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Abstract4

Fire is a key driver of vegetation dynamics in California’s woodland-chaparral ecosys-5

tems, and its role has become ever more important in recent decades as wildfire extents and6

frequencies increase. Understanding post-fire vegetation transitions and the likelihood of type7

conversion is essential for effective land management. Remote sensing represents a powerful8

tool to map vegetation cover and study post-fire dynamics, but current approaches—generally9

based on satellite sensors—are limited by their spatial and temporal resolution and generally10

broad application extents. In contrast, uncrewed aerial vehicles, or “drones,” offer great poten-11

tial to yield low-cost, high-resolution, locally-tailored data on vegetation cover and its variation12

across time and space. With recent rapid development of technologies for translating raw drone13

imagery into ecologically relevant data, the power of drone-based research is increasing along14

with its analytical decision space. In this work, we apply modern methods in image processing15

and computer vision to generate vegetation maps from a large and diverse dataset of drone im-16

ages collected under realistic operational constraints. Specifically, our imagery was collected17

at three study sites across three years, by multiple pilots flying different drone models with18

varying flight parameters. Our analytical approach uses an automated method to spatially co-19

register all overlapping datasets into a common reference frame. We then generate vegetation20

predictions within each raw image using a computer vision model and translate image-level21

predictions to a geospatial map based on the known positions of the drone camera. Finally, we22

unify all geospatial predictions from similar dates into a best available prediction for each loca-23

tion. Using this merged representation, we conduct change analysis across years for the land-24

scape area common between years—approximately 100 ha at each of two study sites. When25

predicting our eight vegetation classes on unseen images, we achieved 94% overall accuracy26

and 88% class-balanced accuracy. Change analysis yielded surprisingly little change over 3-27

4 years post-fire, with key changes being shrub (re)establishment and tree resprouting. Our28

findings demonstrate the viability of scalable drone-based approaches for tracking vegetation29

change in fire-prone landscapes.30
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1 Introduction31

Understanding how ecosystems respond to wildfires and drought is critical to gauging and ensuring the per-32

sistence and functional integrity of unique ecological communities. This is especially relevant inMediterranean-33

climate ecosystems, many of which are simultaneously biodiversity hotspots and climatic change hotspots.34

One manifestation of the disproportionate effects of climate change has been fire regime shifts, including35

changes in fire frequency, severity, and behavior. For example, global instances of extreme fire events have36

increased 2.2-fold since 2003 Cunningham et al. (2024) and wildfire seasons have lengthened while fire in-37

tervals have shortened Moritz et al. (2012); Jolly et al. (2015); Fairman et al. (2019); Whitman et al. (2019).38

It is predicted that climate change will further modify wildfire behavior through the remainder of the cen-39

tury, with the number of days conducive to extreme wildfire events increasing between 20-50% in fire-prone40

regions Bowman et al. (2017).41

The outsized effects of climate on fire have been particularly strong in Mediterranean-climate regions42

of the world, including large parts of California and the Pacific Northwest in the United States, especially43

the chaparral and woodland areas of California. In 2020, California lightning-ignited wildfires burned 4.244

million acres across Northern and Central California. The three largest of these wildfire events alone – the45

August Complex (Northwestern mountains), SCU Lightning Complex (Central Coast), and LNU Lightning46

Complex (Northern Coast Range) – burned nearly 2.0 million acres. A large factor driving ignition of these47

wildfires was a series of storms that resulted in up to 15,000 dry lightning strikes, causing numerous, small48

wildfires that under highly favorable wildfire conditions progressed to extreme or megawildfires.49

With so much recently burned land, there is an increasingly urgent need for data on how the ecosystems50

are responding to fire, both for mapping and predicting outcomes and for informing management. In smaller51

wildfires, it can be feasible to capture representative vegetation responses using traditional field sampling,52

e.g. the 23,000 ha Storrie Fire Crotteau et al. (2013). In recent megafires of 105 - 106 acres, adequately sam-53

pling across vegetation types and spatial and environmental gradients will require scaling up data collection54

through complementing intensive field sampling with broad-scale, high-resolution remote sensing. Exten-55

sive data collection is especially needed in fire-prone Mediterranean climate vegetation types, including56

grasslands, shrublands, and oak woodlands, where there has been less previous work on vegetation response57

to fire. These ecosystem types are typically mosaics of patches with slowly-shifting boundaries, and en-58
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compass “climate change refugia” potentially important for buffering species from climate change effects59

