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Abstract 
We replicate and critically evaluate McManus’ (1985) single-locus genetic model of 
handedness, which remains influential in laterality research. Using the original familial and 
twin datasets, we reproduce McManus’ parameter estimates while correcting reporting errors 
and miscalculations. Our reproduction confirms that the model is reproducible but reveals 
sensitivity to dataset inconsistencies and outliers. We extend the framework by generalizing 
correction matrices, implementing simulations, and applying bootstrap methods to estimate 
confidence intervals. We further analyze a modern dataset from Flores and Adonara, Indonesia, 
providing a test of the model in a different cultural setting and comparing triplet versus multi-
offspring representations. Our findings emphasize both the historical value and the current 
limitations of the Dextral–Chance framework, offering a modern foundation for testing genetic 
and cultural theories of handedness with contemporary datasets. 
  



   
 

   
 
1 

Introduction 
Handedness, typically defined as the preferred hand used for everyday one-handed tasks 
(Porac, 2016), is a prominent human asymmetry that has fascinated researchers for over a 
century (Marcori & Okazaki, 2020; McManus, 2019). A related but distinct aspect is hand 
performance, which refers to measurable differences in efficiency between the two hands 
(Janßen, 2004). Although the two dimensions are frequently conflated under the umbrella of 
handedness, they are not interchangeable. Most large-scale familial and genetic studies, 
including those of McManus (1985), have operationalized handedness as hand preference, 
often measured by the writing hand. This choice of definition is not trivial: variation in whether 
researchers emphasize preference or performance has contributed to heterogeneity in reported 
rates of left-handedness across populations and generations (Peters, 1998). 
Despite these challenges of definition and measurement, the predominance of right-handedness 
is an enduring feature of our species. Approximately 90 percent of individuals are right-handed, 
a figure remarkably consistent across time and space. Archaeological and anthropological 
evidence demonstrates right-hand bias in skeletal morphology, tool production, and artistic 
depictions extending back to Neanderthals (Coren & Porac, 1977; Uomini & Ruck, 2018). This 
persistence across millennia indicates a strong biological foundation, making handedness a key 
case study in efforts to unravel the interplay of genes, development, and culture in shaping 
human behavior (Marcori & Okazaki, 2020; McManus, 2019). 
The first attempts to explain handedness invoked simple Mendelian inheritance. Early 
twentieth-century models posited a single recessive allele for left-handedness, predicting that 
offspring of two left-handed parents would be exclusively left-handed (Annett, 1964; Trankell, 
1955; Chamberlain, 1928; Ramaley, 1913). Yet empirical findings contradicted these 
expectations. Familial data showed that two left-handed parents produced left-handed children 
only about 20 to 30 percent of the time, while offspring of two right-handed parents were 
occasionally left-handed. Twin studies posed an even greater challenge: concordance among 
monozygotic twins was far from 100 percent and only marginally higher than that of dizygotic 
twins (Pfeifer et al., 2022). These discrepancies revealed that single-gene dominance–recessive 
accounts could not adequately capture the inheritance of handedness. 
To address these inconsistencies, Annett introduced the right-shift theory (Annett, 1972, 1975, 
1978). Her model proposed that a genetic factor biases brain lateralization toward the right 
hemisphere, thereby increasing the probability of right-handedness but leaving room for 
developmental chance. Individuals without this factor, she suggested, had an equal probability 
of becoming right- or left-handed. By allowing probabilistic outcomes, Annett’s model 
explained both the stability of handedness prevalence in the population and the imperfect 
concordance observed in twins. Later refinements incorporated heterozygote advantage and 
adjustments to account for twin-specific effects (Annett, 1994, 1995). 
In parallel, McManus introduced a different but related genetic model, the Dextral-Chance 
(DC) model (McManus, 1985). Unlike Annett’s emphasis on cerebral lateralization, McManus 
proposed that genes directly influence hand preference. In this model, individuals with a 
homozygous DD genotype are always right-handed, while homozygous CC genotype 
individuals are equally likely to be right- or left-handed. Heterozygotes (DC) have an 
intermediate probability of being left-handed, represented as p(L|DC). Using maximum 
likelihood estimation on large familial and twin datasets, McManus estimated that the true 
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prevalence of left-handedness is about 7.75 percent, with roughly 25 percent of heterozygotes 
showing the trait. This model provided a simple genetic explanation that explained several 
puzzling empirical findings. Notably, McManus also developed correction procedures to 
address inconsistencies in classification across datasets, noting that prevalence estimates varied 
depending on whether handedness was assessed by writing, self-report, or behavioral 
observation. The DC model offered a parsimonious genetic account that has remained 
influential, serving as a benchmark for subsequent genetic and gene-culture models (Laland et 
al., 1995; Mariani et al., 2023; McManus et al., 2013). 
Nearly four decades later, handedness remains conceptually unresolved. Researchers continue 
to debate its genetic, epigenetic, and cultural foundation, while McManus’ model is still cited 
as a canonical starting point. Despite its prominence, however, no published study has 
attempted a strict reproduction of McManus’ analysis to test whether the same data yield the 
same conclusions, nor have systematic evaluations probed the robustness of his findings against 
outliers or reporting inconsistencies. 
Here, we address this gap. We perform the first full reproduction of McManus’ (1985) genetic 
model of handedness, using the original datasets and implementing the analysis with modern 
computational tools. Our goals are threefold: first, to accurately reproduce McManus’ reported 
parameter estimates and likelihood tests; second, to expand his framework by generalizing the 
correction matrices, adding simulations, and using bootstrap methods for confidence interval 
estimation; and third, to assess the stability of the model’s conclusions through systematic 
testing of outlier effects and the log-likelihood surface. Fourth, we extend the model to a 
contemporary dataset drawn from a cultural context distinct from the one on which the model 
was originally based, thereby evaluating its applicability beyond the historical studies. 
By integrating a reproduction with methodological enhancements, we highlight the strengths 
and weaknesses of the DC model and provide a clearer, more transparent foundation for future 
studies on genetic and cultural explanations of handedness. 

Methods 

Study design 

We reproduced the analysis presented by McManus (1985), who proposed a genetic model of 
handedness and estimated its parameters using maximum likelihood estimation. His approach 
combined familial and twin datasets, likelihood-ratio tests to evaluate goodness-of-fit, and 
exclusion of outliers to refine parameter estimates. 
In our reproduction, we followed the same overall structure and implemented all analyses in 
Python, using NumPy (Harris et al., 2020), Matplotlib (Hunter, 2007), SciPy (Virtanen et al., 
2020), and Pandas (McKinney, 2010). Source code is available at https://github.com/yoavram-
lab/McManus1985. 

Genetic Model 

McManus’ model assumes a single locus with two alleles: D (dextral) and C (chance). The 
mapping of genotypes to phenotypes is shown in Table 1. Homozygous DD individuals are 
always right-handed, CC homozygotes are right- or left-handed with equal probability, and 
heterozygotes DC express left-handedness with probability p(L|DC). From the true population 
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prevalence of left-handedness, p(Lt), in combination with the heterozygote parameter p(L|DC), 
the allele frequency of C is 

p(C) = 2p(Lt), if p(L|DC)= 0.25; 

𝑝(𝐶) =
!"𝐿#𝐷𝐶$%&!"𝐿#𝐷𝐶$!'"(.*%+!"𝐿#𝐷𝐶$	$!(.")

+!"𝐿#𝐷𝐶$%(.* , otherwise. 

