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Abstract 19 

Domestication in fish involves rapid and complex changes in life-history, physiology and 20 

behaviour under human-controlled conditions. In gilthead seabream (Sparus aurata), a species 21 

with a relatively recent domestication history, we used genome-wide population comparisons 22 

to show that domestication targets a core set of highly conserved regulators of environmental 23 

sensing mechanisms. Across farmed and wild populations spanning the Mediterranean, our 24 

analyses reveal divergence at key genes involved in pathways that translate oxygen and 25 

chemical cues into immune, endocrine and reproductive outcomes. Standout candidates 26 

include ahrra within the ancient AHR–ARNT/HIF signalling system, kdm6al, a chromatin 27 

regulator coordinating developmental and stress responses, and pigm, a GPI-anchor 28 

biosynthesis gene shaping cell-surface composition and host defence. These functions are 29 

shared widely across animals, from invertebrates to vertebrates, suggesting that domestication 30 

often proceeds by tuning long-standing sensory circuitry to human-altered conditions. This 31 

convergence points to a measure of predictability in the genomic response to captivity, links 32 

molecular pathways to ecological traits such as stress tolerance and reproduction and offers 33 
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broad hypotheses for rapid adaptation in species during domestication. By identifying these 34 

conserved regulators through empirical data, our results connect microevolution under 35 

domestication with fundamental biology and provide tractable gene sets for testing how 36 

ancient pathways are repurposed during contemporary evolution. 37 

 38 

Keywords: artificial selection; genome-wide divergence; environmental sensing mechanisms; 39 

rapid adaptation; marine teleost   40 

 41 

Introduction 42 

Domestication provides a compelling case of evolution, wherein species are subjected to novel 43 

human-mediated selective pressures that drive coordinated changes in physiology, behavior, 44 

and life-history traits (Ahmad et al., 2020; Purugganan, 2019; Milla et al., 2021). Unlike 45 

terrestrial livestock, the domestication of fish is relatively recent (Teletchea 2015), offering a 46 

unique opportunity to study the early stages of adaptation under controlled conditions. In fish, 47 

these evolutionary changes can emerge within only a few generations, affecting growth, stress 48 

tolerance, reproductive timing, and immune competence (Howe et al. 2024; Milla et al. 2021; 49 

Nguyen 2016). As such, domestication acts as a natural experiment for examining how 50 

ecological pressures shape genomic architecture. 51 

 52 

Adaptive traits under domestication are often polygenic, with individual loci exerting small 53 

effects that cumulatively influence physiology and life-history strategies (Mohamed et al., 2019; 54 

Sinclair-Waters et al., 2020; Moulistanos et al., 2024). This complexity has underscored the 55 

value of molecular ecology approaches, particularly genome-wide scans, in identifying genes 56 

mediating adaptive responses (Jia and Zhao 2014; Liu et al., 2017; Uffelmann et al., 2021; Tsare, 57 

Klapa, and Moschonas 2024). In fish domestication, selective breeding frequently targets traits 58 

such as growth, stress resilience, immune competence, and reproduction, which together 59 

determine the performance and sustainability of farmed populations (Chavanne et al., 2016; 60 

Janssen et al., 2017; Abdel-Tawwab et al., 2019; Tillotson et al., 2018). Genomic tools, especially 61 

whole-genome scans using high-density SNPs, have become invaluable for detecting loci under 62 
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selection, uncovering mechanisms of local adaptation, and elucidating the molecular basis of 63 

key life-history traits (Sinclair-Waters et al., 2020; Yoshida et al., 2021; Moulistanos et al., 64 

2024). However, the genetic underpinnings of domestication remain poorly understood in 65 

many species, highlighting the importance of genome-wide studies to inform both sustainable 66 

aquaculture practices and our understanding of evolutionary and molecular processes. 67 

 68 

The gilthead seabream (Sparus aurata), a cornerstone species in Mediterranean aquaculture, is 69 

an excellent model for investigating early-stage domestication. Selective breeding began in the 70 

1990s, and farmed populations have since experienced reduced effective population sizes over 71 

the past five generations, accompanied by marked genetic differentiation from their wild 72 

counterparts (Teletchea, 2021; Saura et al., 2021; Gkagkavouzis et al., 2021; Penaloza et al., 73 

2021; Villanueva et al., 2022). To date, only a limited number of genes and QTLs linked to 74 

domestication have been identified, primarily associated with morphometric traits, stress 75 

response, immunity, and reproduction (Boulton et al., 2011; Loukovitis et al., 2011; Loukovitis 76 

et al., 2012; Žužul et al., 2022; Gkagkavouzis et al., 2021; Moulistanos et al., 2023; Moulistanos 77 

et al., 2025). However, a comprehensive genome-wide analysis of the resolution of individual 78 

genes is still lacking. Filling this gap is crucial to understanding the genetic architecture of 79 

domestication-related traits in gilthead seabream. 80 

 81 

To address this gap, we set out to characterize genome-wide signatures of domestication in 82 

gilthead seabream. We analyzed Illumina Pool-Seq data from 10 farmed and 10 wild 83 

populations distributed across the Mediterranean, originally generated by Peñaloza et al. 84 