in California Thorne et al. (2020). Oaks generally have high resilience to fire because they can usually can60

resprout even when entirely top-killed Holmes et al. (2008). Wildfire can, however, gradually reduce oak61

woodland cover and convert to grassland Callaway and Davis (1993). Key open questions about postfire re-62

sponse of these vegetation types include how rapidly and consistently oak cover will bounce back after fire,63

and to what extent smaller-scale factors including topography, tree or shrub size, and surrounding vegetation64

affect post-fire resprouting vs. mortality in oak woodland.65

Geospatial remote sensing datasets – especially maps of spectral reflectance measured by satellite – are66

increasingly being used to infer variation in vegetation cover across space and through time Allred et al.67

(2021); Cingolani et al. (2004). For instance, the U.S. National Land Cover Database produces annual68

vegetation cover maps at 30 m spatial resolution using each pixel’s spectral reflectance as measured by69

Landsat, a series of U.S. public spectral imaging satellites Wulder et al. (2022). However, a number of70

factors constrain the accuracy and degree of granularity–both spatial and in terms of vegetation classes–that71

can be achieved by satellite. One key factor is spatial resolution: public spectral imaging satellites producing72

freely available data relevant to vegetation mapping are not available at resolutions finer than 10 m. In the73

U.S. and some other countries, national programs such as the National Agriculture Imagery Program (NAIP;74

U.S. Department of Agriculture (2011)) use piloted aircraft to collect finer-resolution imagery over large75

areas (e.g., 60 cm in the case of NAIP), but at relatively low frequency (e.g., 2-3 years in the case of NAIP),76

limiting their utility for rapid response following disturbance.77

In comparison to satellite and broad-scale aerial imaging programs, uncrewed aerial vehicles (UAVs,78

or “drones”) with imaging sensors have several distinct advantages for inferring post-disturbance vegetation79

cover and change Anderson et al. (2025). First, imagery can generally be collected when it is needed, includ-80

ing immediately following disturbance. Second, the resulting imagery generally has a much higher spatial81

resolution (e.g., 1-10 cm for many popular low-cost commodity drones; Chang et al. (2025)). Imagery at82

this resolution allows one to resolve plant structural components such as stems and leaves and to infer stature83

and shape from shadows and other textural cues. This greatly increases the potential for detailed and accu-84

rate classification of vegetation cover types. Drone-based image collection generally involves capturing a85

dense grid of highly overlapping images, which are then “stitched” together and georectified using a process86

called “photogrammetry” Young et al. (2022); Mlambo et al. (2017). The set of overlapping raw images thus87
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contains multiple (often many) views of any given object, each from different angles, and predictions on raw88

images instead of orthomosaics enables much greater classification accuracy Russell et al. (2024).89

To take advantage of such detailed imagery to infer land cover, researchers are increasingly employ-90

ing computer vision (CV) techniques driven by artificial neural networks Brodrick et al. (2019); Detka et al.91

(2023). Specifically, these methods rely on “deep learning”, where multiple sequential processing steps with92

tunable parameters are applied to translate imagery inputs into classifications such as “tree” and “shrub”. Of93

particular relevance to vegetation cover mapping is the image processing task known as “semantic seg-94

mentation” Csurka et al. (2023), in which each pixel is assigned a classification. Relative to conventional95

segmentation approaches, many popular CV-based segmentation methods are particularly skilled at incor-96

porating the context of the pixels nearby each focal pixel, providing texture and structural cues which help97

differentiate pixels which may be indistinguishable by color alone.98

The availability of drone-derived imagery of natural landscapes is continually growing OpenAerialMap99

(2025); Young (2025). Land stewardship institutions like the University of California Natural Reserve Sys-100

tem have increasingly embraced the use of drone data across broad areas as a means to understand ecosystem101

dynamics, often piecing together multiple independent data collection campaigns to develop a more holistic102

representation of a landscape. Given the increasing availability of drone imagery across disparate platforms,103

dates, and collection protocols, automated vegetation mapping approaches that can accommodate diverse104

data sources are becoming increasingly necessary, and successful implementations may have increasingly105

great power for advancing ecological understanding. In this study, we evaluate the potential for using com-106

puter vision applied to raw drone images–and thus multiple views of each object–to infer vegetation cover107

following large wildfires that burned in a California grassland-chaparral-woodland ecosystem and to eval-108

uate the vegetation trajectory and its drivers over a four-year period following fire. Our project leveraged109

imagery collected over 3 years by 2 different initiatives employing numerous pilots, aircraft, imagery col-110

lection dates, and flight parameters to develop standardized maps of predicted land cover with the goal of111

informing ecological understanding of post-fire vegetation dynamics. In this paper, ask how effective and112

accurate these novel computer vision methods are in the context of a large-scale monitoring projects. We use113

the resulting vegetation predictions to analyze vegetation cover change over the first 3-4 years after wildfire.114