Data 
McManus (1985) analyzed three types of datasets: (1) familial data from parents and their 
children, (2) extended family data including siblings and grandparents, and (3) twin data. The 
familial datasets reported the handedness of offspring based on the handedness of their parents, 
while the twin data showed concordance and discordance in handedness between monozygotic 
(MZ) and dizygotic (DZ) pairs. 
The triplet data, summarized in Table 2, relied on twelve independent studies and included 
over 25,000 children. Offspring were categorized based on their parents' handedness, resulting 
in three mating groups: R×R, R×L, and L×L. On average, 13.33% of the children were left-
handed. When broken down by parental phenotype, clear patterns appeared: 11.29% of children 
with two right-handed parents were left-handed, compared to 23.67% from mixed-handed 
couples and 33% from two left-handed parents. Parental handedness rates came from the 
original studies, with some (Mascie-Taylor, Chaurasia & Goswami, Annett, 1978) directly 
cited by McManus based on observed frequencies. During our review of the data, we found 
discrepancies between McManus data and the sources, with some previously noted as 
typographical errors (Annett, 1996). Since our main goal was to assess the reproducibility of 
McManus’ model, we used his reported data for parameter estimation. For analyses involving 
the observed incidence of left-handedness, corrected data were used when inconsistencies 
impacted the results. 
The second dataset, shown in Table 3, comes from surveys that McManus carried out in 1977 
at the University of Cambridge. These surveys included two groups: ICM1, which involved 
undergraduates, and ICM2, which surveyed graduate students. Participants provided 
information about their own handedness as well as that of their siblings, parents, and 
grandparents. Handedness was mainly determined by which hand they used for writing, except 
for individuals who had been forced to switch from left to right handedness; these were 
classified as left-handed. Based on these questionnaires, McManus developed several related 
datasets: one recording the handedness of students and their siblings based on parental 
handedness, and two others summarizing parental handedness depending on either maternal or 
paternal grandparents. These extended family datasets enabled the analysis of transmission 
patterns beyond nuclear families. 
The third dataset summarized handedness in twins without referring to parental phenotype. 
Data from thirteen studies (Table 4) included 2,064 monozygotic (MZ) pairs and 1,757 
dizygotic (DZ) pairs. Among MZ twins, 14.51 percent were left-handed, and the discordance 
rate was 22.82 percent, while among DZ twins, 13.15 percent were left-handed with a 
discordance rate of 22.88 percent. These rates, which are notably similar between MZ and DZ 
twins, challenge simple genetic models that typically predict much higher concordance among 
MZ twins. 
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Together, these three types of data, triplets, extended family surveys, and twins, formed the 
empirical basis for McManus’ genetic model. In this study, we reanalyzed all of these datasets 
in their original form, replicating McManus’ protocol while also addressing documented 
inconsistencies. 
In addition to McManus’ original datasets, we incorporated a modern dataset collected by 
Nurhayu et al. (2020)from the islands of Flores and Adonara, Indonesia (Tables 6, and 7). To 
align it with McManus’ framework, we grouped individuals by generation: the first generation 
included individuals without children and their siblings; the second generation comprised their 
parents and their siblings; the third generation contained the grandparents of the first generation 
and their siblings; and so on, yielding five generations overall and four derived datasets. 
Because the older generations contained too few left-handed individuals to be informative, we 
restricted analyses to the first two generations. For the same reason, we further limited families 
to those with six or fewer offspring. These data were then represented in both triplet form 
(Table 6) and multi-offspring form (Table 7), allowing direct comparison of the two analytic 
approaches. Importantly, the reproduction of McManus’ (1985) results was conducted solely 
on the original datasets; the Flores–Adonara dataset was analyzed separately to evaluate the 
model in a different cultural setting and to test the effect of data representation on parameter 
estimation. 

Correction for criterion shifts 

A key challenge in handedness research is the variability in the criteria used across studies. 
Some researchers determine handedness by writing hand, others through self-report 
questionnaires, and still others by direct behavioral observation, leading to inconsistencies in 
reported prevalence rates (Janßen, 2004; McGrew & Marchant, 1997; Peters, 1998; Porac, 
2016). These discrepancies can cause significant variation in the measured incidence of left-
handedness, even within the same population, an effect that McManus (1985) termed criterion 
shift. 
To address this issue, McManus introduced an adjustment procedure that modifies model 
predictions before they are compared with the data. Let T denote the transmission matrix of 
true probabilities for offspring handedness given parental phenotypes, as determined by the DC 
model parameters. The observed data, however, reflect measured rather than true phenotypes. 
McManus proposed correcting the predictions by applying separate transformation matrices 
for parents and offspring. The adjusted prediction matrix, M, is given by 

M = P·T·Q 
where Q adjusts parental phenotypes, and P adjusts offspring phenotypes. The values in these 
matrices depend on the relationship between the observed incidence of left-handedness (Lm) 
and the true incidence implied by the model (Lt). When the measured rate exceeds the true rate 
of left-handedness, some true right-handers must have been misclassified as left-handed; 
conversely, when they fall below the true rate, some true left-handers must have been 
misclassified as right-handed. The proportions of these misclassifications are derived 
deterministically from the observed and expected incidences. 
For twin data, where parental phenotypes are not reported, only the offspring adjustment matrix 
is applied. In this case, the transformation operates on the frequencies of pairwise concordance 
and discordance, yielding an adjusted matrix of expected outcomes for monozygotic and 
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dizygotic pairs. The explicit forms and derivations of matrices P and Q, along with their 
derivations, are provided in Appendix 1. 

Model fitting 

The two free parameters of the DC model are the true population rate of left-handedness, p(Lt), 
and the probability of left-handedness among heterozygotes, p(L|DC). Parameters were 
estimated by maximum likelihood estimation, following the procedure described by McManus 
(1985), and using the adjusted transmission matrix to account for criterion shifts. The explicit 
form of the likelihood function is provided in Appendix 2. 
Estimation proceeded in two stages following the procedure described by McManus (1985). 
First, a grid search was performed across the parameter space, with p(Lt) ranging from 0.02 to 
0.2 and p(L|DC) ranging from 0 to 0.5 in increments of 0.0025. The parameter pair that 
maximized the likelihood in this scan was then used as the starting point for local optimization 
with a quasi-Newton algorithm, which refined the estimates. Model fit was evaluated using a 
likelihood-ratio test against a saturated model that exactly reproduces the data, which 
McManus referred to as a “perfect fit”. The test statistic is approximately chi-squared 
distributed, with degrees of freedom equal to the number of independent data points minus the 
number of estimated parameters. A p-value greater than 0.05 was interpreted as evidence that 
the model adequately fits the observed data. 

Identifiability diagnostics 

To quantify parameter precision and identifiability, we estimated the Hessian of the log-
likelihood at the maximum-likelihood estimate (MLE). Instead of calculating the second 
derivatives of the entire model analytically, which involves complex transformations through 
the T, P, and Q matrices, we approximated curvature numerically by fitting a local quadratic 
to the likelihood surface. Specifically, we chose a 5×5 grid of parameter values around the 
MLE (i.e., a block of 25 points spanning two steps in each direction on the parameter grid) and 
fitted a quadratic function to the corresponding log-likelihood values. This local fit captures 
the surface’s curvature near the optimum while reducing grid-level noise. From the quadratic 
fit, we extracted the second derivatives with respect to p(Lt) and p(L|DC) to compute the Fisher 
Information matrix (FIM). By inverting the FIM, we derived Hessian-based standard errors 
(SEs) and parameter correlations. We also report the eigenvalues and condition number of the 
FIM as indicators of identifiability: large condition numbers suggest a ridge-like likelihood 
surface and practical non-identifiability, meaning SEs should be interpreted cautiously (Raue 
et al., 2009). 

