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Abstract: The world’s large herbivores play outsized roles in shaping ecosystem processes like
primary production, decomposition, and mineralization. Contemporary management of these
animals is therefore poised to be a powerful tool for holistic ecosystem management. Yet we
currently lack (i) adequate understanding of indirect interactions underlying herbivore control of
ecosystem processes, especially belowground, and consequently (ii) an ability to predict how
ecosystems will respond to ongoing changes to large herbivore populations such as
(re)introductions, range shifts, and population collapse. In this contribution, we synthesize
current approaches to meet these challenges and provide a framework to better resolve indirect
effects of large herbivores on terrestrial ecosystem functioning. Specifically, we synthesize
empirical evidence from across the globe and demonstrate that the consumptive and non-
consumptive effects of large herbivores frequently disrupt and restructure the primary biotic and
abiotic controls on ecosystem functioning. Next, we derive an analytical framework and illustrate
how empiricists can use this framework to resolve key relationships among large herbivores,
biotic/abiotic controls, ecosystem processes, and environmental context. Our framework can
uncover emergent patterns that are not revealed with existing approaches. We conclude with a
roadmap to operationalizing our framework using existing research infrastructure (e.g., large

exclosures and distributed networks).
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Introduction

Twenty thousand years ago, human beings were in the midst of a global hunt for large
herbivores that would transform terrestrial ecosystems for millennia (Svenning et al., 2024).
Ecologists have since demonstrated that the world’s remaining large herbivores (defined as >2 kg
and referred to as “herbivores” throughout, unless otherwise stated; Pringle et al., 2023) continue
to play outsized roles in shaping ecosystem processes like primary production, decomposition,
and mineralization (i.e., herbivore—ecosystem interactions; Pastor et al., 1998; Ruess et al., 1998;
see Appendix S1 for glossary of terms). The loss or gain of these animals, including large wild
ungulates, marsupials, reptiles, rodents, and birds, has profound effects on ecosystems (Coté et
al., 2014; Schmitz et al., 2014). Wildlife management is therefore poised to be a powerful tool
for holistic management of ecosystem functioning (Kristensen et al., 2022; Malhi et al., 2022;
Schmitz et al., 2023). Yet, this has not been achieved. Herbivore-ecosystem interactions, though
sometimes profound, remain extremely challenging to predict, hindering widespread adoption in
ecosystem management decision frameworks (Harrison & Bardgett, 2008; Hyvarinen et al.,
2021). This is particularly true of indirect effects belowground, where large herbivores continue
to surprise us wherever they go (Sitters & Andriuzzi, 2019; Tomita et al., 2025).

Twenty years ago, ecological theory on aboveground-belowground linkages brought
indirect effects of aboveground herbivores on belowground communities and processes (e.g.,
organic matter turnover) into much clearer view (Bardgett & Wardle, 2003; Wardle et al., 2004).

Building on case studies of wild ungulates in savanna (Augustine & McNaughton, 1998;
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McNaughton, 1985; Ritchie et al., 1998), boreal (Pastor et al., 1993), and tundra (Olofsson et al.,
2001; Pastor et al., 2006) ecosystems, these and other works also proposed correlated variation in
plant traits, primary productivity, and soil fertility as the central axes over which the outcome of
herbivore-ecosystem interactions varies (Bardgett & Wardle, 2003; Pastor et al., 2006; Wardle et
al., 2004). Empirical support for these frameworks, however, is inconsistent or conflicting
(Sitters & Andriuzzi, 2019). Yet, the central message has stuck: to progress we must (1) resolve
herbivore indirect effects with links to ecosystem functioning, especially belowground (Hunter et
al., 2012; Malhi et al., 2022; Monk et al., 2024; Pringle et al., 2023), and (2) describe how
environmental context mediates these interactions (Meyer & Leroux, 2023; Sitters & Andriuzzi,
2019; Tuomi et al., 2021).

We synthesize current approaches to meet these challenges and provide a framework to
better resolve indirect effects of large herbivores on terrestrial ecosystem functioning.
Specifically, we (1) review key concepts and approaches underlying detection of indirect effects
of large herbivores in terrestrial ecosystems. We further (2) synthesize evidence that large
herbivores modify relationships among diverse properties of ecosystems, especially controls on
soil biogeochemistry (Table 1), but find this type of indirect effect has not been adequately
incorporated into theory. Thus, we (3) propose a framework to quantitatively resolve these and
other indirect effects on terrestrial ecosystem functioning in greater detail. Finally, (4) we discuss
operation of the framework to predict herbivore-ecosystem interactions over landscapes, and

priorities for future studies.

1. Large Herbivore Indirect Effects in Ecosystem Interaction Networks
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The purpose of resolving herbivore-ecosystem interactions is to identify feedbacks that
structure ecosystems (e.g., Loreau, 1995; Pastor et al., 1998; Pichon et al., 2024; Sitters & Olde
Venterink, 2015; Veldhuis et al., 2014; Wardle et al., 2004). In practice, many researchers do so
by developing empirical study-specific conceptual models of hypothesized herbivore direct and
indirect interactions in ecosystems (e.g., Andreoni et al., 2024; Andriuzzi & Wall, 2018; Hobbs,
2006; Hunter et al., 2021; Koltz et al., 2022; Liu et al., 2018; Meyer et al., 2025; Pifieiro et al.,
2010; Ritchie et al., 1998; Vandegehuchte et al., 2017; Veen et al., 2010). These models, termed
ecosystem interaction networks (EIN) (sensu Thrush et al., 2021), track hypothesized positive or
negative interactions among biotic, abiotic, and ecosystem process nodes (Fig. 1a). Similar to
species interaction networks (sensu Wootton, 1993), EIN models are agnostic to the specific
mechanism of interaction (e.g., trophic, engineering, structural). Rather, emphasis is placed on
the strength and direction of interactions. EINs differ from species interaction networks in two
main ways. First, EINs explicitly track interactions among biotic nodes (e.g., feeding,
competition), between biotic and abiotic nodes (e.g., ecosystem engineering, habitat formation),
and among abiotic nodes (e.g., soil structural-chemical relationships), whereas most species
interaction networks exclusively track biotic-biotic interactions (but see Legagneux et al., 2012).
Second, given the interest in understanding large herbivore impacts on ecosystem processes,
EINs often contain interactions between abiotic/biotic nodes and ecosystem processes (e.g.,
edaphic or decomposer control of nutrient turnover) (e.g., Chen et al., 2013; Roy & Bagchi,
2022) (Fig. 1a). A direct effect is then an interaction between two nodes that occurs
independently of any intermediary nodes. An indirect effect is an interaction between two nodes

involving at least one intermediary node (Wootton, 2002).
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These conceptual models guide empirical data collection and, increasingly, are
formalized as statistical tests of the hypothesized causal structure, often using structural equation
models to evaluate support for direct and indirect interactions among variables (Eisenhauer et al.,
2015; Grace et al., 2010). Many herbivore-ecosystem interaction models reflect a hypothesized
interaction chain structure where direct effects on plants and soil environmental properties
cascade to soil biota, and ultimately to ecosystem processes such as decomposition (Tuo et al.,
2024), net primary production (Chen et al., 2013), nitrogen mineralization (Chen et al., 2013;
Meyer et al., 2025; Ramirez et al., 2021), or soil organic carbon formation (Lovell et al., 2025;
Wei et al., 2023) (Fig. 1b).

Growing evidence supports herbivore effects on ecosystem functioning via effects on soil
organic matter in an interaction chain structure (Fig. 1a). For example, large herbivores directly
influence the quantity and stoichiometry of organic inputs to soil via selective consumption of
vegetation and subsequent deposition of carcasses and waste products (dung, urine, parturition
fluids) (Augustine & McNaughton, 1998; Bardgett & Wardle, 2010; Bump et al., 2009; Ferraro
et al., 2023; Hobbs, 1996; Subalusky et al., 2015). Changes to litter quality and quantity may
then cascade through soil food webs to impact soil biogeochemistry and ultimately feedback to
plants and aboveground fauna (Bardgett & Wardle, 2003; Ferraro et al., 2024; Hunter et al.,
2012; Rizzuto et al., 2024; Tuo et al., 2024). Yet, research in soil science and biogeochemistry
demonstrates how drivers of soil biogeochemical processes may be multivariate and may not
necessarily follow a chain of interactions (Bradford et al., 2016, 2021; Cleveland et al., 2022;
Crowther et al., 2019; Ettema & Wardle, 2002; Grandy et al., 2016; Kaspari & Powers, 2016;
Prescott, 2010). For example, while organic matter turnover (e.g., decomposition, mineralization)

is fundamentally proportional to the quantity of organic substrate (Manzoni & Porporato, 2009;
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Figure 1. (A) A general ecosystem interaction network (EIN), in which there are six types of
interactions among nodes. Given the possibility of feedbacks, cause may occur in any direction
depending on the study. In practice, researchers develop a study-specific network to conceptualize
hypothesized animal-ecosystem interactions, often as directed acyclic graphs (B-D). (B) Often,
researchers test for indirect effects of large herbivores via interaction chain. For example, studies
have investigated deer indirect effects on soil nitrogen mineralization via impacts on soil substrate
and microbial abundance (e.g., Ramirez et al., 2021; Meyer et al., 2025). (C) Large herbivores can
also modify interactions in ecosystems, in parallel with chain effects. For example, elephants
reduce the ratio of aboveground to belowground carbon by reducing canopy cover (chain effect)
while also strengthening canopy control of AG:BG-C (modification effect) (Kindermann et al.,
2025). (D) Interaction modifications can also be detected independently of interaction chains,
where large herbivores are considered an external forcing on EIN architecture (Thrush et al., 2021;
Zhao et al., 2023). For example, livestock grazers cause a shift from soil chemical (pH) to fungal
diversity control of soil-N in temperate grassland (L. Wang et al., 2020).

