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 25 

Abstract 26 

Forecasting zoonotic mosquito-borne viruses remains a critical challenge because 27 

transmission depends on dynamic, multitrophic interactions among vectors, hosts, 28 

pathogens, and the environment. Here, we integrate long-term sentinel chicken surveillance 29 



across much of Florida with environmental data to build a predictive framework for eastern 30 

equine encephalitis virus (EEEV), a zoonotic mosquito borne disease of concern to human 31 

and equine health. Our models captured both environmental drivers and latent 32 

spatiotemporal structure, achieving strong predictive accuracy. Models revealed strong 33 

nonlinear effects of moderate precipitation a year prior to sampling and higher minimum 34 

temperature 1 month prior to sampling, as well as moderate and high percentages of forest 35 

and wetland cover on increased EEEV seroconversion. Retrospective predictions showed 36 

shifting virus activity across regions, consistent with Culiseta melanura mosquito vector 37 

ecology. We also calculated associations between EEEV and abundance estimates for key 38 

bird species that are suspected virus hosts using eBird data. Seasonal shifts among 39 

migratory and resident birds with predicted virus activity for key species suspected of being 40 

important EEEV hosts suggests spring migrants play a role in amplification, residents in 41 

summer persistence, and overwintering groups as potential reservoirs. These results 42 

demonstrate ecological forecasting of arboviruses is feasible at management-relevant 43 

scales, with broad potential to extend to other arbovirus systems. By integrating traditional 44 

surveillance with community science, our framework advances both predictive capacity and 45 

ecological understanding of zoonotic arboviruses.  46 



Zoonotic mosquito-borne diseases pose a major global health threat, with capacity to rapidly 47 

spread to new areas (1). Transmission in these systems is the result of multitrophic 48 

interactions among hosts, vectors, and pathogens, shaped by both intrinsic factors (e.g., 49 

demographics, vector competence) and extrinsic environmental conditions (e.g., climate, 50 

habitat, and biotic interactions) (2, 3). In vector-borne diseases (VBDs) maintained between 51 

avian hosts and mosquito vectors, host movement and migration, seasonal phenology of 52 

mosquito populations, and their overlap determine pathogen maintenance, amplification, and 53 

spillover (4). These systems often include multiple hosts and vectors, and anticipating and 54 

predicting transmission risks to humans remains a wicked problem impacting disease 55 

prevention (5–7). Rather than proactively assessing where risks might be highest, most 56 

disease prevention efforts are reactive, attempting to mitigate outbreaks already in progress 57 

(8, 9). Because disease system components are difficult to measure fully across space and 58 

time, developing predictive capacity requires intensive monitoring and modeling frameworks 59 

that can integrate and harmonize data from multiple sources, while capturing the 60 

spatiotemporal structure of unobserved processes driving virus activity (10). Such an 61 

integrated approach allows incorporation of new data streams while maintaining the potential 62 

to scale prediction and forecasting across broader areas.  63 

Eastern equine encephalitis virus (EEEV; Alphavirus, Togaviridae) is a zoonotic 64 

mosquito borne disease system maintained in an enzootic transmission cycle between the 65 

primary mosquito vector, Culiseta melanura, and multiple avian host species with occasional 66 

spillover transmission to humans and horses (11) (12–15). EEEV in humans is relatively 67 

uncommon, but consequences can be severe, including long lasting neurological problems, 68 

and EEEV has the highest mortality rate of any arbovirus in the U.S. at ~30% in those 69 

developing neuroinvasive disease (16, 17). The virus has a broad geographic distribution 70 

spanning eastern North America, the Caribbean, Central America, and portions of South 71 

America (18–20) with some distributional overlap with closely related Madariaga virus in 72 

South and Central America, which primarily causes disease in equines (21). In the northern 73 

part of its distribution, the virus continues to expand its range (13), leading to its designation 74 



as an emerging infectious disease, as well as a select agent due to its potential use as a 75 

bioweapon (22). Despite the growing frequency and intensity of EEEV outbreaks (13), 76 

anticipating the distribution and dynamics of EEEV activity remains a persistent challenge, 77 

and the ability to proactively forecast risk is non-existent.  78 

In Florida, EEEV is enzootic with seasonal spillover to equines, and occasional cases 79 

in humans and other animals, including emus (23). Peninsular Florida, in particular, may 80 

impact EEEV transmission ecology more broadly, given that it is part of a major 81 

intercontinental migratory bird flyway with extensive stopover habitats, which could serve as 82 

an important source of virus dispersal (23, 24). To monitor for EEEV, the Florida Department 83 

of Health (FDOH), in partnership with mosquito control programs, maintains one of the 84 

longest-running arbovirus surveillance programs in the U.S., monitoring sentinel chickens 85 

across hundreds of coops statewide (25). This spatially extensive, long-term dataset 86 

provides a data basis for integrating long-term surveillance with biotic and abiotic information 87 

to predict virus activity and transmission hazard. Building a more predictive framework will 88 

not only strengthen early warning systems, but also deepen fundamental insights into 89 

multitrophic disease dynamics and enhance ability to proactively forecast zoonotic vector-90 

borne disease risk. 91 

Our approach in this work leverages new advances in spatiotemporal modeling that 92 

can capture both measured environmental correlations and spatiotemporal structure in 93 

unmeasured variables to improve model predictions (26, 27). Beyond improved prediction, 94 

model outputs may reveal patterns that can be compared with complementary data streams, 95 

including community science observations (i.e. eBird), to correlate suspected host dynamics 96 

with patterns of virus activity. These factors are particularly relevant for EEEV where long- 97 

standing questions about avian host migration and overwintering dynamics in Florida and 98 

their connection to the broader spatiotemporal ecology of the system remain unresolved 99 