Simulations 

To further evaluate McManus’ model, we created synthetic population data under controlled 
conditions. These simulations helped us evaluate how accurately the estimation process 
retrieved known parameter values and tested the method's robustness across different scenarios. 
Synthetic datasets were created using specified values of the two model parameters, p(Lt) and 
p(L|DC). For the familial data, the number of families was drawn from a uniform distribution 
U(100, 2200), and the number of offspring per family was sampled according to the empirical 
distribution from Table 3, as 1 + Bin (4, 0.354). Parental mating types were sampled from a 
binomial distribution with a success probability equal to the true incidence of left-handedness, 
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p(Lt). Given the mating type, the number of left-handed offspring was then drawn from a 
multinomial distribution based on the probabilities specified by the model. 
To simulate differences in handedness classification across studies, we introduced criterion 
shifts. Specifically, two observed handedness rates were selected from those reported in 
McManus (1985): one for the parental generation and one for the offspring generation. These 
rates were scaled relative to the model’s assumed true incidence of left-handedness (0.0775) to 
create dataset-specific correction matrices. Transition matrices P and Q were then constructed 
accordingly, and the simulated offspring counts were adjusted using these corrections. 
Using this simulation framework, we generated synthetic data for all three types used by 
McManus: triplets, families with multiple children, and twins. This ensured that the evaluation 
of the estimation method accurately reflected the structure of the original datasets. 

Results  

Statistical analysis 

Applying maximum likelihood estimation (MLE) to the complete dataset, McManus (1985) 
reported a maximum log-likelihood of –11,446.441 for parameter estimates of p(Lt) = 0.0767 
and p(L|DC)= 0.2647 (Model A). He calculated that a “perfect fit” would yield a log-likelihood 
of –11,330.736, resulting in a likelihood-ratio test statistic of –11,330.736 (χ2169=231.41, 
p=1.02×10-3). On this basis, he concluded that the model provided a poor fit to the full dataset 
and suggested that this result might reflect the sensitivity of MLE to outliers. 
To identify potential outliers, McManus re-estimated model parameters using rounded values 
(p(Lt) = 0.0775, p(L|DC)= 0.25; Model C) and evaluated goodness-of-fit for each dataset 
separately. The twin data yielded an overall χ226=37.028, p=0.074, indicating an adequate fit, 
although the DZ twins of Zazzo (1960) and both MZ and DZ twins of Loehlin & Nichols (1976) 
showed significant deviation at p < 0.05. The families-with-multiple-offspring data also fit 
well overall (χ2133=129.469, p=0.57), pointing to several outliers. Specifically, the datasets of 
Chaurasia & Goswami, Ramaley, Merrell, and McGee & Cozad all failed to fit the model (all 
p < 0.01). After excluding these four datasets, the triplet table was consistent with the model 
(χ28=11.078, p=0.197). McManus then repeated the MLE using the reduced dataset and 
reported a maximum log-likelihood of –9431.723 with estimates of p(Lt)=0.0642 and 
p(L|DC)= 0.2328 (Model B), yielding χ2165=172.514, p=0.32, which he considered an adequate 
fit. 
In our reanalysis of the complete dataset (Tables 2–4), we obtained a maximum log-likelihood 
of –11,445.0212 with estimates of p(Lt)=0.0774 and p(L|DC)=0.2681. For a perfect fit, we 
estimated the log-likelihood to be –11,322.317, which corresponds to a test statistic of 
χ2169=245.408, p=1.12×10-4. Thus, like McManus, we found that the full dataset does not fit 
the model.  
For the reduced dataset, our maximum log-likelihood was –9430.911 with parameter estimates 
of p(Lt) = 0.0649 and p(L|DC)= 0.236. Although these estimates were nearly identical to those 
of McManus’ Model B, the likelihood-ratio test yielded χ2165=197.653, p=0.0421, which just 
falls below the conventional threshold for a good fit. 
We then revisited the process of identifying outliers using McManus’ method of evaluating 
goodness-of-fit with parameters fixed at p(Lt)=0.0775 and p(L|DC)= 0.25. For the triplet data, 
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we found χ212 =55.037, p=1.78×10-7, again indicating poor fit. Dataset-level analysis 
confirmed the four outliers identified by McManus (Chaurasia & Goswami, Ramaley, McGee 
& Cozad, and Merrell). After excluding these, the triplet data fit the model (χ28=11.02, p = 
0.202). 
The families-with-multiple-offspring data showed an overall good fit (χ2133=153.906, 
p=0.104), although the ICM2 maternal dataset did not (χ228=47.579, p=0.012). The twin 
datasets were also consistent overall (χ226=37.067, p=0.074), with MZ twins fitting well 
(χ213=12.552, p=0.483), but DZ twins showed a lack of fit (χ213=24.515, p=0.0267). This 
misfit was mainly due to the Loehlin & Nichols (1976) dataset, which was significant for both 
MZ (χ21=4.402, p=0.036) and DZ twins (χ21=5.917, p=0.015), as well as in the combined 
analysis (χ21=10.319, p=0.005). Removing this dataset greatly improved the fit, resulting in 
χ224=26.748, p=0.316 for the full table, with both MZ (χ212=8.15, p=0.773) and DZ 
(χ212=18.598, p=0.099) twins fitting adequately. 
Finally, when we repeated the MLE on the dataset excluding all identified outliers, we obtained 
a maximum log-likelihood of –8910.999 with parameter estimates of p(Lt) = 0.0675 and 
p(L|DC)= 0.25 (Model D). This likelihood was only 1.606 units higher than that from the full 
dataset (Model A), indicating that removing outliers did not significantly change the parameter 
estimates. Additionally, the difference between Model D and McManus’ Model C was less 
than one log-likelihood unit, which suggests that the two models are nearly equivalent. A 
summary of the model comparisons is provided in Table 5 and shown in Figure 1. 
While the likelihood ratio tests evaluate overall fit, they do not address how well the parameters 
are estimated. To quantify parameter precision and identifiability, we used Hessian-based 
diagnostics. Across models A, B, and D, the standard errors for p(Lt) were large (0.33–0.37), 
whereas those for p(L|DC) were much smaller (0.032–0.035). Parameter correlations were 
small (0.088–0.097), but the Fisher Information matrices were highly ill-conditioned, with 
condition numbers around 100. These results indicate that while estimates of the heterozygote 
parameter are stable, the model provides little information about the true incidence of left-
handedness, consistent with the ridge-like likelihood surfaces observed in the contour plots 
(Figure 1). 

