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Abstract 12 

1. Monitoring ecosystem services is essential for achieving sustainability and biodiversity 13 

goals, yet existing monitoring programmes are fragmented, siloed, and not designed to 14 

detect or attribute change in ecosystem services. 15 

2. We applied the Essential Ecosystem Service Variables (EESV) framework within a 16 

social-ecological network model to integrate three decades of ecological, economic, and 17 

social monitoring data from the Pacific salmon fisheries of British Columbia, Canada. 18 

Using Bayesian state-space models, we analysed the coupled provisioning (commercial) 19 

and cultural (recreational) services provided by five salmon species across six regions. 20 

3. Our models revealed complex, species- and location-specific dynamics, including 21 

regional declines in Chum salmon abundance, long-term reductions in commercial 22 
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fishing effort, and diverging trends between commercial and recreational harvests, with 23 

recreational catchability consistently higher than commercial catchability. 24 

4. Trade-offs between provisioning and cultural services were particularly evident for 25 

Chinook and Coho salmon, where recreational and commercial harvest rates displayed 26 

opposing trends, highlighting competition among user groups. 27 

5. The modelling process exposed the limitations of current monitoring systems: many 28 

model structures failed to converge, key external drivers (e.g. sea surface temperature and 29 

hatchery releases) could not be reliably incorporated, and predictive accuracy was 30 

consistently poor for anthropogenic and governance components, demonstrating that 31 

existing monitoring programmes cannot support confident causal attribution of change. 32 

6. Despite these limitations, the integration of siloed datasets recovered known dynamics 33 

and provided valuable insights, showing that social-ecological network models can serve 34 

both as analytical tools and diagnostics of monitoring capacity, providing an empirically 35 

supported mandate for the fundamental redesign of monitoring systems. To effectively 36 

manage ecosystem services and meet global sustainability targets, nations must move 37 

beyond fragmented data collection and build integrated, holistic monitoring programs 38 

that co-measure ecological, social, and governance variables by design, enabling an 39 

evidence-based understanding of our planet's vital human-nature systems. 40 
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Introduction 44 

Healthy biodiversity and ecosystems provide an essential set of services for human wellbeing 45 

(Richardson et al., 2023). Increasing human activity has led to a global decline in both 46 

biodiversity and ecosystem services (Brauman et al., 2020), prompting a political response from 47 

nations around the globe. Specifically, the Global Biodiversity Framework (GBF) calls for a 48 

whole-of-society approach to transform humanity’s relationship with nature (CBD, 2022). The 49 

GBF calls for nature’s contributions to people, including ecosystem services, to be valued, 50 

maintained and enhanced, with those currently in decline to be restored. Delivering on this goal 51 

by 2050 requires managing ecosystem services, which depends on measuring the trends in their 52 

state and condition. The GBF includes a global monitoring framework that sets out how nations 53 

should measure change in biodiversity and ecosystem services (Affinito et al., 2024). Yet, the 54 

challenge of effectively implementing monitoring is substantial as many gaps remain in the 55 

monitoring framework, especially for ecosystem services (Affinito, Butchart, et al., 2025). 56 

 Effective ecosystem services monitoring requires recording both the ecological and 57 

societal components of ecosystem services through time. To date, the focus has been on 58 

ecosystem service assessments rather than monitoring (Seppelt et al., 2011; Galaz García et al., 59 

2023). These assessments are typically single-time point estimates of ecosystem service supply, 60 

calculated from models using production functions that describe how biophysical inputs produce 61 

ecosystem services (Tallis and Polasky, 2009). While useful to understand where ecosystem 62 

services are produced and how this connects to people’s demand, these assessments do not 63 

inform on the changing state of ecosystem services and are not the result of planned monitoring 64 

efforts to understand where, when and why ecosystem services are changing. Additionally, these 65 

assessments are typically done at very large scales (Chaplin-Kramer et al., 2022), limiting their 66 



ability to inform local policy efforts (Mandle et al., 2021), which is the scale at which ecosystem 67 

services are experienced by people. 68 

 Effective management of ecosystem services requires the implementation of monitoring 69 

programmes that are designed to detect change and attribute it to causal drivers at different scales 70 

(Gonzalez, Chase and O’Connor, 2023). Delivering on the GBF’s ambition requires that 71 

monitoring go beyond simply tracking ecological state variables. Monitoring systems must be 72 

designed to understand the causes of change and opportunities for management from local to 73 

regional scales. In the context of ecosystem services, this requires monitoring the multiple 74 

dimensions of ecosystem services and how these are changing in relation to each other and to 75 

external drivers.  76 

This can be achieved using the essential ecosystem service variables (EESV) framework 77 

(Balvanera et al., 2022). The framework sets out which aspects of an ecosystem service need to 78 

be monitored to effectively understand change through six classes of variables: ecological 79 

supply, use, demand, anthropogenic contribution, instrumental value and relational value. The 80 

framework sets the conceptual foundation of how to monitor ecosystem services, but it remains 81 

to be systematically implemented in purpose-built monitoring systems. The EESV framework 82 

considers ecosystem services as part of social-ecological systems. That is, when ecosystem 83 

processes contribute to human activities (e.g. pollination and agriculture, water filtration and 84 

swimming), this realises an ecosystem service (Affinito, Holzer, et al., 2025). Thus, monitoring 85 

of ecosystem services requires tracking variables in all relevant parts of the social-ecological 86 

system. 87 

Conceptualising ecosystem services within social-ecological systems has proven effective 88 

for understanding human–nature interactions (Ostrom, 2007), predicting management outcomes 89 



