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Reflections on an essential but elusive ecological metaphor: the Hutchinsonian niche
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Online supplement (with Michael Barfield) 4,649 words, five figures

Preamble. This essay was submitted to The American Naturalist on July 29, 2021. I received favorable
reviews and editorial comments on October 12, 2024. was asked to shorten and restructure. For personal
reasons, | have had to put this revision on the back-burner, but I do expect a shortened and modified
version of this manuscript to appear in due course, with updated references. Colleagues have suggested |
post the original package on the web, so that the ideas can be disseminated more broadly. I note that my
long-time research Dr. Michael Barfield coauthored the technical supplement; he approves this document

being placed in an online archive.
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Abstract The Hutchinsonian niche, a pervasive metaphor in ecology, is a sister concept to Sewall
Wright’s adaptive landscape, with a shared focus on fitness. Characterizing what fitness means (and how
to measure it) is a fundamental conceptual issue in both evolutionary biology and ecology. After a brief
overview of adaptive landscapes and issues with fitness, this essay contrasts G.E. Hutchinson’s 1978
formalization of the niche as a surface of intrinsic growth rate across environments, with his earlier 1957
formulation focused on population persistence across environments. The former has come to be a
prevalent usage of “niche” discourse in the ecological and evolutionary literature, but the latter
conceptualization warrants attention, if one for instance wishes to relate niche concepts to species’
geographical distributions. Conceptualizing a species’ niche as a surface of probabilities of persistence
across environments requires consideration of factors beyond intrinsic growth rate when rare, including
dispersal, demographic stochasticity, and density dependence, among other factors — all elements needed
for the metaphor of the Hutchinsonian niche to fully capture its original meaning as a statement about

what a species requires from its environment in order to persist.
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“Perhaps our ultimate understanding of scientific topics is measured in terms of our ability to generate
metaphorical pictures of what is going on. Maybe understanding is coming up with metaphorical
pictures.” Bak (1996).

“If I can't picture it, [ can't understand it.” — Albert Einstein, attributed to Einstein by physicist John

Archibald Wheeler in Horgan (1991).

Introduction

Powerful metaphors, including visual images encapsulating key ideas, are central to scientific
discourse (Bailer-Jones 2002). Metaphors can have problems (Silvertown 2016), including vagueness,
reification, and the conceptual shackles of hidden assumptions. Nonetheless, metaphors provide
inspiration and facilitate communication among scientists, as well as with the broader public (Olson et al.
2019), and play a crucial role in the construction of scientific theories. One of the most famous
metaphors in evolutionary biology is the “adaptive landscape” of Sewall Wright (1932). Below, I touch
on subtleties in terminology and usage, but in this essay I use the phrase “adaptive landscape” as an
umbrella term, spanning several inter-related topographic metaphors in evolutionary biology (as do
others, see e.g. Svensson and Calsbeek 2012). This visual metaphor evokes a vivid image of evolution as
being akin to a hill walker (Wright 1959, p. 130) or mountain climber (Lewontin 1963) struggling ever
upwards towards a peak. When a population has neared that peak, the adaptations of its members reflect
the past action of natural selection culling out traits and genes of lower fitness (Rosales 2017). This essay
is crafted as a belated response to receipt of the Sewall Wright Award from the American Society of
Naturalists a few years back (received summer 2011), so I start with a short reflection on this enduring
contribution of Wright to our discipline, before moving on to a related, equally pervasive ecological
metaphor — the Hutchinsonian niche. As is the case for adaptive landscapes in evolutionary biology, the
concept of “niche” is a metaphor (actually, more than one metaphor) that plays a central role in ecological

thinking. The two metaphors are linked by a common concern with “fitness.”
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I use simple models to make conceptual points, and along the way tie together different strands of
the existing ecological literature, in I hope a novel and useful way. I will extend a cluster of ideas
sketched briefly in Holt (2009a), outlining needed refinements in the Hutchinsonian niche concept, and in
particular an expansion to encompass three missing ingredients: i. an explicit concern with space and
movement; ii. stochasticity (both demographic and environmental); and iii. density dependence (direct,
and indirect), encompassing the combination of that species’ impacts on the environment, and feedbacks
from those effects on the environment onto the species itself. The evolutionary dimension of the niche
warrants attention, but this essay focuses on ecological issues. A companion essay (Holt, in prep.)
grapples with intraspecific variation, conservatism and evolution in the niche, a topic squarely at the
interface of ecology and evolutionary biology.

A meditation on Wright’s adaptive landscape, and fitness: A preamble to the Hutchinsonian niche

Sewall Wright himself (A. Rosales, pers. comm.; e.g., p. 244, Wright 1942) invoked ecological
niches as relevant to evolutionary outcomes, but as best I can discern, he does not explicitly define the
term “niche,” but rather uses it to denote (rather vaguely) ecological “opportunities,” which could
correspond to adaptive peaks in a surface of selective values. Wright himself seems not to have used the
term “adaptive landscape,” but other authors in the Modern Synthesis came close (and it is common for
writers to refer to “Wright’s adaptive landscape” as if he coined the term; e.g. Wade 2012). For instance,
George Gaylord Simpson said “Wright ... has suggested a figure of speech and a pictorial representation
that graphically portray the relationship between selection, structure, and adaptation. The field of possible
structural variation is pictured as a landscape with hills and valleys...” (p. 89, in the 1984 reprint edition),
and Simpson utilized the notion of “adaptive zones” to interpret evolutionary patterns in the fossil record.
Theodosius Dobzhansky (pp. 26-27, 1970) refers to “adaptive peaks,” “adaptive valleys,” and
“topographic maps” in reference to Wright’s ideas; in a seminal paper, Russ Lande (1976) tied together
the perspectives of Simpson and Wright by focusing on “an adaptive topography for the average
phenotype in a population." The first explicit usage of the term “adaptive landscape” that I can find is
Lewontin and White (1960), who present “maps” of mean population fitness as a function of mean
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genotype frequency in an Australian grasshopper, and use the term “adaptive landscape” (with the phrase
in quotes, without citations), suggesting this may indeed be the mutational event creating this minor
cultural meme.

Natural selection may not always move populations towards higher average fitness (due to
frequency dependence, multi-locus effects, etc.), but as Charlesworth and Charlesworth (2012, p. 63)
remark, the adaptive landscape metaphor nonetheless ... provides a useful way of visualizing the action
of selection in complicated situations.” The metaphor has enduring value well beyond Wright’s own
focus on his shifting balance theory. As many authors have noted (e.g., Gavrilets 2004; Dietrich and
Skipper 2012 and others in Svensson and Calsbeek 2012), the adaptive landscape metaphor arises in
various renditions and terms (e.g., “surfaces of selective value,” Wright 1988; “fitness landscapes”
Gavrilets 2004; as well as “adaptive landscapes,” e.g., Vincent and Brown 2005). Sometimes an adaptive
landscape portrays the fitnesses of each of a set of individual genotypes or phenotypes (e.g. the “holey”
fitness landscapes of Gavrilets 2004). Wright himself referred to “surfaces of selective value” (Wright
1988), which are fitnesses of individual genotypes, in an abstract space of genotypic possibilities.
Populations have heritable variation in fitness, and so are represented as discs of varying sizes
superimposed on this landscape (fig. 4 in Wright 1932). Sometimes, the landscape describes mean
population fitness, as a function of gene frequency or mean phenotype in a population (Lande 1976; Fear
and Price 1998; Arnold et al. 2001; Svensson and Calsbeek 2012; Hendry 2017). Indeed, Dan Bolnick
(pers. comm.) suggests that current usage is largely for the term “fitness landscape” to refer to fitnesses of
individuals (with a given phenotype and genotype), and “adaptive landscape” instead to denote population
mean fitness as a function of mean phenotypes or gene frequencies. Despite such heterogeneity in
meaning, and skepticism from some as to the utility or conceptual coherence of the term at all (e.g.,
Kaplan 2008; Pigliucci 2012), references to adaptive landscapes in one flavor or another pervade the
current literature of evolutionary biology. Representative recent examples include Dickson and Pierce
(2019), Voje (2020), and Anderson et al. (2021} (see Fragata et al. 2019 for a review). For instance,
Brady et al. (2019a) added causal arrows to a figure of an adaptive landscape to creatively characterize
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different ways maladaptation might arise; Childs et al. (2004) constructed fitness landscapes for flowering
time in a stochastic environment; Lawrence et al. (2019) drew on adaptive landscape imagery to interpret
protective coloration in poison frogs; and, Kokko et al. (2017) reflect on how ecological and genetic
complexities challenge simplistic views of adaptation as simply hill-climbing. All these authors find the
adaptive landscape metaphor to have continuing value as a conceptual “hook” for their studies, providing
a way to help shape theory development and to communicate complex and subtle ideas. As Skipper and
Dietrich (2012) remark, the adaptive landscape is a robust heuristic in evolutionary theory.

Gavrilets (2004) perceptively notes that the fitness landscape describing the relationship of
individual phenotype or genotype to fitness is more fundamental than that relating mean population
fitness to mean phenotypic or genotypic state, for the former is required to derive the latter. Dan Bolnick
has remarked to me, “Practically, we pretty much only ever empirically measure fitness landscapes, not
adaptive landscapes.” Evolutionary biologists typically focus on relative fitness, which drives changes in
frequency of alternative alleles in selection (e.g., Orr 2009; Bertram and Masel 2019). Ecologists by
contrast traffic in absolute fitness (Brady et al. 2019b). Even if selection is frequency-independent,
because relative fitness of a given allele is measured as its absolute fitness in comparison to mean fitness
in its population, relative fitness depends upon allele frequency (Orr 2007). The most straightforward
rendition of fitness surfaces is absolute fitness or components of fitness of individuals (e.g., viability from
birth to reproduction in a discrete generation model where individuals vary only in survival) as a function
of their genotype or phenotype.

The metaphor of an adaptive landscape thus rests on a somewhat subtle (even slippery) concept —
fitness (Wade 2012). English usage of the word “fit” broadly denotes either of two things: the aptness of
an object or person for a particular role or task (e.g., the fit of a key to a lock), and the vigor or health of
an individual (e.g., the fitness of a star athlete). There has been a long debate among biologists and
philosophers about what the term “fitness” in an evolutionary context means and how it should be
measured (e.g., Sober 2001; Ramsey and Pence 2013; Pence and Ramsey 2015), and the word has been
used in biology in many ways, and quantified variously (Brommer 2000; Roff 2008). Dawkins (1982) in a

6



153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

chapter titled “An Agony in Five Fits” identified five distinct usages of “fitness” --and he would prefer to
avoid the term “fitness” entirely.

Ultimately, the dynamics addressed by ecological and evolutionary theory rest on patterns of
individual births and deaths across time and space (and changes in state in individuals between those
events) for lineages of ancestors and their descendants, where those births and deaths (and state changes)
are causally related to both the traits of organisms (and thus the genotypes that underly those traits), and
their environments. A fitness metric provides a convenient shorthand of this complex nexus of causes, an
emergent property, aggregate cause, or accounting summary of the flux of demographic events that drives
both ecology and evolution, taking into accounts factors such as density and frequency dependence
(Doebeli et al. 2017; Coulson et al. preprint ). Characterizing what metric is appropriate, however, can be
subtle. As Crewe et al. (2018) state, “The technical definitions of reproductive value and fitness, with all
their apparatus, are complicated.” Indeed.

There have been long-standing debates about which combination of births and deaths provides
the best fitness metric for understanding evolution; for instance, is it the intrinsic growth rate r, or lifetime
reproductive success R (Pasztor et al. 1996; Metcalf and Pavard 2007; Roff 2008)? The two metrics can
give different results about the expected outcome of selection. It is simplest to characterize fitness for
clonal organisms, where in the absence of mutation genotypes move as a package across generations, but
even here there are subtleties. The “phenotypic gambit” (Grafen 1984) in behavioral ecology and
adaptive dynamics basically assumes that phenotypes are transmitted faithfully across generations (as is
expected with asexual reproduction); with sex and recombination, however, the “environment” of a given
allele or other heritable unit includes a shifting genetic environment, and so the realized fitness of any
allele has to account for the effects of this genetic milieu, and the genotype-to-phenotype mapping.
Rousset (2004, p. xvi) states that fitness is “the expected number of adult offspring of an adult” and Rice
(2004, p. 6) comparably remarks “... fitness [is] the reproductive contribution of an individual to the next
generation.” These are starting points, but not the end of the story (how does one define “adult,” for
instance?). In populations with continuous, overlapping generations, Ronald Fisher (1930) considered
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fitness to be the Malthusian growth parameter (), a population parameter, calculated from individuals’
birth and death schedules (as well as reproductive values, which are population-level attributes,
Charlesworth 1980, 1994; Grafen 2015). Current thinking (Metz et al. 1992; Metz 2014) has identified a
general fitness metric called “invasion fitness.” This is a generalization of exponential growth or decline,
a dominant Lyapunov exponent, for example that of an ergodic multiplicative sequence of transition
matrices describing population growth as time gets large, for a clone introduced at trace numbers into a
persistent ancestral population (which implies the ancestor has an average long-term growth rate of zero).
Sometimes this abstract quantity matches up with either the intrinsic growth rate, », or lifetime
reproductive success, R, depending upon assumptions made about density dependence and the magnitude
of environmental fluctuations (Engen and Saether 2016). However, in many realistic scenarios (e.g., with
temporally fluctuating environments, or with stage and/or spatial structure) these familiar proxies for
fitness are inadequate for identifying those strategies that will be evolutionarily and convergently stable
strategies (Orzack 1993; Metz 2014; Lion and Metz 2018).

