniles and adults. In a continuous-time model, 1553 
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juveniles grow into adults at a rate of g and die at rate d1, while adults produce juveniles at rate b and die 1554 

at rate d2 (all rates are per capita and temporally constant). Again, we assume that a single clonal 1555 

individual is introduced. That individual could be either a juvenile or adult. Assuming there is no density 1556 

dependence (such as when the population is low), the probability of persistence of this population can be 1557 

analyzed as a two-type branching process, using equation (A7) with n = 2 (and using the definition in eq. 1558 

[A6]); ( , )ip j k  is the probability that one type-i individual gives rise to j type-1 individuals (juveniles) 1559 

and k type-2 individuals (adults).  1560 

 Because the total probability of all possible events arising from each type individual must be 1, 1561 

1iq   for all i is always a solution of (A7), but there are generally other solutions, which can be feasible  1562 

( 0 1iq   ), or not. If there are no other feasible extinctions, then the probability of extinction is 1. 1563 

The probabilities ( , )ip j k  are calculated over an infinitesimal time interval dt, during which it is 1564 

assumed that only one event (growth, birth or death) can occur. A juvenile dies with probability d1dt, 1565 

resulting in no individuals, so 1 1(0,0)p d dt . The juvenile grows with probability g dt, producing one 1566 

adult (and losing the juvenile), so 1(0,1)  p g dt . The juvenile does neither otherwise, resulting in 1567 

maintenance of one juvenile, so 1 1(1,0) 1  p g dt d dt   . An adult dies with probability d2dt, resulting 1568 

in no individuals, so 2 2(0,0)p d dt , gives birth with probability b dt, producing one juvenile (and 1569 

retaining the adult), so 2 (1,1)  p b dt , and does neither otherwise, resulting in maintenance of one adult, 1570 

so 2 2(1,0) 1  p b dt d dt   . Substituting these into equation (A7) gives 1571 

1 1 2 1 1  (1  )q d dt g dt q g dt d dt q          (B1) 1572 

2 2 1 2 2 2  (1  )q d dt b dt q q b dt d dt q     .     (B2) 1573 

After subtracting q1 from both sides of the first equation and q2 from the second and dividing each 1574 

equation by dt, the result is 1575 

1 2 1 1( ) 0d gq g d q    ,       (B3) 1576 
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2 1 2 2 2( ) 0d bq q b d q    .       (B4) 1577 

Equation (B3) can be solved for  1578 

1 2
1

1

d gq
q

g d





         (B5) 1579 

which can be substituted into (B4), giving a quadratic equation for q2, which has solutions  2 1q   (which 1580 

gives q1 also equal to 1) and  1581 

 1 2
2

( )g d d
q

bg


 .        (B6) 1582 

If 1 2( )g d d bg   , equation (B6) gives q2 > 1, and extinction is certain starting from one adult (and also 1583 

from one juvenile). If 1 2( )g d d bg   , equation (B6) gives the probability of extinction starting from a 1584 

single adult. The reciprocal of q2 in (B6) is the product of the probability that a juvenile grows to an adult 1585 

[ 1/ ( )g g d ] and the average number of offspring of an adult ( 2/b d ), which is the birth rate over the 1586 

average adult lifetime. Therefore, this reciprocal is the average number of adults arising from a single 1587 

adult, and so is analogous to R. Therefore, the probability of persistence of a lineage starting with a single 1588 

adult is 1 1/ R . Substituting (B6) into equation (B5) gives 1589 

 1 2
1

1

d d
q

g d b
 


        (B7) 1590 

as the probability of extinction starting from one juvenile (assuming it is less than or equal to 1, which it 1591 

is if q2 is). It can easily be shown that the probability of persistence of a juvenile is the product of the 1592 

probability of persistence of an adult and the probability of survival of a juvenile to the adult stage, the 1593 

latter of which is 1/ ( )g g d . Therefore, the probability of persistence starting with a juvenile depends 1594 

on g and d1 in addition to R.  1595 

 The bottom line of this model (comparing [B6] and [B7]) is that the probability of persistence 1596 

differs depending upon initial conditions – whether or not the initial colonist is a juvenile, or an adult.  1597 