(23). 100 

 Here we: 1) develop spatiotemporal predictive models of monthly EEEV sentinel 101 

chicken seroconversion across Florida between 2005 and 2019 and 2) examine correlations 102 



between estimated values of avian abundances from community science eBird data and 103 

predicted EEEV activity between 2005 and 2019 for 12 resident and migratory species that 104 

are suspected avian hosts. Although primarily interested in predicting virus activity with 105 

statistical tools, our multitrophic approach brings needed realism about host distributions and 106 

abundances, which are most often unmeasured, particularly at this scale. We expect higher 107 

seroconversion rates at locations surrounded by greater forest and wetland areas, given 108 

known habitat preferences of Culiseta melanura, and we also expect greater seroconversion 109 

with higher lagged precipitation values based on previous studies in the northeastern U.S. 110 

We also expect lower seroconversion with very high temperatures based on models of West 111 

Nile virus in Florida (10). Finally, we expect greater abundances of spring migratory avian 112 

hosts preceding elevated predictions of EEEV seroconversion by 2 - 3 months, while 113 

resident species will show peak correlations with predicted seroconversion during the 114 

breeding summer season. Lastly, we expect Fall migrants and overwintering species will 115 

show strong contemporaneous associations over the winter as possible reservoirs of the 116 

virus. 117 

 118 

Results 119 

Initial model results: We compiled and analyzed Florida Department of Health EEEV sentinel 120 

chicken seroconversion surveillance data spanning two decades, developed spatiotemporal 121 

models to predict transmission hazard across Florida's diverse landscapes and identified 122 

associations between estimated avian abundances and phenology and predicted virus 123 

activity. We start first with our abiotic-focused models. After systematically removing 124 

collinear variables evaluated using variance inflation factors (VIF > 5), and performing a 125 

stepwise backward selection, our final model incorporated 8 key abiotic predictors: lagged 126 

cumulative precipitation (1, 5, and 12 months), lagged maximum temperature (6 and 12 127 

months), minimum temperature (1 month), and percentage forest and wetland land cover 128 

(Table 1). 129 

 130 



Table 1: Description of the predictor variables used to model spatiotemporal EEEV 131 

seroconversion proportions in the state of Florida (USA). Terms included in this table result 132 

from a model selection and variable reduction procedure using spatial models (see 133 

methods). Descriptions and parameterization details are provided for each variable. 134 

 135 

Effect Term Description Variable 

type 

Parameterization 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fixed 

prcp_lag1 Cumulative precipitation 

(1 mo. lag) 

Continuous 2nd order orthogonal 

polynomial 

prcp_lag5 Cumulative precipitation 

(5 mo. lag) 

Continuous 2nd order orthogonal 

polynomial 

prcp_lag12 Cumulative precipitation 

(12 mo. lag) 

Continuous 2nd order orthogonal 

polynomial 

tmax_lag6 Max temperature (6 mo. 

lag) 

Continuous 2nd order orthogonal 

polynomial 

tmax_lag12 Max temperature (12 

mo. lag) 

Continuous 2nd order orthogonal 

polynomial 

tmin_lag1 Min temperature (1 mo. 

lag) 

Continuous 2nd order orthogonal 

polynomial 

forest Proportion forest cover Continuous 2nd order orthogonal 

polynomial 

wetlands Proportion wetlands Continuous 2nd order orthogonal 

polynomial 

 

 

county County name 39-level 

factor 

Intercept nested above 

site_id 



Random site_id Monitoring site name 476-level 

factor 

Intercept nested below 

county 

 136 

The spatiotemporal framework incorporating GMRFs substantially outperformed all 137 

alternative model formulations. This model showed strong temporal autocorrelation (AR1 ρ = 138 

0.73), with spatial correlation extending to 82.28 km (Matérn range), and substantial 139 

spatiotemporal variability (marginal SD = 1.75), indicating spatiotemporal structure in EEEV 140 

seroprevalence beyond that explained by covariates. The best GMRF model explained 141 

37.7% of deviance with an AIC of 6164.1, compared to 29.9% and an AIC of 6920.7 for the 142 

best performing non-spatial model (Table S1.1).  143 

 144 

Model validation:  We withheld the last 2 years of surveillance data (2018-2019) for model 145 

validation. That validation showed strong predictive performance accurately capturing the 146 

magnitude and timing of EEEV activity (overall RMSE = 0.007457; Table S1.2) in both out 147 

years. Errors remained low across months (1.88×10⁻⁵ to 0.015352), with predictions 148 

consistently within empirical confidence intervals across most months (Figure 1). 149 

Performance was slightly better in 2019 (RMSE = 0.007241) than in 2018 (0.007668), but 150 

both out years demonstrated potential for operational forecasting.  151 

 152 



 153 
Figure 1: Temporal trends of EEEV seroprevalence in Florida (2005–2019) from empirical 154 

data aggregated at the monthly level (orange = training, red = testing) and model predictions 155 

(blue). The model was trained on 2005–2017 data and evaluated using 2018–2019 out-of-156 

sample predictions (dotted vertical line). Model predictions are presented as point estimates 157 

(blue line) and 50, 80, 90, and 95 % confidence intervals (opaque blue ribbons). 158 

 159 

 160 

Environmental determinants of and spatiotemporal trends in EEEV activity: Environmental 161 

response curves (Figure 2) revealed complex, non-linear relationships with virus activity. The 162 

model identified strong precipitation effects, with intermediate prior-year rainfall (12-month 163 

lag) predicting elevated seroconversion. Moderate forest cover was the strongest landscape 164 

predictor, showing positive effects that decreased at higher coverage, while wetlands also 165 

had strong positive associations and plateaued at highest coverage, which are both 166 

consistent with known EEEV vector and host ecology (13, 28). For the full set of predictors 167 

and parameter estimates see Table S1.3. Parallel analyses conducted on the second 168 

candidate model set yielded qualitatively similar results, with detailed results provided in 169 

Supplementary Materials (Table S1.4).  170 



 171 

Figure 2: Marginal response plots of predicted Eastern Equine Encephalitis Virus (EEEV) 172 

seroprevalence from a spatiotemporal model of Florida sentinel chicken surveillance (2005–173 

2019) aggregated at the monthly-level. Environmental covariates were measured 174 

contemporaneously or with 1-, 5-, 6-, or 12-month lags, as indicated by variable names. 175 