Specifically, we ask what proportion of oak woodland and chaparral areas recover via resprouting after initial115

fire-induced dieback.116
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2 Materials and Methods117

2.1 Study Sites118

We focused on three key sites that were impacted by the dry lightning-ignited wildfires of 2020. These sites119

are a part of the protected network of lands and fieldstations in the Univeristy of California Natural Reserve120

System (UCNRS). Each is managed primarily to provide access for research and class use, with essentially121

no management of wildland habitat. The three sites include Blue Oaks Ranch Reserve (BORR), Hastings,122

and Quail Ridge and are primarily a mix of oak woodland and grassland habitats. BORR is a 3,259 acre site123

located in Santa Clara County, Hastings is a 2,373 acre site located in Monterey County, and Quail Ridge124

is a 2,500 acre site located in Napa County. BORR burned as a part of the SCU Lightning Complex Fire,125

Hastings burned during the River Fire, and Quail Ridge burned burned in the LNU Lightning Complex Fire.126

Severity of fire differed within and between these sites, as did the total area burned at each site.127

2.2 Drone imagery collection and photogrammetric processing128

Data was obtained from 60 drone flights conducted between February 2020 and May 2024. All the imagery129

used in this study was RGB (red, green, and blue channels of visible light) and was collected in a highly-130

overlapping manner. The following platforms were used: AgEagle eBee X, Autel Evo II v2, DJI Matrice131

100, DJI Matrice 210 RTK, DJI Matrice 300, and DJI Mavic 3 Multispectral (using the M3M RGB camera).132

Comprehensive flight planning metadata was only provided by the pilots for 12/60 flights, and for those133

cases all data was collected in a nadir orientation, with 75-80% front and side overlap with nominal flight134

altitudes ranging from 91-122m. Most flights were conducted at a fixed altitude above sea level, meaning135

that the altitude above ground varied substantially across different images for terrain with variable elevation.136

Once the data has been collected the individual images for a given flight need to be registered together.137

Structure from motion is a technique that identifies visually-distinct features across multiple images and138

uses these correspondences to estimate the structure of the scene as well as the locations and orientations139

from which each image was taken. We use the Agisoft Metashape Agisoft, LLC. (2025) software to per-140

form structure from motion. We use the parameters identified by Young et al. (2022) that perform well in141

forested environments using similar flight parameters to our data collection. Each drone flight was processed142
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Class Name Description Fraction
of labeled
pixels

Bare Earth Any ground where no plants are
growing and only dirt is present.
Includes ash, fire-killed and dead
herbaceous.

0.3712

Herbaceous Live Green fields or any areas with grass
or low-growing plants.

0.1199

Artificial Object Any artificial structure or object like
buildings, vehicles, etc.

0.0017

Shrub Dead Any shrubs that are clearly gray. In-
cludes fire-killed shrubs.

0.0168

Shrub Live Any green shrub, growing low and
in clusters. Includes resprouting
and dormant shrubs.

0.0879

Tree Dead Any tree that has brown leaves or
stripped branches. The branches
and trunkmay be gray or brown col-
ored. Includes fire-killed trees.

0.1001

Tree Live Any tree that is any shade of green. 0.2870
Water Any river or clear body of water. 0.0153

Table 1: Description of vegetation cover classes.

independently to produce the highest-quality data and reduce spatial distortion from time-varying GPS bias.143

2.3 Computer vision model training and inference144

To classify vegetation cover from high-resolution drone imagery, we developed a deep learning based seman-145

tic segmentation pipeline. The model was trained on eight vegetation cover classes, as described in table 1.146

We began by selecting a representative set of images for model training. Each of the three reserves received147

roughly the same number of images. The years were split unevenly, with 50%, 25%, and 25% allocated to148