(McGinnis and Ostrom, 2014), and integrating diverse disciplinary data into a cohesive 90 

framework (Hinkel et al., 2015). Building on this foundation, researchers have begun framing 91 

ecosystem services as spatially explicit social-ecological networks, where interacting social and 92 

ecological nodes drive system-wide dynamics (Dee et al., 2017; Felipe-Lucia et al., 2022). 93 

Though conceptually developed (Reyers et al., 2013), empirical applications remain limited  94 

(Stanworth, Peh and Morris, 2024). A spatially explicit, multilayer network approach offers a 95 

way to monitor ecosystem services by identifying distinct layers (Figure 1) and tracking 96 

interactions across them (Leslie et al., 2015). This structure captures the flow of ecosystem 97 

services and reveals how social and ecological dynamics interact across scales (Sun et al., 2019), 98 

enabling the identification of scale mismatches and supporting causal inference (Bodin et al., 99 

2019). This approach provides the blueprint needed to integrate existing disparate data sources 100 

into a cohesive understanding of ecosystem service change (Firkowski et al., 2021). 101 

 Existing monitoring programmes already collect vast amounts of data that are relevant to 102 

ecosystem services (Tallis et al., 2012). The EESV framework and social-ecological network 103 

theory provide the conceptual framing necessary to take advantage of these data and test their 104 

appropriateness for ecosystem service monitoring. The EESV framework helps to identify which 105 

variables to focus on and social-ecological network theory indicates how to relate these variables 106 

to analyse their dynamics. This provides an opportunity to test whether existing monitoring 107 

programmes can be linked together using EESVs and social-ecological network theory to 108 

monitor ecosystem service dynamics.  109 

We implement a social-ecological network analysis of the data-rich wild Pacific salmon 110 

fisheries from British-Columbia (BC, Canada) where Affinito, Fortin and Gonzalez (2025) 111 

already identified EESVs for the region. In BC, economic, social and environmental monitoring 112 



programmes with distinct mandates each collect data relevant to the services provided by wild 113 

Pacific salmon. These distinct mandates lead to monitoring choices that produce disjointed 114 

observations not designed ad hoc to be appropriate for social-ecological network analysis. We 115 

specifically test if an integrated network model can reveal location- and species-specific 116 

differences in the dynamics of four dimensions (ecological supply, use, anthropogenic 117 

contribution, and value) of two coupled ecosystem services (commercial provisioning and 118 

recreational cultural fisheries). We combine data from multiple monitoring programmes to 119 

conduct an analysis of the social-ecological network using mechanistic models fitted using a 120 

Bayesian approach. First, we test whether by connecting these monitoring systems into one 121 

social-ecological network we can recover expected mechanistic relationships to identify key 122 

ecosystem service dynamics. Second, we discuss the strengths and weaknesses of current 123 

monitoring efforts, and our ability to monitor ecosystem services by combining datasets 124 

collected from siloed monitoring programmes. 125 



 126 

 127 

Figure 1. The social-ecological network of Pacific salmon fisheries in British-Columbia 128 

provides multiple ecosystem services (both cultural and provisioning). Social and ecological 129 

nodes interact to produce ecosystem services. These interactions are mediated by external drivers 130 

(e.g. warming and hatchery releases) and governance rules (e.g. licensing). Each of these nodes, 131 

drivers and interactions can be monitored to understand how different dimensions of the 132 

ecosystem service are changing. Figure inspired and adapted from Firkowski et al., (2021). 133 

 134 



Methods 135 

Study system 136 

Coastal waters of British Columbia, Canada, host one of the world’s largest animal migrations 137 

each year (Groot and Margolis, 1991). Five species of Pacific salmon – Oncorhynchus 138 

tshawytscha (Chinook), O. kisutch (Coho), O. keta (Chum), O. gorbuscha (Pink), and O. nerka 139 

(Sockeye) – return from the ocean to lay eggs in streams along the coast. 140 

Three major fisheries rely on Pacific salmon: Indigenous, recreational, and commercial. 141 

Catch quotas are allocated to ensure that enough fish return to spawn, giving Indigenous and 142 

recreational fisheries priority access. The commercial salmon industry is a source of income and 143 

identity for many and recreational fisheries attract anglers from around the world. Together, these 144 

fisheries generate provisioning (commercial) and cultural (recreational) ecosystem services that 145 

are central to the province’s social fabric and ecological integrity. Canada’s Wild Salmon Policy 146 

(DFO, 2018) aims to safeguard wild stocks through a mix of conservation measures and stock 147 

enhancement via hatcheries. The result is a complex social-ecological network (Figure 1), in 148 

which multiple services are co-produced. 149 

Multiple organizations collect and report monitoring data. The federal government 150 

monitors licenses, catch, and effort in commercial and recreational fisheries. The provincial 151 

government records landings and revenue. Indigenous catch data remains sparse. The Pacific 152 

Salmon Foundation, a local NGO, processes abundance estimates and hatchery release data. 153 

Remote sensing programmes, like the EU’s Copernicus services, monitor ocean conditions. 154 

These various monitoring efforts differ in scale, timing, and spatial resolution, and are not 155 

coordinated across and within organizations. Specifically, salmon abundance is monitored in 156 

spawning streams to estimate numbers. These data are then processed by the Pacific Salmon 157 



Foundation who reports abundance and hatchery release estimates for each salmon population 158 

into six regions corresponding to major river systems in BC (Haida Gwaii (HG), Nass, Skeena, 159 