67 
 

This dependence of persistence on initial conditions does not hold for the comparable deterministic 1598 

exponential growth model with age structure and overlapping generations. 1599 

Appendix C: Two-habitat model  1600 

 Branching processes can also be used to find the probability of persistence for a species 1601 

colonizing a landscape of two habitats with movement between them. In habitat i (1 or 2), individuals die 1602 

at rate di and give birth at rate bi, while they move from habitat i to j at rate mij. Births and deaths are 1603 

assumed to be Poisson processes, so over an infinitesimal interval dt, only one event occurs. From a 1604 

single individual in habitat 1, the results can be no individuals with probability 1d dt (death), one 1605 

individual in habitat 2 with probability 12m dt , two individuals in habitat 1 with probability 1b dt , or one 1606 

individual in habitat 1 with probability 1 12 11 d dt m dt b dt   (nothing happens). The same alternatives 1607 

result for an individual in habitat 2, with the habitat numbers switched. Therefore, the fixed point 1608 

equations are 1609 

  2
1 1 12 2 1 1 1 12 1 1  (1 )q d dt m dt q b dt q d dt m dt b dt q          (C1) 1610 

2
2 2 21 1 2 2 2 21 2 2  (1 )q d dt m dt q b dt q d dt m dt b dt q       .   (C2) 1611 

which simplify to 2
1 12 2 1 1 1 12 1 1( ) 0d m q b q d m b q       and    1612 

2
2 21 1 2 2 2 21 2 2( ) 0d m q b q d m b q      . The first can be solved for q2 and this can then be substituted 1613 

into the second equation, giving 1614 

2 2
2 21 1 2 1 12 1 1 1 1 1 12

2
2 21 2 1 12 1 1 1 1 1 12

[{( ) ] / }

          ( )[( ) ] / 0

d m q b d m b q b q d m

d m b d m b q b q d m

     

       
 .  (C3) 1615 

This is fourth-order in q1. One solution is 1 1q  , but factoring out that solution still leaves a cubic 1616 

equation. 1617 

 It is useful to consider some limiting cases. First, let b1 = b2 = b, d1 = d2 = d, and m12 = m21 = m.  1618 

In this homogeneous case with symmetric movement, we start with 1619 
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2
1 12 2 1 1 1 12 1 1( ) 0d m q b q d m b q       and  2

2 21 1 2 2 2 21 2 2( ) 0d m q b q d m b q      .  After 1620 

substitution, we can rewrite them both as 2 2( ) ( ) 0i i i i id mq bq d m b q d bq d b q          . 1621 

Solving the quadratic equation gives  1622 

 
2

 or 1
2 2 2 2i

d b d b d b d b d
q

b b b b b

         
 

 .  1623 

There is only a solution < 1 if d < b, in which case qi = 1/R for both habitats, where R = b/d. In this case, it 1624 

is really just one habitat and the spatial subdivision does not matter, so the probability of persistence is p 1625 

= 1 – q = 1 – 1/R. 1626 

 Next, let b1/ d1 > 1> b2/ d2, and allow m12 = m21 = m to become very small.  We surmise there 1627 

should be two roots, one near some p > 0, the other very near 1. As m approaches 0, the two equations 1628 

each approach 2 ( ) 0i i i i id bq d b q    , the solutions to which are di/bi and 1. For habitat 1, the solution 1629 

is d1/b1, and for habitat 2, it is 1.  So introduction fails, if it starts in habitat 2, but colonization might 1630 

succeed, if it happens to be in habitat 1. 1631 

 Now, let m12 = m21 = m get very large.  This should approach a well-mixed population, with b = 1632 