2020, 2023, and 2024 respectively to account for the similarities between the later two years. Images were149

spatially distributed across the landscape by using K-means clustering to divide all image locations into a150

fixed number of clusters and then annotating a central image from each cluster. Due to a fixed annotation151

budget, not all clusters were labeled, but they were done in a spatially-stratified manner such that annotations152

were well distributed across the landscape.153
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Annotation was conducted by domain experts, the majority of whom had performed field work at at154

least one study site. They used VIAME Dawkins et al. (2017), an open-source image annotation tool, to155

manually label polygons delineating regions corresponding to each vegetation class. We did not attempt to156

label every pixel, since labeling at the boundaries of spatially-intermixed vegetation classes is challenging157

and laborious. Instead, we chose to label only the central region of homogeneous regions of one vegetation158

class with coarse polygons, since prior work Davila et al. (2022) has shown that this more efficient style159

of annotation can be used to train models that still produces accurate predictions even at class boundaries.160

The annotated polygons were rasterized into single-channel segmentation masks. The annotated masks and161

labels were randomly split into 80-20% as training and validation data.162

We selected SegFormer Xie et al. (2021) as our deep learning model. SegFormer is a state-of-the-art163

semantic segmentation model that combines the powerful feature extraction capabilities of transformers with164

a lightweight and efficient decoder. Also, the authors demonstrated this this model is robust to common165

image degradation (ex. blur or noise) that might dramatically decrease performance of other approaches.166

We used the implementation from the MMSegmentation Contributors (2020) framework, which is built167

on PyTorch and optimized for training segmentation models at scale. The default parameters were used168

unless otherwise stated. The SegFormer-B5 variant was initialized with Imagenet-pretrained weights and169

fine-tuned on our annotated dataset. The training was done on images of size 1024 x 1024. Data augmenta-170

tions included random resize, random crop, random flip and controlled photometric distortion. Augmentation171

techniques that significantly altered the color of the imagery were avoided to preserve the color distinctions172

between different types of vegetation cover. Mean and standard deviation values were computed from the173

dataset to normalize the input images. For improved generalization, we also implemented test-time augmen-174

tation (TTA) in the pipeline, which included multi-scale inference and horizontal flipping.175

The AdamW optimizer, configured with a learning rate of 6e-5 was used to train the model. Training176

began with a linear warm-up phase for the first 1500 iterations, with a start factor of 1e-6, followed by177

a polynomial learning rate decay. Cross-entropy loss (without sigmoid activation) was used as the loss178

function. A total of 10000 iterations were run, and validation was performed every 1000 iterations. The179

SegFormer model was trained on a partial NVIDIA A100 GPU with 20 GB of VRAM and 16 CPU cores.180

Both training and validation were performed with a batch size of 1. The end-to-end training process took181

approximately 1.5 hours.182
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2.4 Projecting image-based cover predictions into geographic space183

The majority of methods for predicting land use/land cover from drone imagery generate predictions from184

the top-down orthomosaic derived from photogrammetry Lu et al. (2023); Bellia and Lanfranco (2019);185

von Nonn et al. (2024); Detka et al. (2023). Recent research has demonstrated that higher accuracy can186

be achieved by instead generating predictions on individual drone images and projecting these predictions187

into geospatial coordinates Liu and Abd-Elrahman (2018); Russell et al. (2024). We use an open source188

software Geograypher Russell et al. (2025) for this task. This approach uses the 3D mesh model and precise189

camera locations and orientations derived from photogrammetry to determine correspondences between each190

location in the image and the 3D structure of the scene. Importantly, this approach is robust to oblique views,191

terrain relief, and inter-object occlusion. We use Geograypher to project the segmentations from the model192

described in the previous section onto the mesh, and then take the most commonly predicted class for each193

location on the mesh, across all images that observed that location. Since multiple views observe each194

location, the agreement of predictions across views gives us a metric for prediction confidence. We exclude195

locations on the mesh where more than 20% of views disagree with the most commonly-predicted class from196

subsequent ecological analysis because these predictions are less likely to be correct.197

The 3D representation of the datamust be converted to amore traditional 2D geospatial format to conduct198

ecological analysis. The 3D geometry is represented by a mesh data structure, consisting of triangular faces199

which are each annotated with a single class. Since the mesh is geospatially referenced, the 2D, top-down200

geospatial projection of each of these faces can be easily computed. Then, all faces with the same class are201

merged together into multi-polygon data structures. Since the mesh has a high spatial resolution, these vector202

data products have correspondingly-detailed boundaries. To speed up subsequent operations, the detail of203

the boundary is reduced using morphological operations and simplification. In rare cases, two faces with204

different class labels have a 2D projection that overlaps, such as under an overhanging tree. In these cases,205

the class which is rarest across the entire scene is retained and the overlapping region is removed from the206

representation of the dominant class. Finally, the data is cropped to the boundaries of the flight polygon, to207

exclude low-quality predictions at the boundary of the observed region.208
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2.5 Data registration across drone flights209