Central Coast (CC), Vancouver Island and Mainland Inlets (VIMI) and Fraser). Effort, license 160 

and catch data are collected by the federal Department of Fisheries and Oceans (DFO) at sea 161 

according to a set of geographically defined management areas. Landing and resale value data 162 

are collected by the provincial government and reported at the provincial scale. Remotely sensed 163 

data are available from Copernicus daily at high resolution.  164 

 165 

Data acquisition and processing 166 

We acquired the data from each organisation (Supplementary Table S1). These data correspond 167 

to four essential ecosystem service variables (EESVs) for commercial fisheries (ecological 168 

supply, use, anthropogenic contribution and instrumental value) and three EESVs for recreational 169 

fisheries (ecological supply, use and anthropogenic contribution) as well as three external drivers 170 

(sea surface temperature, hatchery releases, and licensing). We limited our analysis to the years 171 

1996-2023 as most datasets included no data earlier than 1996. Even within the study period, 172 

data gaps in several time series were present due to changes in funding for local monitoring or 173 

responsibility for compiling monitoring data and making it available. 174 

Due to the mismatch in monitoring scale and location, we had to process the data to 175 

spatially match the variables to each other. We followed the method used by the Pacific Salmon 176 

Foundation to match catch to abundance counts (Pacific Salmon Foundation, 2024). That is, we 177 

(i) mapped DFO management areas to each river system in the Pacific Salmon Foundation’s 178 

dataset based on salmon migration routes, (ii) calculated the proportion of spawners for each 179 

species in each region that corresponds to each management area in any given year and (iii) 180 



multiplied the catch of each species in each management area on any given year by the 181 

proportion of spawners in each river system to assign catch numbers measured in a management 182 

area to its corresponding river system. This methodology assumes that fish from different river 183 

systems are caught in proportion to their abundance. Similarly, we assigned landed value to each 184 

river system by calculating the proportion of catch of each species from each region and 185 

multiplying it by the total provincial scale landed value of each species.  186 

We matched effort and licenses to each river system by assigning total effort and total 187 

license numbers to their corresponding region. We did not use a proportional approach for effort, 188 

fleet size and license counts as these are not species-specific but rather apply to all species 189 

equally. For sea surface temperature, we used the average temperature of coastal BC waters in 190 

the months that smolts migrate out to sea. 191 

 192 

Analytical approach 193 

We used a set of Bayesian state-space models to analyse the disjointed monitoring data from the 194 

social-ecological network. State-space models make modelling complex social-ecological 195 

network dynamics possible by separating the underlying system dynamics from the data 196 

measurement process (De Valpine and Hastings, 2002). Key variables in the system are modelled 197 

as unobserved latent states. These latent states represent the true unobserved state(s) of the 198 

system (e.g. the number of salmon returned to spawn before harvest) and link to the data through 199 

the observation model, which draws from a distribution centered on the latent states plus some 200 

observation error. Furthermore, this approach handles missing data. For years where observations 201 

are absent, the model still estimates a latent state, which is informed by the process model's 202 

dynamics and data available from other years and variables. Finally, the model allows for partial 203 



pooling, where parameters for each individual location are assumed not to be independent. This 204 

allows the model to “learn” parameter values for each location from other locations, enabling 205 

information sharing and estimation of system dynamics even for regions where monitoring effort 206 

was lower. 207 

We defined a set of 15 mechanistic state-space models of increasing complexity to model 208 

the social-ecological network (Table 1). At its core, each model reflects the relationships between 209 

salmon abundance and commercial catch and fishing effort. To this, we added each additional 210 

variable with its corresponding mechanistic process linking it to others. All models were written 211 

in Stan version 2.36.0 (Carpenter et al., 2017) and fit to each of the five salmon species 212 

independently. 213 

 214 

Table 1. State-space models tested in the Pacific salmon social-ecological network with variables 215 

included in the model. Each of these models was fit to each species. 216 

Model name Variables included 

CSE Commercial catch & effort + Spawner abundance (CSE) 

CSEF CSE + Commercial fleet size (CSEF) 

CSEFV CSEF + Landed value of commercial catch (CSEFV) 

CSEFVH CSEFV + Hatchery releases 

CSEFVHTemp CSEFV + Hatchery releases + Sea surface temperature 

CSEFVR CSEFV + Recreational catch & effort 

CSEFVRTemp CSEFV + Recreational catch & effort + Sea surface temperature 

CSEFVRStp CSEFV + Recreational catch & effort + Recreational licenses 

CSEFVL CSEFV + Commercial licenses 



CSEFVLH CSEFV + Commercial licenses + Hatchery releases 

CSEFVLHTemp 
CSEFV + Commercial licenses + Hatchery releases + Sea surface 

temperature 

CSEFVLR CSEFV + Commercial licenses + Recreational catch & effort 

CSEFVLRTemp 
CSEFV + Commercial licenses + Recreational catch & effort + Sea 

surface temperature 

CSEFVLRStp 
CSEFV + Commercial licenses + Recreational catch & effort + 

Recreational licenses 

CSEFVLRStpH 
CSEFV + Commercial licenses + Recreational catch & effort + 

Recreational licenses + Hatchery releases 

 217 

Model specifications 218 

The process model used reflects well-established mechanistic relationships between key 219 

variables in the social-ecological network of Pacific salmon. The Ricker equation (Ricker, 1954) 220 

models the spawner-recruit relationship of salmon: 221 

𝑅 = 	𝛼𝑆𝑒!"#	, (1) 222 

where R is the number of recruits produced by the spawners S with a maximum number of 223 

expected spawners per recruit (i.e. productivity parameter) a and density-dependent effect b. The 224 