Swift et al., 1979), turnover rates are also jointly constrained by (micro)climate (e.g., soil
temperature), litter stoichiometry (e.g., C:N), soil chemistry (e.g., pH), and decomposer
properties (e.g., composition and activity) (Booth et al., 2005; Bradford et al., 2016; Buchkowski

et al., 2017; Prescott, 2010). Critically, the relative influence of these controls shifts in space and
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time according to environmental gradients and thresholds that are still being resolved (Bradford
et al., 2016; Prescott, 2010; Bradford et al., 2021).

Herbivore inputs to, and effects on, soil organic matter are clearly important to aboveground-
belowground feedbacks (Hunter et al., 2012; Ferraro et al., 2024; Rizzuto et al., 2024; Tuo et al.,
2024). Yet, simultaneous interactions with soil microclimate, chemistry, decomposers, and soil
fauna remain poorly understood (Sitters and Andruzzi, 2019; Tomita et al., 2025), in part because
relatively little research has focused on non-consumptive and engineering effects of herbivores in
terrestrial ecosystems (Meyer & Leroux, 2024; Sitters & Andriuzzi, 2019; Tomita et al., 2025;
Tuomi et al., 2021). Given the multivariate nature of controls on soil processes (Bernhardt et al.,
2017; Prescott, 2010), these pathways must be resolved in greater detail (Sitters and Andriuzzi,
2019). However, in addition to chain effects, large herbivores may act as factors modifying
relationships among variables in ecosystem interaction networks, such as controls on ecosystem
processes (Fig. 1¢,d). This type of indirect effect, called an interaction modification (sensu
Didham et al., 2007; Foster et al., 2016; Wootton, 1993), is fundamentally distinct from
interaction chains. The difference underlies how one conceptualizes herbivore-ecosystem
interactions (Fig. 1b,c,d), and therefore matters for managing communities and ecosystems
(Didham et al., 2007; Foster et al., 2016), for designing future empirical studies (Wootton, 1993),
and for theoretical development in community and ecosystem ecology (Zou et al., 2024). For
example, chains suggest different animal activities (e.g., trophic and engineering effects) may
have additive or opposing effects via different pathways within ecosystem interaction networks
(Bardgett & Wardle, 2010; Barthelemy et al., 2019; Hunter et al., 2012; Richards et al., 2025).
Modifications, however, represent a fundamental shift in network relationships, such as which

factors control ecosystem processes at the spatiotemporal scale of herbivory (Fig. 1d; Thrush et
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al., 2021). If modifications exist, herbivore effects on ecosystem functioning will be difficult to
anticipate, scale, or even detect under existing frameworks (Wootton, 2002; Foster et al., 2016).
Appreciation for the distinct role of interaction modifications in the context of food webs
(Kéfi et al., 2012; Sanders et al., 2014; Terry et al., 2017), wildfires (Foster et al., 2016), and
invasion biology (Didham et al., 2007) is growing. Yet, theory and evidence on the respective
role of interaction chain and modification effects underlying herbivore-ecosystem interactions
has not been developed (Malhi et al., 2022; Pringle et al., 2023; Trepel et al., 2024; Tuo et al.,
2024). In the proceeding sections, we synthesize the breadth of evidence of interaction
modification by large herbivores in ecosystems and clarify the distinctions and potential

consequences of herbivore effects via interaction chain and modification effects.

2. Evidence of Interaction Modification by Large Herbivores

Across systems, we find large herbivores modify the existence, strength, and functional
form of interactions among diverse ecosystem properties and processes (Table 1). We review the
breadth of evidence, including modification of spatial and temporal controls on soil
biogeochemistry (e.g., soil organic matter dynamics, nutrient availability, carbon storage), and

interactions among biotic and abiotic properties of ecosystems.

Modification of spatial controls on soil biogeochemistry

Modification of controls on soil processes, such as soil organic matter (SOM) dynamics,
may be particularly important to herbivore-ecosystem feedbacks in terrestrial ecosystems. The
primary controls on SOM dynamics are thought to be climate, substrate chemistry, and

decomposer properties, which vary heterogeneously across spatial extents (Ettema & Wardle,
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2002; Prescott, 2010; Bradford et al., 2016; Manzoni & Poroprato, 2009; Tuo et al., 2024). We
find large herbivores modify the nature of all three major controls in ways both striking and
subtle. For example, livestock grazers invert a trend of mean annual temperature (MAT) control
of decomposition across global drylands (Maestre et al., 2022). Here, temperature control is
weakly positive under low herbivore densities, but flips to strongly negative under high densities,
over the same temperature range (Maestre et al., 2022). More subtly, large herbivores can modify
the extent of soil substrate or microbial control of soil processes. For example, soil nitrogen
content controls interannual soil carbon flux in the presence but not the exclusion of ungulates
from a Trans-Himalayan montane grassland (Naidu et al., 2022). Similarly, SOM and microbial
properties are coupled with summer nitrogen mineralization rates on, but not adjacent to, moose
trails in boreal forest (Meyer et al., 2025). Notably, the opposite trend occurs in Chinese
temperate grassland, where microbial links to nitrogen and carbon mineralization are stronger in
areas of ungulate exclusion than in areas open to large herbivores (B. Wang et al., 2020).
Ecosystem processes and their controls are commonly spatially structured along
environmental gradients such as latitudinal climate (Ren et al., 2025), regional topography
(Risch et al., 2007; Sitters et al., 2017), geology (Wigley-Coetsee et al., 2022), and long-term
ecosystem development (Blasko et al., 2015). Large herbivores can also modify these
interactions. For example, the presence of elk in Yellowstone National Park (Augustine & Frank,
2001) as well as caribou in Swedish tundra (Sitters et al., 2017) decouples spatial patterning of
soil nitrogen from topographic position. Similarly, herbivores can modify rank-order
relationships among ecosystem types. For example, bushland ecosystems have higher N
mineralization than glade ecosystems in semi-arid Kenyan savannah, but this spatial structuring

is absent in the presence of herbivores (Coetsee et al., 2023). Belowground, soil depth typically
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exerts strong controls on soil biology and biochemistry (D. Liu et al., 2018; Weldmichael et al.,
2020), but this vertical structuring of soils can also be modified by large herbivore presence. For
example, soil redox potential and decomposer activity is strongly structured by soil depth in the
presence but not the absence of ungulate grazers in a European salt marsh (Schrama et al., 2013).
Similarly, browsing by moose and hares in Alaska modifies summer fine root depth profiles, with

biomass production shifted substantially to shallower soils (Ruess et al., 1998).

Modification of temporal controls on soil biogeochemistry

Large herbivores also modify temporal controls on soil processes. For example, season is
a powerful control on soil biogeochemistry in many ecosystems as water dynamics,
temperatures, resource pulses, and biotic phenology (e.g., leaf-out, animal migrations) are in
dramatic flux. Yet large herbivores are capable of modifying seasonal trends in soil processes. In
some cases this represents a modest shift, such as when the annual Nmin peak is shifted a month
earlier due to wild and livestock ungulate presence in Indian montane grasslands (Bagchi et al.,
2017). Other cases are dramatic. For example, large herbivores, such as grazers in semi-arid
Kenyan savannah, can dramatically increase monthly fluctuation of soil inorganic nitrogen
(Augustine & McNaughton, 2006), or even invert seasonal trends in N mineralization, as with
cattle presence in European salt marsh (Bakker et al., 2004). By contrast, large herbivore
presence can also reduce (stabilize) soil processes, such as interannual soil carbon flux in

montane grasslands (Naidu et al., 2022).