Analysis of the quality of the reproduction 

A central objective of this study was to assess whether McManus’ (1985) analysis could be 
exactly reproduced from the information in the manuscript. While our reanalysis mostly 
matched his conclusions, we found several differences between his reported values and those 
from a strict reproduction. 
Regarding the estimated parameters, our results closely match those reported by McManus. 
Minor differences seem to result from factors such as typographical errors in the reported left-
handedness rates (as noted earlier by Annett, 1996), variations in rounding precision during 
intermediate calculations, and differences in the computational tools used for optimization. 
Since our estimates of the key parameters are, for all practical purposes, identical to those of 
McManus, we consider this aspect of the reproduction successful. 
More significant differences appeared in the results of the likelihood-ratio tests, which 
McManus used to evaluate model fit. To resolve these discrepancies, we compared the test 
statistics for each dataset individually. For 27 of the 29 datasets, our results closely matched 
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his reported values, and the small differences could be explained by the issues mentioned 
earlier. However, for the remaining two datasets, Merrell and ICM2 maternal, we identified 
clear inconsistencies. Using McManus’ own reported fitted values, we determined that the 
correct test statistic for the Merrell dataset should have been χ21=4.347, and for the ICM2 
maternal dataset, χ228=47.262. Both corrected values matched our calculations, showing that 
McManus had likely miscalculated these two cases. 
If these errors arose from mistakes in calculating the “perfect fit” values, then the corrected 
log-likelihoods McManus should have reported are –11,324.394 for Model A and –9,334.158 
for Model B. With these corrections, the discrepancies between his reported results and our 
reproduction are fully resolved. On this basis, we can also infer the test statistics that McManus 
would have obtained had the calculations been correct: for Model A, the statistic would have 
been 1.314 units smaller than our result, and for Model B, 2.523 units smaller, corresponding 
to a borderline model fit with p = 0.0544. 
In summary, our reanalysis confirms that McManus’ genetic model can be reliably reproduced. 
The differences in his published results are not due to flaws in the model but rather due to 
minor calculation errors in two datasets and inconsistencies in how “perfect fit” values were 
reported. Once these issues are corrected, our findings closely align with McManus’, 
reinforcing his analysis. 

Evaluation of the estimation method 

McManus did not evaluate the performance of his estimation method. To assess its reliability, 
we conducted multiple simulations where synthetic datasets were created using known 
parameter values. These simulations aimed to achieve two main goals: first, to see if the 
maximum likelihood estimation could accurately recover the true parameters; and second, to 
evaluate how sensitive the estimation method is to sampling variability and dataset size. 

Estimation accuracy 
We began by assessing the accuracy of the parameters reported by McManus, namely p(Lt) = 
0.0775 and p(L|DC)= 0.25. To do this, we simulated 5,000 synthetic datasets with a criterion 
shift and estimated the model parameters for each dataset. A differential evolution algorithm 
with a population of 50 was used to identify the maximum likelihood estimator. The 
distribution of the 5,000 estimated parameter sets shows that both parameters are accurately 
estimated when the data are generated from the model (Figures 2a and 2b). 
To evaluate generalizability, we simulated an additional 5,000 datasets with a criterion shift, 
this time sampling p(L|DC) uniformly from 0 to 0.5. The parameters were then re-estimated 
for each dataset. The mean squared error between the true and estimated values was 0.0008 for 
p(Lt) and 0.0089 for p(L|DC), confirming that the method reliably estimates the true parameters 
across a wide range of conditions (Figures 2c and 2d). 
Confidence interval and coverage 
We next examined the accuracy of the confidence intervals produced by the estimation 
procedure. A confidence interval (CI) is a range of values for a parameter, calculated from the 
data, that reflects the uncertainty around the estimated value. A confidence interval with level 
c% is constructed so that, if the same study were repeated many times, the interval would 
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contain the true parameter in about c% of those repetitions. The proportion of cases in which 
the true parameter is contained within the CI is called coverage (Schall, 2012). 
Using 5,000 synthetic datasets with a criterion shift and parameters sampled uniformly as 
described above, we applied a non-parametric bootstrap with 200 resamples for each dataset. 
From each resample, we obtained parameter estimates, which were then used to construct 
confidence intervals at multiple confidence levels. We then measured how often the true 
parameter fell within these intervals across all datasets. The results (Figures 2e and 2f) show 
that the coverage for both p(L|DC) and p(Lt) was slightly higher than expected but still close 
to the target levels. 
Taken together, these results demonstrate that the estimation method is both accurate and 
robust. The MLE reliably recovers the true parameters across diverse conditions, and the 
bootstrap procedure produces well-calibrated confidence intervals, giving confidence in both 
the precision and reliability of the model parameter estimates. 

Evaluating the Dextral-Chance Model in an Indonesian Population 

To complement our reproduction of McManus’ original analyses, we examined a dataset 
collected on Flores and Adonara, Indonesia (Nurhayu et al., 2020). This provided an 
opportunity to evaluate the Dextral–Chance (DC) model in a non-Western population and to 
assess whether different representations of family structure influence parameter estimation. 
Specifically, we compared two representations: the triplet representation (treating each parent–
child trio as a data point) and the multi-offspring representation (retaining all children within a 
family). 

Across both representations, likelihood profiles and bootstrap distributions indicated stable 
estimates for p(L|DC), while Hessian-based diagnostics proved unreliable. The observed Fisher 
Information matrices were nearly singular, with condition numbers on the order of 10¹⁰ and 
one eigenvalue approaching zero. This produced implausibly large standard errors on the 
parameter estimates and near-perfect parameter collinearity, suggesting practical non-
identifiability. We therefore emphasize bootstrap and profile-likelihood results and treat 
Hessian-based SEs as uninformative. This pattern matches the elongated ridge-like likelihood 
surfaces observed in the likelihood surface plots.  

For the triplet analysis, the maximum log-likelihood was -1456.194 (Figure 3a), compared to 
-1455.259 for a perfect fit, showing that the model fits the data well (χ²₂ = 1.869, p = 0.393). 
The parameter estimates were p(L|DC)=0.324 with a 95% confidence interval of 0.281–0.444, 
and p(Lt)=0.0659 with a 95% confidence interval of 0.0468–0.1035 (Figures 3b and 3c). 
Notably, the heterozygote estimate is significantly higher than McManus’ canonical value of 
0.25, indicating that the DC parameter deviates from the original model. 

In the analysis of the multi-offspring dataset representation, the maximum log-likelihood was 
-992.568 (Figure 3d), compared to -930.494 for a perfect fit. Here, the estimates were 
p(L|DC)=0.312 with a 95% confidence interval of 0.144–0.448 and p(Lt)=0.0551 with a 95% 
confidence interval of 0.0409–0.0819 (Figures 3e and 3f). The heterozygote estimate is close 
to that from the triplet analysis (p(L|DC)=0.324), and both are somewhat above McManus’ 
canonical value of p(L|DC)=0.25. The key difference is in the confidence intervals: in the 
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multi-offspring analysis, the canonical value falls within the CI, while in the triplet analysis, it 
falls outside. Both methods suggest a slightly lower true incidence of left-handedness (p(Lt)) 
than McManus’ 0.0775, indicating population-level variation. 

Together, these results indicate broad agreement between the triplet and multi-offspring 
approaches. The triplet analysis excludes McManus’ canonical heterozygote probability, while 
the multi-offspring analysis includes it, but the discrepancy likely reflects statistical precision 
rather than a substantive biological difference. The key conclusion is that both 
parameterizations point to a somewhat increased p(L|DC) and a slightly reduced p(Lt) relative 
to McManus’ estimates, with elongated likelihood ridges underscoring the model’s partial non-
identifiability. 
 