(2021) for the development of SNP arrays in gilthead seabream and European seabass. 85 

Previously, we used this dataset to investigate two chromosomes containing the candidate 86 

genes six6 and vgll3, known to influence maturation in Atlantic salmon (Barson et al., 2015; 87 

Sinclair-Waters et al., 2020; Moulistanos et al., 2023). This analysis revealed regions of marked 88 

differentiation between farmed and wild populations, underscoring the dataset’s potential to 89 

uncover selection targets associated with domestication (Moulistanos et al., 2023). Here, we 90 

extend the investigation genome-wide to identify genes and genomic regions associated with 91 
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domestication-related traits, thereby providing novel insights into the molecular mechanisms of 92 

adaptation to human-controlled environments. 93 

 94 

Materials and Methods 95 

Studied populations 96 

We analyzed pooled whole-genome sequencing data from 10 farmed and 10 wild gilthead 97 

seabream populations (Table 1; Figure 1), sampled across six Mediterranean countries 98 

(Peñaloza et al., 2021). To ensure analytical robustness, we excluded seven populations from 99 

the original dataset, which initially comprised 12 farmed and 15 wild populations. This filtering 100 

was informed by previous population structure analyses (Peñaloza et al., 2021; Villanueva et al., 101 

2022). Three populations of the Atlantic Ocean origin were removed to maintain a 102 

Mediterranean focus (Peñaloza et al., 2021). Two wild populations were also removed: one due 103 

to a very low effective population size (Ne < 70) relative to other wild populations (Villanueva et 104 

al., 2022), while another was removed because of its unusually high FST, suggesting substantial 105 

genetic divergence (Peñaloza et al., 2021). Two farmed populations, one from Egypt and one 106 

from Israel, were also excluded: the Egyptian population exhibited admixture proportions 107 

similar to wild populations, while the Israeli population showed high FST compared to other 108 

farmed groups (Peñaloza et al., 2021). 109 

 110 

Read mapping 111 

Pool-Seq data for each population were obtained from the NCBI Sequence Read Archive under 112 

the accession ID PRJEB40423. To ensure data quality, the sequences were filtered using 113 

Trimmomatic (Bolger et al., 2014) with the following parameters in paired-end mode: 114 

ILLUMINACLIP: TruSeq3-PE.fa:2:30:10; LEADING:5; TRAILING:5; SLIDINGWINDOW:3:15; 115 

MINLEN:100. Subsequently, the filtered reads were mapped to the reference assembly 116 

(GCA_900880675.2) using the bwa mem algorithm (Li & Durbin, 2009). Finally, only properly 117 

paired reads were extracted with a mapping quality of at least 15 (corresponding to a maximum 118 

3% misalignment probability) using samtools (Li et al, 2009). 119 

 120 
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SNP genotyping 121 

To ensure accurate genotype frequency estimation, properly paired reads from each population 122 

in Table 1 were sorted and merged across technical replicates using samtools. Read counts for 123 

each genomic position with mapped reads were obtained with bam-readcount v.1.0 (Khanna et 124 

al., 2022). Genomic positions were then filtered using an AWK script, with a minimum read 125 

depth of 55 counts required. Allele frequencies below 1% were excluded to minimize potential 126 

sequencing errors and incorrect mappings, following common practice in population genomic 127 

analyses (Linck & Battey, 2019). Finally, biallelic SNPs and their corresponding genotypes were 128 

identified using an in-house Python function. The Python scripts employed for the simulations 129 

and SNP typing are available at the GitHub link provided in the Data Availability section. 130 

 131 

PCA and Genome scan analyses 132 

To assess and characterize differentiation between the studied farmed and wild populations, a 133 

Principal Component Analysis (PCA) was performed using the Python package 'sklearn'. Allele 134 

frequencies were compared between farmed and wild populations using two programs: 135 

PoPoolation2 (Kofler et al., 2011) and BayPass v. 2.1 (Gautier, 2015), both of which 136 

accommodate Pool-Seq data. Custom Python scripts were developed to generate the required 137 

input files for these analyses. The p-values produced by both programs were adjusted for 138 

multiple testing using the Benjamini–Hochberg method (Benjamini & Hochberg, 1995), as 139 

implemented in the ‘stats’ package in Python. 140 

 141 

PoPoolation2 was used to calculate pairwise FST, estimating the genetic differentiation between 142 

farmed and wild populations by averaging FST across SNPs. Statistical significance for each SNP 143 

was assessed with Fisher’s exact test. BayPass was run in Pool-Seq mode with an extended 144 

burn-in of 10,000 iterations (twice the default), followed by 10,000 recorded samples with a 145 

thinning interval of 25, resulting in a post–burn-in MCMC chain of 250,000 iterations. Default 146 

settings were otherwise applied. BayPass provided the XtX and C2 differentiation statistics. The 147 