(b1 + b2)/2, and d = (d1 + d2 )/2. To show this formally, using the equations above, with equal migration 1633 

rates we have  2 2
1 1 1 1 1 1 1 2 2 2 2 2 2 2( ) ( ) [ ( ) ]d b q d b q m q q d b q d b q          . Since the two outside 1634 

terms are bounded by the value when q1 or q2 = 1, as m becomes very large, it is necessary that q1 1635 

approach q2. Setting them equal to each other (and q) in the outside terms (but note that this does not 1636 

mean the middle term is 0, since m is becoming very large) gives  1637 

2 2
1 1 1 1 1 1 2 2 2 2 2 2( ) [ ( ) ]d b q d b q d b q d b q         or  1638 

2
1 2 1 2 1 2 1 2( ) ( ) 0d d b b q d d b b q        . 1639 

This is of the same form as the equation for the single-stage population, except d and b are replaced by 1640 

their sums over both habitats. Therefore, both values of q approach (d1 + d2)/(b1 + b2), which is the same 1641 

result as it would be if numerator and denominator were half as much (giving d/b).  1642 
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 Possibly more interestingly, we now assume the two habitats differ in their vital rates.  Let b1/d1 =  1643 

R1, and  b2/d2 = R2.  What happens when R1 = R2?  The isolated habitat patches would have equivalent 1644 

probabilities of persistence. Does that hold if say m12 = m21, or more generally?  What happens if the two 1645 

reproductive ratios differ?  1646 

 If the R values are the same, then bi = Rdi can be substituted into the equations above, giving 1647 

2 ( ) 0i ij j i i i ij i id m q Rd q d m Rd q       for i = 1,2 and j = 3 – i.  Suppose qi = qj (i.e., q1 = q2). Then 1648 

the migration terms drop out, giving 2 ( ) 0i i i i i id Rd q d Rd q     for i =1,2, which has solutions qi = 1649 

1/R for i =1,2. This agrees with the assumption that q1 = q2 and therefore is a solution (which does not 1650 

require that m12 = m21).  (We do not know if this is the only solution.) 1651 

 What happens if the intrinsic growth rates r1 and r2 are the same, but R1 does not necessarily 1652 

equal  R2?  Let b1 - d1 = r1,   b2 – d2  = r2 . If the Ri values can be different, then if we assume the qi are 1653 

equal, we have 2 ( ) 0i i i i i i i id R d q d R d q    , i = 1,2, which has solutions qi = 1/Ri. This is only 1654 

consistent with the assumption that the qi are equal (q1 = q2) if  the Ri are equal (R1 = R2), so this is 1655 

necessary for q1 to equal q2. If the ri values are equal, the Ri values are not, unless birth rates are equal and 1656 

deaths rates are equal. So except for this special case (identical habitats), the probability of persistence 1657 

will depend upon which habitat is first colonized ( 1 2q q ) if the two habitats have the same intrinsic rate 1658 

of growth.  1659 

 There is one technical issue which we should mention, without a completely definitive answer. 1660 

How many solutions can be between  0 and 1?  One argument for at most 1 is based on the observation 1661 

that the equations for qi can be written in the form 2[ ( ) ] /i j j j j j j jiq d b q d b q m    . These are 1662 

parabolas, one concave down and the other to the left. One axis intercept of each is negative, and the 1663 

parabolas intersect at (1,1). These two parabolas can intersect in at most 4 points, on the upper and lower 1664 

branch of one and the right and left branch of the other (which will be called the upper and lower branch, 1665 

because they have higher and lower values of one variable, respectively). If the (1,1) point is on the lower 1666 
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branches, then the other intersections are at values > 1, and the population goes extinct. If it is on the 1667 

upper branches, then the solution on the lower branches must be between 0 and 1. The other intersections 1668 

have at least one value > 1 and thus are not feasible solutions. If there are only two intersections and (1,1) 1669 

is the lower one, the other has a value > 1 and thus is not feasible. If (1,1) is the higher one, then the lower 1670 

intersection can be a feasible solution. If there are 4 solutions and (1,1) is on one upper and one lower 1671 

branch, then at most one solution is feasible, since the others have a value > 1. It is also possible that there 1672 

are two intersections on the lower branch of both parabolas, since they are going in the same direction (up 1673 

and to the right. In this case, there are no more intersections, and since one of these two is (1,1), there is 1674 

again at most one feasible solution.  We tentatively conclude that there is a unique solution.  1675 