Our data consists of 60 distinct drone flights which must be spatially registered together. Notably, the major-210

ity of flights were conducted without RTK corrections, and there were no fixed ground control points present211

year-to-year. Using GPS data alone to georeference photogrammetry products often results in several meters212

of registration error Sohl and Mahmood (2024). Precise registration between different datasets is especially213

important for environments like ours where multiple classes are spatially intermixed at a relatively fine scale.214

To automatically register the flight datasets together, we first identify pairs of flights that overlap more215

than a threshold area of 2,500 m2. Then we attempt to find the best translation-only registration between216

the two datasets using geometric features. Specifically, we compute a canopy height model (CHM) using217

the digital surface model (DSM; top of canopy) and digital terrain model (DTM; ground estimate) produced218

by the photogrammetry software. Then we use an iterative registration algorithm implemented in the ITK219

medical image registration software Ibanez et al. (2025) to find the translation that minimizes the mean220

squared difference between the CHM models for the two datasets.221

This procedure generates relative shifts for multiple pairwise dataset correspondences. Since these pair-222

wise shifts may not suggest a consistent absolute shift for each dataset, we use a least-squares formulation to223

find the optimal shift for each dataset. This has a tunable weight that balances respecting the pairwise shifts224

determined by the CHM registration with maintaining the initial location of each dataset. The optimized225

shift for each dataset is applied to register all datasets into a common reference frame.226

2.6 Summarizing predicted vegetation cover227

To develop unified maps of “best-available” inferred vegetation cover across our drone-surveyed areas, we228

generated a “flattened” layer for two time points: 2020 and 2023/2024 (combined), which we hereafter229

refer to as “early” and “late”, respectively. Within a given time point, we had multiple potentially partially230

overlapping drone footprints, each with a subset of regions predicted with high enough confidence to be231

included in analysis. For each location, we computed how many drone missions predicted each class. If232

the number of predictions for a given class achieved a plurality of votes, that class was assigned to the233

corresponding location in the flattened dataset. In the case of a tie (e.g. two datasets predicted class Tree234

Dead and two predicted Shrub Dead) the class which was least common across all datasets was chosen, to235
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ensure that rare classes were well represented in the final product.236

After preliminary evaluations, we determined that it was too challenging to differentiate live vs. dead237

trees during leaf-off conditions. As such, we restricted our analysis to drone flights collected during the238

period we could conservatively assume leaves would be present in this ecosystem, between April 15th and239

November 1st. This left us with 27 out of 60 datasets.240

Depending on phenology, herbaceous vegetation cover can appear live or dead, and it can also appear241

as bare ground in low-biomass areas when it senesces. Due to the high reproductive output and effective242

dispersal of many of the herbaceous species common in our study sites (primarily invasive grasses), bare243

ground almost always supports herbaceous vegetation during the growing season. For these reasons, we244

lumped together the herbaceous live, herbaceous dead, and bare ground classes. We additionally included245

artificial objects in this combined cover class to account for the possibility that dirt or gravel roads were246

sometimes classified as artificial and/or confused with bare ground.247

2.7 Quantifying temporal vegetation change248

Although our land cover predictions were produced as vector data derived from sub-meter resolution in-249

puts, we quantified vegetation change between the early and late periods at the 30 m scale to minimize the250

influence of fine-scale prediction noise and/or error and focus on consistent patterns at a scale relevant to251

landscape ecology and management. Starting with the summarized vegetation cover layers created as de-252

scribed in the previous section, we superimposed a 30 m grid. For each pixel, if the pixel was at least 25%253

covered by predictions, and at least 60% of the area of the predictions was of a single cover type, that cover254

type was assigned to the pixel. For assessment of vegetation change, we retained only those pixels which255

were assigned a cover class in both the early and late periods. Within the burned areas of each reserve, we256

quantified the change (or stasis) as both the absolute and relative area of the retained pixels that contained257

different (or the same) cover classes between the two periods.258
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Figure 1: Validation mAcc across 10k training iterations.