XtX statistic, analogous to FST but adjusted for covariance among allele frequencies, reduces 148 

sensitivity to outlier populations (Günther & Coop, 2013). The C2 statistic evaluates 149 
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differentiation across multiple SNPs simultaneously, incorporating shrinkage toward population 150 

means to provide a more robust, genome-wide measure of differentiation (Olazcuaga et al., 151 

2020). 152 

 153 

SNPs were initially classified based on their statistical differentiation between farmed and wild 154 

gilthead seabream populations. Loci with adjusted p-values below 10⁻³ in both PoPoolation2 155 

(FST) and BayPass (XtX) analyses were considered "divergent", representing the most strongly 156 

divergent SNPs. Among these, we further applied the C2 approach to highlight loci showing 157 

exceptionally pronounced allele frequency differences. SNPs with C2 p-values below 10⁻³ were 158 

designated as “strongly divergent” only when at least one additional SNP with a p-value below 159 

10⁻³ was present within a 100 kbp window on either side. These clusters of significant SNPs 160 

represent the strongest candidates for farmed–wild divergence. 161 

 162 

Functional annotation and gene network analysis 163 

For each "divergent" and "strongly divergent" SNP, we identified neighboring genes located 164 

within a 200-kilobase (Kbp) window centered on the SNP (±100 Kbp) (Barson et al. 2015; Star 165 

et al. 2016). Genome annotations from BioMart (Sparus_aurata.fSpaAur1.1.113.gff3) were 166 

employed to perform this mapping (Smedley et al., 2009). Sequences of the identified genes 167 

were downloaded from the Ensembl seabass_V1.0 assembly (GenBank ID: GCA_000689215.1) 168 

and employed to identify better-annotated zebrafish (Danio rerio Hamilton 1822) orthologs via 169 

local BLASTx using zebrafish UniProtKB/Swiss-Prot identifiers (https://www.uniprot.org/blast). 170 

In each case, the top BLASTx hit was selected, with a maximum E-value threshold of 10−3.  171 

 172 

This set of gene orthologs was submitted to STRING v12.0 to construct a knowledge-based 173 

interaction network (Szklarczyk et al., 2023). STRING infers putative links from multiple 174 

evidence streams, including regulatory relationships, subcellular co-localization, documented 175 

biochemical/physical interactions, and patterns of co-expression/co-regulation, to assign 176 

confidence scores to gene-gene connections. To allow the detection of broader interaction 177 

patterns among candidate genes, the minimum interaction score was set to 0.15. To better 178 

https://onlinelibrary.wiley.com/doi/10.1002/ece3.70512#ece370512-bib-0005
https://onlinelibrary.wiley.com/doi/10.1002/ece3.70512#ece370512-bib-0099
https://www.uniprot.org/blast
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capture key regulatory pathways, we included the arnt (HIF-1β) gene as a direct interactor of 179 

ahrra, enabling the network to reflect potential functional and regulatory relationships with 180 

other candidate genes (Abel & Haarmann-Stemmann, 2010; Haarmann-Stemmann & Abel, 181 

2006; Vogel & Haarmann-Stemmann, 2017).  182 

 183 

Results 184 

Population differentiation and principal component analysis 185 

Allele frequencies of 5,282,885 biallelic SNPs across the gilthead seabream genome were 186 

examined. Principal component analysis (PCA) demonstrated clear differentiation between 187 

farmed and wild populations (Figure 2). The first principal component accounted for 12.1% of 188 

the total variation, and the second principal component explained 7.3% of the variation. Within 189 

the farmed populations, two distinct subgroups were observed: one composed exclusively of 190 

Greek farmed populations, and another representing farmed populations from across the 191 

Mediterranean (Croatia, France, Greece, Italy, and Spain) (Figure 2). 192 

 193 

Identification of differentiated genomic regions and candidate genes  194 

To identify genomic regions showing differentiation between farmed and wild populations, we 195 

applied two complementary genome scan approaches: PoPoolation2 (FST) and BayPass (XtX). 196 

These analyses detected 13  "divergent” SNPs across eight chromosomes: 3, 6, 9, 10, 14, 18, 19, 197 

and 23 (Figure 3a,b; Table S1). Among these, one SNP on chromosome 19 was uniquely 198 

identified as "strongly divergent" using the C2 statistic (C2 = 34.732, Padj = 8.71 × 10⁻⁵; Figure 199 