Ricker model can be extended to accommodate the effects of hatchery releases and sea surface 225 

temperature to: 226 

𝑅 = 	𝛼𝑆𝑒!"#$%&$'( 	, (2) 227 

where H is hatchery release and T is sea surface temperature and g and d are their respective 228 

effects contributing to recruitment or reducing survival. Using the Schaefer model (Schnute, 229 



1977) and Baranov’s catch equation (Quinn and Deriso, 1999), recruitment and spawners can be 230 

linked to catch via harvest: 231 

𝑆 = (1 − ℎ)𝑅	, (3)
𝐶 = ℎ𝑅	, (4) 232 

where C is catch and h is the harvest rate parameter. Harvest rate is a saturating function of effort 233 

with: 234 

ℎ = 	
𝑞𝐸

1 + 𝑞𝐸
	, (5) 235 

where E is effort and q is catchability (i.e. how easy it is to catch salmon for any given unit of 236 

effort). These models can be extended to include recreational catch through the same equations 237 

as (4) and (5) but for recreational catch and connected to R and S through: 238 

𝑆 = 𝑅	(1 −	ℎ) − ℎ*)	, (6) 239 

where hc and hr are commercial and recreational harvest rates, respectively. Fleet size affects 240 

effort through a power law function: 241 

𝐸) =	𝜙+𝐹,! 	, (7) 242 

where Ec is commercial effort, F is fleet size and f1 is the effort scaling parameter determining 243 

the overall magnitude of effort on fleet size and f2 is the fleet-effort elasticity establishing 244 

whether there are diminishing returns (<1) or intensification (>1). Commercial licensing controls 245 

fleet size with: 246 

𝐹 = 𝑎)𝐿) 	, (8) 247 

where Lc is the number of licenses and ac is the proportion of licenses that are actively being 248 

used. Recreational licenses, however, control effort directly with: 249 

𝐸* = 𝑎*𝑒*𝐿* 	, (9) 250 



where Er is recreational effort, Lr is the number of recreational licenses, ar is the participation 251 

rate and er is the average effort per active recreational license. Finally, the economic value of 252 

commercially landed salmon follows a bioeconomic allometric relationship with catch: 253 

𝑉 = 𝜐𝐶-	, (10) 254 

where V is value, u is the unit value coefficient reflecting the value per unit catch and w is the 255 

value elasticity.  256 

These equations can be linearized and reparametrized in log space to allow for model 257 

fitting using an MCMC sampler. All parameters vary per species through space (i.e. across all six 258 

regions, except for Chum salmon where no data on catch nor abundance were available for 259 

Fraser) and some through time (hr and hc). See Supplementary Tables S2 & S3 for complete 260 

model specification. 261 

 262 

Model fitting 263 

We fit all fifteen models to each species using the cmdstanr package version 0.9.0 (Gabry et al., 264 

2025) in R version 4.3.1 (R Core Team, 2022). Each model was run for a total of 20,000 265 

iterations with 10,000 warmups. We assessed model convergence via visual inspection of chains 266 

and 𝑅@ statistics (Brooks and Gelman, 1998). Any model or parameter where chains were not well 267 

mixed and/or 𝑅@ values were too high (>1.1) was deemed to not have converged. We further 268 

checked effective sample sizes for all converged models to check for adequate sampling of the 269 

posterior (Raftery, Lewis, and others, 1992). To reduce problems linked to identifiability, 270 

multimodality and general non-convergence we used informative priors where justifiable, 271 

removed redundant explanatory variables, used a non-centered approach for all hierarchical 272 

parameters and centered several predictor variables.  273 



We compared converged models using visual inspection of posterior predictive plots. We 274 

further computed a Bayesian alternative to R2 (Gelman et al., 2019) for each response variable in 275 

the model. This is a model-based statistic that calculates the proportion of variance in future data 276 

explained by the model. We considered a model better than its alternative when convergence 277 

parameters were good, its posterior predictive plots overlapped better with the data and its 278 

Bayesian R2 values were higher. We further assessed the predictive ability of our best-fit models 279 

for each species using leave-one-out cross-validation, which estimates how well the model 280 

predicts each observation when it is omitted from the fitting process (Vehtari, Gelman and Gabry, 281 

2017). 282 

 283 

Results 284 

Our analysis of BC’s Pacific salmon fisheries produced two complementary sets of findings. 285 

First, by applying a social-ecological network model to disparate monitoring datasets, we 286 

successfully uncovered complex dynamics, including species- and region-specific abundance 287 

trends and opposing dynamics between cultural and provisioning services. Second, the modelling 288 

process itself served as a diagnostic tool, with model convergence failures and poor predictive 289 

accuracy revealing the fundamental insufficiency of the current, siloed monitoring programmes 290 

to support monitoring of the full social-ecological dimensions of these ecosystem services. 291 

 292 



Social-ecological network dynamics 293 

Species-specific dynamics in ecosystem service trends 294 

We focus on and report the findings from the best-fitting model for each species (Table 2; 295 

Supplementary Table S4). Parameter and uncertainty estimates are available in Supplementary 296 

Table S6. 297 

The best-fit model for Sockeye salmon was the simplest, including only fleet size, effort, 298 

catch, and abundance. Regional abundance estimates varied, with CC, Nass, Skeena, VIMI 299 

showing similar annual estimates, HG showing lower estimates, and Fraser showing markedly 300 

higher and more variable estimates, characterized by pronounced boom–bust cycles 301 