 176 

Statewide retrospective predictions revealed distinct temporal patterns in EEEV transmission 177 

dynamics over the study period in Florida (Figure 3), with peak statewide activity in 2005, 178 

spanning the Panhandle, Gulf Coast, and north-central regions. Predicted virus activity 179 

declined through 2007 before increasing from 2008-2010. A second decline during 2011-180 

2012 was followed by renewed increases from 2013-2015, with activity shifting toward 181 

central Florida. Monthly predictions provided finer resolution insights into seasonal patterns, 182 

revealing summer transmission peaks from June through August alongside persistent low-183 



level activity year-round (Figure S1.1). The model's highest predicted virus activity occurred 184 

during June 2005 across the Gulf Coast and extensive areas of central and north-central 185 

Florida. Prediction uncertainty was greatest in regions with sparse sentinel chicken 186 

surveillance coverage and mean seroprevalence was predicted highest along forested 187 

wetland areas across the Panhandle and northern Florida (Figure S1.2). 188 

 189 

 190 
Figure 3: Statewide predictions of EEEV seroprevalence from Florida sentinel chicken 191 

surveillance system aggregated to year from 2005 - 2019 and monthly predictions for 2005 192 



and 2010 All predictions are provided with a quantile truncation for ease of visualization at 193 

the 98th percentile of values. 194 

 195 

 196 

Associations of viral activity with migratory and resident birds: Associational analyses 197 

between predicted seroconversion rates and abundances of suspected avian hosts revealed 198 

marked seasonal patterns across the avian community, in directions expected by migratory 199 

status. Spring migrants showed particularly strong associations with predictions of elevated 200 

transmission hazard, led by the Red-eyed Vireo (r = 0.58, July across a 3-month lag, Figure 201 

4). Year-round residents exhibited varied responses, with Pine Warbler showing peak 202 

associations with EEEV seropositive rates during spring breeding season (r = 0.58, May) 203 

while Northern Cardinal peaked during summer months (r = 0.36, July). Common 204 

Yellowthroat, another resident species, demonstrated moderate spring associations (r = 205 

0.38, May), suggesting shared seasonal patterns among certain resident taxa (Figure S1.3). 206 

Winter migrants presented a more complex picture, with American Robin showing strong 207 

late-season correlations (r = 0.57, November) and Yellow-rumped Warbler peaking in 208 

December (r = 0.45). Notably, several species exhibited negative or very weak correlations 209 

with predicted virus activity, including Green Heron (r = -0.37, August), Black-crowned Night 210 

Heron (r = -0.31, July), and Wood Thrush (r = -0.12, December across a 3-month lag). 211 



 212 

 213 

 214 

Figure 4: Monthly pixelwise Pearson correlations (y-axis) between predicted EEEV 215 

seroprevalence (2005–2019) and bird abundance across seasons (x-axis) for three species 216 

with the strongest associations (r ~ 0.60). Monthly predicted seroconversion was averaged 217 

across years, and eBird Status and Trends data provided monthly species-specific relative 218 

abundance for a “typical year”. For resident species, we assessed contemporaneous 219 

correlations; for migratory species, we also calculated 1–3 month lags to observe potential 220 

delays in virus amplification. Correlations for all 12 species are shown in Figure S1.3. 221 

 222 

Discussion 223 

Here we demonstrate the capacity to forecast near-term EEEV activity across a regional 224 

scale, while more fully accounting for abiotic and biotic factors underlying transmission 225 

dynamics. This step forward is enabled by integrating four separate key elements: 1) A 226 

broadly sampled multi-site, multi-year time-series of EEEV activity measured across most of 227 

Florida; 2) A set of statistical models that can appropriately account for spatiotemporal 228 

structure in unmeasured variables, thus providing needed information about lag effects that 229 

underlie effective near term forecasting; 3) Knowledge of the habitat preferences of the main 230 

vector species that transmit EEEV that can be incorporated into models; 4) Knowledge of the 231 

key bird species that likely serve as EEEV hosts, whose relative abundances are now 232 

available at scale through harmonized citizen science data collected by an avid volunteer 233 



birding community. We bring all these resources and advancements into one framework that 234 

showcases underlying processes and the capacity to build operational forecasts of 235 

transmission hazard, and we establish a foundation to further examine both migratory and 236 

resident host species in disease dynamics across this broadscale system. 237 

 238 

Landscape and climate determinants of viral activity: As expected, moderate forest cover 239 

and extensive wetlands were strongly associated with elevated seroconversion, consistent 240 

with the known hardwood swamp habitat of Culiseta melanura vectors (28) and patterns 241 

reported for equine cases and other landscape studies in Florida and Connecticut (28–32). 242 

This finding further underscores forest and wetland as important habitats in the EEEV 243 

system, linking mosquito habitat preferences with virus activity. As well, these findings have 244 

potential implications for human exposure through ongoing development, as well as 245 

restoration efforts, which have been suggested in EEEV emergence in the northeastern U.S. 246 

(33). Consistent findings of these landscape predictors across disparate regions highlights 247 

their potential to scale beyond regional study areas and generalize across the full 248 

geographic range of EEEV. This finding is in sharp contrast to West Nile virus, another 249 

mosquito vector and avian host system, where consistent landscape predictors have 250 

remained elusive in Florida and other regions (10, 31, 34, 35). This work points to the 251 

potential for targeted mosquito abatement and control activities near forest and wetland 252 

habitats as a means to reduce disease risk.  253 

We also found elevated seroconversion was associated with mild minimum 254 

temperatures 1 month prior to sampling and intermediate precipitation levels 12 months prior 255 

to sampling. Warmer minimum temperatures in the time period immediately preceding 256 

seroconversion likely promotes increased mosquito survival and activity, which may sustain 257 

virus circulation and enhance transmission in the active season (3, 36) because mosquito 258 

development, metabolism, and viral replication all accelerate with warmer, but not extreme, 259 

temperatures. Intermediate levels of precipitation 12 months prior to sampling can also 260 

impact mosquito abundance and survival needed to maintain virus circulation during the 261 



following winter or spring months. Although (28) found that extremely wet hydrological 262 

conditions 8 months prior to the EEEV season was associated with a greater number of 263 

positive mosquito pools in the northeastern U.S., extreme precipitation can also result in 264 

larval and egg flushing of mosquitoes (37) and too dry conditions can reduce overall habitat 265 

availability, and impact mosquito activity, survival, and abundances (38).  266 

Overall, climate variables at distinct time scales, combined with landscape data, offer 267 

complementary pathways for anticipating and ultimately forecasting elevated EEEV activity.   268 