3 Results259

3.1 Computer vision model accuracy260

The fine-tuned SegFormer-B5 model demonstrated strong performance in classifying vegetation cover types261

from the drone imagery. We evaluated the performance of the semantic segmentation model by analyzing the262

Mean Accuracy (mAcc), Mean Intersection over Union (mIoU) and pixel accuracy (aAcc) metrics. mAcc263

calculates the accuracy for each individual class and then averages the results, which highlights performance264

on rare classes that represent a small fraction of all pixels. mIoU evaluates the overlap between predicted265

and ground-truth segmentation masks divided by the union of the two masks, averaged across all classes.266

aAcc represents the overall pixel-wise accuracy across all classes. After 10k iterations, themodel achieved an267

overall mAcc of 88.40%, mIoU of 81.69%, and aAcc of 93.96% on the validation set. Figure fig. 1 illustrates268

the progression of mAcc on the validation set as training iterations increase. The model demonstrated rapid269

gain in accuracy early in training, followed by a gradual plateau, converging around iteration 10000. The270

per-class IoU and accuracy on the validation set is summarized in table 2.271

In fig. 2 we show the normalized confusion matrix for the model’s predictions on the validation set.272

Most vegetation classes were classified with high accuracy and minimal misclassifications. For instance,273

Tree Live and Water had near-perfect results, with 96.46% and 100% of their respective pixels correctly274

predicted. In contrast, Shrub Dead showed notable misclassification, particularly with Shrub Live (39.33%)275

and Tree Dead (14.48%). This reflects the lower IoU for the class and is likely due to the visual similarities276
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Class IoU (%) Precision (%) Recall (%)
Bare Earth 92.91 96.54 96.11
Herbaceous Live 85.34 91.68 92.51
Artificial Object 81.23 86.2 93.38
Shrub Dead 38.77 85.4 41.52
Shrub Live 83.09 86.49 95.48
Tree Dead 78.63 84.65 91.71
Tree Live 94.09 97.45 96.46
Water 99.43 99.43 100.0

Table 2: SegFormer-B5 class-wise performance on validation data.

Reserve Type Surveyed area (ha) Predicted area (ha) Predicted (%)
BORR early 1277.6 1033.1 80.9
BORR late 236.4 185.6 78.5
BORR overlap 236.3 167.7 71.0
Hastings early 275.9 233.4 84.6
Hastings late 398.9 343.0 86.0
Hastings overlap 189.1 138.1 73.0
Quail late 171.0 132.5 77.5

Table 3: Summary of surveyed and predicted areas per reserve. The “early” category refers to 2020
and the “late” category refers to data combined between 2023 and 2024. The ”overlap” represents
the area that overlaps between early and late time points.

between dead shrubs, live shrubs, and dead trees. The matrix also shows some confusion between Artificial277

Object and Bare Earth (5.08%), possibly due to overlapping spatial or color characteristics in certain areas.278

Overall, the matrix highlights that while most classes are clearly distinguishable, classes like Shrub Dead279

may improve from additional labeled data (see table 1).280

3.2 Geospatial vegetation predictions281

Using the approaches described above, predicted vegetation maps were produced using all the available282

leaf-on data. The surveyed area for each reserve is described in table 3. The Quail Ridge study site only283

had leaf-on data for 2023, so it cannot be used for change analysis. Both BORR and Hastings had data284

from both the early and late period, with an overlapping region of 236.3 ha for BORR and 189.1 ha for285

Hastings that can be used for change analysis. To conduct this analysis, we need high confidence predictions286

of vegetation types for both early and late time periods. The faction of confidently predicted area is lower287
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Figure 2: Normalized confusion matrix of SegFormer model’s predictions on validation images.

in the overlapping categories than either the early or late categories because a region must be confidently288

predicted in both categories to be used for analysis. Despite this requirement, 71.0% of the total area surveyed289

at BORR and 73.0% of the area surveyed at Hastings met this criteria, resulting in 167.7 ha and 138.1 ha290

respectively of area available for change analysis at the two reserves.291

The predicted regions are shown in fig. 3. Each represents a single high-resolution prediction synthesized292

from all leaf-on flights at that site in the specified time period. Note that the largest dataset, BORR early,293

represents 1033.1 ha of predicted area (table 3). There are limited abrupt changes in classification at the294

boundaries of input datasets, which shows that predictions were effectively merged across multiple input295

datasets. Regions of low confidence predictions, denoted in white, occur preliminarily at the boundary296

between different classes.297

3.3 Temporal change in vegetation cover298

Across both Hastings and Blue Oak Reserves, within the repeat-surveyed burned area with vegetation pre-299

dictions at the 30 m scale, land cover largely remained constant (86% of landscape) (fig. 4). The primary300

transitions were of herbaceous/bare to live shrub (14% of the herbaceous/bare cover made this transition)301
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(a) BORR early (b) BORR late (c) Quail late

(d) Hastings early (e) Hastings late (f) Colormap

Figure 3: Predicted vegetation type maps for each site from the early/late periods containing leaf-
on data. The axis are in the California Albers coordinate reference frame (EPSG:3310) with units
of meters.