Maynard Smith (1989, p. 38) remarks that ascribing fitness to individuals is not quite right
"Fitness is a property, not of an individual, but of a class of individuals—for example of individuals
homozygous for allele A at a particular locus. Thus the phrase *expected number of offspring’ means the
average number, not the number produced by some one individual. If the first human infant with a gene
for levitation were struck by lightning in its pram, this would not prove the new genotype to have low
fitness, but only that the particular child was unlucky.” The “class” that is most relevant, I suggest, is not
any old class, but that comprised of lineages emerging from the successive ancestor-descendent
relationships of individuals or heritable units (individual A begets individual B, who begets C, etc., or
replicator A copies itself to A’, A" etc.; Akcay and Van Cleve 2015, Queller 2020). The term “lineage
selection” was first coined in the context of levels-of-selection issues (Nunney 1999), but a perspective on
lineages (rather than solely individual organisms) pertains more broadly and indeed critically, I think,
particularly when considering population dynamics and evolution in more complex environments. (One
realistic complication that I mention, just to put aside, is that the trait may not be a fixed attribute such as
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a given body size, but a suite of trait values across environments — norms of reaction, expressions of
phenotypic plasticity. These terms pertain to lineages experiencing a range of environmental settings, not
a single individual in its own singular environment.) The structure of environmental variability
influences the outcome of selection in heterogeneous environments, and in particular average
reproductive success can fail as a fitness metric (Frank 2011). When there is variability in birth and death
rates, over space, or through time, or as a function of social and genetic context, genealogical perspectives
are required to make accurate evolutionary predictions (Graves and Weinreich 2017).

In any case, the basic idea underlying the adaptive landscape metaphor is that there is a mapping
of evolutionary possibilities (lineages of alternative phenotypes or genotypes among which selection can
draw) onto a fitness metric — for a given (and usually unspecified) environment. The shape of the adaptive
landscape will often differ among fitness metrics, and considering how these shapes differ (e.g., in the
position of optimal phenotypes) can help one perceive the different evolutionary implications of
alternative metrics.

The evolutionary metaphor of the adaptive landscape, | suggest, is sister to a principal usage of
the word “’niche” in ecology — with the twist that rather than expressing fitness as a function of
genotype/phenotype, for a given environment, the Hutchinsonian niche is a fitness metric for a given
genotype/phenotype (or lineage), as a function of environmental states (very broadly conceived). This
function can often (but not always) be pictured visually as a landscape. It is not widely recognized (Mark
McPeek, pers. comm.), but this Hutchinsonian niche concept (Holt 2009a) is at base the ecological
counterpart to fitness surfaces or adaptive landscapes in evolutionary biology — maybe two sides of the
same coin. Or, in a nod to the landscape metaphor, maybe they can be viewed as two complementary
views of a unified fitness surface landscape (see fig. 3.13 in McPeek 2017). As we will see, issues about
the choice of metrics of fitness, and the need to consider lineages rather than just individuals, pertain to
niche concepts. One arena where the two metaphors diverge is that ecologists are concerned with
persistence and extinction, which as we will see may involve considerations other than those that arise

when considering the fitnesses that drive selection.
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An ecological metaphor based on fitness — the Hutchinson niche

Many authors have provided excellent discussions of the history of the niche concept (or
concepts) in ecology (e.g., Whittaker and Levin, 1975; Hurlbert 1981; Schoener 1989; Chase and Leibold
2003; Pedruski et al. 2016; Sales et al. 2021). My emphasis here is on its connection with demography.
The original English meaning of the word “niche” denotes a concrete place, such as the cavity in a church
wall where the statue of a saint resides. Elton (p. 64, 1927) made the word “place” more abstract and
referred to niches as the “place in the community” of a species, like the role of a vicar in an English
village. This sense lives on robustly in ecological discourse. As two examples among many that could be
cited, Barraclough (p. 2, 2019) remarks that the causes of speciation include “... the availability of new
ecological niches,” and Gauzere et al. (2020) suggest that there are many vacant niches for tree species in
central European forests. So, Elton’s meaning of “niche” persists.

When a statue fills its niche, it preempts a space where another statue might instead reside. This
is a form of “impact” of that first statue on its world. Understanding impacts of species on their
environments (broadly defined) (Leibold 1995; Chase and Leibold 2003), and how those impacts in turn
feed back onto the species themselves, is essential for understanding population regulation and species
coexistence in interacting webs (Meszéna et al. 2006). Whittaker et al. (1973) suggested the word
“niche” should refer just to the interactions of a species with other members of its local community, with
“habitat” denoting its dependence on non-interactive environmental conditions (e.g., temperature), for
instance influencing its geographical distributions. (These authors also suggested “ecotope” as a term
encompassing both “niche + habitat”; the word is rarely used this way, and has acquired another distinct
meaning in landscape ecology.) Hutchinson’s own use of the word “niche” was in the context of
community structure (competitive exclusion, species packing, etc.), but contemporary references to
species’ niches pervade discourse as well about the causes of species’ geographical ranges over broad
areas (e.g., Peterson et al. 2011), not just local community interactions.

Hutchinson (1957) re-cast usage of the term “niche” to provide a compact language for
encapsulating what a species requires in the world in order to persist. He stated (p. 416) that the
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fundamental niche of a species is that suite of environmental states in which “every point ... corresponds
to a state of the environment that would permit the species ... to exist indefinitely” (one presumes without
recurrent immigration from external sources). His original rendition of this concept was set-theoretic (the
famed “n-dimensional hypervolume”, Blonder 2018; Blonder et al. 2018). Later, he linked his niche
concept to the most basic concept of population ecology — exponential population growth or decline
(Hutchinson 1978). Hutchinson (p. 194, 1978) envisaged that one could plot per capita birth and death
rates b(E) and d(E) for a species with continuously overlapping generations as a function of a suite of
environmental attributes (a vector, £, with elements such as e.g., mean daily temperature, pH, and
predator abundance). Relevant environmental features in general include not just abiotic variables such
as temperature, but also the abundance and trait values of interacting species, including the abundance
and trait composition of the species itself. However, for many purposes, one focuses on a focal species
when it is rare and density dependence is ignored. “Rarity” for example is assumed when analyzing
invasibility in community ecology (McPeek 2017); the Hutchinsonian niche in its 1978 formulation is
thus a visual map of invasibility. For the moment, we ignore realistic complications such as age and stage
structure, spatial location, and the discreteness of individuals, and assume a constant environment over
the time scales in question.

An abstract example is shown in figure 1. Demographic rates are functions of two environmental
variables (these plots are “demographic response functions,” sensu Pulliam 2000). Birth rates are a
Gaussian bulging out of the page (fig. 1, left), whereas death rates are a parabola, sinking into the page
(fig. 1, right) (light tones indicate “better,” i.e., higher births, or lower deaths). The optimal environment
for births differs from that for deaths. Stage-specific vital rates such as survival, fecundity, growth, and
germination often do have distinct patterns of variation in response to environmental variation in space or
time (Villellas et al. 2015; Pironen et al. 2018; Andrello et al. 2020), so discrepancies in which

environments are optimal for different vital rates are likely quite general.
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The difference between these two demographic rates, evaluated at low densities in a constant,
closed environment, leads to the core model of population ecology, namely density-independent
exponential growth,

aN =r(E)N, where
dt

r(E)=b(E)—d(E) (M
where r is the intrinsic per capita rate of growth, and as before E is a vector of factors in the environment
(very broadly conceived). As noted above with respect to “fitness” in evolutionary biology, these
demographic rates are population attributes describing a lineage, not really properties of individuals.
Expressed graphically against components of E (see fig. 2, left), equation (1) defines a niche response
surface (e.g., fig. 12-4 in Hutchinson 1978, based on Maguire 1973) — which, metaphorically, is a
landscape. (Some authors, such as Pasztor et al. 2016, avoid use of the word “niche” in this way, and
instead refer simply to a species growth potential. I think current usage for now (but see Discussion)
favors continued use of Hutchinson’s term.) The exponential model for population growth provides the
foundation upon which almost the entire elaborate edifice of theoretical ecology rests (Case 2000; Pasztor
et al. 2016), if E is interpreted appropriately, with equations for the dynamics of each interacting species
and for the abiotic components of ecosystems.

There is growing emphasis on this demographic perspective on species’ niches in analyses of
geographic ranges (Schurr et al. 2012). Almost always, the fitness metric used to characterize niche
response surfaces is the instantaneous growth rate (eq. [1]) (e.g., Peterson et al. 2011, p. 27; representative
citations include Merow et al. 2014; Greiser et al. 2020; Pagel et al. 2020; Treurnicht et al. 2020). The
shape of the niche surface defined by equation (1) matters (see below), but in practice the focus has often
been on the boundary subset of £ where

r(E)=0. 2)
This expression cleaves the world into two domains — those where a species should go extinct (#(£) < 0),
and those where it might persist, deterministically (#(£) > 0). Expressed graphically, with £ described by
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continuous Cartesian axes, in simple cases this is a bounded, compact set demarcating the set envisaged in
Hutchinson (1957) (e.g., the oval describing the niche boundary in fig. 2, left). In more complex cases
this simple geometric representation breaks down (e.g., in strongly seasonal environments, Soberén and
Peterson 2020), reminiscent of the inadequacy of simple shapes for adaptive landscapes when considering
complex genotype-to-fitness mappings (e.g., the ’holey” landscape of Gavrilets 2004).

The shape of the niche response surface, away from the niche boundary defined by (2), matters,
not just that boundary. Sax et al. (2013), for instance, coin the term “tolerance niche” to denote
environments in which populations are not self-sustaining, but individuals can survive for some period,
and possibly reproduce to some degree. This might describe habitats with sink populations maintained by
recurrent immigration (Holt 1985; Pulliam 2000; Keddy 1982; Loreau et al. 2013). The more gradual
decline is in the sink, the more abundant is the population sustained there by immigration (Holt 1993).
Within the niche boundary given by equation (2), niche shape and optima are important, for instance to
tackle applied problems such as the effective control of invasive species. Near equilibrium, the shape of
the niche response surface determines how sensitive population growth rate is to small environmental
perturbations; such sensitivities enter into the environmental feedbacks that govern species coexistence
(Meszéna et al. 2006), and determine how species respond to temporal environmental variation.
Feedbacks also help determine equilibrial or average abundances, given persistence. Below I touch on
this feedback aspect of the niche, but for now put it aside.

The emphasis on assessing demographic performance at low densities reflects the fact that
Hutchinson viewed the niche as a summary of what a species needs to “indefinitely persist,” which means
one focuses primarily on episodes when that species is pushed to low numbers, and then asks if it can
increase and therefore persist. If a population is abundant, one assumes that over the short run, one need
not worry about extinction — so the emphasis is on when it is rare. To a first approximation, characterizing
the niche thusly describes conditions for invasibility of a community (ability to increase when rare), a
central focus of community assembly and coexistence theory (McPeek 2017; HilleRis Lambers et al.
2012; the “invasion criterion” of Grainger et al. 2019). The protocol of describing the niche of a species
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as a surface of intrinsic growth rates across environments informs analyses of geographic range limits
(e.g., Soberén 2010; Peterson et al. 2011; Eckhart, et al. 2011) and of the relationship of functional traits
to community assembly (Laughlin et al. 2020; Treurnicht et al. 2020). A focus on demography is
increasingly recognized as being essential for understanding the dynamics and limits of species’
geographical ranges (Eckhart et al. 2011; Normand et al. 2014). Niche discourse focused on the
environmental dependencies of the intrinsic growth rate provides a crisp way of talking about these
issues.