Discussion 
This study aimed to reproduce and modernize McManus’ (1985) genetic model of handedness. 
Using the same datasets and modern computational techniques, we successfully reproduced the 
key findings: the model proposes a single locus with two alleles, and the parameter estimates 
we obtained closely matched those originally reported. This strong agreement, despite 
differences in methodology and computational tools, highlights the robustness of McManus’ 
model. 
At the same time, our analysis found several discrepancies between McManus’ published 
results and those from strict reproduction. These differences are due to typographical errors in 
the handedness rates (as noted by Annett, 1996), variations in rounding and calculation 
precision, and in two cases (Merrell and ICM2 maternal), rounding practices, and miscalculated 
test statistics in a few cases. After correcting these issues, our results aligned with the original 
ones. This highlights both the robustness of the model and the importance of transparent, code-
based reporting to avoid ambiguity in future work. 
Simulations confirmed that the estimation framework is well-calibrated: maximum-likelihood 
reliably recovers true parameters, and bootstrap intervals achieve expected coverage. In 
practice, this means that parameter estimates are statistically sound even when studies differ in 
handedness definitions, strengthening confidence in the model as an analytic tool for family 
and twin data. 
We also expanded the framework to include recent data from Flores and Adonara, Indonesia 
(Nurhayu et al., 2020), testing the model on non-Western populations where it was originally 
developed and comparing two methods of representing family data. Both the triplet and multi-
offspring approaches produced consistent estimates of p(L |DC) (0.31–0.32). The estimate of 
p(Lt) was slightly lower than 0.0775. The triplet analysis excluded p(L|DC)=0.25 from its 
interval estimates, while the multi-offspring analysis included it. This difference arises from 
how family structure is modeled: triplets treat all offspring equally, whereas multi-offspring 
representation give more weight to larger families. Although both methods face some non-
identifiability, the multi-offspring approach offers slightly more stable estimates by utilizing 
family size more comprehensively. These results show that methodological choices impact the 
level of uncertainty but do not change the main conclusion: the heterozygote parameter remains 
relatively stable, whereas the true prevalence is still poorly determined. 
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Several limitations of the model are evident. Statistical limitations: log-likelihood surfaces 
show elongated ridges, and Fisher Information matrices are nearly singular, resulting in p(Lt) 
being weakly identified and uninformative standard errors from Hessian approximations. Data 
limitations: model adequacy depends on excluding datasets that have poor model fit, and most 
empirical support comes from historical studies that used inconsistent or narrow criteria to 
classify handedness. Model limitations: the original DC model is highly simplified, assuming 
a single gene with no environmental or cultural influences. While useful as an initial 
formalization, later research has shown contributions from polygenic, epigenetic, and 
developmental factors (Paracchini, 2021; Schmitz et al., 2017). McManus himself has since 
developed multilocus versions informed by genome-wide association studies (McManus et al., 
2013).  
In conclusion, our reproduction confirms both the strengths and the weaknesses of the 1985 
DC model. The framework is reproducible, its estimation procedure is statistically sound, and 
it remains historically influential. Yet its apparent success depends on the selective treatment 
of datasets, its parameters are only weakly constrained, and its genetic assumptions are now 
outdated. By fixing reporting errors, refining estimation methods, expanding the correction 
process, and applying the model to new data, we offer a transparent and modern platform for 
evaluating genetic and cultural theories of handedness. 
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Figures 

 
Figure 1. Maximum-likelihood estimates slightly decrease when datasets are omitted. The 
contour map shows the log-likelihood of four models, with four markers (A, B, C, D) 
representing the model parameters for each model. Contours indicate the difference in log-
likelihood from the maximum value. The y-axis is inverted, consistent with McManus (1985). 
(a) Log-likelihood computed using all datasets. (b) Log-likelihood computed without 
McManus’ omitted datasets. (c) Log-likelihood computed without our omitted datasets. 
Omitting datasets (markers B and C; log-likelihood surface in panel b) reduced p(Lt) by 13% 
and p(L|DC) by 12%. 
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Figure 2. Performance of the estimation method on simulated data. (a, b) The distribution 
of 𝑝̂(𝐿0) and 𝑝̂(𝐿|𝐷𝐶) estimated from synthetic data simulated using parameter values 
estimated by McManus (solid lines; 𝑝̂(𝐿0)=0.0775 in panel a and 𝑝̂(𝐿|𝐷𝐶)=0.25 in panel b). 
(c, d) Scatter plots of parameter estimates (y-axis) vs. the true parameter (x-axis). (e, f) 
Coverage for various confidence levels: the rate at which the true parameter value falls within 
the confidence interval at a given confidence level. 
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Figure 3. Comparison of triplet and multi-offspring analyses of the Flores–Adonara 
dataset. Log-likelihood surfaces show ridges, and the bootstrap distributions are wide, 
suggesting practical non-identifiability, possibly because the dataset is small (Tables 6 and 7). 
(a, d) Log-likelihood ratio contour plots under the triplet (a) and multi-offspring (d) 
representations. (b, e) Bootstrap distributions of the heterozygote parameter p(L|DC) for the 
triplet (b) and multi-offspring (e) representations, with red dashed lines indicating the 
maximum-likelihood estimates. (c, f) Bootstrap distributions of the true incidence parameter 
p(Lt) for the triplet (c) and multi-offspring (f) representations.  
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Tables 

Table 1. The expected probabilities of presenting right- and left-handedness by genotype. 
𝐺𝑒𝑛𝑜𝑡𝑦𝑝𝑒 𝑝(𝐿|𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒) 𝑝(𝑅|𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒) 

𝐷𝐷 0 1 
𝐷𝐶 𝑝(𝐿|𝐷𝐶) 1 − 𝑝(𝐿|𝐷𝐶) 
𝐶𝐶 0.5 0.5 
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Table 2. Data from Table 2 in McManus (1985). Results of 12 studies on the incidence of right- 
and left-handed offspring from R×R, R×L, and L×L parents. 

 

  

Study p (Lm) 
progeny 

p (Lm) 
parental 

R×R R×L L×L χ2 
(df=1) R L R L R L 

Ramaley (1913) 0.1556 0.0803 
841 115 113 54 1 7 

18.733*** 
822.8 133.2 126.8 40.2 5.3 2.7 

Chamberlain 
(1928) 

0.0477 0.0356 
6917 308 411 53 18 7 

1.666 
6915.0 310.0 412.8 51.2 20.6 4.4 

Rife (1940) 0.0877 0.0524 
1842 151 140 34 5 6 

3.041 
1841.3 151.8 141.6 32.4 7.7 3.3 

Merrell (1957) 0.2363 0.1553 
140 34 33 20 8 2 

4.348* 
135.4 38.6 38.8 14.3 6.8 3.2 

Annett (1973) 0.1063 0.0405 6206 669 471 125 5 1 0.772 
6203.4 671.6 474.2 121.8 4.1 1.9 

Ferronato et al. 
(1974) 

0.0976 0.0987 
154 11 31 9 

0 0 1.286 
151.8 13.2 33.3 6.7 

Mascie-Taylor 
(unpub) 0.0831 0.0930	# 

232 17 41 7 3 1 
0.109 

232.7 16.3 40.3 7.7 3.0 1.0 
Chaurasia & 

Goswami (unpub) 0.1407 0.1040	# 
1060 144 122 46 3 4 

7.498** 
1054.5 149.5 133.8 34.2 5.0 2.0 

Annett (1978) 0.0850 0.0547	# 
1656 130 170 40 4 0 

2.855 
1655.8 130.2 171.4 38.6 2.8 1.2 

Carter-Saltzmann 
(1980) 

0.1300 0.0756 
303 37 45 15 

0 0 0.357 
301.3 38.7 46.7 13.3 

Coren & Porac 
(1980) 

0.1842 0.0839 
315 68 57 16 

0 0 0.941 
318.5 64.5 53.9 19.1 

McGee & Cozad 
(1980) 

0.2415 0.1818 
848 211 325 150 30 22 

13.431*** 
818.7 240.3 348.2 126.8 36.0 16.0 

The observed parental rates p (Lm) were calculated directly from the original publications, except where marked with #, which indicates 
values cited from McManus (1985). 
The observed progeny rates were calculated from the data as reported by McManus. 
The numbers in italics are expected values under the DC model with p(Lt)=0.0775 and p(L|DC)=0.25 with criterion shift correction. 
*p<0.05, **p<0.01, ***p<0.001 
 