 The net result of all these machinations is a simple message: the probability of persistence 1676 

depends upon which habitat is initially colonized, when the habitats have different Rs.  In the juvenile-1677 

adult model, it matters which stage is introduced. In other words, because of demographic stochasticity, 1678 

initial conditions matter when conceptualizing the niche as a surface of probabilities of persistence.  As 1679 

noted in the main text, these effects become less important, the more propagules are introduced, because 1680 

demographic stochasticity becomes negligible. 1681 

Appendix D: Metrics of time to extinction of a continuous-time birth-death process with constant b 1682 

and d 1683 

 The text briefly notes that rather than using probability of persistence as the metric for niche 1684 

response surfaces, one might use instead an alternative metric such as mean or median time to extinction, 1685 

say after introduction.  Here, we work this suggestion out for the model discussed in the main text.  We 1686 

should note that the model assumes a constant environment, and no density dependence, so these metrics 1687 

are not finite if growth rates are high.  Near the edge of a species’ niche, or outside it, growth rates should 1688 

be low, and these metrics apply to such niche edges (rather than the interior).  1689 

 For a continuous-time birth-death process with constant per capita birth rate b and death rate d 1690 

(births and deaths being Poisson processes), the probability of survival of the lineage of a single 1691 

individual to time T after its birth is  1692 
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1

exp{ }s

R
P

rT R




 
 , 1693 

where R = b/d is the expected number of offspring per individual and r = b – d is the expected per capita 1694 

population growth rate, unless R = 1, in which case 1/ (1 )sP bT  . 1695 

Mean time to extinction 1696 

The probability of the lineage being extinct at time T is therefore Pe = 1 – Ps. This is the probability that 1697 

the lineage went extinct at or before time T, and therefore is the cumulative distribution function (CDF) of 1698 

the extinction time. The average time to extinction is 1699 

    
0

[ ] ( )e eE t Tp T dT


  , 1700 

where pe(T) is the probability density function (PDF) of extinction time, which is the derivative of the 1701 

CDF, dPe/dT, which is also equal to –dPs/dT (because Pe = 1 – Ps). Therefore, 1702 

  
00 0 0 0

[ ] ( / ) ,e s s s s sT
E t T dP dT dT TdP TP P dT P dT

   


            1703 

using integration by parts and assuming that TPs goes to 0 as T goes to infinity, as is true if r < 0 (R < 1), 1704 

which we assume here. Substituting the expression for Ps and integrating gives 1705 

0
0

0

0 0

1 ln(exp{ } )
[ ] (1 )

exp{ }

ln[exp{ }(1 exp{ })]
(1 )

ln(1 exp{ }) ln(1 exp{ })
(1 ) (1 )
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e
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rT R R rR

T rT R rT
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   
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      
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 





 1706 

Note that this is a decreasing function of increasing R: 1707 
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2 2

(1 ) ln(1 ) 1 1 1 1 1 ln(1 )
1 ln(1 ) 1

1
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d R R R
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rR rR i r i


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    

   
 1708 

which is negative if r < 0. It is also a decreasing function of the magnitude of r, as shown in figure 1A 1709 

(this can easily be shown by differentiating E[te] with respect to r). The time to extinction is large when 1710 

the magnitude of both r and R are small, in which case the birth rate is very small, d is approximately the 1711 

magnitude of r, and the time to extinction is approximately 1/d (see below). In figure A1, the maximum r 1712 

plotted is -0.01, and so the maximum time to extinction approaches 100 when the magnitude of r and R 1713 

are small (both 0.01 at the maximum extinction time). 1714 
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Figure A1. The mean time to extinction as a function of r and R. 1716 