Quantifying the Hutchinsonian niche in practice is challenging, because one has to measure
growth rates across a range of environmental conditions. Though difficult (Holt 2009a; Laughlin et al.
2020), there are a growing number of examples quantifying demographic variables across geographical
ranges both observationally (e.g. Treurnicht et al. 2016) and using experimental approaches such as
transplants or lab measurements. Hooper et al. (2008) provide an excellent example of experimental
quantification of key niche dimensions for Daphnia magna in Yorkshire, England. They brought a clone
of this daphnid into the lab, initiated populations at low densities, and measured intrinsic growth rate as a
function of two key abiotic variables of this zooplankter’s niche — pH (important for osmotic balance of
all aquatic organisms), and Ca’" concentration (calcium is needed by crustaceans for their exoskeleton,
shed frequently during development). They then compared the niche response surface of these lab
populations to observed presences and absences across the permanent waterbodies of Yorkshire. Almost
invariably, where the niche response surface predicted » < 0 for the observed chemistry of a waterbody,
the zooplankter was absent. This illustrates how understanding a species’ Hutchinsonian niche can be
used to interpret distributional patterns.

Some authors have argued that the Hutchinsonian niche concept is so ambiguous and difficult to
nail down that the term “niche” should be abandoned entirely (MclInerny and Etienne 2012a; Angilletta et
al. 2019). As with the adaptive landscape in evolutionary biology, one practical and conceptual challenge
is that metrics of absolute fitness are aggregate properties of births and deaths within lineages. The actual
causes of population change are individual births and deaths occurring in the different physical, biotic,
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and genetic environments of those individuals (Doebeli et al. 2017), as well changes in states (including
spatial location) between these events, averaged in some apt fashion across the environments experienced
by a lineage. This problem of accounting for heterogeneity in defining the niche for a lineage matches the
conceptual problem noted above for adaptive landscapes (does the niche pertain to individuals, or instead
to lineages?). The next section suggests one formal approach to constructing an appropriate average,
accounting for the fact that different members of a lineage likely live in different places and so experience
somewhat different environments. Another important issue, which I will not focus on here, is that within
local populations and species there is likely heritable variation in niche properties, however the niche is
defined. If that were not the case, then species would not evolve in their niches, and yet adaptive
radiations show clearly that they do. In a companion essay (Holt in prep.), I will dwell on issues of
intraspecific genetic variation in niches, and issues of niche conservatism and evolution, but here, I focus
on conceptual issues that arise even for characterizing what counts as the “niche” of a single genetic
clone.
Weaving dispersal into the Hutchinsonian niche

Expositions of the Hutchinsonian niche typically focus on the intrinsic per capita growth rate 7,
with no reference whatsoever to movement. For instance, in their fine monograph relating ecological
niches to geographical distributions, Peterson et al. (2011, pp. 27-28) divide a geographical region
occupied by a species into a spatially explicit grid of contiguous cells. Within each cell, one determines
the local intrinsic growth rate; if positive, that cell is deemed to have an environment within that species’
niche. Local dynamics can then be modified by movement among grid cells. This can be a useful
approximation but is also in some ways misleading. Movement is essential to life at all scales (Nathan et
al. 2008; Holt 2009b). Environments for most organisms are spatially heterogeneous. As Hutchinson
(1959) remarked “... [one must consider] the mosaic nature of the environment. Except perhaps in open
water when only uniform quasi- horizontal surfaces are considered, every area colonized by organisms
has some local diversity [in habitat conditions] .” He remarks that how heterogeneity is experienced by
an organism depends on its body size. It also (not explicitly noted by Hutchinson) depends upon how
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movement strategies filter the available environmental heterogeneity to define the actual, experienced
environment of an organism even at small spatial scales. In general, biologists are better at measuring the
traits of organisms than identifying and measuring the relevant feature of those organism’s environments.
As Levins (1979) noted, organisms “determine by their movements and physiological activity the
effective statistical pattern of environment.”

This observation pertains at all spatial scales. There is substantial variability in environmental
conditions over short distances (e.g. 1 m” or less for plants in terrestrial systems), and variance in
conditions grows with spatial scale (Lechowicz and Bell 1991; Bell et al. 1993; Richard et al. 2000).
Microscale heterogeneity is experienced by almost all organisms, including rainforest denizens (Scheffers
et al. 2017), soil taxa (Nunan et al. 2020), and bacteria in the open ocean (Stocker and Seymour 2012).
Landscape heterogeneity can influence where species’ range limits occur (Oldfather et al. 2019), and
within species’ ranges, there is substantial variability among sites in local densities, even at fine spatial
resolutions, suggesting the impact of local heterogeneity in conditions (Holt et al. 2002). To characterize
the Hutchinsonian niche across spatial scales, we need to focus on invasibility at each scale and take into
account movements at each scale that govern how organisms bias their experience of their local
environments. A formalism providing insights into scale dependence in the Hutchinson niche as
modulated by movement is “scale transition theory” (e.g., Snyder and Chesson 2004; Chesson et al. 2005;
Roy et al. 2005), described by Chesson (p. 52, 2012) as follows:

“Scale transition theory is an approach to understanding population and community dynamics in
the presence of spatial or temporal variation in environmental factors or population densities. It focuses
on changes in the equations for population dynamics as the scale enlarges. These changes are explained in
terms of interactions between nonlinearities and variation on lower scales, and they predict the
emergence of new properties on larger scales that are not predicted by lower scale dynamics in the
absence of variation on lower scales.”

How can scale transition theory inform the ecological niche concept, across spatial scales?
Godsoe et al. (2017) suggest the following protocol. Consider a large, spatially closed continuous area,
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subdivided into a grid of n contiguous cells, among which individuals disperse (this procedure could also
be carried out within each cell, leading to a hierarchy of nested cells; we will not explore this elaboration
here). There is spatial heterogeneity, so birth and/or death rates vary among cells. Local population
growth within grid cell £ (k= 1, ... , n), with environment £;is (net local growth) + (inflow, /) —
(outflow, Oy), or

dN,
dt

= (E,)N, +1,-O,. 3)

What are the regional dynamics of the entire population? If we assume dispersal among cells comes
without cost (i.e., no death during movement; Kortessis and Holt (ms.) refine this formalism to
encompass such costs), we can simply add up (3) over all localities; inputs and outputs cancel out. Using

standard definitions of means and covariances leads to

Ciz’_];] =rN = (r+cov(r,v))N =, N . (4)

Here 7 is the spatial average intrinsic growth of the species (the average is over cells), v is the fraction of
the total population found in each locality, and cov(r,V) is the covariance between local » and that
fraction. The quantity

r.(E,v) =r+ cov(r(E),v) 3)

is the instantaneous growth rate of the population at the landscape scale, where E is a vector of local
environmental conditions (which can vary among cells across the grid).

The spatial average growth rate suffices to characterize the Hutchinsonian niche if the covariance
term is near zero. This occurs given i) negligible spatial heterogeneity in growth rates, ii) rapid, uniform
movement across the landscape, homogenizing the spatial distribution of individuals, or iii) spatial
variation in abundance arising for reasons uncorrelated with spatial variance in local growth rates. But
often, none of these hold. Even if the spatially averaged growth rate across the landscape is negative, the

population as a whole may nonetheless grow if the covariance term is positive and sufficiently large. So,
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at a broad scale, the landscape is within that species’ Hutchinsonian niche. This can happen with passive
dispersal (see below), and is enhanced with active, adaptive habitat selection, where individuals
preferentially seek out sites with higher expected fitness (Schmidt 2004; Schmidt and Massol 2019).
Conversely, the covariance term may be sufficiently negative that, even with a positive spatial average
growth rate, the species fails to persist. In a constant environment, if all growth rates are negative, the the
overall growth rate will still be negative; the covariance term matters given spatial heterogeneity, if
growth is positive in some local sites and negative at others, as might be expected near range margins
(Godsoe et al. 2017). In temporally varying environments, however, the overall growth rate can be
positive, even if the average local growth rate is negative (Roy et al. 2005; and see below).

Expression (5) does not completely characterize a niche response service, because v is not yet
determined. In some cases, there is a “preferred” value for v. In equation (3), let the birth and death rate
at each location be constant, i.e., no density dependence or temporal variation, and also assume per capita
movement rates are density-independent; “output” and “input” are then linear functions of local densities.

The dynamics now match a system of linear ordinary differential equations,

dN _ % (©)

dt

where N is a vector of local densities, and 4 is a square matrix. The diagonal elements of 4 are per
capita (local growth — emigration) rates, and the off-diagonal elements are immigration rates (4 is the
per capita movement rate out of j into k). In a temporally constant environment, the population eventually
settles into a stable stage (= among-location) distribution (Caswell 2006), growing at a rate determined by
the dominant eigenvalue of 4. The stable habitat distribution is the right eigenvector of 4. If this
eigenvector is substituted for v in expression (5), we have a compact (if schematic) expression for the
long-term growth rate of the species across a landscape. In graphical depictions of the niche, niche axes
should in some fashion capture spatial variation in local growth rates, and the emergent imprint of

covariation of local abundances with local growth rates. Because of the covariance term, rates and pattern
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of dispersal are implicitly embedded in the absolute fitness of a lineage across the environments it
encounters, and so can influence the shape of the overall niche response surface.

After a species invades, there will often be a transient phase during which its realized growth rate
changes, because the population has not yet reached its stable stage (spatial) distribution. After this
transient phase, with random, non-directional dispersal, more individuals will occur in local sites with
higher growth rates. This implies positive covariance between local abundance and local growth, so the
regional growth rate may be positive, even though the spatially averaged local growth rate is negative,
and even if the initial rate of decline happened to be negative (because the species was not yet in its stable
stage distribution). In a temporally constant environment, this requires that some sites have a positive
local growth rate (below, we touch on temporally variable environments, in which a species may persist
in a landscape even if its long-term growth rate in each site is negative.) Figure 3 shows a simple example
for two habitats with different intrinsic growth rates. At high movement rates, the population
asymptotically experiences the spatial average growth rate (which is negative). At lower movement,
relatively more individuals occupy the better habitat, and growth is positive. If individuals directionally
disperse towards or stay in microenvironments with higher growth rates (Schmidt 2004; Schmidt and
Massol 2019; Resetarits et al. 2019, Matthiapolous 2021), this further facilitates persistence in spatially
variable environments. Thus, local patterns of movement are woven into the emergent birth and death
rates that determine persistence.

Asymmetric dispersal can generate negative covariances between local growth rates and local
density. Keddy (1982) described a clear example of such a negative covariance for the sea rocket Cakile
edentula in Nova Scotia sand dunes. The sea rocket is denser mid-dune than seaward. One might
surmise that growth rates are higher mid-dune, but Keddy showed the instantaneous growth rate is
actually negative there across all densities. By contrast, growth rates were positive near the sea. This
puzzling spatial pattern arises because a persistent wind from the ocean strips seeds near the beach,

lowering density there, and deposits them inland in the dune, boosting abundance there. This generates a
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negative spatial covariance between local growth rate and local density. An increase in average wind
speed might cause extinction, because of an aggravated mismatch of local abundance and growth rates.

Therefore, given spatial heterogeneity in environmental conditions, understanding the “indefinite
persistence” of a species at any given spatial scale (Hutchinson 1957) requires paying close attention to
patterns and rates of movement at finer scales of spatial resolution, not just spatial average birth and death
rates. The scale transition expression (5) does not fully capture all the ways movement influences niches.
In the future, the formalism should account for the demographic costs of movement (Kortessis and Holt
ms.). Moreover, many lifestyles mandate shuttling among habitats, because of seasonal variation (e.g.,
migratory species, Holt and Fryxell 2011) or complex life histories where different stages use different
habitats (e.g., McCoy et al. 2009), or because of local extinctions mandating recurrent colonization for
persistence in a metapopulation context (Hanski 1999); this dependence of persistence on movement
strategies was dubbed “stitching the niche” in Holt (2009a). [McInerny and Etienner 2012b use the phrase
“stitch the niche” differently, to exhort the reader to ponder how they use the term “niche,” and then “fix
it up.”] Matthiapolous (2021) has recently also argued that movement in heterogeneous environments can
alter the shape of the fundamental niche, and used this to inform interpretation of the spatial distribution
of the house sparrow. The bottom line is that the patterns and fitness consequences of dispersal at lower
spatial scales implicitly enter into determining the shape and boundary of the niche response surface at a
higher spatial scale. Movement ecology (Nathan et al. 2008) should be woven more fully into the
ecological niche concept than it is at present. Whether or not this suggestion, when fully developed,
permits simple visual renditions of niche surfaces (the landscape niche metaphor) remains to be
determined.
The ecological niche as a surface of persistence probability across environments

Now, I return to the most basic equation in ecology (exponential growth, eq. [1]) and point out a
subtlety in how one relates demography to species’ niches, pertinent to our meditation on Hutchinson’s
(1957) view of the niche as those environments “permitting persistence.” I have briefly touched on the
debate in evolutionary biology about alternative fitness metrics. Likewise, one can use the vital rates of
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births and death in different ways than usual to characterize niches. Above (as is typical in ecology and
biogeography, e.g. Hooper et al. 2008; Soberon 2010), the intrinsic growth rate » = b - d was the measure
of absolute fitness used to define a niche response surface (e.g., fig. 2a). Yet, this same simple population
model (1) has another measure of absolute fitness, which can imply niche response surfaces differing
substantially in shape, and which may better characterize persistence across environments.