(Supplementary Figure S1a). Commercial catch declined across all regions, although estimates 302 

were highly uncertain, especially in Fraser, where catch trends did not clearly reflect abundance 303 

fluctuations (Supplementary Figure S1b). Despite this, Fraser had the highest estimated catch, 304 

followed by Nass, Skeena, and VIMI, with the lowest estimates in CC and HG. Catchability and 305 

harvest rates were the lowest in CC and HG, moderate in Fraser and VIMI, and highest in Nass, 306 

although credible intervals for catchability overlapped across several regions (e.g. Nass and 307 

Skeena; Skeena, VIMI, and Fraser; Fraser and CC). 308 

Chum salmon was the only species for which the best-fit model supported a decline in 309 

abundance in two regions (HG and Skeena; Figure 2a), driven by negative values in the 310 

productivity parameter (α), though credible intervals overlapped zero in both cases (Figure 2b). 311 

CC had a positive α value, but its credible interval also included zero. Abundance estimates were 312 

highest in CC and VIMI, followed by HG, Nass and Skeena. Catch estimates declined across all 313 

regions, with wide credible intervals, especially in HG and Skeena (Supplementary Figure S2b). 314 

This decline in catch was accompanied by a corresponding decline in landed value 315 



(Supplementary Figure S2c). Value elasticity was consistently less than 1 across regions (CC: 316 

0.71; HG: 0.72; Nass: 0.68; Skeena: 0.87; VIMI: 0.74), suggesting diminishing returns of catch 317 

on income, though intervals overlapped with 1 for Skeena. 318 

Abundance estimates for Chinook were highest in Fraser and VIMI, moderate in Skeena 319 

and CC, and lowest in Nass and HG. Uncertainty was the greatest in CC and Skeena, despite data 320 

gaps in HG post-2007 (Supplementary Figure S3a). Catch estimates were broadly similar across 321 

regions, except for a decline in CC after 2018 (Supplementary Figure S3b). Landed value 322 

mirrored these trends, with a sharp decline in CC since 2018 and a consistent dip across all 323 

regions (except Fraser) in the late 1990s and early 2000s (Supplementary Figure S3c). Value 324 

elasticity estimates were below 1 across all regions, although their credible intervals included 1. 325 

Effort elasticity was below 1 for all regions (CC: 0.84; Fraser: 0.84; HG: 0.88; Nass: 0.86; 326 

Skeena: 0.86; VIMI: 0.84), indicating diminishing returns in effort with increasing fleet size. 327 

The Coho model revealed similar trends across abundance, catch, and value 328 

(Supplementary Figure S4). Regions with higher abundance (CC, Skeena, Nass and HG) also 329 

had higher catch and value. Fraser and VIMI had the lowest estimates across all three metrics. 330 

While abundance appeared to increase across regions over time, this trend was not reflected in 331 

catch or value in CC, Nass, Skeena, or Fraser, where post-2016 declines were observed. Value 332 

elasticity was below 1 in all regions, with credible intervals overlapping 1. 333 

 334 



335 

Figure 2. An uncertain regional decline in Chum salmon abundance. (a) Predicted decline in 336 

Chum abundance in the Skeena and HG regions is related to (b) a negative productivity 337 

parameter (a) leading to a growth rate smaller than 1. Note the overlap with 0 of credible 338 

intervals of the a parameter in both regions. All other regions do not show a decline, except that 339 

CC’s a parameter credible intervals also overlap 0. 340 

 341 

Competing cultural and provisioning services  342 

We found a decline in commercial fishing effort across all species and regions, particularly in the 343 

North (Nass, Skeena, HG, and CC), where the decline began in 1996 (Figure 3a). Recent 344 

rebounds in effort were observed only in Nass and Skeena, with continued decline in HG and 345 

CC. In contrast, the South (Fraser and VIMI) did not exhibit a notable decline until 2019, after 346 

which effort dropped and did not recover. Across all species, commercial effort estimates showed 347 

the lowest uncertainty of any modelled variable and did not differ substantially between regions. 348 

For Chinook and Coho, where recreational data were included, no equivalent decline in 349 

recreational effort was found (Figure 3b). Recreational effort also appeared evenly distributed 350 



across regions. However, the models struggled to fit recreational effort in Fraser and VIMI, 351 

resulting in high uncertainty in those regions. 352 

In contrast, recreational catch estimates did not exhibit high uncertainty in Fraser or 353 

VIMI (Supplementary Figure S5). Uncertainty was only pronounced for Chinook recreational 354 

catch in CC. Recreational catch was generally stable from 2005 onward, except for a notable dip 355 

in 2020 for Chinook and Coho in HG, and for Coho in CC. Prior to 2005, a steady increase in 356 

recreational catch was observed, though this was likely a modelling artefact due to missing data 357 

and periods of lower estimated abundance. Notably, commercial and recreational harvest rates 358 

exhibited opposing trends, suggesting competitive dynamics between these sectors (Figure 3c). 359 

Additionally, recreational catchability exceeded commercial catchability across all regions for 360 

both Chinook and Coho, with non-overlapping credible intervals (Figure 3d). 361 

 362 



 363 

Figure 3. Contrasting dynamics of commercial and recreational fishing for Chinook and Coho 364 

salmon. (a) Average commercial fishing effort for both species in each of the six regions shows a 365 

long-term decline in the North and a recent decline in the South. (b) Average recreational fishing 366 

effort for both species shows no trend over time, with wide uncertainty in the South. (c) 367 