3c), highlighting strong selective differentiation at this locus between farmed and wild 200 

populations. 201 

 202 

Annotation of sequences within 200 Kbp window of each selected SNP identified 10 of the 13 203 

SNPs, distributed across six chromosomes, encompassing 62 protein-coding genes 204 

corresponding to 58 unique zebrafish orthologs  (chromosomes 3, 10, 11, 14, 19, and 23; Table 205 

S1). Notably, two genes—pigm and ahrra—were positioned near the "strongly divergent" SNP 206 

on chromosome 19, suggesting potential involvement in population-specific adaptations. 207 
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 208 

Network analysis using the STRING zebrafish interactome revealed 45 of the identified genes 209 

with potential regulatory and functional interactions (Figure 4). Among these, kdm6al emerged 210 

as a central hub with numerous interaction partners, while uba7, intu, and arl6ip1 also 211 

exhibited high connectivity. Importantly, pigm and ahrra, the two genes next to the "strongly 212 

divergent" SNP, were also network members, showing interactions with other candidate genes. 213 

This analysis identified multiple forms of connectivity among candidate genes, including co-214 

regulation, functional associations, conserved genomic neighborhoods, co-expression, and 215 

biochemical interactions (Figure 4). 216 

 217 

Discussion 218 

Domestication involves exposure to novel environmental, demographic and sensory conditions, 219 

and here we used a Pool‐Seq dataset of gilthead seabream populations across the 220 

Mediterranean to investigate its genomic architecture. From nearly 5.3 million SNPs, we 221 

identified 58 protein‐coding genes that were consistently differentiated between farmed and 222 

wild fish, highlighting them as candidate domestication loci. Among these, ahrra and pigm 223 

showed the strongest divergence, while kdm6al emerged as a central hub in the inferred 224 

regulatory network. Ahrra encodes the aryl hydrocarbon receptor repressor A, a transcriptional 225 

modulator interacting with the ARNT/HIF axis and linking xenobiotic and oxygen‐sensing 226 

pathways (Haarmann-Stemmann & Abel, 2006; Fang Li, Qiao, Duan, & Nevo, 2021). Pigm, a GPI‐227 

anchor biosynthesis gene, may affect immune function, pathogen recognition and reproductive 228 

processes through the organization of cell‐surface proteins (Almeida et al., 2006). Kdm6al, an 229 

H3K27 demethylase, forms a dominant hub that connects oxygen and stress responses to 230 

chromatin regulation (Chakraborty et al., 2019; Minikes et al., 2025). Comprehensive network 231 

interrogation revealed genes associated with environmental sensing and stress responses, 232 

including oxidative/xenobiotic stress, oxygen homeostasis, density-related injury, sensory-233 

neural tuning, and pathogen/parasite defense. Collectively, these findings indicate that 234 

domestication in gilthead seabream engages conserved regulators of environmental sensing 235 
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and adaptation, linking genomic divergence to physiological and life-history traits relevant 236 

under farming conditions. 237 

 238 

The ahrra gene encodes the aryl hydrocarbon receptor repressor A, a nuclear protein that 239 

enables DNA-binding activity and functions as a transcriptional repressor in the cellular 240 

response to xenobiotic (foreign) compounds (Haarmann-Stemmann & Abel, 2006; Hahn, Allan, 241 

& Sherr, 2009). It acts upstream of the aryl hydrocarbon receptor (AHR) pathway through its 242 

principal interactor, ARNT (also known as HIF-1β), the aryl hydrocarbon receptor nuclear 243 

translocator, which serves as a shared dimerization partner for both AHR and components of 244 

the hypoxia-inducible factor (HIF) pathway (Abel & Haarmann-Stemmann, 2010; Haarmann-245 

Stemmann & Abel, 2006; Vogel & Haarmann-Stemmann, 2017). While the AHR pathway is best 246 

known for mediating cellular responses to environmental pollutants and xenobiotics, with 247 

documented adaptive changes in wild fish populations inhabiting contaminated environments 248 

(Hamilton et al., 2016; Reid et al., 2016; Whitehead, Clark, Reid, Hahn, & Nacci, 2017; 249 

Whitehead, Pilcher, Champlin, & Nacci, 2012), the HIF pathway plays a central role in oxygen 250 

homeostasis and hypoxia tolerance across vertebrates (Fang Li, Qiao, Duan, & Nevo, 2021; 251 

Mandic, Joyce, & Perry, 2021).  252 

 253 

Evidence from a range of taxa, including hybrid sturgeon under experimental hypoxia (Ren, 254 

Tian, Cheng, Liu, & Yu, 2024), schizothoracine fish from the Tibetan Plateau (J. Chen et al., 2020; 255 

Guan, Chi, Xiao, Chen, & He, 2014), crucian carp hybrids differing in hypoxia tolerance (Luo et 256 

al., 2024), and paddy field carp adapted to shallow, low-oxygen rice paddies (Fangcheng Li et 257 

al., 2025), demonstrates the centrality of HIF-axis genes, including ARNT, in coping with hypoxic 258 

conditions. Similar adaptive signals have been detected in farmed common carp (Cheng et al., 259 