Given the assumptions of model (1) for exponential growth or decline, an individual is expected
to live 1/d time units, during which it reproduces at rate . So the total expected number of offspring per
individual over its lifetime (which in behavioral ecology is called lifetime reproductive success, and in

epidemiology, the basic reproductive ratio), is

_bE)

R(E) = )

(7

A simple graphical way to envisage the relationship between » and R away from equilibrium is shown in
figure 4, where two complementary families of our two fitness metrics (» and R) describing exponential
population growth or decline are plotted in a parameter space of birth and death rates (assumed constant).
The family of lines comprised of parallel lines with slope 1 correspond to different values of the intrinsic
growth rate » = b — d. The family of lines radiating from the origin correspond to values of the alternative
fitness metric, R = b/d, with slopes 1/d. The only members of these two families of lines coinciding are
=0, and R = 1 (when a population is in equilibrium, deterministically). For any »# 0 or R # 1 (i.e., away
from equilibrium), for any value of one metric there are an infinite number of alternative values of the
other metric. Below, we argue that for a given r, extinction risk is higher in the direction shown by the
arrow, where high values of b go along with high values of d, because for a given r, these vital rate
combinations imply a lower R.

For now, we focus on the different niche response surfaces implied by this alternative fitness
metric. One can construct a niche response surface using R instead of ». This has no effect on the
deterministic conditions for persistence versus extinction, because >0 < R>1,andr<0 <& R<1. So

the set of environments allowing “indefinite persistence” might be expected to be the same. But the
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overall shape of the niche response surface for populations away from equilibrium can differ sharply
between the two fitness metrics, because the two metrics depend upon births and deaths in different ways.
Figure 2 juxtaposes these alternative niche response surfaces, for the abstract demographic profiles of
figure 1. The optimal environment for  differs from that for R. Moreover, the niche response surfaces are
asymmetric, with the sharpest change in » for shifts in environmental conditions to the left — opposite to
the asymmetry in R.

Does this matter? I suggest this difference in niche shapes given by the two complementary
fitness metrics for exponential growth has real consequences for a causal understanding of species’
distributions. Recall that Hutchinson’s (1957) verbal statement of what a niche “is” emphasizes
persistence. Much of community ecology rests on invasion analyses — the ability of species to increase,
when rare, as measured by deterministic instantaneous rates of increase, as in equation (1) (e.g.,
MacArthur 1972; McPeek 2017; Grainger et al. 2019). There is a huge literature crafted around this
protocol, yet there is increasing attention being given to ascertaining the role of demographic and
environmental stochasticity in determining the outcome of interspecific interactions (e.g. Pedruski et al.
2015). There is a lively ongoing debate in coexistence theory as to whether or not the rate of invasion
adequately measures persistence in competitive interactions (Jeltsch et al. 2019; Pande et al. 2020; Ellner
et al. 2020; Schreiber et al. 2020). The basic issue, however, does not require one to grapple with the
complexity of community interactions; it arises, quite simply, for a single species all on its own, in the
absence of interspecific interactions. In the next few paragraphs, I suggest that rather than intrinsic
growth rate », one might envisage niche responses surfaces as probabilities of persistence across
environments (over some time scale, and conditional on initial conditions), and an alternative fitness
measure such as R might be more informative about persistence than is 7.

My suggestion means that niche theory should be fused with population extinction theory. There
is a huge literature on the mathematics of population extinction (key references include MacArthur and
Wilson 1967; Leigh 1981; Foley 1994; Ludwig 1996; Orzack 1997; Lande et al. 2003, Lande and Orzack
1988; Ovaskainen and Meerson 2010; Carlson et.al. 2019), but there is, as yet, scant connection between
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that literature and niche concepts. This is an important direction for future development. If we
reconceptualize niches as statements about probabilities of persistence, we need to specify our
assumptions about initial conditions, to define the time scale over which persistence is gauged, and to
recognize that no single measure of “fitness” may suffice to characterize persistence across environments.
Density-dependent processes regulating abundance for instance are important, not only metrics of growth
rate when rare. Here, I just touch on a few conceptual issues and use a simple model to illustrate these
points about initial conditions, time scale, and fitness metrics, and then turn to density dependence.

Interpreted literally, Hutchinson’s encapsulation of the niche as those environments where a
species “exists indefinitely” would mean that species do not have niches at all! The reason is simply that
all individuals die, there is a non-zero probability that any individual will not have offspring before its
death, and populations are bounded (which must hold, given conservation of mass in our finite world).
Given these very general propositions, extinction is inevitable as one lets time go to infinity (Jagers 1992;
Halley and Iwasa 1998; Haccou et al. 2005). This might be a well-nigh astronomical span of time, but it
will happen. As John Maynard Keynes famously quipped, “In the long run, we are all dead.” Thus, in
using the term “indefinitely” one must implicitly refer to some time scale over which persistence us to be
gauged, starting with some assumed initial condition.

Classic results from branching processes and more recent extinction theory help sharpen this
suggestion. Consider the seminal results of Kendall (1948), who presented a model that may be the
earliest extinction model in ecology. Kendall examined a population growing with density-independent
demographic rates in continuous time (for textbook presentations, see Allen 2011, pp. 251-253, and
Renshaw 2013, pp. 74-76). We start at time ¢ = 0 with a single individual in a clonal species. Given n(r)
individuals at time ¢, Kendall assumed the probability in df of a birth is b(¢)n(¢)dt, and of a death is
d()n(t)dt. We assume the environment is constant, so b(¢) = b, and d(¢)=d, and ignore density
dependence. Kendall showed the probability that the initial individual has at least one descendent at some

later time 7 (i.e., its lineage persists up to then) is
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R-1

Psurvival = R_e_rr N (8)

As T gets large, then if b < d, asymptotically P =0, whereas if b > d,

survival

1

])survival = 1 - E : (9)

Thus, outside the niche as defined in terms of » < 0, extinction is inevitable. But, within the niche as
usually defined (» > 0), persistence is not guaranteed, but depends on the fitness metric R.

Figure 5A shows the probability of long-term persistence for an asexual colonist, within its
Hutchinsonian niche defined as » > 0, as a function of » and d. For a suite of species with the same
positive r, those with high births and deaths leading to a lower R are more likely to suffer extinction. At
low r, persistence is quite sensitive to d. In figure 4, those species in an equivalency class as measured by
r fall along a line of slope 1; to the right along the arrow (along a line of constant ») in figure 4, R
declines, and so does the probability of persistence. Thus, a suite of species with identical values for »
can differ strongly in their probability of persistence. The intrinsic growth rate still matters in a transient
phase, as it influences how quickly the asymptotic probability of persistence is reached (see eq. [8]).

Rather than using only intrinsic growth rate r, I suggest we might conceptualize complementary
niche response surfaces as probabilities of persistence across environments. In crafting such surfaces, one
might consider using alternative metrics having to do with persistence, such as expected mean or median
times to extinction. Grimm and Wissel (2004) usefully observe that in many models of extinction
dynamics, after an initial transient phase there is a negative exponential distribution of times to extinction.
The characteristic time scale of exponential decay describing times to extinction might constitute an
“intrinsic time to extinction,” and this could be used to construct niche response surfaces. The online
Supplement examines mean and median times to extinction for the above model. For the remainder of
this essay, for simplicity, I focus on the probability of persistence, as a function of environmental

variables (for given initial conditions and time scales), as a niche response surface.
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Environmental dependencies in vital rates will determine the shape and peak of these niche
response surfaces, but they may have different shapes than surfaces based on intrinsic growth rates. There
is growing empirical evidence that environments with the highest probability of occurrence need not be
those with the highest population growth rates (e.g., Thuiller et al. 2014). Figure 5B uses the schematic
example of figures 1 and 2 to depict such a surface, based on expression (9). In this abstract example, the
environment where persistence is most likely differs from that with the highest expected intrinsic growth
rate. There are challenges in empirically implementing this suggestion for refining the Hutchinsonian
niche (in effect returning to Hutchinson 1957), as it requires more knowledge about population dynamics
and history than one usually has. The above model nonetheless usefully illustrates two simple points
about characterizing niche response surfaces as probabilities of persistence: the need to be explicit about
time scale, and the importance of specifying initial conditions. After touching on these, I then turn the
third key ecological ingredient needed for re-interpretation of the Hutchinsonian niche based on
probability of persistence: density dependence, in various flavors.

Time scale.

The simple expression (9) is an extrapolation to large 7. Over shorter time scales, both 7 and R
enter into the probability of persistence after colonization (expression [8]). Ideally, one would keep track
not of a single metric of fitness, but its component (and causally underpinning) birth and death rates, since
both have distinct influences on persistence. So, we see that even in this classic model, i. intrinsic growth
rate () need not map neatly onto the probability of persistence, ii. alternative fitness metrics (R) may be
more informative about persistence, iii. sometimes multiple metrics are required, and iv. a specification of
time scale is needed to quantify the probability of persistence. Time scale is even more important when
there is temporal environmental variability, since one must gauge persistence not just in a fixed
environment, but along trajectories of shifting environmental states.

Initial conditions.

We have considered a specific initial condition: a lineage spawned by a single, clonally

reproducing colonist introduced into a stable environment, ignoring density dependence. If instead there
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are n colonists, and they and their descendants do not experience density dependence among themselves,
then each lineage spawned by a single colonist grows independently. So, the probability of establishment,
per colonizing episode, is

Pe = 1 - (1 - auwival )" (10)

If there are / independent introduction events, each with # colonizing propagules, we can replace # in
equation (10) with /n. With a large number of colonists aggregated over time, given a non-zero
probability of persistence for a solitary colonist, expression (10) will approach unity; a species should
thus be expected to quickly fill all its niche, i.e., all sites with » > 0 should be occupied, if dispersal is
unlimited.

However, in dispersal-limited species, having one to just a few dispersers in rare colonization
bouts might be typical; such species might thus be expected to be absent from many sites within their
niche, based on their intrinsic growth rate. This is particularly likely where R is low. For a given 7,
extinction rather than persistence is more likely after a single colonization bout with few colonizers, for
species with a “fast” lifestyle (high b and d), than for species with a “slow” lifestyle (low b and d) (i.e.,
comparing species along the arrow in fig. 4). When there is population structure (e.g., age or stage
dependence in vital rates), one also needs to specify the initial structure of the invasive propagule to
determine the probability of persistence. The online Supplement provides two worked examples
demonstrating the importance of initial conditions and persistence, one for a population with stage
structure (juveniles and adults), the other for a population introduced into two distinct habitats, coupled
by dispersal.

The conceptual framework of ecology does not usually emphasize historical contingencies and
context. Spencer (2020) has recently emphasized the importance of considering history in ecology,
including the temporal arc of construction (e.g., routes of community assembly, priority effects, Fukami
2015), long transients and nonequilibrial dynamics, and the potential for alternative states. It is a

historical contingency if colonization at a location typically involves rare bouts of very low numbers of
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dispersing individuals, rather than frequent episodes with many. This is the usual assumption in analyses
of community assembly, and frequently arises in invasion biology. But ecologists and biogeographers are
often concerned with populations that seem to be already well-established. This is another reasonable
initial condition that one can assume (itself reflecting historical contingency) for characterizing a species’
niche, and considering it brings me to the next topic.

Density dependence

Populations persisting over many generations will necessarily be bounded in their abundance, and
fluctuate around a long-term mean abundance, their “carrying capacity.” This requires feedbacks of
population size on either birth or death rates (Royama 1992), mediated through abiotic and biotic factors
(e.g., depletion of essential resources supply, aggravation of natural enemy attacks, buildup of toxins).
Such feedbacks strongly influence persistence. The web of direct and indirect density dependencies
within and between species are at the core of coexistence theory (Pasztor et al. 2016), but issues of
feedbacks and equilibrial abundance are not normally captured in the “requirement” dimension of
standard niche theory, but rather (in part) in the “impact” facet of the niche (Leibold 1995; Chase and
Leibold 2003). All else being equal, if two (non-interacting) species have the same intrinsic growth rate
when rare, the one with weaker density dependence should increase to higher abundance, and thereby be
more likely to persist over longer time scales.