Recreational and commercial harvest rates for both Chinook and Coho show a negative 368 

relationship (1000 parameter draws shown with linear model line fitted, uncertainty bounds 369 

around the line are shown in grey). (d) Recreational catchability is consistently higher than 370 

commercial catchability for both species in most regions. The Coho plot is cut at 0.016 due to 371 

large uncertainty in VIMI estimate (up to qr = 0.165). 372 

 373 



Model performance as a diagnostic 374 

Data integration and model stability 375 

The limitations of the existing monitoring data were apparent as most of the fifteen candidate 376 

model structures failed to converge for most species (Table 2). Notably, no models converged for 377 

Pink salmon. Simpler structures worked best for Chum and Sockeye. Chinook and Coho required 378 

a more complex model that included recreational catch and effort. None of the models that 379 

included sea surface temperature as a predictor converged for any species. Certain covariates 380 

consistently degraded model performance: models with hatchery releases or commercial license 381 

data often failed to converge or, when they did, produced poor fits and wide, uninformative 382 

uncertainty bounds. Further complexity was detrimental; adding recreational licenses or 383 

combining them with commercial license data led to model failure or poor performance. 384 

 385 

Poor predictive power for social dimensions 386 

Cross-validation of the best-fit models revealed consistent differences in predictive accuracy 387 

across variable types. Models performed well for commercial catch and landed value, and 388 

moderately well for spawner abundance, though performance varied by species (Supplementary 389 

Table S5). In contrast, predictive accuracy was consistently poor for anthropogenic components 390 

(i.e. commercial effort, fleet size, and licensing) and recreational components across all species. 391 

For example, in Chinook salmon, while over 80% of observations for spawner abundance and 392 

economic metrics had acceptable k-values (k<0.7), more than 77% of the values for effort and 393 

recreational metrics were poorly predicted (k>0.7). This pattern held across species.  394 

For Chum and Coho salmon, models showed good predictive accuracy for commercial 395 

catch and value, but poor performance for effort, fleet size, and recreational components, where 396 



the majority of k-values exceeded 0.7. The Sockeye model’s predictive ability predicted 397 

commercial catch with high accuracy (98.8% k<0.5) but failed to do so for effort and spawner 398 

abundance (more than 68% of the values were poorly predicted (k>0.7)). Overall, the models 399 

effectively captured biological and economic components of the system but showed weaknesses 400 

in modeling anthropogenic contribution and governance. 401 

 402 

Table 2. Model convergence and fit for all salmon species. Models are ordered by complexity. 403 

Dashes indicate failure to converge. Ranking describes model fit from best to worst. 404 

Model 
Species 

Chinook Chum Coho Pink Sockeye 

CSE - 2nd - - - 

CSEF 2nd 3rd - - 1st 

CSEFV 3rd 1st 2nd - 2nd 

CSEFVH - - - - 5th 

CSEFVHTemp - - - - - 

CSEFVR 1st - 1st - 4th 

CSEFVRTemp - - - - - 

CSEFVRStp - - - - 3rd 

CSEFVL 6th - - - - 

CSEFVLH - - - - - 

CSEFVLHTemp - - - - - 

CSEFVLR 5th - - - - 

CSEFVLRTemp - - - - - 



 405 

Discussion 406 

This study provides the first demonstration that siloed monitoring data can be integrated through 407 

a social-ecological network approach to assess ecosystem service dynamics. Despite inherent 408 

limitations in drawing from disparate monitoring systems, the models uncovered nuanced, 409 

species-specific dynamics. By applying the EESV framework to BC Pacific salmon fisheries, we 410 

recovered patterns in abundance, catch, and value across species and regions, and identified 411 

trade-offs between provisioning and cultural services. Critically, the modelling process served 412 

not only as an analytical tool but also as a diagnostic, revealing that current monitoring 413 

infrastructure is not yet capable of supporting integrated, mechanistic understanding of change.  414 

 415 

Ecosystem services dynamics in a coupled system 416 

Our analysis of EESVs revealed pronounced species- and region-specific dynamics. For 417 

example, Chinook and Sockeye showed higher abundance, catch, and value in the South, while 418 

they were higher in the North for Coho, a pattern also reflected in recreational catch. These 419 

differences highlight how each species contributes distinctly to provisioning and cultural 420 

ecosystem services in the province, consistent with the portfolio effect established in Pacific 421 

salmon (Schindler et al., 2010). This effect, shaped by species and location diversity (Griffiths et 422 

al., 2014), underpins the sustainability of salmon-derived services (Moore, Connors and 423 

Hodgson, 2021) and suggests that they are not uniform but should be understood as a bundle of 424 

services with varying dynamics (Raudsepp-Hearne, Peterson and Bennett, 2010). The need for 425 

CSEFVLRStp 4th 4th - - 6th 

CSEFVLRStpH - - - - - 



different model structures across species further supports this, underscoring that effective 426 

management must be tailored to the unique social-ecological context of each species. While 427 

current policy treats spawning stocks as distinct conservation units (DFO, 2018; Grant, 428 

MacDonald and Winston, 2019), the continued use of mixed-stock fisheries creates a disconnect 429 

between conservation and resource management that must be addressed. 430 

A consistent pattern across species was the decline in commercial fishing effort, 431 

particularly in Northern regions. In contrast, the decline was less pronounced in the South, where 432 

most of BC’s population resides and where multiple conservation units, especially for Chinook 433 

and Sockeye, are in decline or at risk (Price et al., 2017). The more recent drop in effort in the 434 