Modification of above- and belowground biotic interactions
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Beyond modification of direct controls on soil biogeochemistry, large herbivores also
modify biotic interactions relevant to ecosystem processes. Belowground, livestock grazers in
temperate grasslands can decouple soil nematode and microbial biomasses (B. Wang et al., 2020)
and couple variation in microbial and plant groups (Ma et al., 2024). Similarly, relationships
among above- and belowground communities of microbes, invertebrates, and plants, are
restructured by successive exclusion of large, medium, and small-bodied herbivores in a
European montane grassland, with consequences for ecosystem functioning (Risch et al., 2018).
Aboveground, large herbivores can modify diverse overstory and understory interactions
(Balandier et al., 2022). For example, white-tailed deer presence in temperate forests can
decouple relationships between overstory and understory tree size (Sabo et al., 2017), while
moose presence in boreal forest can cause a shift from a linear to non-linear relationship between
tree diversity and tree height (Muiruri et al., 2015). Ultimately, these diverse patterns suggest that
interactions important for feedbacks in above- and belowground systems (e.g., energy channels;

diversity-functioning relationships) can be fundamentally modified by large herbivores.

Modification of soil abiotic interactions

Beyond biotic interactions, large herbivores can also modify relationships among soil
abiotic conditions. For example, elk exclusion from coastal California grasslands decouples soil
texture from soil moisture and bulk density, which are typically strongly correlated (Dong &
Ochsner, 2018). Despite considerable research on ecosystem engineering (biotic-abiotic
interactions), herbivore-driven modification of relationships among abiotic conditions in
ecosystems has received very little attention (Gutiérrez & Jones, 2006). Yet, core assumptions,

like relationships between soil texture and soil hydrology, underly our ability project current field



250

251  environmental change.

252
Modified
Interaction
Climate
control of

decomposition

and soil-C
storage

Soil-N control
of soil-C flux

Soil moisture
control of soil

microbial

biomass and

Chmin

Substrate and

microbial

control of Nmin

Vegetation and

microbial

control of soil-

N

Topographic
control of soil
N availability

Seasonal
control of N

and C turnover.

Climate
control of
vegetation

biomass and

growth

Overstory
control of
AG-C:BG-C
Primary
production

control of plant

diversity

Ecosystem Type
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Temperate
grassland

Saltmarsh

Tropical forest
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grassland
Temperate
grassland

Tundra
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savannah
Montane
grassland

Temperate
grassland

Boreal/temperate

forest and
moorland

Boreal forest

Desert grassland

Semi-arid
savannah

Temperate
grassland

Nature of modification

Livestock grazers inverse a trend of mean annual temperature (MAT) control of
decomposition and soil-C storage across global drylands. In both cases,
temperature control is weakly positive under low herbivore densities, but flips to
strongly negative under high densities, over the same temperature range.

Increased soil nitrogen decreases interannual soil-C flux in the presence but not
the absence of native (e.g., ibex, bharal, yak) and livestock ungulates in a
montane grassland.

Grazing by native ungulates (e.g., ibex, bharal, yak) and livestock ungulates in a
Trans-Himalayan grassland decouples variation in soil moisture from variation in
soil microbial respiration.

Caribou faecal inputs increase the magnitude soil microbial biomass response to
soil moisture in high-arctic tundra.

Soil organic matter and microbial properties are coupled with summer nitrogen
mineralization rates on but not adjacent to moose trails in Canadian boreal
forest.

In Chinese temperate grassland microbial links to nitrogen and carbon
mineralization are stronger in areas of ungulate exclusion than in areas open to
large herbivores.

Geese and hare presence weakens soil-N control of N mineralization in European
saltmarsh.

Presence of peccaries, tapirs, deer, and other large herbivores/frugivores in
tropical forest decouples soil-N availability from N mineralization and facilitates
palm control of nitrification rates in amazonian tropical forest.

Grazing decouples fungal diversity control of soil-N in Chinese temperate
grassland (Fig. 1D).

The presence of elk in Yellowstone National Park decouples spatial patterning of
soil nitrogen from topographic position.

The presence caribou in Swedish tundra decouples spatial patterning of soil
nitrogen from topographic position.

Cattle presence inverses seasonal trends in Nmin in European salt marsh.
Grazers in semi-arid Kenyan savannah dramatically increase seasonal
fluctuations of inorganic soil nitrogen.

Presence of wild and livestock ungulates stabilizes interannual trends in soil
carbon flux in montane grasslands.

Livestock grazers in Chinese temperate grassland shift linear mean annual
precipitation (MAP) control of aboveground biomass to a non-linear (hump-
shaped) relationship, and decouple MAP control of aboveground litter mass.

Pine growth in Scottish highland forest and moorland is more sensitive to MAT in
the presence vs. the absence of red deer, roe deer, and other herbivores.

Temperature control of conifer and broad-leafed tree growth is modified by
moose in Norway and Canada. Tree growth became more and less sensitive to
temperature under moose browsing, depending on tree species and region.

Large and small herbivores dampen wet season precipitation control of perennial
grass cover in a Chihuahuan Desert grassland.

Canopy control of the ratio of aboveground to belowground carbon is
strengthened by increased elephant density in semi-arid African savannah. (Fig.
1C)

Presence of grazers modifies the shape of a non-linear (hump-shaped)
relationship between primary production and plant diversity in Yellowstone
National Park, USA.

conditions over landscapes (Celik et al., 2022) and the potential response of soil systems to

Table 1. Breadth of abiotic-biotic and process interaction modifications by large herbivores.

Reference

Maestre et al., 2022

Naidu et al., 2022;

Bagchietal., 2017

Van Der Wal et al.,
2004

Meyer et al., 2025

B. Wang et al., 2020

van Wijnen et al.,
1999

Villar et al., 2021

L. Wang et al., 2020

Augustine & Frank,
2001

Sitters et al., 2017

Bakker et al., 2004;
Augustine &
McNaughton, 2006

Naidu et al., 2022

Bai et al., 2012

Vuorinen et al.,
2020

Vuorinen, Kolstad,
etal., 2020

Andreoni et al.,
2024

Kindermann et al.,
2025

Frank, 2005
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ight controt o Moose density in Swedish boreal forest modifies the slope of a positive linear

f:;:giig Boreal forest relationships between light and the production of diverse secondary metabolites Persson et al., 2012
. by bilberry leaves.
production
Presence of large, small, domestic, and native herbivores differently modifies
Seasonal Shortgrass prairie  seasonal trends in plant stoichiometry including nitrogen, phosphorous, sodium, Rebh & Welti, 2025
control of plant and silicon content.
nutrient stocks Presence of muskox in the Greenland high arctic modifies seasonal trends in Mosbacher et al.,
Tundra .
moss aboveground nitrogen pool. 2019
253
254 All of these examples suggest that interaction networks that structure ecosystems are

255  frequently altered by large herbivores. This presents a significant challenge for predicting

256  ecosystem functioning because it suggests that spaces with differing histories, communities, and
257  local intensities of herbivory may functionally diverge as ecosystems develop, and/or respond
258  differently to novel external forcings such as wildfire, drought, warming, or fertilization (Foster
259  etal., 2016). This is clearly true over geological time, over which loss of large herbivores

260  precipitated a continental shift from steppe to forest ecosystems in the global north (Svenning et
261  al., 2024). This process is ongoing in European and North American temperate forests, where
262  long-term forest succession trajectories diverge depending on large herbivore populations

263  (Hidding et al., 2013; Noonan et al., 2021). Yet, even over years and decades, the response of
264  ecosystems to warming (Stark et al., 2023; Viisdnen et al., 2014), fertilization (Stark et al., 2023;
265  Veen et al., 2024; Zaret et al., 2023; Zhao et al., 2023), or species introductions (Junod et al.,
266  2025) are meaningfully altered by differences in herbivore density.

267 Our synthesis reveals the breadth of evidence, and the implication: large herbivore

268  indirect effects do not only propagate through established matter and energy channels; they can
269 rearrange the relevant controls on ecosystem processes. At present, interaction modifications are
270  not measured frequently enough or with enough theoretical consistency to identify general

271  patterns across or even within systems. As researchers continue to resolve sources of

272 heterogeneity in herbivore-ecosystem interactions, we contend that interaction modifications
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must play a larger part in future studies. In the next section we propose a framework to advance
the depth of understanding of herbivore indirect effects on terrestrial ecosystem functioning.

Specifically, we identify four key relationships that should be resolved in future studies.

3. A framework to resolve interaction chain and modification effects of large herbivores on
ecosystem functioning

We present an analytical framework for resolving all or parts of herbivore interaction chain
and modification effects on ecosystem functioning, especially soil processes. Specifically, we
connect network, graphical, and mathematical representations of interaction chain and
modification effects. In doing so, we highlight key variables, functional relationships, and
sources of heterogeneity that should be resolved in future studies. The framework is general and
thus applicable across existing fenced, observational, or other field study designs, as well as

future meta-analyses or other syntheses of herbivore-ecosystem interactions.

Interaction Chain vs Modification Effects

Nested within any study of indirect herbivore-ecosystem interactions is system-specific
evidence, or simply a hypothesis, of what factors directly control ecosystem processes, and how
herbivores interact with these variables. Hypothesized interactions are often drawn as a directed
acyclic graph (DAG), which then informs field data collection and analysis via structural
equation models (SEMs) or other statistical methods.