The flip side of persistence is, of course, extinction. A huge literature in mathematical ecology
explores the role of population size and density dependence on extinction, starting with MacArthur and
Wilson (1967) and many authors since. This is a large, complex, and not fully resolved topic, and I will
not pretend to summarize it comprehensively. As Barbour (p. 189 in Haccou et al. 2005) states, «...
Unfortunately, the expected time to extinction is a quantity that depends very much on the detail of the
random processes that govern the population size. Simple rules of thumb are unreliable, except perhaps as
qualitative guides...” Here I will just touch on a few such qualitative rules-of-thumb from this rich body
of literature, suggesting what else needs to enter into the formulation of niche surfaces, construed as
surfaces of probabilities of persistence across environments.
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Allee effects

Given strong Allee effects (positive density dependence in growth rates at low densities; Keitt et
al. 2001; Courchamp et al. 2008), even in a deterministic world there can be strong effects of initial
conditions on establishment and persistence. Some Allee effects are immediate (e.g., the need for sexual
partners to find each other, or for a prey species to be sufficiently abundant to satiate a predator). Others
may be time-lagged, via shifts in the external environment that benefit a species increasingly over time,
because of its own impacts on the environment (including at times long feedback loops). Drake (2014)
for instance describes a power-law distribution of times to extinction in experimental water flea
populations, and he ascribes this pattern to directional amelioration of the environment due to changes in
the microbiota, induced by the water fleas themselves. This pattern differs sharply from the negative
exponential distribution of times to extinction observed in nearly all formal extinction models. Most
extinction theory to date does not address how a species might cause directional changes in its
environment (possibly with long time lags) that in turn alters its own extinction risk. Drake’s results
suggests an emergent, time-lagged Allee effect. In Holt (2009a), I suggested one implication of strong,
positive density dependence (direct or indirect) is that the range of environments in which a species can
persist, once established and at reasonable abundance for a while (what I called the “persistence niche”),
may exceed those where it can establish successfully in the first place when initially rare (the
“establishment niche”). Peay (2016) notes that interspecific mutualisms are quite likely to generate this
pattern; if species A benefits from the presence of species B, and A facilitates B, species A thereby
indirectly positively affects itself, with time lags mediated through population responses. Allee effects
magnify the importance of historical contingencies (hysteresis, Petraitis 2013) and landscape
configuration (Keitt et al. 2001) in determining how species’ niches map onto geographical ranges.
Stable range limits can arise in patchy environments, even in the absence of environmental gradients
(Keitt et al. 2001). (One empirical challenge arises in gauging the importance of Allee effects from
population time series is that demographic stochasticity at low densities can lead to patterns resembling
those expected from Allee effects (Lande 1998; Lande et al. 2003).)
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Constraints on abundance

Ultimately, species stop growing because of negative density dependence, either depressing
births, or boosting deaths (or both). Given density-independent growth up to some population size K,
above which the population stops growing, with demographic stochasticity alone (as in the Kendall 1948

model above), classic results suggest the mean time to extinction 7, scales with K as

T =ce™ (11)

e
(Lande 1993; Ovaskainen and Meerson 2010). The original analyses leading to equation (11) used
Fokker-Planck approaches, which can be problematic in capturing the effects of large fluctuations (which
often precipitate extinction). More recent analyses employing the Wentzel-Kramers-Brillouin
approximation (from physics, e.g., Doering et al. 2005) account for such fluctuations, and lead to insights
that differ in detail, but qualitatively still match this classic result. Expressions for mean time to
extinction (e.g., eq. [1] in Ovaskainen and Meerson 2010) often involve the reproductive ratio R, as well
as the equilibrial population size K of the related deterministic model. Expressions such as (11) imply
that populations with a small carrying capacity do have a short time to extinction, but even modestly
abundant populations, once established, can persist for a very long time scale, particularly if they have
large R.

The “once established” comment here warrants further consideration, in terms of the niche
metaphor. If the initial condition is one or a few individuals in rare colonizing episode in any given
location, extinction may be likely and occupancy low, even in environments where, once near carrying
capacity, persistence is expected to stretch to a very long time scale. This brings out the importance of
being explicit about the initial conditions assumed in characterizing the Hutchinsonian niche. The niche
space relevant to a high probability of initial invasion may well be much more constrained than that
describing the persistence of already well-established populations. In an applied context, the “niche”
relevant to invasion biology might differ from that needed in the management and conservation of

populations already at hand.
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Equation (11) pertains to a constant environment, but not to temporally variable environments,
where it greatly overestimates the expected time to extinction. The influence of population size on
persistence is sharply amplified given temporal variation in vital rates and carrying capacity, in which
case: “extinction risk scales roughly as the inverse of the expected population size in taxa affected by
moderate environmental stochasticity” (Hanski and Ovaskainen 2000; see also Ovaskainen and Meerson
2010). The word “roughly” here indicates this is a rule-of-thumb, not a precise quantification of
extinction risk (Otso Ovaskainen, pers. comm.). Fluctuations in birth or death rates can push an initially
large population to low levels, where it can then random walk by demographic stochasticity to extinction.
Positive temporal autocorrelation in the environment in particular aggravates extinction risks, because a
species can experience long spells at low densities (Haccou and Vatutin 2003).

There are several messages one can draw from this body of extinction theory. One is that in
environments near the edge of niche space (low » and/or R), occupancy should be ragged, particularly
given temporal variation pushing populations occasionally to low numbers. It is notable that many
absences in the Daphnia study of Hooper et al. (2008) do involve sites with low (albeit positive) intrinsic
growth rates. Another is that sculpting a niche surface in terms of probability of persistence is inherently
multivariate: one needs to pay attention not only to fitness metrics such as local growth rates and
reproductive ratios, but also to average abundances, and to measures of temporal variation in such fitness
metrics and abundance (variance, autocorrelation, and particularly extrema), not just means.

This multivariate determination of the probability of persistence might be simplified, given tight
correlations among these population attributes. The nature of such correlations (and even their sign),
however, is the subject of vigorous debate. Martinez-Meyer et al. (2013) and Osorio-Olvera et al. (2020)
for instance report that sites near the center of a species’ ecological niche (where its intrinsic growth rate
is presumably highest) also have higher abundances than do more peripheral sites (see also Brown 1984).
In such cases, sites near the edge of niche space should be particularly prone to local extinctions, because
the combination of low » and low K implies sharply aggravated extinction risk. Other authors by contrast
find that local growth rates and abundances are often poorly or even negatively correlated (McGill 2012;
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Santini et al. 2019). Thuiller et al. (2014) for instance report that high occurrence probability is
associated with high local carrying capacity, but that if anything it was negatively correlated with intrinsic
growth rate. Pironen et al (2017) reviewed empirical assessments of the “centre-periphery” hypothesis
and concluded that although occupancy often seemed reduced in ecologically marginal habitats
(compared to the center of a species’ niche), there were no consistent patterns in abundance within
occupied sites, or in demographic rates. There are a number of reasons why intrinsic growth rate might
not correlate strongly with average or equilibrial abundance (Osorio-Olvera et al. 2019; Holt 2020). The
reason this matters in the current context is that in such cases, intrinsic growth rate may be a misleading
metric of extinction risk, and hence by itself be a poor predictor of occupancy (which reflects the
probability of persistence).

Given that a population persists over a reasonable time scale, its births should roughly match its
deaths. There is no reason to expect these demographic rates in quasi-equilibrial populations always to
line up squarely with births and deaths at low densities at those same locations (i.e., the ability to grow
when rare). (Indeed, if they do, it is a puzzle why the population persists at all, since its intrinsic growth
rate will be near zero.) This is a challenge for empirical analyses across species’ ranges: without paying
careful attention to density dependence, it may be difficult to interpret observed patterns in abundance and
occupancy across space. Holt (2020) used a simple model to highlight what might underlay discrepancies
reported in the literature between intrinsic growth rate and local abundances. Assume a species locally
follows a logistic growth equation at each location i:

D NGB 1) (12)

Here, r«(E;) is intrinsic growth rate, and fi(E;) the strength of density dependence, both of which may
depend on local environmental conditions. At equilibrium, N; =7.(E,)/ f.(E,). Now, assume density
dependence is spatially uniform, so f;(E,) = f"'. Then, local equilibrial abundance should faithfully track

local intrinsic growth rates. Sites with low values for 7; (and likely, R;) will have low densities.
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Populations at such sites should be vulnerable to extinction if N;* is low, because of demographic
stochasticity, aggravated by low growth rates. Therefore, with constraints on dispersal, occupancy should
be low, given spatially uniform density dependence.

However, in general it is unlikely that the strength and functional form of density dependence will
be spatially invariant (Holt 2020). Direct and indirect channels of density dependence reflect many
contingent and spatially variable causal factors, such as renewal rates of depletable resources, and
population and behavioral responses of natural enemies, each with their own independent responses to the
environment, differing from that of ,(£). Macroecological studies of species distributions suggest that
across the range of widespread species, at the majority of locations where a species occurs, its numbers
can be quite low (Brown et al. 1995). If such differences among locations persist over time, spatial
variation in abundance likely in part reflects spatial variation in the strength of density dependence. If f;
varies independently of 7;, one would not observe a strong relationship between equilibrial abundance and
niche position, measured in terms of growth rate when rare. In other words, intrinsic growth rate might
be a poor predictor of the probability of long-term persistence.

Fast growth rates can even endanger local persistence — given time-lagged density dependence

Occupancy (reflecting persistence over reasonable time scales) and growth rate when rare might
not only be decoupled, but inversely related. When a population grows rapidly, it can overshoot its
carrying capacity, and crash, endangering its persistence. Reindeer were introduced into St. Matthew
Island off Alaska, grew exponentially at a rapid rate — and then plummeted to extinction, once they
overexploited their slowly renewing plant food supply (Klein 1968). In a continental setting, if this
happens in a number of locations coupled by dispersal (but not enough to be synchronized), this strong
consumer-resource interaction can persist nonetheless as a metapopulation (viz., “stitching the niche”
sensu Holt 2009a, as in Huffaker 1958’s classic experiments with mites on oranges). Ovaskainen et al.
(2016) developed a butterfly metapopulation model (motivated by the famed Glanville fritillary system of
the Aland Islands) where in each locale, butterfly dynamics fit the Ricker model. In this model, density
dependence is over-compensatory and time-lagged (e.g., due to over-exploitation of depletable biotic
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resources), and an increase in the intrinsic growth rate leads to population cycles or even chaos, with
excursions to low densities. Their model shows that across the landscape, patches that are higher quality
(i.e., higher intrinsic growth rate), if occupied, do show greater average abundance. However, these
patches in aggregate also have lower occupancy, because population overshoots followed by crashes
generate heightened, sporadic extinction risks (see fig. 3.11, p. 92 in Ovaskainen et al. 2016). In
epidemiology, pathogens with high R introduced into naive host populations can overexploit the supply of
susceptible hosts and go extinct more rapidly than do pathogens facing host populations with partial
immunity; the latter pathogens have a lower initial growth rate when rare, but also are not as prone to
burn rapidly through the supply of susceptible hosts, leading to extinction (Pulliam et al. 2007).
Resource-consumer systems where the resource is alive, and the consumer highly effective at
consumption, quite generally are prone to such “niche destruction” (Holt 2009a), leading to a potential
inverse relationship between occupancy and intrinsic growth rates over part of niche space.

Putting the pieces together: crafting a more robust theory of the ecological niche.

Here, I have revisited ideas that I sketched in Holt (2009a), articulating how the enduring niche
metaphor of Hutchinson (1957) — a characterization of those environments that permit persistence of a
species — could be enriched, in the light of our current understanding of population processes. Here I
briefly recapitulate the main points dwelt on above.

One issue is a reconsideration of dispersal. Many authors recognize that mismatches between
species’ distributions and niche requirements (Pulliam 2000; Pagel et al. 2020) can reflect dispersal. On
the one hand, dispersal barriers can prevent good habitat from ever being occupied, and on the other,
dispersal can sustain sink populations despite local growth rates being persistently negative. Above, |
argued that beyond these sensible observations, a consideration of movement across scales is required to
characterize a species’ niche in the first place, since patterns of movement influence how local variability
in the environment even at fine scales is translated into the aggregate, spatially averaged demographic

rates that enter into fitness metrics.
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The instantaneous intrinsic growth rate » when rare, though necessary, is not sufficient for
understanding the niche as a landscape of probability of persistence across environments. Even for
exponential growth in a constant environment, the branching process model of Kendall (1948) reveals an
alternative fitness metric (lifetime reproductive success, or finite reproductive ratio, R) to be more
informative about persistence. In epidemiology, R characterizes performance of an infectious disease
agent across environments. Mordecai et al. (2019) for example examine how R varies as a function of
temperature for vector-borne infectious diseases and use this thermal dependency to make predictions
about how disease prevalence will shift with climate change. Such results provide first-order predictions
about when epidemics — or more broadly introductions during community assembly — will likely fade out,
versus persist, along gradients in temperature.