2024; Suo et al., 2022) and Australasian snapper exposed to aquaculture stressors such as high 260 

temperature and crowding (Wellenreuther, Le Luyer, Cook, Ritchie, & Bernatchez, 2019), which 261 

often co-occur with fluctuating oxygen availability. In aquaculture contexts, variation in HIF 262 

signaling has been implicated in adaptation to farming environments with variable or low 263 

oxygen availability (Y. Shen et al., 2023), as shown in farmed strains such as paddy field carp 264 



Research Article Preprint                                                                                                                         EcoEvoRxiv 

10 
 

(Fangcheng Li et al., 2025), where the HIF-1 pathway appears to contribute to enhanced 265 

hypoxia resilience. Beyond fish, convergent selection on HIF-pathway genes has been reported 266 

in multiple high-altitude and hypoxia-tolerant species, including Tibetan sheep (Song et al., 267 

2024), yaks (Wu et al., 2015; Xiong et al., 2015), Tibet chicken embryos (Liu, Wang, Liu, Wang, & 268 

Bao, 2020), plateau-adapted dogs (Gou et al., 2014), and reindeer (Pokharel et al., 2023), as 269 

well as in goats acclimatized to high elevation (Tang et al., 2025), emphasizing the pathway’s 270 

broad evolutionary importance. Even in non-hypoxia stress contexts, such as acute heat 271 

exposure in golden pompano (Trachinotus ovatus) (Q. Q. Li et al., 2023), and high-temperature 272 

adaptation in carp (Cheng et al., 2024; W. He, Cao, & Fu, 2015), HIF signaling can be part of the 273 

integrated stress response.   274 

 275 

Although direct evidence for AHR pathway involvement in domestication is currently limited, its 276 

interaction with ARNT links it functionally to the HIF system, suggesting that selection on genes 277 

such as ahrra could influence both xenobiotic sensitivity and oxygen-related physiological traits 278 

relevant to adaptation in farming conditions. Repeated cases of strong selection on the AHR 279 

axis in pollution-tolerant killifish (Miller et al., 2024; Reitzel et al., 2014) demonstrate how 280 

environmental stressors can shape this pathway. Variation in AHR-related genes has also been 281 

linked to adaptive traits, including immune responses (R. He et al., 2020; Segner et al., 2021), 282 

morphological divergence in Arctic charr and groupers (Ahi et al., 2015; R. He et al., 2020), and 283 

molecular adaptations in deep-sea fishes (Lemaire et al., 2018). Together, these examples 284 

highlight how toxins, hypoxia and developmental pressures can all drive divergence through 285 

ARNT-centered signaling. 286 

 287 

The pigm gene encodes a transmembrane protein with mannosyltransferase activity that is 288 

located in the endoplasmic reticulum and is involved in glycosylphosphatidylinositol (GPI)-289 

anchor biosynthesis (Almeida et al., 2006). In mammals and other eukaryotes, PIG-M (GPI 290 

mannosyltransferase I) catalyzes the first mannose addition to the GPI precursor within the ER 291 

lumen, a committed step in assembling mature GPI anchors (Kinoshita, Fujita, & Maeda, 2008; 292 

Maeda et al., 2001). The GPI-anchor is found on many blood cells andanchors proteins to the 293 
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cell surface; thus, pigm function is required to maintain homeostasis of blood coagulation and 294 

neurological function (Almeida et al., 2006). Although direct studies on pigm in fish are scarce, 295 

metabolic genes are often implicated in adaptive responses to domestication and farming 296 

environments, where shifts in diet, growth rate, and immune function exert selection 297 

pressures. Consistent with a role in stress and disease resistance, a vertebrate PIG-M ortholog 298 

enhances antiviral defense in the Chinese giant salamander (Andrias davidianus) during 299 

iridovirus challenge, implicating GPI-anchor biosynthesis in host protection under pathogen 300 

pressure (Zhang et al., 2022). Interestingly, infections by iridoviruses—particularly lymphocystis 301 

disease virus (LCDV), the most frequently reported viral pathology in gilthead seabream farms 302 

(Cordero, Cuesta, Meseguer, & Esteban, 2016)—remain a major and persistent challenge in 303 

Mediterranean aquaculture (Leiva-Rebollo, Labella, Borrego, & Castro, 2020; López-Bueno et 304 

al., 2016; Mhalhel et al., 2023). While megalocytiviruses such as RSIV are important in marine 305 

finfish, recent risk assessments suggest that nearby wild fish are not a significant source of RSIV 306 

outbreaks (Kawato et al., 2024). These findings suggest that the observed SNP differentiation in 307 

pigm may reflect differences in resistance to related viral infections between farmed and wild 308 

gilthead seabream populations in this study. Moreover, multiple fish pathogens rely on GPI-309 

anchored surface antigens, e.g., the I-antigens of Ichthyophthirius multifiliis (Clark, Gao, Gaertig, 310 