In the simplest possible model, a process, Y (e.g., N mineralization or decomposition), is

related to an abiotic or biotic control, X, according to a relationship Y=f(X). Large herbivore
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296 relationship.
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298  Figure 2. A large herbivore interaction chain in network (directed acyclic graph, DAG), graphical,
299 and statistical form. (A) An ecosystem process, Y, varies as a function of an abiotic or biotic
300 control, X, according to the function Y=f(X). A large herbivore treatment, LH, impacts the process
301  via its relationship to one or more controls, X, according to a function X=f(LH). (B,C) Solid dots
302 and lines represent hypothetical data from Reference (R;) areas (e.g., no herbivores) including site-
303  specific means (dots) and continuous data (lines). Dashed dots and lines represent data from
304  hypothetical treatment (T;) areas (e.g., with herbivores). Red arrows track net effects of herbivores
305 through the series of functional relationships. Arrow length is the magnitude of the herbivore net
306 effect. (B) For example, soil organic matter (SOM) quality, Xsou, may vary as a function of large
307  herbivore density, LHy, according to a function Xsom = fILHa)= PenainkHa, Where Pepain 1s the
308 coefficient of the herbivore effect on Xson. (C) Herbivore impacts on Xson then shift N
309  mineralization rate, Yamin, according to the function Ynmin=f(Xsom)= fsomXsom.

310

311 In an interaction chain, a large herbivore treatment, LH, is causally related to a soil

312  process control, X, via the relationship, X=f(LH) (Fig. 2a). For example, herbivore density, LH,
313  may increase soil organic matter (SOM) quality, Xsom, via vegetation consumption and dung
314  deposition (Fig. 2b) (e.g., McNeil & Cushman, 2005). This can in turn increase net nitrogen

315  mineralization, Ynmin, because mineralization rate is limited by soil organic matter quality
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throughout the study region according to, for example, a linear relationship, Yvmin = f(Xsom) =
PsomXsom (Fig. 2¢) (Booth et al., 2005; Bardgett & Wardle, 2010). Thus, in an interaction chain,
herbivores indirectly increase or decrease values of Y, via their direct effects on values of X,
defined by functional relationships among the variables (Fig. 2a). In a well-resolved interaction
chain, data from reference and treatment sites occupy different regions of the same relationship
between X and Y (Fig. 2c; e.g., Tuomi et al., 2019; Wilson et al., 2018). In a linear interaction
chain, the slope of this relationship is the same across reference and treatment sites (Fig. 2c; e.g.,
Tuomi et al., 2019; Wilson et al., 2018).

In an interaction modification, a large herbivore treatment, LH, is causally related to the
coefficient of X (e.g., the slope), fx, via some relationship, fx = f(LH) (Fig. 3a). For example,
temperature, Xenp frequently controls decomposition rate, Yse. in ecosystems (Prescott, 2010;
von Liitzow & Kogel-Knabner, 2009; Xiang et al., 2023). However, large herbivore density,
LH,, may change the coefficient of soil temperature, Sremp, via some relationship, Sremp=f(LHa)=
PmoalHa (Fig. 3b; Maestre et al., 2022). As a result, the relationship between Xiemp and Yiec is
different in treatment vs. reference areas (Fig. 3c). This can occur without a shift in mean soil

temperature between reference and treatment areas (e.g., Maestre et al., 2022).
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Linear Interaction Modification:
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Figure 3. A large herbivore interaction modification in network (DAG), graphical, and statistical
form. (A) An ecosystem process, Y, varies as a function of an abiotic or biotic control, X, according
to the function Y=f{(X). A large herbivore treatment, LH, may then impact ecosystem processes, 7,
via its relationship to the coefficient of one or more controls, S, according to a function Sx=f(LH).
(B,C) Solid dots and lines represent hypothetical data from Reference (Ri) areas (e.g., no
herbivores) including site-specific means (dots) and continuous data (lines), whereas dashed dots
and lines represent data from hypothetical treatment (T;) areas (e.g., with herbivores). Red arrows
track net effects of herbivores through the series of functional relationships. Arrow length is the
magnitude of the herbivore net effect. (B) For example, the coefficient of soil temperature, Sremp,
may vary as a function of large herbivore density, LHq4, according to a function fremp = ALHa)= fmod
LHg, where fmoa 1s the coefficient of the herbivore effect on fremp. (C) Herbivore impacts on Sienp
may then shift temperature control of decomposition, Ysec, according to the function Yaee=f(Xienmp)=

BrempXiemp.
Incorporating Higher-Order Environmental Context

We now expand the framework to consider the role of higher-order environmental context
(EC) because research frequently demonstrates EC shapes the sign and magnitude of large
herbivore effects on ecosystem processes (Bardgett & Wardle, 2003; Ferraro et al., 2023; Forbes
et al., 2019; Meyer & Leroux, 2024; Ren et al., 2025; Sitters & Andriuzzi, 2019). Here we define

EC as variables (e.g., soil parent material, latitudinal gradients) that are outside the scope of local
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herbivore effects. We focus on how EC may modify herbivore indirect effects in ecosystem
interaction networks (Fig. 4).

In an interaction chain, large herbivores (LH) impact abiotic and biotic properties (X) via
some function, X=f(LH), which in turn shifts soil biogeochemistry (¥) according to a function,
Y=f(X) (Fig. 2a). In this case, the coefficient of the herbivore effect, fcnqin, may vary as a function
of some higher-order environmental gradient (EC) via a relationship, Serain = f(EC) (Fig. 4a).

Environmental Context,
() e

Bmoa = f(EC)

B = fL)

Benain = [ (EC)
Laree Hesbivares Climate/Plant/Soil Soil Biogeochemistry. I
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Figure 4. The role of environmental context in large herbivore interaction chain and modification
effects on ecosystem processes in network (DAG), graphical, and statistical form. Point and line
definitions are consistent with Figs 2 and 3. Variables representing environmental context can
modify the coefficients of herbivore chain (A,B) and modification (C,D) effects. (A,B) For
example, variation in large-scale ecosystem fertility, ECrrs, can modify the large herbivore chain
effect on SOM quality, Serain. This creates heterogeneity in the net effect of large herbivores on N
mineralization, Yymin, (red arrows) despite a consistent relationship between SOM quality and N
mineralization, Ynmin=f(Xsom)= PsomXsom, across ecosystems. (C,D) Environmental context can
also modify herbivore interaction modifications. For example, where decomposition, Yie, is
limited by soil temperature, Xiemp, regional variation in forest canopy cover, ECc., could modify
the large herbivore effect on the coefficient of soil temperature, Snoa. This creates heterogeneity in
the net effect of herbivores on decomposition rates (red arrows) and the local temperature-

sensitivity of decomposition, Siemp.
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The classic model of grazer and browser effects in fast- and slow-cycling ecosystems
(Wardle et al., 2004; Pastor et al., 2006) is an example of an interaction chain with herbivore
effects modified by environmental context. In these models, large herbivore effects on nutrient
cycling occur via their effects on soil organic matter quality, where soil organic matter quality is
roughly linearly related to nutrient cycling rates (Bardgett & Wardle, 2003; Wardle et al., 2004;
Pastor et al., 2006). However, the direction of the herbivore effect on organic matter quality
depends on large-scale climate and plant-based constraints that are independent of large
herbivore density, such that large herbivores decrease SOM quality and nutrient cycling in
nutrient poor systems, and increase SOM quality and nutrient cycling in nutrient rich systems
(Fig. 4b; Bardgett & Wardle, 2003; Pastor et al., 2006). Thus, this model is an interaction chain
based on the consistent relationship between organic matter quality and nutrient cycling (Fig.
4b). ‘Context-dependent’ effects on nutrient cycling occur, because the sign of the coefficient of
the large herbivore effect on organic matter quality is related to a large-scale gradient of co-
varying climate, plant traits, and soil fertility (Fig. 4b; Wardle et al., 2004). A second example of
this is with sheep grazing effects on decomposition and nitrogen turnover over a precipitation
gradient (Semmartin et al., 2004).