Moreover, given that all populations are bounded, understanding density-dependent feedbacks
and long-term average abundance is essential to flesh out the niche concept of Hutchinson (1957) in terms
of persistence. This requires integrating niche theory with the rich theory of extinction in population
ecology. The niche metaphor interpreted as a statement about persistence may help provide a conceptual
framework for this integration. Schreiber et al. (2020) recently evaluated conditions for joint persistence
(viz., coexistence) in a guild of serpentine annual plants and concluded that “ecologists must look beyond
invasion growth rates and consider species equilibrium population sizes.” This empirical finding
matches my conceptual suggestion. Understanding feedbacks is particularly relevant to persistence given
positive density dependence at low numbers (Allee effects), or time-lagged negative density dependence,
which can ensure that populations with high initial growth rates seal their own fate. Alirio Rosales (pers.
comm.) has suggested that one could possibly revisit the adaptive landscape, and cast it in terms of
persistence, rather than the more usual fitness metrics. Another way of stating this, I think, is that fitness
metrics, ideally, should include the imprint of demographic stochasticity.

There are various ways one could put together the elements of space, stochasticity, and density
dependence so as to refine the theory of the niche, keeping in mind the metaphor of the niche as an
expression of performance (e.g. persistence) as a function across a space of environmental factors.
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Hutchinson (1959) referred to the “mosaic” nature of the environment. Because there is always temporal
variability, spatial (i.e., “real”) landscapes are not merely mosaics, but “kaleidoscopes” of constantly
shifting local conditions. Because temporal variability can lead to local extinction, even if the long-term
local growth rate in a closed population is positive (Lewontin and Cohen 1969), dispersal is often key to
long-term persistence (the central insight underlying metapopulation ecology). We have assumed
temporally constant growth rates, but scale transition approaches and expressions comparable to equation
(4) also describe population dynamics in spatiotemporally varying environments (Roy et al. 2005). Ata
local level, in a closed population positive autocorrelation in the environment increases extinction risk,
because populations are forced through runs of bad years (Haccou and Vatutin 2003). But if dispersal
couples a number of such populations that are unsynchronized, local positive autocorrelation can facilitate
metapopulation persistence. Given some dispersal, but not so much as to homogenize abundances across
space, and particularly with temporally autocorrelated variation not completely synchronized across
space, species will be temporarily more abundant where there are runs of good years and provide
immigrants to other locales with later runs of good years. This can facilitate persistence, even if every
location is on average a sink habitat (Jansen and Yoshimura 1998; Roy et al. 2005; Matthew and
Gonzalez 2007). Expressions such as equation (5) still describe regional growth (Roy et al. 2005), but the
covariance term now reflects temporal variation in local growth rates.

Kortessis et al. (2020) apply this insight to the spread of pandemics in human populations — an
epidemic can spread if the local reproductive ratio of the infectious disease varies asynchronously among
locations, coupled by movement, even though on average, disease control in each location would predict
eradication. So, a region as a whole may be within the Hutchinsonian niche, even though each locale
within it has properties that on average are outside the niche, seemingly dooming the species to
extinction. A comprehensive extinction theory, combining all the ingredients of space and dispersal,
demographic stochasticity, environmental variation in space and time, and feedbacks determining density-
dependent constraints on abundance, is as yet terra incognita in theory-land (however, see Ovaskainen et
al. 2020 for recent derivations of extinction thresholds for systems with localized dispersal and
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demographic stochasticity). Characterizing the niche requirements of a species in terms of its long-term
persistence will also require that attention be paid to factors such as the availability and configuration of
patches in landscapes, and the degree to which they are synchronized, as well as feedbacks in the context
of interacting species. With demographic stochasticity, initial conditions (i.e., the site and stage of an
introduced propagule) are important in determining persistence probability (see online Supplement). I do
not pretend that in this essay I have provided the definitive theory that combines all these disparate
elements into a cohesive whole. Rather, | have tried to put before you, the reader, the ingredients I think
are needed for such a satisfactory theory — a desideratum for future work. I believe that the niche
metaphor will continue to play a valuable heuristic role in tying these disparate elements into a cohesive
theoretical whole.

One general methodological message is that in linking demography to distributions, it is valuable
to keep track of births and deaths, separately, as much as possible, rather than just combining them
immediately into net growth rates or reproductive ratios, because these distinct vital rates likely have
different causal relationships with environmental conditions, and different consequences for persistence,
versus extinction. Another general issue is that it may not be enough to focus on what a species
immediately needs to grow when rare — for persistence over multi-generational scales, one has to consider
effects of inertia and delayed feedbacks from the environment, leading to overshoots, resource depletion,
unstable natural enemy-victim interactions, and the like, as well. The niche, conceived as a statement
about probabilities of persistence of populations, has tendrils into and back from the world, mandating a
holistic perspective, well beyond just what individuals in a species need immediately to survive and
reproduce.

Following Hutchinson (1978), I (Holt 2009a) and others (e.g. Peterson et al. 2011) use the term
“Hutchinsonian niche” to denote a niche response surface, where the response variable is the intrinsic
growth rate of a species across environments. This rendition of the niche is close to that of Wright’s
adaptive landscape, since both rest on a shared metric of fitness. This is the usage that may be most
pertinent to the themes of niche conservatism and evolution (Wiens et al. 2010), since birth, death, and
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movement rates as functions of the environment are abstract traits with heritable variation among
lineages, fueling evolution. Maybe we need another term for another kind of “landscape” — portraying a
surface of the probability of persistence of a lineage across environments (conditioned on initial
conditions and time scale), which is closer to Hutchinson’s 1957 verbal description of the niche. In Holt
(2009a) I used the term “persistence niche,” but in a different and narrower way. Maybe that could
suggestion could be modified. How about “probabilistic niche”? Not particularly euphonious, alas. |
leave this as an open challenge for some young wordsmith.

I started this essay with quotes and a brief meditation on the powerful pull of visual metaphors
such as the adaptive landscape of Sewall Wright, and the ecological niche of G.E. Hutchinson. Both are
abstractions with compelling visual expressions — powerful heuristics that help guide thinking about the
complex dynamical processes at play in ecology and evolution, and that facilitate conceptual integration —
related by their mutual dependence upon a fitness metric. In some cases (e.g., clonal growth), that metric
may be the same, but in others it might well differ, because population geneticists and evolutionary
biologists more broadly are concerned with comparative, relative fitness within persisting populations,
whereas ecologists focus on absolute fitness and in particular persistence, versus extinction, of
populations. Variation in the environment that affects absolute fitness of individuals, but not the relative
fitness of alternative genotypes and phenotypes within populations, clearly enters into the probability of
persistence, but not the action of natural selection. The fusion of the two landscapes suggested above (see
also McPeek 2017) may in the end be a kind of mirage that dissolves on closer inspection, because of the
distinct aims of our two disciplines.

The utility of visual graphs that describe the niche as a surface of probabilities of persistence
should be tried on for size, to determine its utility. I have argued that multiple population metrics
(intrinsic growth rate, R, average abundance) and context (initial conditions, time scale) all enter into
determining the probability of persistence. The environment can influence each of these, and different
components could matter more in some circumstances, or questions (e.g., invasion biology vs.
conservation), than in others. How organisms relate to environments (including other species), and how
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that relationship determines the dynamics that govern organic diversity, the spatial distribution of taxa,

and the abundance of populations, is a central, unifying issue of ecology and evolutionary biology. The

visual metaphor of the Hutchinson niche, I believe (as with Wright’s adaptive landscape), provides a

perennially helpful conceptual tool for helping clarify how we think through the implications of this

tangled web of causal relationships and aim towards conceptual synthesis.
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b = birth rate d = death rate

Figure 1. A schematic example of vital rates as a function of two abstract environmental variables, X and
Y. On the left, birth rate is represented as a Gaussian, centered at (0,0), with “width” of sqrt(10) in all
directions, so b = 10 exp {-(X*+ ¥?)/20}; inner contour is b = 9, spacing is 1. On the right, the death rate
is parabolic with a minimum = 1 at (5,0), with quadratic coefficient = 0.2, so d =1+ 0.2[(X — 5)* +Y?*];
inner contour is 2, spacing is 1. Lighter shades indicate “better” environments (e.g., higher births, lower

deaths). The optimal environment for birth differs from that for death (both indicated with a cross).
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Figure 2. The Hutchinsonian niche, constructed using two different fitness metrics computed from the
same environmental dependencies of vital rates. Lighter shading denotes higher fitness. Left panel, a
niche response surface constructed with Intrinsic growth rates (» = b —d), using the vital rate patterns
depicted in figure 1. Right panel shows a niche response surface based on lifetime reproductive success
(R = b/d), with the same vital rates. In both cases, the dashed white oval is the niche boundary where
populations are in deterministic equilibrium; this niche boundary is the same for the two metrics.
However, away from equilibrium, the two metrics diverge. The black plus signs mark the optimal
environment for each metric; the black crosses indicate the optimal environments, for the other metric.
The optima differ, as do the shapes of the two niche response surfaces ( is has a steeper slope to the left,

whereas R is steeper to the right).
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Figure 3: Low rates of dispersal imply positive covariance between local abundances and growth rates.
Two habitats of equal area are connected symmetrically by passive dispersal, Abundances are sufficiently

low to ignore density dependence. Population dynamics are described by dN, / dt = N, —mN, + mN, ,
dN,/dt =r,N,—mN, +mN,, where N; and r; are respectively abundances and intrinsic rate of increase

in habitat 7, and m is a rate of movement. The asymptotic growth rate of the whole population is 7. The
stable patch distribution is v (= Ni/( N1+ N,)), the fraction of the population in habitat 1. In the example
r =2, r»=-3. Athigh m, the growth rate is the spatial average of the s, which is negative. At lower m,

the asymptotic growth rate increases, because relatively more individuals reside in the better habitat.
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Higher extinction risk per colonizing episode

=> Greater dispersal limitation at high b.d
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Figure 4. Alternative fitness metrics, constructed from the basic vital rates for unstructured populations:
birth and death rates (exponential growth or decline in a constant environment). In the b-d plane, the
intrinsic growth rate » = b - d defines a family of parallel lines of slope 1, whereas lifetime reproduction R
= b/d defines a family of lines that all emanate from the origin. The two family of lines coincide for
populations in equilibrium, but not for populations that are either growing or declining. Using the
argument presented in the main text for long-term persistence of a clonal species, for clones with
equivalent rs, those with higher ds are more likely to suffer extinction, and so more likely to be absent in

habitats within their Hutchinsonian niche (as traditionally defined), if dispersal opportunities are limited.
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Probability of lineage persistence

Figure 5. Probability of lineage survival or persistence, using the 1948 Kendall model. A single clonal
colonist has been introduced into a habitat, and its fate is followed. A. Probability its lineage survives, as
a function of death rate d, and intrinsic growth rate, . For any given » > 0 (the lines of slope 1 in fig. 5),
the probability of lineage survival declines with increasing d. As d increases, the benefit of increasing r
on lineage survival is diminished. B. Using the hypothetical birth and death rates as a function of
environmental variables X and Y of Figure 1, leading to the R-profile of figure 2, implies the surface of
the probability of persistence shown here. The environment where persistence probability is optimized

differs from the one where the intrinsic growth rate is greatest.
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Online Appendix
Michael Barfield and Robert D. Holt
Department of Biology, The University of Florida
Initial conditions and probability of persistence
Appendix A: Introduction

In deterministic treatments of the niche expressed as a response surface of intrinsic growth rate as
a function of environmental variables, initial conditions often fade away. For instance, in an age-
structured population without density dependence, the asymptotic growth rate of the population does not
depend upon its initial age structure. This does not hold, given demographic stochasticity. In this
Appendix, we show for two simple examples of population structure (juveniles and adults, and two
habitats coupled by dispersal), that initial conditions influence the probability of persistence, even in the
absence of density dependence. We use a branching process approach to illustrate this basic point.

With no density dependence and clonal reproduction, the fate of a population (e.g., extinction
versus persistence) can be analyzed in terms of the fates of lineages starting from each individual in the
initial population. If the focal organism (or variety) is rare, demographic stochasticity is important, and
branching process analyses include the effects of this stochasticity. Density dependence for organisms
that are rare during colonization is usually not important (unless there are Allee effects), and branching
process analyses usually assume no density dependence. The use of branching processes to determine
probability of extinction for a real population assumes that by the time the lineage of the initial individual
is large enough for density dependence to be important, it is large enough that extinction due to
demographic stochasticity is very unlikely. Branching processes in effect give the probability of entering
this state.