Wang, & Cheng, 2001) and mucin-like glycoproteins of the freshwater-fish parasite 311 

Trypanosoma carassii (Borges, Link, Engstler, & Jones, 2021; Lischke et al., 2000), and GPI-312 

anchor signals from Cryptocaryon irritans drive robust surface display in Tetrahymena 313 

(Watanabe, Asada, Inokuchi, Kotake, & Yoshinaga, 2024), underscoring the host–parasite 314 

interface where variation in GPI-AP biogenesis (potentially via pigm function) could alter 315 

susceptibility and immune recognition.  316 

 317 

Beyond immunity, GPI-anchored proteins also shape reproductive interactions; in guppy 318 

(Poecilia reticulata), the Ly6/uPAR protein Bouncer, a GPI-AP, regulates sperm binding to 319 

oocytes, suggesting that shifts in GPI-anchor biosynthesis may influence fertilization traits that 320 

often diverge between farmed and wild stocks (Yoshida et al., 2024). These organismal and 321 

mechanistic observations align with broader evidence that GPI anchors act as evolutionary 322 
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“linchpins” organizing surface repertoires across eukaryotes, making the biogenesis pathway, 323 

including PIG-M, a plausible target of selection under domestication (Borges et al., 2021). Thus, 324 

variation in pigm may affect glycosylation-dependent processes, including nutrient utilization 325 

efficiency, structural cell integrity, and possibly pathogen defense, traits that are critical under 326 

aquaculture conditions. This functional relevance, combined with its identification among 327 

divergent genes in farmed gilthead seabream, positions pigm as a credible candidate 328 

influencing metabolic adaptation during fish domestication and breeding. Taken together, the 329 

links to pathogen defense and fertilization provide concrete routes by which pigm-mediated 330 

tuning of the GPI-anchored proteome could contribute to phenotypic divergence between 331 

farmed and wild fish populations. 332 

 333 

Except for the two most significant genes already discussed, 46 SNPs located near protein-334 

coding genes that differentiate farmed from wild gilthead seabass formed an interconnected 335 

regulatory/functional interaction map-based knowledge-based zebrafish interactome. These 336 

candidates formed connected subnetworks (hubs) in which the ortholog kdm6al showed the 337 

highest degree, marking it as the principal hub (Figure 4). KDM6A is an H3K27 demethylase that 338 

links oxygen status to chromatin regulation (Chakraborty et al., 2019) and can also mediate HIF-339 

independent oxygen sensing relevant to ferroptosis (Minikes et al., 2025), providing a direct 340 

route from environmental oxygen to gene-expression programs. Interestingly, ferroptosis-341 

related mechanisms are emerging as adaptive responses of fish to hypoxic conditions (X. Q. 342 

Chen et al., 2025; Hu, Li, Xu, & Chen, 2022; J. Wang et al., 2025; Q. Wang et al., 2025; Zhang et 343 

al., 2025). Across vertebrates, KDM6A repeatedly appears among leading candidates in 344 

adaptation and domestication. Signals including KDM6A are reported for helmeted guinea fowl 345 

domestication (Q. K. Shen et al., 2021), altitudinal selection in dairy sheep (Ben Jemaa et al., 346 

2025), and horse domestication (Gu et al., 2023). In goats, a KDM6A indel associates with litter 347 

size, genome-wide scans implicate KDM6A in selection for this trait (Cui et al., 2018; Lai et al., 348 

2016), and studies of heat-stress tolerance in subtropical herds also highlight this locus (Aboul-349 

Naga et al., 2025). In aquaculture, dense genome-wide analyses in farmed coho salmon detect 350 

selection signatures that include kdm6a (López, Cádiz, Rondeau, Koop, & Yáñez, 2021). 351 
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Complementary fish studies reinforce a chromatin-regulatory role in environmental responses: 352 

a survey of chromatin-modifying enzymes in stickleback emphasizes Kdm6a within an 353 

adaptation-relevant toolkit (Fellous & Shama, 2019); endocrine perturbation in Nile tilapia 354 

shows broad gonadal transcriptional shifts consistent with developmental plasticity (Teng, 355 

Zhao, Chen, Xue, & Ji, 2021); Atlantic killifish adapted to polluted, hypoxic estuaries exhibit 356 

coordinated gene-expression and DNA-methylation changes (Aluru, Venkataraman, Murray, & 357 

DePascuale, 2025); hilsa shad diverge morpho-genetically across heterogeneous migratory 358 

habitats (Asaduzzaman et al., 2020); and a retained chromosomal inversion underlies 359 

alternative freshwater ecotypes in rainbow trout (Arostegui, Quinn, Seeb, Seeb, & McKinney, 360 