We show here that predictions for out years generally match the magnitude and timing of 269 

EEEV activity for hold out data. Of particular note is the ability of these models to 270 

performantly predict EEEV based on calibration and validation data, despite a relatively low 271 

seroconversion rate. A 12-month precipitation lag provides long lead times to guide strategic 272 

planning and resource allocation, while contemporaneous minimum temperature aligns with 273 

the short-term horizons of existing climate forecasts to refine local response. Together, these 274 

predictors bridge seasonal to near-real-time scales, creating a foundation for operational 275 

early-warning systems that can target surveillance and control across high-risk habitats.   276 

   277 

Retrospective predictions  278 

Retrospective monthly predictions and annual summaries of EEEV activity provide a 279 

comprehensive view across the state and provided the first tool to observe dynamic 280 

distributions of this system in this region. A key time period of elevated EEEV activity was in 281 

2005 when 50 counties reported virus activity, including 5 human cases and 3 deaths (39). 282 

Our models predicted elevated EEEV activity in June, July, and August 2005 in Gadsden 283 

and Leon Counties in the Florida Panhandle, in Suwannee County in north central Florida, 284 

as well as Pasco County in central Florida, where human cases occurred in July and August 285 

(39). Additional retrospective predictions demonstrate variation in monthly spatiotemporal 286 

dynamics of virus activity across the state (Figure S1.1). Outputs have the potential to 287 

provide new insights into the ecology of disease system dynamics, including the role of early 288 



season transmission in later season amplification and how predicted virus activity links to 289 

downstream human and equine transmission risk. 290 

  291 

A framework for integrating host dynamics and for process-oriented forecasts 292 

A second element of our framework was integrating eBird community science data to 293 

explore associations between avian phenology and abundances and predicted EEEV 294 

seroconversion. The results reveal striking seasonal patterns that align with hypothesized 295 

host roles where spring migrants may introduce or amplify low-level circulation, resident 296 

species appear to sustain summer transmission, and overwintering migrants may maintain 297 

virus activity during cooler months (23). Red-eyed Vireos, which arrive in March, and to a 298 

lesser extent early season Hermit Thrush, were both correlated with peak transmission in 299 

May–July, consistent with the possibility of low level early season amplification followed by 300 

amplification during the breeding season. Pine Warbler and other resident songbirds showed 301 

positive correlations only during the breeding season, supporting their suspected role as 302 

amplifying hosts. Strong correlations between American Robins and predicted EEEV activity 303 

in fall and winter were also consistent with their implication as important hosts (40). Eastern 304 

Phoebe and Yellow-rumped Warbler showed weaker but similar patterns, suggesting a 305 

potential role in sustaining virus activity during the non-breeding season. By contrast, Wood 306 

Thrush showed unexpectedly weak correlations despite its prominence as a host of EEEV in 307 

northeastern systems (13, 41), and wading birds such as Green Heron and Black-crowned 308 

Night Heron exhibited weak negative correlations, raising the possibility of dilution effects, 309 

though their host competence remains unknown. Overall, the alignment between migration 310 

phenology, abundances, and correlation peaks show compelling patterns supporting avian 311 

movement in shaping EEEV landscape-scale dynamics. These species-specific patterns 312 

highlight the promise of integrating community science with traditional surveillance to better 313 

disentangle host contributions and strengthen early-warning systems for zoonotic 314 

arboviruses. Still, much needs to be done to better integrate bird abundance data into 315 

modeling frameworks, as we discuss below. 316 



 317 

Caveats, Conclusions and Future Directions 318 

While our models and predictions are robust and the most comprehensive to date, we also 319 

recognize some key limitations and caveats. First, historical records of EEEV sentinel 320 

chickens indicate whether susceptible chickens were placed in coops in a mosquito program 321 

for the sampling week but do not indicate the exact number of birds within each coop. The 322 

sentinel chicken surveillance program follows a standardized protocol with ~6 chickens 323 

tested weekly per coop. However, this number can vary slightly, which may introduce some 324 

uncertainty in our weighting term. The number of chickens tested in each coop is now 325 

recorded electronically, and future analyses will benefit from this more precise number.  326 

A second key limitation that precluded a joint analysis of abiotic and biotic factors in 327 

the same predictive modeling framework was the nature of the eBird data we used. Briefly, 328 

eBird abundance data was available for only a single representative year. This limitation 329 

means that we could not account for interannual variation in bird abundance, and while it 330 

may be possible to back calculate a proxy for this from raw eBird datasets, it was out of 331 

scope of the intended effort here. Despite this challenge, eBird data representing both 332 

migratory and resident species of suspected hosts provided insights into key associations 333 

between the timing and distribution of avian species abundances and predicted EEEV.  334 

A next step is to expand this framework from retrospective predictions to forecasts of 335 

EEEV seroconversion and to incorporate eBird data and near-real-time and forecasted bird 336 

migration data from platforms such as BirdCast (42), which could provide additional 337 

information toward improving early-warning capacity. More broadly, linking avian movement, 338 

abundances, and phenology with virus activity creates a foundation for scalable ecological 339 

forecasting of mosquito–bird vector-borne disease systems in Florida and beyond. Emerging 340 

data streams from community science and cross-sector monitoring will allow forecasts to 341 

capture macroscale drivers of host and vector dynamics, while informing local-scale hazard 342 

assessments under accelerating global change. Essential to this effort is continued 343 

integration of biological and environmental data with modeling approaches that account for 344 



unmeasured latent variables, thereby improving the ability to predict when and where 345 

elevated transmission risk is most likely to occur. 346 

 347 

Materials and Methods 348 

 349 

Study Area 350 

 351 

Florida spans subtropical to tropical climates, characterized by year-round warmth and 352 

pronounced wet (May to October) and dry (November to April) seasons. The state has 353 