South may reflect increased urgency to act through temporary fishery closures. Notably, there 435 

was no similar decline in recreational effort, and recreational catch levels remained comparable 436 

to commercial catch across regions. This highlights a disconnect in current management, which 437 

has focused on commercial fisheries while overlooking recreational pressures. Making these 438 

opposing pressures visible is a direct result of the social-ecological network approach, which 439 

models the system as a whole rather than assessing each fishery in isolation. 440 

Our analysis also revealed apparent competition between the provisioning and cultural 441 

ecosystem services derived from Pacific salmon. While both fisheries draw on the same 442 

ecological supply, they differ in beneficiaries, use, and anthropogenic contribution, resulting in 443 

opposing harvest rates, particularly for Chinook, a highly prized target for anglers known as 444 

“king salmon”. These dynamics align with federal policy that prioritizes access first to 445 

Indigenous Peoples, then recreational, and finally commercial fishers. This highlights the 446 

importance of analysing connected ecosystem services together, as single-service assessments 447 

risk missing such interactions (Renard, Rhemtulla and Bennett, 2015; Meacham et al., 2022). 448 



Effective monitoring must therefore account for the interplay among services to inform 449 

sustainable management. 450 

 451 

The anatomy of a siloed system: lessons from the data 452 

A significant barrier to the advancement of monitoring ecosystem services is the challenge of 453 

integrating ecological, social and economic data (Bennett et al., 2015). These disciplines have 454 

historically worked independently, focused on each element of the system in isolation. Our 455 

analysis of social and ecological systems as interdependent and tightly coupled, supported by 456 

EESVs, has the potential to tackle this challenge even for cases where the data is not intended for 457 

that purpose. 458 

 Using EESVs and some defensible assumptions, we were able to handle the spatial 459 

mismatch in data collection efforts to conduct our analysis. For example, we assumed that catch 460 

numbers would be spread evenly between spawning stocks although some stocks may be more 461 

targeted than others due to run timing, random chance or population-specific migration strategies 462 

(Byron and Burke, 2014). Similarly, we assigned value, to the respective proportion of catch 463 

each year, assuming that there are no differences between regions that could lead to the price per 464 

fish changing. This is unlikely, as port proximity and ease of access likely affect the price of fish 465 

in more remote regions. Additionally, no age structure of spawners is available in Canadian 466 

datasets, although it is important information for mechanistic models of salmon (Fleischman et 467 

al., 2013). Finally, we used an average for sea surface temperature when spawning river 468 

temperatures or more specific locations for sea surface temperature would likely be more 469 

relevant. Such data are accessible from remote sensing organisations, but no effort has been 470 

made to systematically relate the information on temperature to spawner counts. While violation 471 



of some of these assumptions may be linked to convergence issues (e.g. temperature) or poor 472 

model fit (e.g. value), several models converged, fit, and had good explanatory power, 473 

suggesting that they were appropriate in representing the network for those species. Thus, even 474 

with imperfect data, integrated social-ecological network modelling can yield valuable insights 475 

and highlight where future improvements are needed to target the most limiting data gaps. 476 

The large uncertainty estimates from our models are not a methodological limitation, but 477 

rather a direct and quantifiable reflection of known data quality issues within the monitoring 478 

programmes themselves. These challenges include historical funding cuts leading to data gaps 479 

for specific species and locations, and the fact that the recreational catch program (Internet 480 

Recreational Effort and Catch – iREC) only began in 2012. Furthermore, monitoring 481 

programmes themselves make simplifying assumptions to report estimates. iREC extrapolates 482 

estimates from voluntary self-reported data with historically low completion rates (30-50%). 483 

While our state-space model was chosen specifically to handle such issues, its higher uncertainty 484 

in those years is an honest reflection of decreased confidence, a finding consistent with external 485 

reports of declining data reliability since 2014 (Atkinson et al., 2024). Therefore, rather than 486 

simply limiting management potential, this quantified uncertainty is essential information. It 487 

provides an evidence-based case for where monitoring investments are most critically needed 488 

and highlights the specific ecosystem components where management decisions are currently 489 

being made with the greatest risk. 490 

 491 

A diagnostic tool for monitoring systems 492 

The performance of the models served as a diagnostic of the limitations of the monitoring 493 

programme. Widespread issues with model convergence and fit were not random failures as they 494 



consistently occurred when the analysis incorporated key external drivers or specific governance 495 

mechanisms. The importance of external drivers in ecosystem service dynamics is well 496 

established (Dade et al., 2019). Yet, those models that did include such drivers failed to 497 

converge, suggesting that the current monitoring data is insufficient to confidently attribute 498 

changes in salmon populations to their purported drivers in the network. Moreover, no models 499 

converged for Pink salmon. Pink salmon are the only species with a fixed two-year spawning 500 

cycle and are therefore typically modelled as even or odd populations (Pacific Salmon 501 

Foundation, 2024). Our models do reflect this cycle, but it is possible that modelling the species 502 

as a single ecosystem service, mixing data for both odd and even populations, fundamentally 503 

misspecifies the real relationships, suggesting that Pink salmon management should not treat this 504 

species in a monolithic manner but rather as it would two different species. 505 

Additionally, the high uncertainty in many parameter estimates, even in converged 506 

models, is a direct consequence of monitoring programmes not designed for this type of 507 

integrated analysis. We were unable to confidently state that some Chum salmon populations are 508 

in decline. However, work done by the Pacific Salmon Foundation reveals that all eight Chum 509 

conservation units in the Skeena and HG regions are in long-term decline (Pacific Salmon 510 