2019). Together, the network topology (kdm6al as the dominant hub) and the convergent 361 

literature across domestication, altitude, heat stress, reproduction, hypoxia/pollutants, and 362 

aquaculture selection support a KDM6A-centered regulatory axis as a credible mediator of 363 

environment-to-phenotype change. In seabass, this is consistent with contrasts between 364 

farmed and wild conditions (e.g., oxygen regimes, temperature profiles, density, diet). In future, 365 

focused validation, allele-specific and seasonal expression assays, H3K27 mark profiling, and 366 

genotype-by-environment tests, should clarify how kdm6al-linked networks contribute to 367 

domestication-related traits in gilthead seabass. 368 

 369 

Finally, the functional search for the rest of the genes within the identified network in the 370 

context of their potential involvement in sensing and responding to relevant environmental 371 

stressors in farming conditions revealed that an oxygen/xenobiotic–oxidative stress axis  372 

includes: coa7, nrp1a, herpud2, arl6ip1, kat8, ino80b, hus1b, anapc2, eif1, fus, srrm2, aadat, 373 

slc4a7  and clcn3 (Blondeau-Bidet et al., 2023; Chee, Lohse, & Brothers, 2019; L. M. Chen, Choi, 374 

Haddad, & Boron, 2007; Du et al., 2025; Hasvold et al., 2016; Jakubauskienė & Kanopka, 2021; 375 

Mellor et al., 2025; Povea-Cabello, Brischigliaro, & Fernández-Vizarra, 2024; Schwappacher et 376 

al., 2013; Schweizer et al., 2023; Seigneuric et al., 2007; Soto, Pinilla, Olguín, & Castañeda, 377 

2025; Takahashi et al., 2017; Torosyan et al., 2021; M. qing Wang et al., 2025; You et al., 2025; 378 

Zang et al., 2025; Z. Bin Zhang et al., 2019); density related physical injury (barrier repair, tissue 379 

regeneration and wound healing): f13a1a.1, lum, kera, epyc, mfap3l, macf1a, mcc, nit1 380 
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(Alshehri, Whyte, & Mutch, 2021; L. Hu et al., 2017; Mahapatra, Naik, Swain, & Mohapatra, 381 

2023; Mohammadi, Sorensen, & Pilecki, 2022; Peracchi et al., 2017; Segars & Trinkaus-Randall, 382 

2023; Senda, Matsumine, Yanai, & Akiyama, 1999; Yamanaka et al., 2013); sensory–neural 383 

tuning (hydrodynamics/noise/light): intu/cplane4, tubb2, ank3b, camkva, myoz2a, taar13c 384 

(Choi, Duboue, Macurak, Chanchu, & Halpern, 2021; Gomez-Campo et al., 2024; Ippolito, 385 

Thapliyal, & Glauser, 2021; Martín‐salazar & Valverde, 2022; Miettinen et al., 2023; S. 386 

Watanabe et al., 2022; Zhao et al., 2025); and pathogen/parasite pressure: uba7, rnf25/ao7, 387 

gnai2b, pigt, mst1ra (Grimholt, Sindre, & Sundaram, 2025; M. A. Hahn et al., 2022; Ham et al., 388 

2024; Jing et al., 2022; S. F. Liu & Malik, 2006; Salisbury et al., 2024; H. Zhang et al., 2023). 389 

Together, these assignments suggest that domestication in seabass taps conserved 390 

environmental sensing and adaptive response genes. See Figure 5 for the gene–stressor 391 

mapping that underpins these conclusions. 392 

 393 

Conclusion 394 

This study provides a genome-wide overview of domestication-driven genetic divergence in 395 

gilthead seabream, identifying key genes and genomic regions associated with life-history traits 396 

and the molecular circuitry of environmental sensing, including stress response, immune 397 

function, and reproduction. By integrating Pool-Seq data from 20 populations across the 398 

Mediterranean in farm–wild comparisons with robust genome scan and network analyses, we 399 

uncovered 58 candidate genes near highly differentiated SNPs, with a particularly strong signal 400 

on chromosome 19. Among these, ahrra, pigm, and kdm6al emerged as strong candidates 401 

based on their genomic differentiation and known regulatory roles. These genes are linked to 402 

pathways such as ARNT/HIF signaling, GPI-anchor biosynthesis, and epigenetic regulation via 403 

chromatin remodeling; core mechanisms by which organisms translate oxygen availability and 404 

chemical cues into coordinated immune, endocrine, metabolic, and reproductive outcomes 405 

beyond any single husbandry context. While the specific genomic targets differ among 406 

populations, the implicated functions are strikingly consistent and are shared broadly across 407 