   
 

   
 

Table 3. Mating data from Table 3 in McManus (1985). Number of families with specific incidences of left-handed offspring, categorized by family size and 
parental handedness.

 
p (Lm) 

progeny 
p (Lm) 

parental 
Family 

size 
𝑅 × 𝑅 𝑅 × 𝐿 𝐿 × 𝐿 χ2 

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

ICM1 0.1518 0.1005 

1 58 9     14 5     0 0     

40.161 
df = 44 

57.92 9.08     14.88 4.12           

2 
211 57 3    35 16 5    0 0 1    

204.02 60.52 6.47    34.73 18.27 3.00    0.50 0.40 0.10    

3 123 63 6 0   22 24 6 1   2 1 1 0   
126.69 53.56 10.75 1.00   26.29 19.75 6.18 0.78   1.45 1.66 0.76 0.13   

4 70 39 6 1 0  8 8 7 1 0  0 0 1 0 0  
67.47 36.29 10.29 1.80 0.15  9.61 9.18 4.12 0.99 0.11  0.27 0.38 0.25 0.08 0.01  

5 9 12 6 2 0 0 1 0 0 1 0 0 1 0 0 0 0 0 
14.94 9.62 3.44 0.85 0.14 0.01 0.65 0.74 0.43 0.15 0.03 0.00 0.20 0.34 0.28 0.14 0.04 0 

ICM2 
(propositi) 

0.134 0.101 

1 134 15     17 9     1 0     

37.665 
df = 27 

131.52 17.48     20.81 5.19     0.72 0.28     

2 
91 22 2    19 3 3    

0 0 0 
   

90.26 22.50 2.24    16.18 7.64 1.17       

3 22 7 0 2   6 11 3 0   
0 0 0 0 

  
21.77 7.67 1.43 0.13   10.58 7.10 2.07 0.25     

4 10 5 0 0 0  3 1 0 0 0  1 0 0 0 0  
9.48 4.21 1.10 0.19 0.02  1.74 1.48 0.62 0.14 0.01  0.29 0.39 0.24 0.08 0.01  

5 4 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

2.29 1.21 0.40 0.09 0.01 0 

ICM2 
(maternal) 

0.0893 0.0609 

1 
74 4     6 2     

0 0 
    

47.579* 
df = 28 

72.09 5.91     6.51 1.49         

2 107 18 3    11 3 0    2 0 0    
110.20 16.21 1.60    9.33 4.10 0.56    0.99 0.82 0.19    

3 81 16 4 0   16 1 0 2   
0 0 0 0 

  
81.56 16.18 3.00 0.26   10.46 6.63 1.72 0.19     

4 31 10 1 0 0  0 0 0 2 0  
0 0 0 0 0 

 
32.01 7.64 2.00 0.33 0.03  0.91 0.75 0.28 0.06 0.01   

5 19 7 1 1 0 0 3 2 0 0 0 0 
0 0 0 0 0 0 

20.24 5.46 1.80 0.42 0.06 0.00 1.91 1.89 0.89 0.26 0.05 0.00 

ICM2 
(paternal) 

0.091 0.047 

1 
86 4     8 1     

0 0 
    

28.501 
df = 34 

82.77 7.23     7.29 1.71         

2 100 27 0    7 5 0    0 1 0    
108.31 16.97 1.71    7.95 3.55 0.50    0.50 0.41 0.09    

3 65 11 2 0   4 3 2 0   0 1 0 0   
62.14 13.15 2.49 0.22   4.91 3.16 0.84 0.09   0.35 0.43 0.19 0.03   

4 39 11 2 0 0  2 1 0 0 0  
0 0 0 0 0  

38.95 9.92 2.65 0.45 0.04  1.35 1.12 0.42 0.09 0.01  

5 13 9 1 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 

16.29 4.70 1.58 0.38 0.06 0.00 0.38 0.38 0.18 0.05 0.01 0 
The observed rates p(Lm) were calculated from the data as reported by McManus. 
The numbers in italics are expected values under the DC model with p(Lt)=0.0775 and p(L|DC)=0.25 with criterion shift correction. 
∗ 𝑝 < 0.05 
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Table 4. Observed counts of RR, RL, and LL pairs of MZ and DZ twins from 13 different studies, as 
shown in Table 5 of McManus (1985). 

study 
MZ twins DZ twins 

p (Lm) 𝑅 × 𝑅 𝑅 × 𝐿 𝐿
× 𝐿 

χ2 
df=1 p (Lm) 𝑅 × 𝑅 𝑅

× 𝐿 
𝐿
× 𝐿 

χ2 
df=1 

Wilson & 
Jones (1932) 0.1071 

56 13 1 
0.769 0.1138 

97 24 2 
0.166 

56.88 11.24 1.88 97.52 22.95 2.52 

Stocks (1933) 0.0952 
35 6 1 

0.003 0.1064 
76 16 2 

0.037 
35.04 5.92 1.04 75.79 16.43 1.79 

Newman et 
al. (1937) 0.19 

34 13 3 
0.223 0.1100 

39 11 0 
2.399 

33.44 14.13 2.44 39.99 9.03 0.99 
Bouterwek 

(1938) 0.1885 
80 38 4 

1.122 0.1714 
23 12 0 

3.203 
81.88 34.24 5.88 24.26 9.48 1.26 

Rife (1940) 0.1188 
176 41 6 

0.061 0.1541 
104 39 3 

0.804 
176.48 40.04 6.48 105.47 36.06 4.47 

Thyss (1946) 0.1845 
72 24 7 

1.634 0.1628 
60 24 2 

0.43 
69.82 28.35 4.82 60.86 22.28 2.86 

Rife (1950) 0.1283 
261 76 6 

3.749 0.1161 
164 45 2 

2.281 
265.66 66.68 10.66 166.43 40.14 4.43 

Dechaume 
(1957) 0.2424 

19 12 2 
0.079 0.1970 

21 11 1 
0.281 

19.30 11.39 2.30 21.49 10.03 1.49 

Zazzo (1960) 0.1332 
199 51 9 

0.087 0.1090 
264 69 2 

5.72** 
198.34 52.32 8.34 268.54 59.93 6.54 

Carter-
Saltzmann et 

al. (1976) 
0.1711 

132 46 9 
0.235 0.1932 

115 54 7 
0.098 

130.95 48.10 7.95 115.67 52.66 7.67 

Loehlin & 
Nichols 
(1976) 

0.1411 
380 123 11 

4.402* 0.1111 
261 70 2 

5.917** 
386.52 109.96 17.52 265.64 60.72 6.64 

Springer & 
Searleman 

(1978) 
0.1667 

53 19 3 
0.004 0.1596 

35 9 3 
1.997 

53.09 18.83 3.09 33.52 11.97 1.52 

NCDS 
(unpublished) 0.1512 

32 9 2 
0.184 0.1477 

66 18 4 
1.182 

31.58 9.84 1.58 64.54 20.93 2.54 
The observed rates p(Lm) were calculated from the data as reported by McManus. 
The numbers in italics are expected values under the DC model with p(Lt)=0.0775 and p(L|DC)=0.25 with criterion shift correction. 
∗ 𝑝 < 0.05,∗∗ 𝑝 < 0.01 
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Table 5. Comparison of the maximum log-likelihood of the present model and the model of McManus 

Data 
Degrees 

of 
freedom 

Maximum log-
likelihood 

𝜒! 𝑝(𝐿") 𝑝(𝐿|𝐷𝐶) 