Figure 4: Sankey diagram of transitions in predicted land cover from early (left) to late (right)
periods, where the vertical width of each band corresponds to the proportion of the landscape un-
dergoing each transition. For purposes of this figure, “landscape” refers to burned 30 m pixels with
confident predictions.
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Figure 5: Predicted landcover class at the 30 m scale for all pixels with confident predictions in
both the early and late time periods. Pixels outlined in red are those that transitioned from “dead
tree” to “live tree” or “live shrub” (the latter presumably a misclassification of “live tree”). The
fire footprint is depicted by orange shading.

and of dead tree to live tree or live shrub (87% of the dead tree cover made this transition) (fig. 4). Of the302

84 dead tree pixels, only 10 remained dead in the late predictions (late predicted class “dead tree” (8 pixels)303

or “bare/herbaceous” (2 pixels)). All 8 pixels with late predictions “dead” were relatively closely clustered304

in the northeast section of the Hastings reserve study area, while the two “bare/herbaceous” pixels were305

relatively close to each other in the eastern section of the Blue Oaks Reserve study area (fig. 5).306
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4 Discussion307

4.1 Accuracy considerations308

Our analysis of per-image predictions on data not seen during model training shows that most classes are309

predicted with high accuracy. The overall accuracy of our model predictions within raw drone images (94%)310

exceeds accuracies achieved in similar systems by other drone-based mapping efforts, which tend to be311

applied over substantially smaller areas. A study over 41 ha in a California shrubland-woodland system312

Detka et al. (2023) achieved overall accuracy across 8 cover classes of roughly 83-87%, and a study over 10313

ha in California chaparral achieved overall accuracy across 4 cover classes of 88% von Nonn et al. (2024).314

Our approach achieved accuracy at the raw image pixel level similar to that achieved by the NLCD at the315

level of 30 m geospatial pixels Wickham et al. (2023), with the additional advantages that it can distinguish316

between live and dead vegetation and is tailored to the species present in our study system. In our study, the317

class with lowest prediction accuracy was dead shrub, which had the fewest annotations of any vegetation318

class (only greater than water and artificial object)–and thus the least data available for model training–and319

is challenging to distinguish from dormant live shrubs in this ecosystem.320

Notably, we do not have quantitative metrics for performance at a geospatial pixel level, which would321

be the most informative for assessing the utility of these predictions for ecological modeling. We obtained322

field reference data to support this analysis, but spatial inaccuracies in the locations of observations made the323

data unusable in this ecosystem where vegetation types are highly intermixed. Given the strong performance324

of per-image predictions, we expect that the geospatial predictions have comparable or higher accuracy, as325

the geospatial predictions are produced by voting across multiple viewpoints and therefore should be more326

robust than a single view alone. Indeed, our multi-view approach to vegetation classification has been shown327

in a different system to roughly halve error rates relative to a single-view orthomosaic approach Russell328

et al. (2024). Furthermore, qualitative analysis of our geospatial predictions against the underlying imagery329

suggests high accuracy, as does the high degree of agreement across years.330
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Figure 6: Early (2020) and late (2023) post-fire imagery of the same area of Hastings Reserve
classified primarily as “dead tree” in the early imagery. Brown ellipses indicate areas predicted to
contain dead trees at the time of imagery collection; some areas remained classified as “dead tree”
and no greening was observed.