Branching processes have many applications in ecology, particularly in organisms with clonal
growth and in systems in which density dependence can be ignored (for example, when the focal

organism is rare). The basic mathematical approach is laid out in fine textbooks in applied mathematics
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(e.g., Hacccou et al. 2005; Renshaw 2013), but it is useful to walk through the basic approach before we
get to specific examples, so as to define some basic terms and introduce useful notation.

Branching processes are often analyzed using probability generating functions (PGFs), which are
functions of the probability distribution of one or more discrete random variables (representing
individuals). For example, a PGF can be defined representing the probability distribution of the number of
offspring of an individual (or, more generally, the number of individuals at one time that result from one
individual at a previous time) as a power series, in effect an alternative representation of that distribution.

If there is only one type of individual, this PGF is given by
Fua ()= 21,05’ (AD)
j=0

where p(j) is the probability that one individual at the current time (¢) gives rise to j individuals at the
next time (¢ + At ; p; can include the parent as well as offspring if generations are overlapping). If the
probabilities are independent of time, the subscripts are generally omitted. For example, in some cases the

number of offspring can be assumed to follow a Poisson distribution with mean R, in which case
p(j)=exp{—R}R’/ j! (assuming discrete generations, so the parent reproduces and dies, leaving only

its offspring). Substituting this into (A1) gives

2 (Rs)’
f(S) — e—R zu — eR(S—l) . (A2)

- il

j=0 .] .
If there are overlapping generations, then p(j) should include the parent, in which case p(0) is the
probability that there are no offspring and the parent dies, p(1) is the probability that there is one offspring
and the parent dies, or there are no offspring and the parent survives (since both these result in one

individual at the next time), etc.

The PGF for a population can be defined using an equation analogous to equation (A1):
()= Y BU), (A3)
j=0

where P(j) is the probability that there are j individuals in the population at time ¢.
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If all individuals are assumed to be the same and their parameters do not change with time, then
eventually the probability of extinction of a population initiated by a single individual at time 0 will
change very little with time (because after a long time the population either has gone extinct or become
large enough that it is very unlikely to go extinct in the future). If g, is the probability that the population
is extinct at time ¢, then the probability that it is extinct at time ¢ + Af can be written in terms of g and the

number of individuals at time A¢ (assuming one individual at time 0, and so counting at time A¢ later),

using ¢q,,,, = Z,- Pr(4,)Pr(E,,,, |Aj) where Pr(X) is the probability of event X, E is extinction at time

¢t + At, and 4; is the event that there are j individuals at time Az. (For a discrete-time models, At is often set
to 1, while for continuous-time models, it is often set to an infinitesimal interval dt.) If there were no
individuals at time Az, which happens if the initial individual dies without reproducing [and has
probability Pa(0)], the population is extinct at that and all subsequent times, so g+ = 0. If there was 1
individual at time At [probability Pa; (1)], then gnas = ¢: (since in this case we have one individual at time
At, and the probability that its lineage survives to time ¢ + Atz is the same as the probability that the
lineage of one individual at time 0 survives until time ¢). If there were 2 individuals at time A¢ [probability
Pa: (2)], for example if the initial individual produces two offspring and dies in the initial interval, then

qriae = %2 , since there will be 2 individuals at time Ar and the lineages of both must go extinct for the

population to go extinct. Extinctions of the two lineages are independent and each equal to ¢,. The

probability of lineages of n offspring going extinct is similarly g, , so this is g.+a, given n individuals at
time A¢z. Summing these values weighted by the probability of each number of individuals at time A¢
gives

G.n = Py (0)+ P (Dg, + P, (2)q; + P, (3)g; ++-=D P, ()] = Fy,(q,) (A4)
j=0

in which the last step uses the definition of the PGF in equation (A3). F,(s) is the PGF for the number
of individuals at time A¢ that result from a single individual at time 0. Therefore, it is equivalent to f{ss)
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defined in equation (A1) (time independence has been assumed, so no subscript is needed). Since the
probability of extinction eventually becomes almost constant, then for a sufficiently large time gua; = g: =
g in equation (A4), which gives an equation for probability of extinction, called a fixed point equation, for
this scenario:

q=1(q). (A5)

There is always a solution to (A5) at ¢ = 1. The probability of extinction is less than 1 only if there is a
solution to (AS) that is less than 1 (and nonnegative).

Equation (AS5) assumes that conditions do not change over time. If this is not the case, then the
probability of extinction can still be found. The population is generally started with one individual, so
initially for the population Py(1) = 1 and Py(j) = 0 for all other j (the population size is 1 with probability
1), making Fo(s) = s. For discrete-time models, the population PGF at time 7 + 1 is found from its PGF at

time ¢ by substituting f,,,(s), the PGF for individuals produced in generation (or time step) ¢ + 1, for s in
the population PGF, so F,, (s) = F,(f,,,(s)) . This recursion can be used to find the probability of

extinction at generation ¢, which is F,(0) [taking the limit as s approaches 0 in (A3) gives P/(0), the
probability that there are no individuals at generation f]. Generally, a numerical solution is required.
If the population consists of n types of individuals, then an n-type branching process is used. In

this case, there is a PGF for each type i of individual:
Si(8),8y50058,) = Z D,(oky s sh oot i=Ln, (A6)
ikl =0
where now p.(j,k,...,[) is the probability that one type-i individual gives rise to j type-1 individuals, k£
type-2 individuals, ... , and / type-n individuals. (This assumes that probabilities are independent of time,

and the subscript here is the individual type. If the probabilities change with time, a second subscript for

time can be included.) Assuming that the probabilities (p;) are constant, there are » fixed point equations,

qi:ﬁ(q1>Q2a---7qn); i=1,l’l, (A7)
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which can be solved for ¢;, which is the probability of extinction of a population starting with one
individual of type i. This set of fixed point equations is the basis of many of the results presented below.

The different types for an n-type branching process can be different stages (in which case p; can
include elements of the transition matrix), individuals in different habitats, or with different genotypes
(such as wild types and mutants, in which case p; can include mutation rates).
Single-stage population

We start with the simplest case (a version of the Kendall model used in the main text). An
individual can die (at per capita rate d) or give rise to an offspring (per capita rate ). In an infinitesimal
time dt, at most one of these events can happen (such as if b and d are Poisson processes). The probability
that the initial individual dies is d dt, the probability that it produces an offspring is b dt, and the
probability that neither happens is 1 — d df — b dt. Therefore p(0) = d dt (if the individual dies, there are no
individuals), p(1) = 1 — d dt — b dt (if nothing happens, the one individual remains), and p(2) = b dt
(offspring production results in two individuals). Plugging these into (AS5) (assuming the rates are

constant) yields the fixed point equation

g=ddt+(-bdt—d dt)g+bdt q°. (A8)
Subtracting ¢ from both sides and dividing by d gives, 0 =d —(b+d)q+b g’ , the solutions of which

are 1 and d/b. If d > b, the probability of extinction is 1; otherwise, itis d /b =1/ R, where R=5b/d is
the reproduction number (average number of offspring per adult; new individuals are produced at rate b
for the average lifetime 1/d). Therefore, the probability of persistence is 1—1/ R (eq. [9] in the main
text).

If the population instead initially had # individuals, the probability of the population surviving
would be the probability that the lineage of any of the founders survived, which would bel—(d / b)".
Appendix B: Two-stage population

Branching processes can also be used to find the probability of persistence of an initially sparse
population consisting of individuals with two stages, juveniles and adults. In a continuous-time model,
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juveniles grow into adults at a rate of g and die at rate di, while adults produce juveniles at rate  and die
at rate d» (all rates are per capita and temporally constant). Again, we assume that a single clonal

individual is introduced. That individual could be either a juvenile or adult. Assuming there is no density
dependence (such as when the population is low), the probability of persistence of this population can be
analyzed as a two-type branching process, using equation (A7) with n = 2 (and using the definition in eq.

[A6]); p,(j,k) is the probability that one type-i individual gives rise to j type-1 individuals (juveniles)

and £ type-2 individuals (adults).

Because the total probability of all possible events arising from each type individual must be 1,

q, =1 for all i is always a solution of (A7), but there are generally other solutions, which can be feasible
(0<¢q, <1), or not. If there are no other feasible extinctions, then the probability of extinction is 1.

The probabilities p,(j,k) are calculated over an infinitesimal time interval dt, during which it is

assumed that only one event (growth, birth or death) can occur. A juvenile dies with probability ddt,

resulting in no individuals, so p,(0,0) = d,dt . The juvenile grows with probability g d¢, producing one
adult (and losing the juvenile), so p,(0,1) = g dt . The juvenile does neither otherwise, resulting in
maintenance of one juvenile, so p,(1,0) =1- g dt —d,dt . An adult dies with probability d>dt, resulting
in no individuals, so p,(0,0) = d,dt , gives birth with probability b dt, producing one juvenile (and
retaining the adult), so p,(1,1) = b dt, and does neither otherwise, resulting in maintenance of one adult,
so p,(1,0)=1-b dt —d,dt . Substituting these into equation (A7) gives

q,=ddt+gdt g, +(1-g dt—ddt)q, (B1)

q, =d,dt+b dt qq,+(1-b dt—d,dt)q,. (B2)
After subtracting ¢ from both sides of the first equation and ¢, from the second and dividing each
equation by dt, the result is

dy+gq,—(g+d\)q, =0, (B3)
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d,+bqq, _(b+d2)Q2 =0. (B4)
Equation (B3) can be solved for

_ d] + 29,

B5
grd (BS)

1

which can be substituted into (B4), giving a quadratic equation for g2, which has solutions ¢, =1 (which

gives ¢ also equal to 1) and

(g +d1)d2
bg '

2

(B6)

If (g+d,)d, > bg , equation (B6) gives g> > 1, and extinction is certain starting from one adult (and also
from one juvenile). If (g +d,)d, <bg , equation (B6) gives the probability of extinction starting from a

single adult. The reciprocal of ¢, in (B6) is the product of the probability that a juvenile grows to an adult

[g/(g+d,)] and the average number of offspring of an adult (b / d, ), which is the birth rate over the

average adult lifetime. Therefore, this reciprocal is the average number of adults arising from a single
adult, and so is analogous to R. Therefore, the probability of persistence of a lineage starting with a single

adult is 1—1/ R . Substituting (B6) into equation (B5) gives

__d 4 (B7)
" erd b

as the probability of extinction starting from one juvenile (assuming it is less than or equal to 1, which it
is if ¢» is). It can easily be shown that the probability of persistence of a juvenile is the product of the
probability of persistence of an adult and the probability of survival of a juvenile to the adult stage, the

latter of which is g / (g + d,) . Therefore, the probability of persistence starting with a juvenile depends

on g and d; in addition to R.
The bottom line of this model (comparing [B6] and [B7]) is that the probability of persistence

differs depending upon initial conditions — whether or not the initial colonist is a juvenile, or an adult.
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This dependence of persistence on initial conditions does not hold for the comparable deterministic
exponential growth model with age structure and overlapping generations.
Appendix C: Two-habitat model

Branching processes can also be used to find the probability of persistence for a species
colonizing a landscape of two habitats with movement between them. In habitat i (1 or 2), individuals die
at rate d; and give birth at rate b;, while they move from habitat i to j at rate m;;. Births and deaths are

assumed to be Poisson processes, so over an infinitesimal interval d¢, only one event occurs. From a

single individual in habitat 1, the results can be no individuals with probability d,dt (death), one
individual in habitat 2 with probability m,,dt , two individuals in habitat 1 with probability b dt , or one

individual in habitat 1 with probability 1—d,dt —m,,dt — b,dt (nothing happens). The same alternatives

result for an individual in habitat 2, with the habitat numbers switched. Therefore, the fixed point

equations are
q, =d,dt +m,dt q, +bdt g} +(1—d,dt —m,dt —bdt)q, (CD)
q, =d,dt +m,dt q, +b,dt ¢; +(1—d,dt —m,,dt —b,dt)q, . (C2)
which simplify to d, +m,,q, +b,q; —(d, + m,, +b)q, =0 and
d, +m,q, +b,q; —(d, +m,, +b,)q, =0. The first can be solved for ¢> and this can then be substituted

into the second equation, giving

d, +myq, +b[{(d, +my, +b)q, _blq12 _dl]/m12}2

. (C3)
—(d, +my +b,)[(d, +m,, +b)q, _b1Q12 —d,]/m, =0
This is fourth-order in g1. One solution is g, = 1, but factoring out that solution still leaves a cubic

equation.
It is useful to consider some limiting cases. First, let by = b, = b, d1 = d> = d, and m12 = mz1 = m.