Log-likelihood 
difference from the 

parameters 
of McManus 1985 

Fitted  
total data 

Perfect fit (McManus 
1985) 

171 −11330.736 - - - - 

Model A (McManus 
1985) 2 −11446.441 231.41 0.0767 0.2674 - 

Perfect fit 
(this study) 171 −11322.317 - - - - 

Model A 
(this study) 2 −11445.021 245.408 0.0774 0.2681 -1.42 

Fitted 
reduced data 
(McManus) 

Perfect fit 
(McManus 1985) 

167 −9345.466 - - - - 

Model B (McManus 
1985) 2 −9431.723 172.514 0.0642 0.2328 - 

Perfect fit 
(this study) 167 −9332.085 - - - - 

Model B 
(this study) 2 −9430.911 197.653 0.0649 0.2359 -0.812 

Fitted 
reduced data 

(ours) 

Perfect fit 
(this study) 165 −8816.132 - - - - 

Model D 
(this study) 2 −8910.94 189.732 0.0675 0.25 - 
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Table 6. Representation of the Flores–Adonara dataset (Nurhayu et al., 2020) as triplet data 

 
 
  

 p (Lm) 
progeny 

p (Lm) 
parental 

R×R R×L L×L 
R L R L R L 

Flores–Adonara 1 0.0823 0.0851 2707 184 438 94 19 6 
Flores–Adonara 2 0.0875 0.0558 1439 106 178 48 10 2 
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Table 7. Representation of the Flores–Adonara dataset (Nurhayu et al., 2020) as multi-offspring data. 

 

  

 p (Lm) 
progeny 

p (Lm) 
parental 

Family 
size 

R×R R×L L×L 

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Flores–
Adonara 1 

0.0823 0.0851 

1 119 19      21 7      0 2      

2 170 27 2     26 12 1     3 0 0     

3 164 29 3 0    15 15 1 1    0 1 0 0    

4 149 33 3 1 0   9 10 4 0 2   1 0 0 0 0   

5 94 29 5 1 0 0  15 10 3 0 0 0  0 1 1 0 0 0  

6 51 9 3 0 0 0 0 8 4 2 1 0 0 0 0 0 0 0 0 0 0 

Flores–
Adonara 2 0.0875 0.0558 

1 152 10      2 2      0 0      

2 20 7 0     3 0 0     0 0 0     

3 51 7 5 0    3 6 1 1    0 0 0 0    

4 47 16 6 0 0   2 10 2 0 0   0 0 0 0 0   

5 68 18 4 0 0 0  6 7 4 0 0 0  0 0 0 0 0 0  

6 51 18 0 0 0 0 0 3 3 0 1 0 0 0 0 2 0 0 0 0 0 
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Appendix 1: Correction matrices 

The correction procedure introduced by McManus (1985) was designed to adjust theoretical 
predictions to account for misclassification of handedness in empirical datasets. In his original 
work, the method was applied only to triplet data, where the handedness of two parents and 
one child was recorded. Here, we generalize the approach to families with multiple children 
and to twin datasets. 
The correction operates by applying transition matrices that map between true and observed 
handedness states. Let P denote the offspring transition matrix, Q the parental transition matrix, 
and T the transmission matrix that links parental phenotypes to offspring outcomes. The 
corrected prediction is given by 

𝑀 = 𝑃 ⋅ 𝑇 ⋅ 𝑄 
Correcting triplet datasets 
In the triplet case, McManus assumed that misclassification occurred in only one direction: 
either some left-handers were recorded as right-handed, or some right-handers were recorded 
as left-handed, but not both at the same time. The offspring transition matrix P therefore 
specifies the probability that an observed phenotype reflects the true underlying phenotype, 
given the discrepancy between reported (p) and true (t) incidence rates. 

𝑃 =

⎩
⎪
⎨

⎪
⎧ @

1 0
1 −

𝑝
𝑡

𝑝
𝑡
A , 𝑝 ≤ 𝑡

D1 −
𝑝 − 𝑡
1 − 𝑡

𝑝 − 𝑡
1 − 𝑡

0 1
E , 𝑝 > 𝑡

 

Similarly, the parental transition matrix Q is constructed from the difference between observed 
(q) and true parental (t) incidences. 

𝑄 =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

⎝

⎜⎜
⎛
J
1 − 𝑡
1 − 𝑞L

+

2
1 − 𝑡
1 − 𝑞 ⋅

𝑡 − 𝑞
1 − 𝑞 J

𝑡 − 𝑞
1 − 𝑞L

+

0
1 − 𝑡
1 − 𝑞

𝑡 − 𝑞
1 − 𝑞

0 0 1 ⎠

⎟⎟
⎞
	, 𝑞 ≤ 𝑡

⎝

⎜
⎛

1 0 0
1 −

𝑡
𝑞

𝑡
𝑞

0

J1 −
𝑡
𝑞L

+
2
𝑡𝑞 − 𝑡+

𝑞+ 	 J
𝑡
𝑞L

+

⎠

⎟
⎞
, 𝑞 > 𝑡

 

The transmission matrix T encodes the expected probabilities of offspring phenotypes under 
Mendelian inheritance, based on parental phenotypes and the genetic model. Multiplying these 
three matrices produces corrected offspring probabilities for each parental mating type. 
Correcting families with multiple children 
McManus did not provide an explicit correction method for families with more than one child, 
but he noted that the triplet approach could be extended. Following this suggestion, we 
generalized the matrices under the assumption that the same misclassification process applies 
independently to each child. In this case, the offspring transition matrix P expands to represent 
the joint probability of observing a set of measured handedness outcomes {H1m, H2m, …, HNm} 
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given their true states {H1t, H2t, …, HNt}. Misclassification is again assumed to occur in only 
one direction. 

𝑝(#measured	left	handers = k|#	true	left	handers = n)

=

⎩
⎪
⎨

⎪
⎧ 𝑝(𝑅1|𝑅0)2%3 	`

𝑛
𝑘b
	𝑝(𝐿1|𝐿0)4𝑝(𝑅1|𝐿0)3%4 	𝑘 < 𝑛

J
𝑁 − 𝑛
𝑁 − 𝑘L

𝑝(𝑅1|𝑅0)2%3𝑝(𝐿1|𝑅0)4%3𝑝(𝐿1|𝐿0)3	𝑘 > 𝑛

𝑝(𝑅1|𝑅0)2%4𝑝(𝐿1|𝐿0)4 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The transmission matrix T for multiple children describes the distribution of true left-handed 
offspring counts within a family of size N, conditional on the parental phenotypes. Each column 
of T corresponds to a specific number of true left-handed children, and probabilities are derived 
directly from the binomial distributions described in Appendix 2. The corrected probabilities 
of observed outcomes are then obtained by multiplying P and T, together with the appropriate 
parental correction matrix Q. 
Correcting for twins 
Twin datasets differ from family data in that parental phenotypes are not reported. As a result, 
only the offspring transition matrix P and the transmission matrix T are required. The transition 
matrix P for twins is equivalent to that used for families of size two, reflecting possible 
misclassification of either twin’s handedness. 