Foundation, 2024). Moreover, they report that the data on these populations is of medium to low 511 

quality. This corroborates our findings and indicates that the model did recover the correct 512 

trends. Additionally, the model including recreational catch fit best for Coho and Chinook 513 

salmon. These species are prized fish for anglers who tend to focus their efforts on them. Our 514 

social-ecological network models recovered this fact by excluding recreational catch for Chum 515 

and Sockeye. Thus, monitoring ecosystem services in social-ecological networks holds promise 516 

in supporting the detection and attribution of change. 517 



Another key diagnostic is the ineffectiveness of our approach at accounting for 518 

governance rules. Including license controls resulted in a poorer fit for all models. This suggests 519 

our mechanistic assumptions about how fishers respond to regulations do not capture the 520 

complex socio-economic realities that drive participation in the fishery. Better connecting 521 

governance to ecosystem service dynamics is important for management (Barfuss et al., 2018), 522 

especially if licensing is used as the primary tool to control the fisheries. More complex 523 

alternatives include the use of decision-based models to set harvest strategies (Barfuss et al., 524 

2017) or additional rules to control fishing effort. These models have the potential to represent 525 

socio-cultural dynamics and their effects on different dimensions of ecosystem services (Metzger 526 

et al., 2021). This is particularly relevant in the context of interacting ecosystem services where 527 

different actors benefit or not as they compete, which we found to be the case for Pacific salmon. 528 

Thus, monitoring programmes aimed at supporting management must more effectively measure 529 

and account for the role of human behaviour in the social-ecological network.  530 

 531 

Rethinking ecosystem services monitoring 532 

If monitoring systems are to enable the detection and attribution of change, it is crucial that 533 

resources be redirected to transform siloed monitoring programmes into holistic monitoring 534 

systems that can operate across scales and disciplines (Gonzalez et al., 2023; Vári, Gonzalez and 535 

Bennett, 2025). Our results show that modelling social-ecological networks using EESVs 536 

provides the conceptual framing for this in the case of ecosystem services, but questions remain. 537 

Including relational values in ecosystem service monitoring is a particular challenge, as 538 

these are rarely measured (Schulz and Martin-Ortega, 2018). We did not include Indigenous 539 

people in the social-ecological network, although they are a key contributor to the sustainable 540 



management of Pacific salmon (Atlas et al., 2021). Indeed, BC First Nations are already actively 541 

involved in monitoring salmon (Steel et al., 2021) and efforts must be made to include them in 542 

the redesign of connected monitoring systems for ecosystem services. Additionally, it is possible 543 

that species of lesser economic value are being more poorly monitored as they do not reflect the 544 

information needs of the industry (Atkinson et al., 2024), pointing out blind spots in the ability to 545 

manage ecosystem services through a narrow focus on economic valuation, to the detriment of 546 

other value systems (Pascual et al., 2023). Alternative value systems are essential to recognise 547 

and consider, especially in the case of salmon where other cultural services embodied by 548 

important relational values play a central role for some actors (Himes et al., 2024).  549 

Moreover, ecosystem service monitoring systems must recognise that social-ecological 550 

networks are open systems. Here, we defined the boundaries of our system within BC. However, 551 

salmon are a highly migratory species and many populations swim through US waters, 552 

contributing to ecosystem services on the other side of the border and affecting ecological supply 553 

estimates. Salmon are also part of complex food webs and ecosystem-based modelling has 554 

proven effective in understanding fisheries (Geary et al., 2020). Additionally, international 555 

markets can have telecoupling effects (Liu, Yang and Li, 2016) on salmon prices and drive 556 

dynamics of ecosystem service value in a way not captured by the current model. Using EESVs 557 

whilst considering the role of key internal and external drivers of the system (Schwantes et al., 558 

2024, 2025), would helps focus resources on those key variables to monitor within the social-559 

ecological network. 560 

Therefore, our findings serve as a powerful argument for the redesign of monitoring 561 

systems for ecosystem services. An effective system must be built on the principles of social-562 

ecological networks, where social, economic, and ecological variables are monitored in a 563 



coordinated manner across relevant scales by and for all actors. Taking this approach requires 564 

fundamentally rethinking the role and function of monitoring systems. It means moving beyond 565 

insular agency mandates towards an integrated system designed to understand the links between 566 

ecosystem components and human activities, relying on monitoring standards such as EESVs. In 567 

practice, this would involve co-locating social and ecological data collection in space and time 568 

and ensuring data streams are designed from the outset to be interoperable. Adopting such a 569 

framework would allow for the confident attribution of change to specific drivers, empowering 570 

management efforts. 571 

 572 

Conclusion 573 

This study demonstrates both the promise and the remaining needs and challenges of monitoring 574 

ecosystem services. By applying a social-ecological network framework with EESVs, we 575 

successfully uncovered nuanced, interacting dynamics between species and fishery sectors that 576 

would be invisible to traditional, siloed approaches. However, our analysis also serves as a 577 

critical diagnostic, revealing that the fragmented and uncoordinated monitoring systems 578 

currently in place, even for highly monitored and valued ecosystem services in developed 579 

countries, are fundamentally ill-equipped to handle the complexity of ecosystem services. 580 

Without a deliberate and funded redesign of monitoring to explicitly capture the interconnected 581 

nature of people and nature, our ability to deliver on the ambitious goals of the Global 582 

Biodiversity Framework will be severely compromised, leaving the future of vital ecosystem 583 

services, like those provided by wild Pacific salmon, to chance. 584 
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