animals, hinting at constrained evolutionary routes and a degree of predictability in responses 408 

to captivity. Our results indicate that domestication acts on a conserved set of interconnected 409 
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regulators that control sensory and hypoxia/chemical signaling and its downstream 410 

physiological integration. The recurrent involvement of kdm6al across vertebrate studies, 411 

alongside our signal here, points to a broadly conserved regulatory hub under selection that 412 

aligns developmental programs with stress and immune responses. Likewise, the roles of ahrra 413 

and pigm in oxygen sensing and host defense suggest a general mechanism for rapid 414 

adjustment to human-altered environments, where fluctuating oxygen regimes and pathogen 415 

exposure are pervasive. Overall, this work connects microevolution under captivity to 416 

fundamental biology by showing how long-standing sensory and regulatory circuits are retuned 417 

during domestication, and it offers a comparative framework and tractable gene sets for testing 418 

general principles of rapid adaptation across taxa. The candidate genes identified here are 419 

promising targets for functional assays and comparative analyses, and they provide markers to 420 

track domestication trajectories and interactions between cultured and wild populations. 421 
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 1024 

 1025 

Table 1. Classification of studied gilthead seabream populations. Farmed and wild populations 1026 

sampled across Mediterranean countries are listed, with population IDs as reported in Peñaloza 1027 

et al. (2021). 1028 

 1029 

Origin Population ID Country 
Number of 

individuals per 
pool 

Number pools 
prepared 

Farmed 

fFRA_1 France 25 2 
fSPA_2 Spain 25 2 
fSPA_3 Spain 25 2 

fITA_4 Italy 25 1 

fCRO_5 Croatia 25 2 
fGRE_6 Greece 14 1 

fGRE_7 Greece 13 1 

fGRE_8 Greece 25 2 
fGRE_9 Greece 25 2 

fGRE_10 Greece 25 2 

Wild 

wSPA_4 Spain 25 2 
wSPA_5 Spain 25 2 
wITA_7 Italy 25 2 

wITA_8 Italy 25 2 
wGRE_9 Greece 25 2 

wGRE_10 Greece 25 2 
wGRE_11 Greece 25 2 
wGRE_12 Greece 25 2 

wGRE_13 Greece 25 2 

wTUR_14 Turkey 25 2 
1Labelling was done according to Penaloza et al. (2021)  1030 
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 1034 

Figure 1. Geographic distribution of studied farmed and wild gilthead seabream populations in the 1035 
Mediterranean region. 1036 
 1037 

  1038 
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 1043 

 1044 

 1045 

Figure 2. Population structure of studied gilthead seabream populations. Principal component 1046 

analysis (PCA) was conducted on 5,282,885 SNPs for the farmed and wild populations of 1047 

gilthead seabream across the Mediterranean region with information of each population ID 1048 

based on Table 1. 1049 

  1050 
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Figure 3. Manhattan plots depict the statistical significance of tests from the three genome 1054 

scan methods across the gilthead seabream genome. Panel “a” shows the log10(1/p-val) of 1055 

Fisher's exact test in FST-based method using PoPoolation2, while panel “b” and  “c”  displays 1056 

the corresponding values from the Chi-squared distribution in XtX-based method and C2, 1057 

respectively, using BayPass. p-values were adjusted for multiple testing using the Benjamini–1058 

Hochberg method. Red dots indicate genomic regions of SNPs with statistical significance at 1059 

log10(1/p-val), corresponding to Padj  = 10−3. These SNPs include those identified as "divergent" 1060 

by meeting significance thresholds in both PoPoolation2 (FST) and BayPass (XtX), as well as 1061 

those flagged by C2 as "strongly divergent" between farmed and wild gilthead seabream 1062 

populations. Chromosomes' names are labeled on the x-axis. 1063 
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Figure 4. Predicted interactions between the identified genes in this study. Out of the 58 1070 

protein coding genes, 46 showed potential functional/regulatory interactions through 1071 

knowledge-based zebrafish interactome database (string-db.org). The connecting lines between 1072 

the genes represent knowledge-based interactions in zebrafish such as protein binding, co-1073 

regulation, intracellular co-localization and biochemical interaction. Arnt was added as a known 1074 

dimerization partner of ahrra to represent the AHR signaling pathway and reveal potential 1075 

regulatory interactions with other candidate genes in the network. 1076 
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Figure 5. Predicted links between the network genes and various environmental stressors. 1081 

Links to the stressors were inferred by integrating: (i) orthology-based annotations (Ensembl, 1082 

UniProt, and ZFIN), (ii) Reactome and KEGG data, and (iii) peer-reviewed literature, prioritizing 1083 

teleost evidence and the most relevant farm stressor (hypoxia; nitrogenous 1084 

wastes/chemicals/oxidants; density related physical injury; hydrodynamics, noise and light; 1085 

pathogen pressure).  1086 
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