In an interaction modification, where large herbivores modify abiotic or biotic control of
an ecosystem process via some relationship, fx = f(LH), environmental context may in turn
define the sign and magnitude of the herbivore-driven modification via some relationship, fmoa =
f(EC) (Fig. 3¢). To our knowledge, this interaction structure has yet to be tested. Thus, we
present a hypothetical but plausible example to illustrate how this interaction structure may

present in the field.
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Consider a system where microbial-mediated soil processes (e.g., decomposition) are co-
limited by substrate properties (e.g., nutrient availability) and microclimate, such as in temperate
and boreal forests (Prescott, 2010; Bernhardt et al., 2017). Here, soil nutrients are
heterogeneously distributed, while soil microclimate depends strongly on canopy cover. In this
case, large herbivore presence (e.g., deer, boar) modifies the coefficient of temperature control of
decomposition, Sremp, because the primary local herbivore activities are nutrient deposition (e.g.,
dung, parturition materials) and soil compaction, which have no chain effect on canopy cover
and soil temperature (e.g., Ferraro et al., 2023; Meyer et al., 2025). Canopy cover, ECcn, may in
turn influence the modification coefficient, S04, according to some relationship, Smod = f(ECecan)
(Fig. 4c). For example, at cooler closed-canopy sites, soil compaction may restrict microbial
activity via water-logging (Schrama et al., 2013). As a result, decomposition becomes less
sensitive to soil temperature variation across sites with compacted soil (i.e., fnoq is decreased;
Fig. 3c, lower dashed line). By contrast, at warmer open-canopy sites, higher solar radiation
prevents water-logging via compaction. As a result, nutrient depositions make microbial activity
less nutrient limited, and therefore more responsive to increased soil temperature (Fig. 4c upper
dashed line; Bernhardt et al., 2017; Van der Wal et al., 2004). Thus, decomposition remains
temperature-controlled across all sites. However, sites without herbivores (R; & R2) have the
same sensitivity, while sites with herbivores (T1 & T2) have diverging sensitivities because
environmental context (canopy cover) modifies the sign of the large herbivore interaction

modification (Fig. 4c¢).

Non-linear relationships among nodes
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We have outlined examples of linear interaction chain and modification effects, and sources
of between-site heterogeneity in linear large herbivore effects. However, some abiotic and biotic
properties exert non-linear control of ecosystem processes, especially over larger spatial extents
(Bradford et al., 2016; Y. Liu et al., 2016; Prescott, 2010). There is also evidence that herbivore
density exerts non-linear influence on vegetation and soil properties (Chen et al., 2013) and
ecosystem processes (Persson et al., 2007; Tuomi et al., 2021). Non-linear relationships in
ecosystem interaction networks present another important source of heterogeneity in herbivore
net effects (Appendix S2). Future studies should be cognisant of whether hypothesized controls
exert linear or non-linear control over the scale of herbivore treatment effects, and whether there
is evidence that herbivore direct effects are non-linear, especially threshold or saturating
functions with herbivore density (Chen et al., 2013; Foster et al., 2016; Persson et al., 2007,
Tuomi et al., 2021). Fortunately, resolving non-linear relationships involves the same techniques

as linear relationships (see Perspectives).

Summary
Overall our framework highlights four key functions that should be resolved in future

studies. These are:

Yprocess=f(Xcontrols) (abiotic and biotic controls on ecosystem processes) (1)
Xeontrots=f(LHyeatmens) (herbivore chain effects on abiotic and biotic controls) (2)
Px =f(LHreamens) (herbivore modification effects on abiotic and biotic controls) 3)
Pmodrenain=f(EC) (environmental context control of herbivore effects) 4)
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Thus, we contend future studies should move beyond describing the net effects of large
herbivore treatments on ecosystem processes, and move towards establishing how large
herbivores relate to the functions describing direct controls on ecosystem processes at
spatiotemporal scales matching the scope of herbivore treatment effects (equation 1). This entails
resolution of the functional relationships of LH to the value of biotic and abiotic controls
(equation 2) and their coefficients (equation 3). This is the core of establishing large herbivore
effects on soil biogeochemistry via interaction chains and interaction modifications. Finally,
studies should also consider how/whether variability in higher-order environmental context
mediates large herbivore effects (equation 4), and the most important variables representing this
context. Our framework, therefore, helps organize relationships among key variables,
relationships, and sources of heterogeneity in herbivore-ecosystem interactions, which should be
resolved in future empirical studies including primary data collection and meta-analyses (see
Perspectives). In the next section, we apply our framework to questions in spatial soil ecology,
and demonstrate how resolving interaction modification effects of herbivores could improve

prediction of large herbivore-ecosystem interactions over landscapes.

4. Perspectives

A major theme of past herbivore-ecosystem interaction research has been identifying the
scope of indirect effects of large herbivores above- and belowground (Foster et al., 2014; Tomita
et al., 2025; Tuomi et al., 2021; Wardle et al., 2001). Our framework offers a detailed template
for resolving indirect effects underpinning large herbivore-ecosystem interactions and the role of
environmental context in mediating large herbivore indirect effects. Doing so, however, may

require a shift from traditional empirical methods in line with recent perspectives in soil
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biogeochemistry (Bradford et al., 2021). We discuss this point with a critical look at classic
fence-based field studies and a discussion of key unresolved questions in large herbivore-

ecosystem interactions.

4.1 Challenges and opportunities for future empirical research
Classic fence designs

The prototypical method of quantifying large herbivore-ecosystem interactions is comparing
ecosystem properties on either side of a fence separating treatment and reference areas (Forbes et
al., 2019). Often, the treatment limits or removes herbivore access to an area with a fenced
exclosure, while an adjacent reference area remains open to herbivores (e.g., Wigley-Coetsee et
al., 2022). In other cases the design is reversed; large herbivore densities are controlled in
treatment enclosures, with no herbivores in reference areas (e.g., Chen et al., 2013).

In single field studies as well as meta-analyses, fence designs are commonly used to measure
a herbivore ‘net effect” with mean comparisons of treatment vs. reference areas (e.g., ANOVA,
response ratios) (Forbes et al., 2019; Trepel et al., 2024; Tuo et al., 2024; Ren et al., 2025). With
this design, interactive effects of a herbivore treatment with other categorical factors, such as
ecosystem type, additional experimental treatments (e.g., fertilization), other site factors (e.g.,
high vs. low vegetation diversity), or simply ‘site’ itself, are commonly reported in field studies
(Bressette et al., 2012; Pastor et al., 1988; Persson et al., 2009; Stark et al., 2003; Zhao et al.,
2023). Interactive effects of this nature reveal a causal (if coarse) mechanism for observed
patterns, and provide qualitative insight into ecological contingencies. This effect is sometimes

called a ‘first-order’ mechanism because high-level cause is established (e.g., herbivore
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exclusion) but specific direct and indirect interactions are not (i.e., EIN structure; Figs. 1-4;

Pringle et al., 2023).

Using fence designs for prediction

While extremely valuable as a starting point, these results are insufficient to predict
herbivore-ecosystem interactions in novel contexts because observed patterns can arise from
several potential EIN structures (Fig. 5). For example, a case where herbivores increase a
response variable at one site but not another (Fig. 5a), could arise from indirect effects via
interaction chain (Fig. 5b) interaction modification (Fig. 5¢). These interaction structures return
dramatically different predictions of an ecosystem process with respect to variation in controls
(Fig. 5b,c solid vs. dotted lines). A second interactive effect, where sites have qualitatively
different responses to a herbivore treatment, can also result from a herbivore interaction chain or
interaction modification (Fig. 5d-f). Still more interaction structures may produce these patterns
if one relaxes the assumption of linear relationships among nodes (Appendix S2). In either case,
understanding the nature of herbivore indirect effects may have profound consequences for
predicting ecosystem processes over landscapes, including spatial patterning and heterogeneity
(Box 1). There is growing evidence that large herbivores indeed alter spatial heterogeneity in soil
processes (Ferraro et al., 2022; Murray et al., 2013; Trepel et al., 2024). Whether this patterning
suggests soil processes also become less predictable over landscapes under herbivory, or simply
represents a reorientation of relevant controls, has not been tested (Box 1). Overall, greater
resolution of indirect interaction structures among large herbivores, ecosystem processes, and

their abiotic/biotic controls will improve prediction of patterns over landscapes.
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Figure 5. Interactive effects of Site (e.g., ecosystem type) and Treatment (e.g., herbivore density)
factors (A, D) on an ecosystem response, Y (e.g., N mineralization) can result from interaction
chain (B, E) or modification (C, F) network structures. Line and symbol definitions are consistent
with Figs 1-4. (A, D) Results from hypothetical herbivore-ecosystem field studies in which
Reference conditions differ between sites. Example 1: (A) Herbivores increase Y in Ecosystem 1
but have no significant effect in Ecosystem 2. This pattern can result from, for example, an
interaction chain where the magnitude of the herbivore treatment also differs across sites (B), or
an interaction modification that decreases the coefficient, fx, over the full range of X (C). Example
2: (D) A hypothetical interactive effect in which herbivores increase Y in Ecosystem 1 and decrease
Y in Ecosystem 2. This pattern can result from, for example, an interaction chain where the
coefficient, Senuin, depends on higher-order environmental context (EC), or an interaction
modification that decreases the coefficient, fx, over the full range of X (F).