In this homogeneous case with symmetric movement, we start with
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1620  d, +m,q, +bq’ —(d,+m, +b)q, =0 and d,+m,q, +b,q; —(d, +m, +b,)q, =0. After

1621  substitution, we can rewrite them both as d +mgq, +bq’ —(d +m+b)q, =d +bq; —(d +b)q, =0.

1622  Solving the quadratic equation gives

orl.

_d+b (d—bjz :d+bi|d—b|

1623 q, +
2b 2b 2b

1624  There is only a solution < 1 if d < b, in which case g; = 1/R for both habitats, where R = b/d. In this case, it
1625  isreally just one habitat and the spatial subdivision does not matter, so the probability of persistence is p
1626 =1-g=1-1/R

1627 Next, let bi/ di > 1> by/ d», and allow mi2 = m21 = m to become very small. We surmise there

1628  should be two roots, one near some p > 0, the other very near 1. As m approaches 0, the two equations
1629  each approach d, +bq’ —(d, +b,)q, =0, the solutions to which are dy/b; and 1. For habitat 1, the solution
1630  is di/bi, and for habitat 2, it is 1. So introduction fails, if it starts in habitat 2, but colonization might

1631  succeed, if it happens to be in habitat 1.

1632 Now, let mi» = ma1 = m get very large. This should approach a well-mixed population, with b =

1633 (b1 + by)/2, and d = (d\ + d> )/2. To show this formally, using the equations above, with equal migration
1634  rates we have d, +bg’ —(d, +b,)q, = m(q, —q,) = -{d, +b,q; —(d, +b,)q,] . Since the two outside
1635  terms are bounded by the value when ¢ or g> = 1, as m becomes very large, it is necessary that g;

1636  approach ¢». Setting them equal to each other (and ¢) in the outside terms (but note that this does not

1637  mean the middle term is 0, since m is becoming very large) gives
1638  d, +b1q12 —(d,+b)q, =-d, +b2q22 —(d,+b,)q,] or
1639  d,+d,+(b +b,)g’ —(d, +d,+b +b,)g=0.

1640  This is of the same form as the equation for the single-stage population, except d and b are replaced by
1641  their sums over both habitats. Therefore, both values of ¢ approach (di + d>)/(b1 + b>), which is the same

1642  result as it would be if numerator and denominator were half as much (giving d/b).
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Possibly more interestingly, we now assume the two habitats differ in their vital rates. Let bi/d, =
Ry, and by/d> = R,. What happens when R; = R,? The isolated habitat patches would have equivalent
probabilities of persistence. Does that hold if say m > = my;, or more generally? What happens if the two
reproductive ratios differ?

If the R values are the same, then b; = Rd; can be substituted into the equations above, giving

d +mq, +Rd.q’ —(d, +m, +Rd;)g, =0 fori=1,2andj=3—i Supposeq:=g;(i.e., g1 = g2). Then

the migration terms drop out, giving d, + Rd.q. —(d. + Rd.)q, =0 for i =1,2, which has solutions ¢; =

1/R for i =1,2. This agrees with the assumption that ¢; = ¢ and therefore is a solution (which does not
require that m, = ma1). (We do not know if this is the only solution.)
What happens if the intrinsic growth rates 7, and », are the same, but R; does not necessarily

equal R,? Letb-di=r, b,—d> =r.Ifthe R; values can be different, then if we assume the ¢; are
equal, we have d, + Rd.q’ —(d, + Rd,)q, =0, i = 1,2, which has solutions g; = 1/R. This is only
consistent with the assumption that the g; are equal (¢1 = ¢») if the R; are equal (R = R»), so this is
necessary for ¢; to equal ¢. If the 7; values are equal, the R; values are not, unless birth rates are equal and
deaths rates are equal. So except for this special case (identical habitats), the probability of persistence
will depend upon which habitat is first colonized (g, # g, ) if the two habitats have the same intrinsic rate
of growth.

There is one technical issue which we should mention, without a completely definitive answer.

How many solutions can be between 0 and 1? One argument for at most 1 is based on the observation

. . . 2
that the equations for g; can be written in the form g, =[d; +b,q; —(d; +b,)q,]/ m, . These are
parabolas, one concave down and the other to the left. One axis intercept of each is negative, and the
parabolas intersect at (1,1). These two parabolas can intersect in at most 4 points, on the upper and lower

branch of one and the right and left branch of the other (which will be called the upper and lower branch,

because they have higher and lower values of one variable, respectively). If the (1,1) point is on the lower
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branches, then the other intersections are at values > 1, and the population goes extinct. If it is on the
upper branches, then the solution on the lower branches must be between 0 and 1. The other intersections
have at least one value > 1 and thus are not feasible solutions. If there are only two intersections and (1,1)
is the lower one, the other has a value > 1 and thus is not feasible. If (1,1) is the higher one, then the lower
intersection can be a feasible solution. If there are 4 solutions and (1,1) is on one upper and one lower
branch, then at most one solution is feasible, since the others have a value > 1. It is also possible that there
are two intersections on the lower branch of both parabolas, since they are going in the same direction (up
and to the right. In this case, there are no more intersections, and since one of these two is (1,1), there is
again at most one feasible solution. We tentatively conclude that there is a unique solution.

The net result of all these machinations is a simple message: the probability of persistence
depends upon which habitat is initially colonized, when the habitats have different Rs. In the juvenile-
adult model, it matters which stage is introduced. In other words, because of demographic stochasticity,
initial conditions matter when conceptualizing the niche as a surface of probabilities of persistence. As
noted in the main text, these effects become less important, the more propagules are introduced, because
demographic stochasticity becomes negligible.

Appendix D: Metrics of time to extinction of a continuous-time birth-death process with constant b
and d

The text briefly notes that rather than using probability of persistence as the metric for niche
response surfaces, one might use instead an alternative metric such as mean or median time to extinction,
say after introduction. Here, we work this suggestion out for the model discussed in the main text. We
should note that the model assumes a constant environment, and no density dependence, so these metrics
are not finite if growth rates are high. Near the edge of a species’ niche, or outside it, growth rates should
be low, and these metrics apply to such niche edges (rather than the interior).

For a continuous-time birth-death process with constant per capita birth rate b and death rate d
(births and deaths being Poisson processes), the probability of survival of the lineage of a single
individual to time T after its birth is
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1-R
exp{—rT}—R "’

1693 P =
1694  where R = b/d is the expected number of offspring per individual and » = b — d is the expected per capita
1695  population growth rate, unless R = 1, in which case P =1/ (1+5bT).

1696  Mean time to extinction

1697  The probability of the lineage being extinct at time 7 is therefore P, = 1 — P,. This is the probability that

1698 the lineage went extinct at or before time 7, and therefore is the cumulative distribution function (CDF) of

1699 the extinction time. The average time to extinction is
1700 E[1,]= j: Tp,(T)dT ,

1701  where p.(T) is the probability density function (PDF) of extinction time, which is the derivative of the

1702 CDF, dP./dT, which is also equal to —dP/dT (because P. = 1 — Py). Therefore,
1703 Elt,1=~| T(dP,/dT)dT =~[ " TdP,=~TP|; +| PdT =" PdT,

1704  using integration by parts and assuming that 7P; goes to 0 as 7 goes to infinity, as is true if » <0 (R < 1),

1705  which we assume here. Substituting the expression for P, and integrating gives

Elt,]= rl_—RdT = (l—R){i_ hl(exp{—rT}—R)}
* exp{-rT}—R R R

0

_(1-R) [ T In[exp{-rT}(1-Rexp {rT})]T
1706 -R "R 0
- R)[ T —rT+1n<1—Rexp{rT})T - R)[_ 1n(1_ReXp{rT})T
—R "R 0 rR o
_(1-R)In(1-R )
- rR '

1707  Note that this is a decreasing function of increasing R:
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d (1I-R)In(1-R) 1 (l_lj—_1+—_11n(l_R) =—_1[1+1n(1—R)}
dR "R r(\R J1-R R’ R

r R
1708 L A ~
—R+In(1-R -1 R R R 1{1 R R"
= [ 1’1(2 )]: > R-— R+_+_+...+_.+... =—| —+ +eeat - +eee |,
R R 2 3 i rt2 3 i

1709 which is negative if » < 0. It is also a decreasing function of the magnitude of », as shown in figure 1A
1710 (this can easily be shown by differentiating E[#.] with respect to 7). The time to extinction is large when
1711 the magnitude of both  and R are small, in which case the birth rate is very small, d is approximately the
1712

magnitude of 7, and the time to extinction is approximately 1/d (see below). In figure A1, the maximum »

1713  plotted is -0.01, and so the maximum time to extinction approaches 100 when the magnitude of » and R
1714  are small (both 0.01 at the maximum extinction time).
100
c
§e]
© 80
£
%
o 60
o
=
> 40
o)
o
:% 20
1715
1716  Figure Al. The mean time to extinction as a function of » and R.
1717 If R=1, then
. T " = 1 -7 1 ’
1718 E[t,)=-TP|; +| PdT = +| dT = +—In(1+bT)| =o.
0 1+bT|, “°1+bT 1+bT b

0
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1729

1730

100

Average time to extinction

Figure A2. The mean time to extinction as a function of b and d. The mean is infinite for b > d.

The time to extinction can also be written in terms of b and d as

— —_ _ 2 i—1
E[te]:(l b/d)In(1 b/d):_ln(l b/d):l 1+i+ b2+...+ b»71+"‘
(b-d)b/d b d 2d 3d id'
1|, R R R™ 1 R® R R
=—|1l+—F+—+F—+ - |==| R+—+—+ -+ —+-|.
d 2 3 i b 2 3 i

This is an increasing function of b and a decreasing function of d, and rises steeply as b approaches d (fig
A2; note the logarithmic vertical scale). The terms in brackets are sums of powers of R so if R is small,
the time to extinction approaches 1/d, the mean time to death of the first individual (first expression on
second line). For larger R, additional time is added as births tend to increase lineage persistence. The time
to extinction is an increasing function of R, assuming that d or b is fixed, but from the above, it is a

decreasing function of R if r is fixed. It can be shown that the derivative of the extinction time with
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respect to d has a greater magnitude than the derivative with respect to b, so increasing them both by the
same small amount (which keeps » the same while increasing R if b < d) decreases the extinction time.

The average lifetime of an individual is 1/d, so if time is measured on this scale, then

d(1-R)In(1-R) _d(1-b/d)In(1-R) _—In(1—R)

Elt 17 d)]= 'R (h—d)R R

b

which is an increasing function of R and not a function of . The mean time to extinction increases with R.

4.5

4.0 1
3.5 1
3.0 1
2.5 -
2.0 1
1.5 1
1.0 1
0.5 1

mean extinction time / lifetime

0.0 . . . .
0.0 0.2 0.4 0.6 0.8 1.0

R

Figure A3. Mean time to extinction, divided by average lifetime, as a function of R (it is independent of

7).

Median time to extinction
The median time to extinction can be found by setting the survival function to 0.5.

~ 1-R
* exp{—rT}—R

and solving for 7, whichis7 = —In(2—R)/r . This is defined as long as R <2 (except if R = 1), which

gives a probability of lineage persistence of less than 0.5. Again, if » <0 (R < 1), this is a decreasing
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function of R and the magnitude of » (fig. A4). However, if » > 0 (R > 1), this is an increasing function of

R and a decreasing function of » (fig. A5). If R = 1, then the median is where P, =1/(1+b7)=0.5,
whichisat 7 =1/b. [In terms of individual lifetime, T, / (1/d)=—-In(2—R)d / r
=—In(2—R)/(b/d—-1)=In(2—R)/(1—R), which is an increasing function of R and independent of

7.

At first glance, figures A1 and AS are puzzling. For a given R, an increase in » from more to less
negative values boosts persistence. This is intuitive. However, for a given r, an increase in R decreases
these metrics of persistence. That is not intuitive. However, consideration of figure 5 in the main text
helps clarify what is going on. Note that below the line of b = d through the origin, along lines of constant
r, increasing R goes along with higher values of d, and b. (The reverse is true along line of constant » that
are greater than zero, i.e., the upper portion of the phase plane.) The increase in deaths looms large in
determining extinction. There is no seeming paradox, if one looks at births and deaths and how they
influence persistence (fig. A2); persistence is always facilitated, if births are higher, or deaths, lower.

This exercise does demonstrate that usual metrics of fitness need not map neatly on the probability of

persistence, even in constant environments without population structure or density dependence.
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1761  Figure A4. Median time to extinction for a population that cannot persist (<0, R < 1)
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Figure A5. Median time to extinction for a population that can persist (» > 0, 1 < R < 2; the last condition

is needed so that the persistence probability is less than 0.5, otherwise the median extinction time is
infinite).
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