experienced significant environmental change, including rising minimum temperatures, 354 

altered precipitation (43), and ongoing land use transformation, primarily from natural to 355 

agricultural habitats and urban development (44). Additionally, the Florida peninsula is a 356 

critical stopover site for migratory bird species along the Atlantic flyway and also serves as 357 

an overwintering ground for numerous North American bird species (45). 358 

 359 

Sentinel Chicken Data and Preparation 360 

 361 

We utilized EEEV surveillance data from the Florida Department of Health's sentinel chicken 362 

monitoring program, which operates through partnerships with local mosquito control 363 

programs across the state (25). Following standardized protocols, alphavirus-susceptible 364 

chickens are housed at monitoring sites and sampled weekly throughout large portions of 365 

the year (25). Blood samples undergo initial screening with hemagglutination inhibition tests, 366 

followed by IgM enzyme-linked immunosorbent assays (ELISA) to identify antibody-positive 367 

samples. If ELISA results are negative or unequivocal, a Plaque Reduction Neutralization 368 

Test (PRNT) is performed to differentiate between EEEV and Highlands J virus. 369 

Following the approach outlined in (10), we created a bioinformatics pipeline to 370 

digitize and quality-control nearly two decades of surveillance records from 2001-2019. 371 

Paper reports were processed using Amazon Web Services Textract optical character 372 

recognition, then cleaned and formatted using R tidyverse functions (46) and OpenRefine 373 

software (47). Our initial dataset comprised 116,179 weekly records from 526 sites across 374 

42 counties. Data were then aggregated to monthly intervals and spatially filtered using a 375 



non-convex hull around sites with at least one EEEV detection, excluding sentinel sites in 376 

southern Florida where seroconversion was never recorded. Records prior to 2005 were 377 

removed due to diagnostic limitations between EEEV and Highlands J virus. For each coop, 378 

we calculated the monthly proportion of positive chickens, weighted by the number tested. 379 

Similar to (10) and general FDOH guidelines, we assumed six chickens were sampled per 380 

coop per week, though a gap is present in historical records reporting the exact number of 381 

chickens in individual coops each week, which may introduce some uncertainty in derived 382 

weights. The dataset was partitioned into training (2005–2017) and testing (2018–2019) 383 

subsets, yielding 84,719 monthly records from 476 sites in 39 counties, providing broad 384 

coverage of EEEV transmission across Florida.  385 

 386 

Environmental Variables 387 

 388 

We compiled climate and landscape covariates for each sentinel chicken site. Daymet daily 389 

precipitation and minimum and maximum temperatures from 2000 to 2020 at a 1-km² 390 

resolution (48) were downloaded using the ‘climateR’ R package (49). We then aggregated 391 

values to monthly means, before extracting values to site locations using available functions 392 

in the ‘terra’ and ‘sf’ R packages (50, 51). To identify temporal lags, we used cross-393 

correlation analyses between statewide monthly EEEV seroconversions and each monthly 394 

climate variable at a maximum of 12 monthly lags using the ‘forecast’ R package (52). 395 

Significant lags with coefficients exceeding ±0.2 identified 1-, 5-, and 12-month lags for 396 

precipitation and 1-, 6-, and 12-month lags for both temperature variables.  397 

Land use/land cover (LULC) data were extracted from 30-m² resolution National 398 

Land Cover Database data (i.e., 2001, 2004, 2006, 2008, 2011, 2016, 2019) (53) using the 399 

‘fedData’ R package (54). Land cover data was reclassified into five categories (i.e., 400 

developed, cropland, natural, forest, wetland), and then assigned to EEEV records by 401 

nearest year. We then calculated the proportion of each LULC type within 2.5-km² buffers 402 

around sentinel sites. For statewide predictions, we generated 1-km² environmental 403 

covariate grids by computing land cover proportions within 2.5-km² windows and prepared 404 



climate variables with corresponding temporal lags at the same 1-km² resolution. All 405 

environmental covariates were standardized using z-score normalization based on training 406 

data statistics (2005-2017), with scaling parameters applied consistently to testing data 407 

(2018-2019) to maintain temporal integrity. For statewide spatial predictions, environmental 408 

variables at 1-km² resolution were standardized using training data means and standard 409 

deviations.  410 

To assess multicollinearity between environmental predictors, we first calculated 411 

binomial generalized linear mixed effects models (GLMMs) with a complementary log-log 412 

(cloglog) link function with monthly proportions of EEEV seroconversion weighted by 413 

sampling effort as the response variable, landscape and lagged climate variables as 414 

predictor variables, and nested site-by-country random intercepts. Predictors were 415 

parameterized as second-order polynomials to capture non-linear responses. We then 416 

calculated variance inflation factors (VIFs) using a threshold >5 to identify candidate 417 

predictors sets, resulting in 2 candidate sets for subsequent analyses with differing levels of 418 

predictor variance inflation (Table S1.5). GLMMs were run in the ‘glmmTMB’ R package and 419 

VIFs were calculated using the ‘performance’ R package (55). 420 

Model Selection 421 

Our overall modeling framework used GLMMs (56) that explicitly account for spatiotemporal 422 

autocorrelation using Gaussian Markov random fields (GMRFs) (57) approximated using 423 

stochastic partial differential equations (SPDE) with Matérn covariance functions and a first 424 

order autoregressive (AR1) term (58, 59). For full model specification see Methods S.1. 425 

Models were implemented in the ‘sdmTMB’ R package, which combines utility from TMB and 426 

INLA (60).  427 

For computational efficiency, we first performed model selection using spatial 428 

binomial GLMMs without a temporal term, using a cloglog link, nested random intercepts for 429 

sites within each county, and corresponding environmental predictor variables. Model 430 

selection followed a backward stepwise approach, systematically removing predictors and 431 

retaining those whose removal most improved Akaike Information Criterion (AIC) scores 432 



(61). To construct spatial meshes required to calculate the SPDE, we followed the approach 433 

detailed in (62) using the ‘fmesher’ R package (63), using a coarse mesh with 250 vertices to 434 

balance model complexity with computational efficiency during the model selection process. 435 