Using fence designs to understand contingencies
Designing studies to differentiate herbivore chain or modification effects can also help

researchers find causality in site-level contingencies. For example, in a linear chain effect,

heterogeneity in the net effect implies that the magnitude of the herbivore treatment (e.g., local
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density) differs across sites (Fig. 5b). This is common in fenced designs, where herbivore
densities cannot be precisely controlled in reference plots adjacent to exclosures, and available
density data may not match the scale of measurement. For example, local impacts may be higher
or lower than regional densities suggest. Alternatively, site-level chain effects may differ because
of site variation in higher-order environmental context (Fig. 5d,e). This is particularly likely if
the sign of the herbivore effect differs between sites (e.g., Fig. 5d,e). By contrast, in a
modification effect, the position of each site along the X axis itself influences the direction and
magnitude of the herbivore net effect on Y (Fig. 5c,f). In practice, study sites in exclosure-based
designs can be very different (e.g., in plant-soil communities, edaphic properties, microclimates),
even in the same region (e.g., Bressette et al., 2012; Ellis & Leroux, 2017; Swain et al., 2023). In
either case, resolving the nature of herbivore indirect effects (chain or modification) can leave
researchers with clear and testable hypotheses for why contingencies occur, which is essential for

building causal understanding over successive studies (Grace, 2024).

Box 1: Modification of spatial soil heterogeneity by large herbivores

The predictability of soil functioning is of primary concern for anyone trying to project
current or future patterns of soil biogeochemistry of over landscapes (e.g., Crowther et al., 2019;
Ren et al., 2025; Rizzuto et al., 2024; Wilson et al., 2025). Soil factors controlling ecosystem
processes are spatially structured (Ettema & Wardle, 2002). For example, substrate quality (e.g.,
organic matter C:N) and soil chemistry (e.g., pH) are jointly constrained by litter traits, and are
frequently correlated across sites (e.g., Hogberg et al., 2017). Other factors, such as microclimate
and soil organisms, may vary independently over landscapes (Bernhardt et al., 2017; Ettema &
Wardle, 2002). Spatial heterogeneity in the distributions of multiple soil properties creates spatial
heterogeneity in soil functioning (Bernhardt et al., 2017; Crowther et al., 2019; Nunan et al.,
2020; Fig. 6).

Herbivore interaction modifications may have profound consequences for spatial
patterning of soil processes (Fig. 6). For example, a myriad of potential effects, such as herbivore
impacts on surface albedo, soil structure, or microbial communities, may shift the relative control
of soil functioning by substrate (e.g., %N) vs microclimate (e.g., degree days) properties (Fig. 6).
Depending on the spatial patterning of substrate and microclimate controls, large herbivores
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could shift spatial patterning of soil functioning from highly patchy to gradient-based (Fig. 6).
Herbivore effects on decomposer community composition (e.g., Aggerbeck et al., 2022; Eldridge
et al., 2020) may be a primary mechanism underlying such a modification because distinct
functional traits, physiologies, and resource limitations of microbial communities define their
roles in soil functioning (Fierer et al., 2007; Hicks et al., 2022; Ribbons et al., 2016; Strickland et
al., 2009; Waring et al., 2013).

This simple application illustrates how even small interaction modifications may be quite
influential in ecosystems where soil processes are strongly co-limited, such as arctic tundra
(temperature and nutrient colimitation) and drylands (water and nutrient co-limitation),
compared to warm and wet systems (e.g., tropical forests) where autotrophic and heterotrophic
activity are strongly nutrient limited. Of course, these hypotheses need testing. We contend that
resolving herbivore modification of spatial soil ecology is an important area for future study that
can improve prediction of ecosystem functioning over landscapes.

Soil Functioning Heterogeneity

Substrate & Microclimate Heterogeneity No modification

Y landscape looks like R+ T

Resource Control, R
(e.g., bulk soil C:N)

Brincreased

Y looks more like R landscape

Microclimate Control, T
(e.g.. soil temperature)

Brincreased

Y looks more like T landscape

Soil Functioning =Y = BrR + B7T + vy

Figure 6. Large herbivores may shape spatial soil patterns via interaction modifications. (A)
Variation in soil processes (e.g., decomposition, nutrient cycling) is often explained by variation
(cell shade) in multiple independent variables with independent spatial patterning. (B) In absence
of large herbivores, spatial patterning of soil functioning reflects the additive effect of joint
substrate and microclimate controls. (C) In the case where large herbivores increase the coefficient
of substrate control, Sz, soil functioning, Y, more closely reflects landscape patterning of the soil
substrate variable (i.e., Y becomes more patchy). (D) In the case where large herbivores increase
the coefficient of microclimate control, f7, soil functioning, ¥, more closely reflects landscape
patterning of the soil microclimate variable (i.e., a linear gradient in Y emerges).

Operationalizing our framework in future designs
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Despite some challenges, fence designs will continue to play an important role in large
herbivore research (Pringle et al., 2023). In line with recent perspectives in spatial SOM
dynamics (Bradford et al., 2016; Bradford et al., 2021), resolving the equations in our framework
likely requires a shift from pooling individual samples physically (e.g., combining soil cores) or
statistically (e.g., as means), toward identifying relationships among variables based on
continuous data collected at the same resolution (Bradford et al., 2021). This also means
establishing experimental or observational gradients over which environmental context, £C, and
large herbivore treatments, LH, can change gradually (Meyer & Leroux, 2023). This is difficult
to do in practice, but designs that repeat treatments and sampling across adjacent ecosystem
types offer a good start (Kindermann et al., 2025; Meyer et al., 2025). Emerging methods, such
as advanced use of camera traps (Carswell et al., 2025) and quantification of herbivore fecal
biomarkers in soil (Karp et al., 2025) also provide a path towards establishing herbivore
abundance gradients at finer resolutions and with greater accuracy. Ultimately, resolving the
functional form of relationships among all important nodes in ecosystem interaction networks is
unlikely to be feasible within any single study. Integrating evidence across studies and
approaches is therefore critical to building causal understanding (Grace, 2024).

To this end, observational studies, or those pairing observational and experimental designs,
circumvent some of these challenges by choosing sites for local treatments (e.g., material
deposition, trampling) along gradients in site properties (Ferraro et al., 2023; Meyer & Leroux,
2023; Moran et al., 2025), and over a range of present/historic herbivore treatment intensity
(Meyer et al., 2025; Moran et al., 2025; Ren et al., 2025). The obvious downside is a lack of
complete experimental control. Here, there is great potential for green-house experiments to

resolve the equations we identify at the scale of individual plants and their rhizosphere (e.g.,
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Mikola et al., 2001). At the other end of the spectrum, some exclosures are extremely large (e.g.,
Wigley-Coetsee et al., 2022) or specifically designed to cross gradients in ecosystem properties
(e.g., habitat productivity; Persson et al., 2007), which could help resolve these relationships at
larger spatial extents (Pringle et al., 2023; Wigley-Coatsee et al., 2022; Sitters et al., 2017). We
feel there are many opportunities for researchers working independently to link existing
infrastructure or create new distributed networks aimed at resolving the equations we identify in
our framework within and across systems (e.g., Keller et al., 2025; Petersen et al., 2023).

Distributed networks or coordinated sampling protocols may help solve another key
source of heterogeneity: study-specific definition of ecosystem interaction networks. Whether an
indirect effect appears as an interaction chain or modification depends at times on node
definition decisions made by the observer (Box 2). This challenge has also been flagged in
species interaction research (Brimacombe et al., 2025; Wootton, 2002) but applies to biotic and
abiotic variables in EINs as well (Box 2). The ability to construct ecosystem interaction networks
to suit specific questions is a strength of the approach. However, the diversity of networks
concocted by independent researchers also makes cross-ecosystem comparison an ongoing
challenge (Brimacomb et al., 2025). Ultimately, researchers should be aware of this challenge,
particularly for evidence synthesis (Box 2; Brimacomb et al., 2025).

Broader adoption of an EIN approach to large herbivore ecology has the potential to
reveal new indirect effects and common interaction motifs across systems, analogous to those
found in species-based networks (Olff et al., 2009). For example, the community interaction
network model (sensu Wootton, 1993) has lead to considerable theoretical development of the
nature of indirect effects in ecological communities, including a typology of trait-mediated,

density-mediated, and environment-mediated indirect effects (Wootton, 2002), the identification
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of important network motifs such as alternative forms of omnivory (McLeod & Leroux, 2021),
and identification of generalizable network patterns such as predator or resource control of
primary production (Oksanen et al., 1981; Ripple et al., 2016; Schmitz, 2008). It is possible that
an EIN approach to herbivore-ecosystem interactions will bring about similar generalizations
about interactions connecting biotic entities, abiotic properties, and ecosystem processes across
systems. For example, interaction chains and modifications stemming from simultaneous
engineering and trophic activities of large herbivores may have similar structures in EINs across

systems, but such comparisons are not feasible with existing data.

Box 2: The Network Definition Problem

A methodological challenge in disentangling chain and modification effects is that there are
cases where the same pattern or process may present as a chain or a modification depending on
the observer’s definition and measurement of the network (Wootton, 2002). For example,
consider an aboveground-belowground system where different microbial groups exert control on
elemental cycling via some relationship proportional to their biomass, and a herbivore treatment
impacts the relative abundances of microbial decomposers, but not their summed biomass. When
microbial biomasses are measured by functional group, a model of indirect effects (e.g., SEM)
would find changes in elemental cycling result from multiple simultaneous chain effects, where
decomposer biomasses are increased or decreased by a herbivore treatment, while group-specific
microbial coefficients with respect to elemental cycling remain fixed (Fig. 7a). By contrast, when
total microbial biomass is measured as a single pool, the same change in elemental cycling by
herbivores via decomposers would present as an interaction modification, where herbivores
modify the coefficient of microbial biomass with respect to elemental cycling (Fig. 7b).