 If R = 1, then 1717 

0 0 0
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1 1
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 1720 

Figure A2. The mean time to extinction as a function of b and d. The mean is infinite for b > d. 1721 

 1722 

 The time to extinction can also be written in terms of b and d as 1723 

2 1
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 1724 

This is an increasing function of b and a decreasing function of d, and rises steeply as b approaches d (fig. 1725 

A2; note the logarithmic vertical scale). The terms in brackets are sums of powers of R so if R is small, 1726 

the time to extinction approaches 1/d, the mean time to death of the first individual (first expression on 1727 

second line). For larger R, additional time is added as births tend to increase lineage persistence. The time 1728 

to extinction is an increasing function of R, assuming that d or b is fixed, but from the above, it is a 1729 

decreasing function of R if r is fixed. It can be shown that the derivative of the extinction time with 1730 
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respect to d has a greater magnitude than the derivative with respect to b, so increasing them both by the 1731 

same small amount (which keeps r the same while increasing R if b < d) decreases the extinction time. 1732 

 The average lifetime of an individual is 1/d, so if time is measured on this scale, then  1733 

(1 ) ln(1 ) (1 / ) ln(1 ) ln(1 )
[ / (1/ )]

( )e

d R R d b d R R
E t d

rR b d R R

     
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
, 1734 

which is an increasing function of R and not a function of r. The mean time to extinction increases with R. 1735 
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Figure A3.  Mean time to extinction, divided by average lifetime, as a function of R (it is independent of 1737 

r). 1738 

 1739 

Median time to extinction 1740 

 The median time to extinction can be found by setting the survival function to 0.5.  1741 

1
0.5

exp{ }s

R
P

rT R


 

 
, 1742 

and solving for T, which is ln(2 ) /mT R r   . This is defined as long as R < 2 (except if R = 1), which 1743 

gives a probability of lineage persistence of less than 0.5. Again, if r < 0 (R < 1), this is a decreasing 1744 
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function of R and the magnitude of r (fig. A4). However, if r > 0 (R > 1), this is an increasing function of 1745 

R and a decreasing function of r (fig. A5).  If R = 1, then the median is where 1 / (1 ) 0.5sP bT   , 1746 

which is at 1 /mT b . [In terms of individual lifetime, / (1 / ) ln(2 ) /mT d R d r  1747 

ln(2 ) / ( / 1) ln(2 ) / (1 )R b d R R       , which is an increasing function of R and independent of 1748 

r.] 1749 

 At first glance, figures A1 and A5 are puzzling.   For a given R, an increase in r from more to less 1750 

negative values boosts persistence. This is intuitive. However, for a given r, an increase in R decreases 1751 

these metrics of persistence. That is not intuitive. However, consideration of figure 5 in the main text 1752 

helps clarify what is going on. Note that below the line of b = d through the origin, along lines of constant 1753 

r, increasing R goes along with higher values of d, and b. (The reverse is true along line of constant r that 1754 

are greater than zero, i.e., the upper portion of the phase plane.) The increase in deaths looms large in 1755 

determining extinction. There is no seeming paradox, if one looks at births and deaths and how they 1756 

influence persistence (fig. A2); persistence is always facilitated, if births are higher, or deaths, lower.  1757 

This exercise does demonstrate that usual metrics of fitness need not map neatly on the probability of 1758 

persistence, even in constant environments without population structure or density dependence. 1759 
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Figure A4.  Median time to extinction for a population that cannot persist (r < 0, R < 1) 1761 
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Figure A5. Median time to extinction for a population that can persist (r > 0, 1 < R < 2; the last condition 1763 

is needed so that the persistence probability is less than 0.5, otherwise the median extinction time is 1764 

infinite). 1765 
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