We then systematically tested mesh resolutions from 250 to 1,000 vertices by adjusting 436 

cutoff parameters (i.e., minimum triangle size), max edge (i.e., maximum triangle edge 437 

length), and offset (i.e., spatial extensions) values scaled by factors of the spatial extent of 438 

the study area. Model convergence was assessed using ‘sdmTMB’ diagnostic functions, with 439 

a 750-vertex mesh (cutoff = 8.5 km), which provided optimal convergence properties without 440 

excessive computational costs.  441 

After identifying best performing models from both candidate sets we fitted full 442 

spatiotemporal models (Table 1 & Table S1.6), and performance was evaluated using sanity 443 

check functions in ‘sdmTMB’ that examined parameter convergence, extreme eigenvalues, 444 

standard errors, and random field variances. Residual diagnostics were assessed by 445 

generating 500 simulated datasets using maximum likelihood estimates with multivariate 446 

normal sampling to assess model adequacy, residual patterns, and potential violations of 447 

distributional assumptions, using the ‘DHARMa’ R package (64). 448 

To determine whether fixed-effect environmental predictors, spatiotemporal 449 

structures, and random intercepts improved model performance, we observed marginal AIC 450 

values to compare our full spatiotemporal models against seven alternative models including 451 

different combinations of these terms (Table S1.1). We calculated conditional percent 452 

deviance explained using log-likelihood ratios as 1 - (model deviance / null deviance), where 453 

deviance = -2 × log-likelihood and the null model was the intercept-only non-spatial model. 454 

AIC weights were computed using the ‘qpcR’ R package (65) to quantify relative model 455 

support.  456 

Predictive accuracy was evaluated using root mean square error (RMSE) 457 

calculations on out-of-sample predictions (2018-2019) and across the full training period 458 

(2005 - 2017) at annual and monthly aggregation levels. Following Thorson & Kristensen 459 

(2016) (66), we applied epsilon bias-correction estimators to obtain accurate temporal 460 



predictions of statewide EEEV seroprevalence and associated uncertainty. This approach 461 

accounts for bias accumulation when aggregating non-linear model predictions across sites 462 

and time periods. We generated 500 simulations using multivariate normal sampling, 463 

converted counts to proportions using the binomial size weights, then calculated weighted 464 

averages across surveillance sites by month. We then computed temporal indices with 465 

multiple confidence intervals (50%, 80%, 95%) to characterize prediction uncertainty over 466 

the 15-year time series using the get_index_sims() function. 467 

Models predicted monthly EEEV seroprevalence across Florida from 2005-2019 468 

using 100 simulations per prediction to quantify uncertainty. Predictions were converted from 469 

cloglog link space to the response scale and truncated at various quantiles (90th, 95th, 98th 470 

percentiles) for visualization. Annual summaries were derived by averaging monthly 471 

predictions, and overall summaries were aggregated across years to map persistent risk. 472 

Epsilon bias correction was applied to temporal indices but omitted from full statewide 473 

predictions due to computational intensity.  474 

 475 

Avian Host-Pathogen Association Analysis 476 

We tested whether there are strong correlations between relative abundance of 12 common 477 

bird species that are suspected hosts of EEEV and model-predicted EEEV seroprevalence. 478 

In particular, we selected migratory and resident Florida species with differing expected 479 

correlations to virus activity, based on prior Cs. melanura blood meal analyses in Florida and 480 

Alabama (23). Our migratory species were: American Robin, Eastern Phoebe, Hermit 481 

Thrush, Red-eyed Vireo, Wood Thrush, and Yellow-rumped Warbler. Our year-round 482 

residents were: Northern Cardinal, Common Yellowthroat, White-eyed Vireo, Green Heron, 483 

Pine Warbler, and Black-crowned Night Heron. We obtained weekly species-specific relative 484 

abundance estimates from the eBird Status and Trends dataset (67), modeled as the 485 

number of individuals a citizen scientist may observe during a 1- km² traveling checklist 486 

during the optimal time of day. Raster data are available at 3, 9, and 27 km² resolutions and 487 



represent species-specific relative abundance across a “typical year.” Here, we used median 488 

weekly relative abundances at 3-km² resolution for each species. 489 

We processed EEEV model predictions by converting spatiotemporal estimates to 490 

monthly rasters at a 1- km² resolution, then computed mean monthly seroprevalence across 491 

the full study period (2005-2019) to characterize average seasonal patterns. eBird weekly 492 

abundance data were aggregated to monthly scales using a standard week-to-month 493 

mapping (52 weeks to 12 months).  494 

All spatial data were reprojected to UTM Zone 17N (EPSG:32617) and resampled to 495 

eBird's 3- km² resolution using bilinear interpolation, ensuring spatial alignment for 496 

correlation analyses. We then calculated pixel-wise Pearson correlations between estimated 497 

bird abundance and EEEV seroprevalence for each month, incorporating temporal lags of 0-498 

3 months for migratory species to capture delayed associations between bird migration and 499 

EEEV virus activity, and for resident species, only contemporary correlations (0-month lag) 500 

were examined due to year-round local populations.  501 
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 520 

Supplementary Methods 521 

The spatiotemporal model developed in this study is similar to non-spatial GLMMs 522 

but includes additional terms to account for spatiotemporal non-independence. Here, we 523 

estimated Gaussian Markov random fields (GMRFs) for spatiotemporal variation εₜ using the 524 