This phenomenon can also apply to abiotic variables. For example, researchers sometimes
measure soil organic matter (SOM) based on distinct physiochemical properties that differently
influence soil processes (e.g., particulate, mineral-associated, and dissolved organic matter) (von
Liitzow & Kogel-Knabner, 2009; Xiang et al., 2023). Other times, SOM is measured as a single
pool. In the former case, a herbivore-driven change in the proportion of each fraction would
present as an interaction chain. In the latter, a change in the relative proportion of different
fractions would present as a change in the SOM coefficient with respect to the response variable
(e.g., elemental cycling).

Ultimately, any variables that can be easily aggregated or disaggregated based on ‘traits’ are
especially vulnerable to this kind of design-based heterogeneity.
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Figure 7. Alternative chain and modification models of the same indirect effect of large herbivores
on elemental cycling via decomposers. DAG notation is consistent with Figs 2-4. The circled +, -
, and ns, indicate the sign of the herbivore coefficient, S 4, is positive, negative or not significantly
different from zero, respectively. In a hypothetical system, microbial groups differently influence
elemental cycling via some relationship proportional to their biomass, f;D;. A herbivore treatment,
LH, then impacts the relative abundance of microbial decomposers, but ultimately not their
summed biomass. (A) Multiple simultaneous chain effects emerge when microbial biomass is
measured by functional group. Herbivores increase or decrease microbial biomasses while
microbial coefficients (f;) remain fixed. (B) A single interaction modification emerges when
microbial biomass is measured as a single pool. Large herbivores modify the coefficient of
microbial biomass, S, with no chain effect on total microbial biomass, Dr.

4.2 Key knowledge gaps
We have discussed ways our framework can be operationalized in empirical studies. We
expand on this discussion with a perspective on the prevalence, scale, and mechanisms

underlying herbivore interaction chains and especially modifications in EINs.

Prevalence
Our synthesis suggests herbivore-driven interaction modifications are relatively common

and globally distributed (Table 1). Yet, there are also reported cases where biotic-abiotic
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interactions are not modified by large herbivores (e.g., Frank & Groffman, 1998; Sankaran &
Augustine, 2004; Stephan et al., 2017). This is good news! Identifying system interactions that
are resilient to large herbivores (and thus constrained by other factors) is critical to understanding
and predicting herbivore-ecosystem interactions, but such evidence is currently sparse. This is
likely in part because such relationships are less frequently tested, and we have argued that
interaction modifications deserve greater attention. Alternatively, there is always the risk of a
publishing bias against negative results (Wood, 2020). We therefore encourage researchers and
editors to overcome the “file drawer” problem and find a home for these important negative

results.

Scale

Large herbivore-driven interaction modifications may emerge more at some scales of
organization, space, and time, than others. For example, chain effects of large herbivore
consumption and nutrient deposition are highly local in many cases (e.g., Ferraro et al., 2023) but
can also appear over larger spatial extents (Ren et al., 2025). Examples from our synthesis range
from regional (Meyer et al., 2025) to global (Maestre et al., 2022). Given that for many large
herbivores, the proportion of biomass consumed and the quantity of material transported is
relatively small compared to total system biomass in terrestrial ecosystems, interaction
modifications may represent a primary way in which herbivores effects on vegetation and soil

manifest at large spatial extents (Daufresne, 2021).

Mechanisms
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Ecological mechanisms exist along a gradient of biological organization (Pringle et al.,
2023). Resolving indirect interaction chains and modifications by herbivores in ecosystem
interaction networks improves mechanistic understanding of herbivore-ecosystem interactions by
moving beyond so called ‘first-order’ mechanisms (Pringle et al., 2023). However, knowing
which herbivore activities underly chain and modification patterns is also important, but rarely
clear. Ecosystem engineering is a likely mechanism underlying interaction modifications since it
amounts to an environmental change impacting many variables simultaneously (Guiterrez &
Jones, 2006). For example, moose trampling modifies soil microclimate, substrate, and microbial
relationships with Nin in boreal forest (Meyer et al., 2025). However, nutrient redistribution can
also underly interaction modifications. For example, caribou-vectored nutrient flow (waste
deposition) is primarily responsible for modifying topographic patterns of soil fertility in arctic
tundra (Sitters et al., 2017). Indeed, nutrient flows by large animals may be a primary mechanism
by which topographic structuring of biogeochemistry is modified (Doughty et al., 2016). Thus,
interaction modifications result from trophic and non-trophic activities of large herbivores.
Following similar approaches to interaction chains (e.g., Chen et al., 2013; Lovell et al., 2025;
Meyer et al., 2025), future work must disentangle the extent to which different herbivore

activities modify relationships among variables relevant to ecosystem functioning.

Conclusions

From deserts to grasslands, forests to tundra, and marshes to shrublands, we know that
large herbivores are at once choosy and voracious eaters, spreaders of seeds, fertilizer and
organic matter, earth-movers, and trail blazers. These activities are deeply integrated within

ecosystem interaction networks, which are being resolved in greater detail (e.g., Ferraro et al.,
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2024; Kamaru et al., 2024). The challenge now is to understand the precise nature of these
actions in complex interaction networks, and the consequent feedbacks driving stability or
change in ecosystems. To this end, we have clarified the nature of indirect effects of large
herbivores on soil biogeochemistry via interaction chains and interaction modifications. We have
argued that interaction modifications represent an underappreciated yet core feature of herbivore-
ecosystem interactions that future research must resolve. We provide a framework to guide this
research. We believe that doing so will facilitate a deeper understanding of mechanisms
underpinning herbivore-ecosystem interactions to advance sustainable and ethical ecosystem

management.
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Appendix 1: Glossary of Terms

Abiotic: Describes a non-living feature of an ecosystem (e.g., temperature).
Biotic: Describes a living feature of an ecosystem (e.g., biomass).
Direct effect: An interaction between two variables that occurs independently of other variables.

Ecosystem interaction network: A conceptual or statistical model mapping causal relationships
among nodes, where nodes are logical constructs or measurable variables. Nodes include biotic
entities or properties (e.g., organism biomasses), abiotic properties (e.g., soil moisture or
temperature), and ecosystem processes (e.g., decomposition, mineralization).

Ecosystem process: A material or energy transition from one form to another in time (e.g., soil
organic matter turnover, primary production) jointly facilitated by biotic entities and abiotic
conditions.

Environmental context: An influential feature of an ecological system with stable dynamics
over the spatiotemporal and organizational scale of measurement of a large herbivore variable
(e.g., abundance) and its direct and indirect effects in an ecosystem. What is considered
contextual therefore depends on the spatiotemporal and organizational scale of consideration.

Herbivore—ecosystem interaction: A causal relationship between some feature of herbivory
such as abundance, density, diversity, consumption, or trampling, and an ecosystem process.

Indirect effect: An interaction between two variables that is mediated in some way by at least
one additional variable.

Interaction: A causal relationship between two variables.

Interaction chain: An indirect effect in which an initiating variable elicits a change to the values
of a series of other variables according to the functional relationships among them.

Interaction modification: An indirect effect in which an initiating variable elicits a change in
the functional relationship between two other variables.

Interactive effect: A significant non-additive effect of two independent factors on a response
variable in a statistical model, such as a significant multiplication term in an analysis of variance
(ANOVA).



1555 Appendix 2: Non-Linear Relationships in Ecosystem Interaction Webs

1556

1557 Our framework highlights four key functions to better organize large herbivore indirect
1558  effects on ecosystem processes (equations 1-4). In the main text, we introduce these with linear
1559  examples (Figs. 2-5). Non-linear examples are also possible and we explore these in this

1560  appendix. Acknowledging the full scope of patterns emerging from relationships among four
1561  non-linear functions is infinite, we focus on several notable cases and their implications for
1562  resolving inconsistent herbivore effects among study sites, based on existing empirical evidence
1563  and recent syntheses.

1564

1565  Case 1: Direct controls on ecosystem processes, Yprocess=f(Xconrots) (€q.1), are non-linear
1566

1567 Some controls on soil biogeochemistry are non-linear over the spatial scale of

1568  measurement (Bradford et al., 2016, 2021; Liu et al., 2016; Prescott, 2010). Alternatively, some
1569  properties may exhibit saturating relationships to soil processes, such as temperature control of
1570  SOM turnover (Bradford et al., 2016; Bradford et al., 2021).