𝑃 = j
𝑝(𝑅1 × 𝑅1|𝑅0 × 𝑅0) 𝑝(𝑅1 × 𝐿1|𝑅0 × 𝑅0) 𝑝(𝐿1 × 𝐿1|𝑅0 × 𝑅0)
𝑝(𝑅1 × 𝑅1|𝑅0 × 𝐿0) 𝑝(𝑅1 × 𝐿1|𝑅0 × 𝐿0) 𝑝(𝐿1 × 𝐿1|𝑅0 × 𝐿0)
𝑝(𝑅1 × 𝑅1|𝐿0 × 𝐿0) 𝑝(𝑅1 × 𝐿1|𝐿0 × 𝐿0) 𝑝(𝐿1 × 𝐿1|𝐿0 × 𝐿0)

l , 𝑇

= (𝑝(𝑅0 × 𝑅0) 𝑝(𝐿0 × 𝑅0) 𝑝(𝐿0 × 𝐿0)) 
The transmission matrix T must be built separately for monozygotic (MZ) and dizygotic (DZ) 
twins. For MZ pairs, the two offspring share the same genotype and thus have correlated 
phenotypic probabilities, while for DZ pairs, the two offspring are considered siblings with 
independently sampled genotypes. The detailed derivation of these probabilities is shown in 
Appendix 2. Combining P and T provides corrected predictions for the observed distribution 
of twin handedness. 

𝑀 = 𝑇 ∙ 𝑃 = 	 (𝑝(𝑅1 × 𝑅1) 𝑝(𝐿1 × 𝑅1) 𝑝(𝐿1 × 𝐿1)) 
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Appendix 2: Probabilities 

This appendix derives the genotype-to-phenotype probabilities used in our likelihood 
functions. These probabilities describe how parental genotypes give rise to offspring 
handedness, and how these extend to families with multiple offspring and to twin datasets. All 
derivations assume Mendelian inheritance under McManus’ (1985) single-locus, two-allele 
model. 
Probabilities of handedness in progeny: 
 Under Mendelian inheritance, the probability of each genotype in the offspring depends on the 
parental genotypes G1×G2. These genotype probabilities are then mapped to phenotypes 
according to McManus’ assumptions. Therefore, the probability that two parents with 
genotypes G1 and G2 produce a left-handed child is: 

𝑝(𝐻|𝐺5 × 𝐺+) = o 𝑝(𝐻|𝐺) ∙ 𝑝(𝐺|𝐺5 × 𝐺+)
6∈{99,9;,;;}

 

Subsequently, by applying the binomial distribution, we can calculate the probabilities of n 
offspring within a family of N exhibiting left-handedness. 

𝑝2(𝑛|𝐺5 × 𝐺+) = J
𝑁
𝑛L 𝑝

(𝐿|𝐺5 × 𝐺+)3𝑝(𝑅|𝐺5 × 𝐺+)2%3 

Thus, based on the phenotypes of the two parents, the probability that they will have n out of 
N offspring exhibiting left-handedness is calculated by: 

𝑝(𝑛|𝐻5 × 𝐻+) = o o 𝑝(𝐺5|𝐻5)𝑝(𝐺+|𝐻+)𝑝2(𝑛|𝐺5 × 𝐺+)
6!∈{99,9;,;;}65∈{99,9;,;;}

 

Probabilities of handedness in twins 
Twin datasets differ in that parental phenotypes are not observed, and outcomes must be 
modeled separately for dizygotic (DZ) and monozygotic (MZ) twins. For DZ twins, genotypes 
are sampled independently given the parental genotypes. The probability of a twin pair with 
handedness outcomes H1, H2 is therefore: 

𝑝p𝐻5, 𝐻+q𝐺!# × 𝐺!!r = o 𝑝p𝐺5q𝐺!# × 𝐺!!r𝑝p𝐺+q𝐺!# × 𝐺!!r𝑝(𝐻5|𝐺5)𝑝(𝐻+|𝐺+)
6#,6!∈{99,9;,;;}

 

For MZ twins, the situation differs because the pair always shares the same genotype. In this 
case, the probability of a handedness outcome H1, H2 is calculated by summing over the 
possible shared genotypes. 

𝑝p𝐻5, 𝐻+q𝐺!# × 𝐺!!r = o 𝑝p𝐺q𝐺!# × 𝐺!!r𝑝(𝐻5|𝐺)𝑝(𝐻+|𝐺)
6∈{99,9;,;;}

 

Therefore, the probability of having twins with phenotypes H1, H2 given the parental 
phenotypes Hp1×Hp2 is: 

𝑝p𝐻5, 𝐻+|𝐻!# × 𝐻!!r = o 𝑝p𝐺!#q𝐻!#r𝑝p𝐺!!q𝐻!!r𝑝p𝐻5, 𝐻+q𝐺!# × 𝐺!!r
6$# ,6$!∈{99,9;,;;}

 

Thus, the probability of having a twin couple with phenotypes H1, H2 is: 

𝑝(𝐻5, 𝐻+) = o 𝑝p𝐻5, 𝐻+q𝐻!# × 𝐻!!r
=$# ,=$!∈{	>,.}
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Appendix 3: Likelihood functions 

This appendix provides the explicit likelihood functions used to estimate the parameters p(Lt), 
which represents the true population rate of left-handedness, and p(L∣DC), the probability of 
left-handedness among heterozygotes. Each dataset type—triplets, families with multiple 
children, and twins—contributes its own likelihood, which are then multiplied to determine the 
total likelihood for model fitting. The probabilities in these functions are derived from the 
framework outlined in Appendix 2 and are further refined using the correction matrices 
described in Appendix 1. 
Triplet datasets 
For datasets reporting offspring and their two parents, the likelihood is based on the observed 
counts of left- and right-handed children in each mating category. If nH(H1× H2) denotes the 
number of offspring with phenotype H (right if H=R, left if H=L) from parents with phenotypes 
H1×H2, then the likelihood for a given dataset is 
 

𝐿0?@!AB0C = t t [𝑝(𝐻 ∣∣ 𝐻5 × 𝐻+ )]3%(=#×=!)

=∈{>,.}=#,=!∈{>,.}

 

where p(H ∣ H1×H2) is the probability of observing phenotype H given the parental phenotypes, 
as determined by the genetic model and correction matrices. 
Families with multiple offspring 
For datasets that record the distribution of the number of left-handed children within families, 
the likelihood reflects the multinomial structure of the data. Let ns(n|H1×H2) be the number of 
families of size s with n left-handed offspring from parents of type H1×H2. If ps(n ∣ H1×H2) is 
the probability of such an outcome under the model and correction matrices, then 

𝐿EF1@A@BC =	tt t [𝑝C( 𝑛 ∣∣ 𝐻5 × 𝐻+ )]3&(3|=#×=!)

=#,=!∈{>,.}

C

3H(C

 

This formulation considers all possible family sizes and outcomes, weighting them according 
to their observed frequencies. 
Twins 
For twin datasets, parental phenotypes are not recorded, and the likelihood is based on the 
observed distribution of twin pairs. Let n(H1, H2|Z) represent the number of twin pairs of 
zygosity type Z (MZ or DZ) with phenotypes H1 and H2. If p(H1, H2|Z) is the model probability 
of observing such a pair, then the likelihood is 

𝐿0I@3C = t t [𝑝(𝐻5, 𝐻+ ∣∣ 𝑍 )]3(=#,=!|	J)

=#,=!∈{>,.}J∈{KJ,9J}

 

Total likelihood 
The overall likelihood function for the entire dataset is obtained by multiplying the 
contributions of the three data types: 

𝐿0L0FA = 𝐿0?@!AB0C ⋅ 𝐿EF1@A@BC ⋅ 𝐿0I@3C 
This total likelihood was maximized using the procedures described in the Methods section, 
providing estimates of p(Lt) and p(L|DC). The same framework also served as the basis for 
likelihood-ratio tests comparing model fit to perfect-fit baselines. 