SPDE method that approximates a Matérn correlation function. 525 

We evaluated the likelihood for each observation i ∈ {1,2,…,Nobservations} as proportion 526 

data following a binomial distribution, where cᵢ represents the number of EEEV-seropositive 527 

birds out of nᵢ total birds tested, with yᵢ = cᵢ/nᵢ being the observed proportion and using a 528 

complementary log-log link function: 529 

𝑐𝑖 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖, 𝜇𝑖), 530 

𝜇𝑖 = 1 − 𝑒𝑥𝑝(−𝑒𝑥𝑝(𝑝𝑖)), 531 

𝑝𝑖 = 𝑋𝑖
𝘛𝛽 + 𝑍𝑖

𝘛 𝛼 + 𝐴𝑖𝜀𝑡(𝑖), 532 

𝜀𝑖 = { 533 

 𝑀𝑉𝑁(0, 𝛴𝑒) if 𝑡 = 1 534 

 𝑀𝑉𝑁(\, 𝛴𝑒) if 𝑡 > 1 535 

MVN(ρεₜ₋₁, (1 - ρ²)Σₑ) if t > 1 536 

} 537 

 538 

where yᵢ represents the observed proportion of EEEV-seropositive birds at observation i and 539 

time t[i]; μᵢ represents the true probability of EEEV seropositivity; nᵢ represents the number of 540 

chickens tested (weights = testing × 6 chickens per testing event); X and Z are design 541 

matrices for fixed and random effects with coefficient vectors β and α, respectively; εₜ 542 

https://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/surveillance.html
https://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/surveillance.html


represents the spatiotemporal random field at time t across SPDE vertices; A is the bilinear 543 

interpolation matrix such that Aᵢεₜ₍ᵢ₎ interpolates spatiotemporal variation for observation i; Σₑ 544 

represents the spatial covariance matrix of the spatiotemporal random field; and ρ 545 

represents the first-order autocorrelation over time in the spatiotemporal term εₜ. The 546 

complementary log-log link function relates the linear predictor to the probability μᵢ, which is 547 

appropriate for modeling rare events and asymmetric probability distributions. 548 

 549 

Table S1.1: Description of the model components leading to the development of generalized 550 

linear mixed models (“GLMMs”) with Gaussian Markov random fields (“GMRF”), including 551 

Deviance Explained, marginal AIC and AIC Weight. Models were fitted to seroconversion 552 

proportions of Eastern Equine Encephalitis Virus (“EEEV”) in Florida at monthly time scales. 553 

These models are described in terms of their major components, including intercepts (“~1”), 554 

fixed effects, random effects, and Gaussian Markov random fields (GMRF).  555 

 556 

 557 

Model Deviance 

Explained 

AIC ΔAIC AIC 

Weight 

EEEV ~ GMRF + fixed effects + random 

effects 

0.377 6164.1 0 1 

EEEV ~ GMRF + random effects 0.369 6210.2 46 0 

EEEV ~ GMRF + fixed effects 0.34 6518.5 354.4 0 

EEEV ~ 1 + GMRF 0.331 6573.7 409.5 0 

EEEV ~ fixed effects + random effects 0.299 6920.7 756.6 0 

EEEV ~  random effects 0.274 7135.5 971.3 0 

EEEV ~ 1 0 9822.8 3658.6 0 

 558 

Table S1.2: Summary of model predictive accuracy when predicting out-of-sample Eastern 559 

Equine Encephalitis seroprevalence proportions. Predictive accuracy is measured using root 560 

mean square error (RMSE) and reported at the monthly scale with yearly totals, as well as 561 

the overall study period (Total) for out-of-sample data for the years 2018 and 2019. 562 

 563 

Year Month RMSE - 

Candidate Set 

1 

RMSE - Candidate 

Set 2 



2018 1 0.00255 0.00255 

2 0.00002 0.00002 

3 0.00305 0.00305 

4 0.00700 0.00700 

5 0.01416 0.01415 

6 0.01172 0.01172 

7 0.01425 0.01425 

8 0.00726 0.00726 

9 0.00318 0.00318 

10 0.00004 0.00003 

11 0.00555 0.00556 

12 0.00255 0.00255 

2019 1 0.00360 0.00360 

2 0.00191 0.00191 

3 0.00153 0.00153 

4 0.00360 0.00360 

5 0.01028 0.01028 

6 0.01535 0.01535 

7 0.01349 0.01349 

8 0.00425 0.00425 



9 0.00565 0.00565 

10 0.00270 0.00270 

11 0.00191 0.00191 

12 0.00360 0.00360 

Yearly Totals 

2018 0.00767 0.00767 

2019 0.00724 0.00724 

Total 0.00746 0.00746 

 564 

 565 

Table S1.3: Parameter estimates of predictors from a spatiotemporal model fitted against 566 

monthly aggregated EEEV seroprevalence proportions in Florida’s sentinel chicken 567 

surveillance system. Predictors with Confidence Intervals (95% CI; Lower, Upper) that do not 568 

overlap with zero are highlighted in bold and are considered important predictors of EEEV 569 

seroprevalence. 570 

 571 

Variable Type Estimate Std. Error 95% CI 

(Lower) 

95% CI 

(Upper) 

Intercept NA -10.5257 0.3436 -11.199 -9.8523 

Precipitation 

Lag 1 Month 

Linear 10.831 19.0896 -26.5838 48.2459 

Precipitation 

Lag 1 Month 

Quadratic -3.2013 15.3243 -33.2363 26.8338 

Precipitation 

Lag 5 

Months 

Linear -18.8877 20.4343 -58.9382 21.1628 



Precipitation 

Lag 5 

Months 

Quadratic -24.9001 19.0994 -62.3343 12.5341 

Precipitation 

Lag 12 

Months 

Linear 36.3576 18.3542 0.384 72.3312 

Precipitation 

Lag 12 

Months 

Quadratic -30.315 14.1791 -58.1056 -2.5244 

Tmax Lag 6 

Months 

Linear -37.9701 56.2275 -148.174 72.2337 

Tmax Lag 6 

Months 

Quadratic 38.4038 21.9422 -4.6022 81.4097 

Tmax Lag 

12 Months 

Linear -9.8866 54.723 -117.142 97.3686 

Tmax Lag 

12 Months 

Quadratic 11.7183 26.0875 -39.4122 62.8489 

Tmin Lag 1 

Month 

Linear 76.811 40.4647 -2.4983 156.1204 

Tmin Lag 1 

Month 

Quadratic -67.3957 28.0519 -122.376 -12.4151 

Forest 

Cover 

Linear 142.3936 45.2068 53.7899 230.9973 

Forest 

Cover 

Quadratic -87.0073 30.0387 -145.882 -28.1325 

Wetland 

Cover 

Linear 128.5891 32.5892 64.7155 192.4627 

Wetland 

Cover 

Quadratic -44.5205 30.6417 -104.577 15.5361 

 572 



Table S1.4: Parameter estimates of predictors from a spatiotemporal model fitted against 573 

monthly aggregated EEEV seroprevalence proportions in Florida’s sentinel chicken 574 

surveillance system. The variables included in this model were those that were removed 575 

based on initial VIF screening and fitted as an alternative candidate set. Predictors with 576 