1571
1572 Interaction Chains
1573 In either this case, the direction and magnitude of a herbivore indirect effects on ¥ via X

1574  (i.e., an interaction chain) will strongly depend on the positioning of Reference sites along local
1575  gradients of X (Fig. S1). For example, large herbivore presence can increase soil temperatures via
1576  reduced vegetation cover (Kolstad et al., 2018; Meyer et al., 2025; Trepel et al., 2024; Tuomi et
1577  al., 2021). However, while SOM turnover is often temperature controlled (Bradford et al., 2021;
1578  Colman & Schimel, 2013), herbivore-induced increases in temperatures do not consistently

1579  cascade to increase microbe-driven process rates (Kolstad et al., 2018; Meyer et al., 2025; Tuomi
1580  etal., 2021). One potential explanation is that temperature control of SOM dynamics is non-
1581  linear over the range of herbivore-effected sites, such as the saturating functions described in
1582  recent syntheses (Fig. S1; Bradford et al., 2016; Bradford et al., 2021).

1583



1584

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

1596

Interaction Chain with Non-Linear Controls on Y:
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Figure S1. An interaction chain where control of an ecosystem process is nonlinear, represented in network (directed
acyclic graph), graphical, and statistical form. (A) An ecosystem process, Y, varies as a function of an abiotic or biotic
control, X, according to the function Y=f{X). A large herbivore treatment, LH, impacts the process via its relationship
to one or more controls, X, according to a function X=f(LH). (B,C) Solid dots and lines represent hypothetical data
from Reference (R;) areas (e.g., no herbivores) including site-specific means (dots) and continuous data (lines). Dashed
dots and lines represent data from hypothetical treatment (T;) areas (e.g., with herbivores). Red arrows track net effects
of herbivores through the series of functional relationships. Arrow length is the magnitude of the herbivore net effect.
(B) For example, soil temperature, Xy, may vary as a function of large herbivore density, LHg, according to a function
KXeemp = fKLH )= PenainkHa, Where Senain 1s the coefficient of the herbivore effect on Xemy. (C) Herbivore impacts on Xiemp
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Interaction Modifications

Modification of non-linear controls of ecosystem processes by large herbivores is also

possible (Fig. S2). For example, the shape of the unimodal relationship between tree diversity

and tree height depends on moose browsing intensity in Finnish boreal forest (Muiruri et al.,
2015). A second example is where livestock grazing intensity inverts non-linear (saturating)
temperature control of decomposition from weakly positive to strongly negative across global
drylands (Maestre et al., 2022). Overall, many properties controlling decomposer physiology,
such as pH or soil microclimate, can also be unimodal (hump-shaped), reflecting a zone of
optimal conditions for microbial functioning and two sub-optimal extremes (e.g., Prescott, 2010).
The shape of these relationships may be modified by large herbivores (Fig. S2).

Interaction Modification with Non-Linear Controls on Y:

. Climate/Plant/Soil
Large Herbivores, Properties, —Y = f(X)—
LH X

\ P
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y
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Figure S2. An interaction modification where control of an ecosystem process is non-linear, represented in network
(directed acyclic graph), graphical, and statistical form. (A) An ecosystem process, Y, varies as a function of an abiotic
or biotic control, X, according to the function Y=f(X). A large herbivore treatment, LH, may then impact ecosystem
processes, Y, via its relationship to the coefficient of one or more controls, fx;, according to a function Sxi=f(LH).
(B,C) Dots, lines, arrows, and legends are consistent with Fig. S1. (B) For example, a coefficient of soil temperature,
Premp1, may vary as a function of large herbivore density, LHg, according to a function Siempr = ALHa)= fmoa LHa, where
Pmoa 1s the coefficient of the herbivore effect on fiempi. (C) Herbivore impacts on fSrempyr may then shift temperature
control of decomposition, Y., according to a non-linear (e.g., unimodal) function.
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Environmental Context

Environmental context can also influence the direction of herbivore direct effects on non-
linear controls of ecosystem processes (i.e., equation 4: Sehain/moa=f(EC)), as with linear controls
(Fig. 4a). For example, the direction of sheep trampling effects on soil moisture, depend on
higher-order site variation in soil moisture (Schrama et al., 2013). Soil compaction by sheep
waterlogs wet soils by reducing drainage, and exacerbates drought conditions in dry soil because
compaction reduces water-holding capacity and increases runoff (Schrama et al., 2013; Fig.
S3a,b). Unlike the linear case (Fig. 4a), nitrogen mineralization in this system is decreased over
especially wet and dry sites because the same herbivore activity (trampling) creates soil
conditions that compromise microbial functioning, but for different reasons depending on initial
soil moisture (Fig. S3b).

(a) (b) i = e
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Figure S3. The role of environmental context in shaping large herbivore indirect effects on non-linear controls of
ecosystem processes, via interaction chains and modifications. Point, line, arrow, and legend definitions are consistent
with Fig S1. Variables representing environmental context can modify the coefficients of herbivore effects via
interaction chain (A,B) and modification (C,D). (A,B) For example, variation in site-level soil moisture can modify
the direction of large herbivore direct effects on soil moisture. (B) Since moisture control of N mineralization is non-
linear (unimodal) herbivores decrease N mineralization via interaction chain at both wet and dry sites. (C)
Environmental context can also constrain the direction of herbivore interaction modifications. (D) For example, in a
case where a herbivores can modify the shape of unimodal soil functioning (e.g., N mineralization) by shifting
microbial communities differently in different ecosystems.

As in the linear case presented in the main text (Fig. 4c,d), it may be possible for
environmental context to influence the direction of interaction modifications of non-linear
controls on ecosystem processes (Fig. S3¢). However, to our knowledge, no attempts have been
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made to quantify this type of interaction structure. We therefore present a hypothetical example
to illustrate how this pattern may present in the field. Consider again a system where a hump-
shaped relationship exists between an edaphic gradient such as soil moisture or soil pH and a soil
biogeochemical process such as nutrient cycling (Fig. S3d, solid line; Vivanco & Martiny, 2025).
The hump shape reflects the physiological optimum of the decomposer community over the
gradient. In this hypothetical system, large herbivores do not meaningfully alter site-level values
along the X axis (i.e., no chain effect). Instead, the primary effect of large herbivores, via some
mechanism (e.g., soil compaction, organic matter input, destruction of plant partners), is to alter
microbial community composition from being generalist-dominated, with optimal physiological
conditions along the midpoint of the X-axis gradient, to specialist-dominated with optimal
conditions closer to the extremes (Abdul Rahman et al., 2021; Bradford et al., 2008; Winfrey et
al., 2025). Thus, large herbivores modify the shape of the hump, including the position of the
optimal condition along the soil gradient (Fig. S3d; Vivanco & Martiny, 2025). This is an
example of environmental filtering via ecosystem engineering (Sanders & Frago, 2024). This
shift, in turn, may be constrained by environmental context. In an ecosystem at the low end of
the gradient, the optimum is shifted lower, because specialists adapted to this end of the gradient
experience optimal activity at lower X than the suppressed generalists (Fig. S3d, dashed line). IN
ecosystems at the high end of the gradient, the optimum is shifted higher, because specialists
adapted to this region have a physiological optimum that is higher along the X axis than the
generalists that are being suppressed (Fig. S3d, dotted line). Thus, in this hypothetical example a
common herbivore treatment modifies the relationship Y=f(X) (where, fx> = f(LH)) based on a
common mechanism that herbivores exert throughout their range (shift in microbial physiology
via suppression of generalists, i.e., environmental filtering). The sign of this modification
depends on environmental context (i.e., large-scale placement along edaphic gradient, frn =
f(EC)). 1t is notable that in this interaction structure, local (plot scale) variation in X may result in
entirely different shifts in Y across reference and treatment sites (i.e., Rj= strong increase;
Ti=weak decrease; Ro=strong decrease; To>=weak increase), despite ultimately sharing a single
mechanism and interaction structure.

Case 2: Herbivore direct effects on ecosystem properties, X = f(LH) (eq.2), are non-linear

The functional relationship between herbivore density, or more generally, the intensity of
herbivory in space and time, can also be non-linear (Chen et al., 2013; Persson et al., 2007;
Tuomi et al., 2021). This is commonly observed in agricultural systems where livestock densities
can be easily controlled and range from zero to extremely high (Chai et al., 2019; Chen et al.,
2013). Examples with wild large herbivores are limited, though examples exist with
observational (Meyer et al., 2025) and experimental designs (Persson et al., 2007).

As with linear direct effects, the nature of non-linear herbivore direct effects can also be
modified by environmental context (i.e., equation 4: frxz = f(EC)). For example, in European
boreal forest, the relationship between simulated moose browsing intensity and primary
productivity of birch shifts from linear to increasingly unimodal over a gradient of site
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productivity index (Persson et al., 2007). In this case, intermediate browsing intensities
substantially increasing primary productivity at productive sites, whereas browsing linearly
decreases productivity at unproductive sites (Persson et al., 2007).

Overall, researchers should be aware of non-linear direct controls on ecosystem processes
and non-linear herbivore direct effects, particularly at high densities. Non-linear effects present
an obvious problem for projecting zoogeochemical patterns over landscapes. Fortunately, well-
designed empirical studies can capture linear or non-linear effects (see Perspectives).
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