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Abstract 
We present a contemporary high-quality, complete de novo assembly of Wolbachia pipientis 
(wRi Merrill 23, CP199298), an alphaproteobacterial endosymbiont of Drosophila simulans. This 
assembly was generated using long read sequencing of wRi-infected D. simulans embryos 
collected from the Merrill College at the University of California, Santa Cruz in October 2023. 
 
Wolbachia pipientis infects diverse arthropods and nematodes, manipulating host phenotypes 
through cytoplasmic incompatibility (CI), male killing, and fertility rescue [1,2]. The Riverside 
strain (wRi) was first identified in California Drosophila simulans in the 1980s [3] and rapidly 
spread statewide due to exceptionally strong CI [4]. Despite its significance in shaping D. 
simulans populations [5], a modern wRi genome has not been assembled and the existing 
reference genome reflects the wRi present in 1984 [3,6]. Here, we present a complete de novo 
wRi genome assembly from contemporary D. simulans collected at the UC Santa Cruz Alan 
Chadwick Garden, located in Merrill College, in October 2023 (CP199298), providing an 
updated reference for future studies. 
 
To generate a contemporary wRi genome assembly, we collected wild D. simulans flies, 
established isofemale lines, and performed long-read DNA sequencing of wRi-infected 
embryos. We established isofemale lines by deploying banana-baited bottles for ~5 days and 
collecting gravid females onto white food medium. After offspring eclosed, species identity was 
confirmed by phenotyping males and by PCR using silf-F/R primers to distinguish D. simulans 
from D. melanogaster [7] and wsp_1F/592R primers to confirm wRi identity [8]. We extracted 
DNA from wRi-infected embryos using the Wizard HMW DNA Extraction Kit (Promega #A2920, 
Lot: 0000575812) and prepared libraries with the Native Barcoding Kit V14 (SQK-NBD114-24, 
Lot: NDP1424.10.0010). We sequenced these libraries on the Nanopore MinION Mk1B with a 
R10 version flow cell (FLO-MIN-114, Lot: 11004365) and MinKNOW v23.07.8 with adaptive 
sampling (fast model) to deplete D. simulans reads (GCF_016746395.2), yielding 5.4M reads 
after 20 hours that were subsequently basecalled with Dorado (v0.7.3, hac model). After filtering 
for host-free reads >3kb, we assembled the wRi genome using Flye [9] following Jacobs and 
Nakamoto et al. (2024) [10], yielding a 1.26 Mb circular assembly with 30x coverage.  
 
To polish the assembly, we generated Illumina short-read whole-genome sequencing data from 
whole wRi-infected D. simulans flies (Merrill 23 stocks). Illumina libraries were prepared using 
the Tn5 protocol [11] and sequenced on a NovaSeqX Plus. We polished the assembly with 
Pilon [12] v1.24 using short reads following Jacobs and Nakamoto et al. (2024). We assessed 
the quality of the polished assembly with BUSCO [13] (v5.7.0, rickettsiales_odb10), which 
achieved a completeness score of 99.2%, annotated the assembly with Prokka [14] (v1.1.1, 
kingdom:bacteria) to identify coding sequences (CDS), tRNAs, rRNAs, and ncRNA (Table 1) 
and calculated and visualized GC content and GC skew with Proksee [15] v1.1.2 (Figure 1). 
Default parameters were used unless otherwise specified.  
 
Raw sequencing reads and the assembled genome are available under BioProject accession 
number PRJNA1312834. Analysis scripts are available at 
https://github.com/jodiejacobs/Jacobs_et_al_2026_de_novo_wRi_merrill_23_assembly. 
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Figure 1. Wolbachia wRi genome map. Concentric circles show (outer to inner): rRNA genes 
(red), tRNA genes (red), coding sequences (orange), GC skew (green/yellow for high/low), and 
GC content (blue), with GC metrics plotted as deviations from genome-wide average. 
 

wRi Merrill Annotation summary 

Annotation pipeline  Prokka v1.1.1 

Annotation method  kingdom:bacteria 

Length (bp)  1,259,726 

GC Content  35.22% 



 

 

Genes (total)  1,283 

CDSs (total)  1,246 

Genes (RNA) 37 

rRNAs 1, 1, 1 (5S, 16S, 23S) 

tRNAs 34 

ncRNAs 0 

Pseudogenes (total)  3 

 
Table 1. Annotation summary statistics. 
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