Confidence Intervals (95% CI; Lower, Upper) that do not overlap with zero are highlighted in 577 

bold and are considered important predictors of EEEV seroprevalence. 578 

 579 

Variable Type Estimate Std. Error 95% CI 

(Lower) 

95% CI 

(Upper) 

Intercept NA -10.5292 0.346 -11.2075 -9.851 

Tmin 

(Current) 

Linear 136.385 66.3949 6.2534 266.5165 

Tmin 

(Current) 

Quadratic 22.1909 34.736 -45.8903 90.2721 

Tmin Lag 6 

Months 

Linear -59.6911 57.672 -172.726 53.3439 

Tmin Lag 6 

Months 

Quadratic 22.9416 20.5329 -17.3022 63.1853 

Tmin Lag 

12 Months 

Linear -99.4721 70.6447 -237.933 38.9891 

Tmin Lag 

12 Months 

Quadratic 61.264 34.09 -5.5512 128.0792 

Tmax Lag 

1 Month 

Linear 46.5541 51.4576 -54.301 147.4091 

Tmax Lag 

1 Month 

Quadratic -96.7682 30.8724 -157.277 -36.2595 

Forest 

Cover 

Linear 143.511 45.6413 54.0557 232.9663 



Forest 

Cover 

Quadratic -86.9773 30.1115 -145.995 -27.9599 

Wetland 

Cover 

Linear 129.2191 32.5968 65.3305 193.1077 

Wetland 

Cover 

Quadratic -44.8197 30.6592 -104.911 15.2712 

 580 

 581 

 582 

Figure S1.1: Statewide predictions of the spatiotemporal dynamics of EEEV seroprevalence 583 

from the Florida sentinel chicken system during the years of 2001 – 2019. Predictions were 584 

obtained from a spatiotemporal model fitted to data aggregated to monthly proportions of 585 

EEEV seroprevalence in a sentinel chicken system. All predictions are provided with a 586 

quantile truncation for ease of visualization (98th percentile). 587 

 588 

 589 



 590 



 591 
Figure S1.2: Summary of statewide prediction means and associated uncertainty of EEEV 592 

seroprevalence during the years of 2005 - 2019 in the Florida Sentinel Chicken Surveillance 593 

system. Predictions were obtained from a spatiotemporal model fitted against monthly 594 

aggregated seroprevalence proportions. Predictions are mapped using 98th percentile 595 

quantile truncation for ease of visualization. 596 



 597 
Figure S1.3: Pixelwise Pearson correlations between predicted monthly EEEV 598 

seroprevalence and monthly bird abundance across Florida. EEEV predictions were 599 

temporally averaged across the study period, while weekly eBird abundance estimates were 600 

aggregated to monthly resolution. For resident species, we assessed contemporaneous 601 

correlations only. For migratory species, we evaluated both contemporaneous correlations 602 

and temporal lags of 1-3 months to account for delayed associations following migration 603 

events. 604 

 605 

Table S1.5: Results from backward stepwise variable selection to identify the best predictors 606 

of monthly Eastern Equine Encephalitis Virus (EEEV) seroprevalence. We first removed 607 

highly collinear variables to create two candidate sets, then systematically dropped the least 608 



important variables based on AIC improvement. All models included nested random effects 609 

(sites within counties) and were weighted by monthly testing frequency. All predictors were 610 

modeled as quadratic terms. 611 

 612 

Candidate 

Set 

Step Variable 

Removed 

AIC ΔAIC Remaining Predictors 

1 0 (starting 

model) 

6930.3 - precipitation (current + 1,5,12 

month lags), temperature max 

(current + 6,12 month lags), 

temperature min (1 month lag), 

developed land, forest, wetlands 

 1 developed 

cover 

6927.8 2.5 precipitation (current + lags), 

temperature max (6,12 month 

lags), temperature min (1 month 

lag), forest, wetlands 

 2 current 

temperature 

max 

6925.6 2.2 precipitation (current + lags), 

temperature max (6,12 month 

lags), temperature min (1 month 

lag), forest, wetlands 

 3 current 

precipitation 

6924.7 0.9 precipitation (1,5,12 month lags), 

temperature max (6,12 month 

lags), temperature min (1 month 

lag), forest, wetlands 

2 0 (starting 

model) 

6879.4 - temperature min (current + 6,12 

month lags), temperature max (1 

month lag), developed land, 

forest, wetlands 

 1 developed 

cover 

6877.9 1.5 temperature min (current + 6,12 

month lags), temperature max (1 

month lag), forest, wetlands 

 613 

 614 

Table S1.6:  Description of the predictor variables used to model spatiotemporal EEEV 615 

seroprevalence in the state of Florida (USA). Terms included in this table were those that 616 



were removed during initial VIF screening of variables and fit as an alternative candidate set. 617 

Descriptions and parameterization details are provided for each variable. 618 

 619 

Effect Term Description Variable type Parameterization 

 

 

 

 

 

 

 

 

 

 

Fixed 

tmin Min 

temperature 

Continuous 2nd order orthogonal 

polynomial 

tmin_lag6 Min 

temperature (6 

mo. lag) 

Continuous 2nd order orthogonal 

polynomial 

tmin_lag12 Min 

temperature (12 

mo. lag) 

Continuous 2nd order orthogonal 

polynomial 

tmax_lag1 Max 

temperature (1 

mo. lag) 

Continuous 2nd order orthogonal 

polynomial 

forest Proportion 

forest cover 

Continuous 2nd order orthogonal 

polynomial 

wetlands Proportion 

wetlands 

Continuous 2nd order orthogonal 

polynomial 

Random county County name 39-level 

factor 

Intercept nested above site_id 

site_id Monitoring site 

name 

476-level 

factor 

Intercept nested below county 

 620 
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