4.2 Post-fire vegetation change331

Within the burned areas, the primary landcover change was from herbaceous/bare to live shrub. The rapid es-332

tablishment of shrubs post-fire likely reflects rapid resprouting of shrubs that had most aboveground biomass333

consumed by fire. Shrubland ecosystems in California usually burn at high severity, consuming most fo-334

liage, branches, and often even larger stems Grupenhoff and Safford (2024); Keeley et al. (2008). At the335

time the early post-fire imagery was collected, most pre-fire aboveground shrub biomass had likely been336

removed by fire, exposing bare ground and/or herbaceous cover. Even severely burned shrubs often rapidly337

resprout in the years following fire Cowan and Ackerly (2010); Keeley et al. (2005), likely manifesting in338

our assessment as the large proportion of herbaceous/bare pixels transitioning to live shrub. Without pre-fire339

imagery, though, we cannot differentiate between resprouting of existing severely-burned shrubs vs. post-340

fire establishment of new individuals. Likewise, early post-fire bare/herbaceous pixels that remained in this341

class may have contained shrubs pre-fire that were burned so severely they did not resprout, but the existence342

and prevalence of this dynamic cannot be determined without pre-fire imagery.343

Nearly all “dead tree” pixels in the early post-fire imagery transitioned to “live tree” pixels in the later344

imagery, implying that nearly all trees that appeared dead in the early post-fire imagery were in fact still345

alive (but simply missing live foliage) and, like shrubs, rapidly sprouted. In the case of trees, much of the346

resprouting appeared to be epicormic as opposed to basal: in many areas, the early post-fire “dead trees”347

were covered in dead, brown leaves but 3-4 years later appeared as full-size trees covered in green foliage348
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(fig. 6). Only a few small areas containing dead trees in the early post-fire imagery remained dead in the349

later imagery, apparently not even exhibiting basal resprouting; in many of these areas, manual imagery350

inspection revealed that the trees appeared to have had their foliage fully consumed by fire (fig. 6). This351

observation suggests that greater fire intensity (as represented by foliage consumption) is associated with352

a greater chance of tree mortality, a pattern that is corroborated by existing studies Ackerly et al. (2019).353

Alternatively, it is possible that the trees classified as dead at both time points were in fact dead pre-fire.354

However, the persistence of the finer branches through fire (apparent in the imagery) suggests that the trees355

were alive at the time of fire, as live/wet wood is less likely to be consumed by fire Prichard et al. (2017);356

Ottmar (2014); Goodwin et al. (2021). Finally, the small fraction of early dead tree pixels that transitioned to357

live shrub pixels likely reflects model confusion of basally resprouting trees with shrubs due to their similar358

appearance.359

4.3 Future directions360

Our approaches to unifying a large collection of drone imagery datasets from a diverse set of imagery col-361

lection platforms, dates, locations, and methods may help to serve as a model for leveraging the increasing362

availability of existing imagery, potentially opening doors to ecological insights not easily achievable other-363

wise. For example, given disturbances are often unpredictable, studies of disturbance effects may be enabled364

by leveraging preexisting data and combining it with purpose-collected post-disturbance data–and the con-365

fidence of resulting insights could be increased by performing similar comparisons across numerous spatial366

footprints. However, robust change analysis would require co-registering the disparate datasets and unifying367

them in an efficient processing pipeline such as the one we demonstrate.368

This work highlights the ability to manually annotate high-resolution individual drone images as an369

alternative to field reference information when that is unavailable. However, field reference data is still370

essential in some circumstances, especially when distinguishing classes more granular than functional types.371

We believe that an effective strategy to mitigating spatial error in field measurements is to first produce372

an orthomosiac from drone imagery and then annotate it in field, as done in Detka et al. (2023). These373

annotations can then be appropriately shifted along with the reference drone imagery, using our proposed374

registration pipeline. While computer vision approaches are adept at leveraging texture cues, we found that375

strong appearance changes driven by seasonality are still a challenge, even after restricting to leaf-on data.376
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These changes were especially prominent for the shrub and herbaceous classes, which can change appearance377

dramatically when they dry out. If data cannot be collected only in one season, it may be helpful to train378

independent ML models per season or provide the season as additional context for the prediction task. A379

major challenge in this work was the lack of pre-fire drone imagery or land cover predictions matching380

our classification scheme. One approach to extend this work would be to predict pre-fire vegetation from381

existing remote sensing data such as NAIP, either by directly annotating NAIP data or training a model382

using predictions from drone data for years it was available. Finally, the high spatial resolution of these data383

(provided as vector data, with an effective resolution of single-digit centimeters) provides an opportunity to384

study granular ecological questions, such as the fate of individual trees or shrubs or the fine-grained drivers385

of resilience.386

5 Conclusion387

Our work demonstrates the potential to use multi-view drone imagery, photogrammetry, and computer vi-388

sion to efficiently obtain reliable, locally tuned predictions of land cover and land cover change at fine spatial389

scales across large areas. The substantial consistency in predicted land cover across time periods – partic-390

ularly in the unburned areas of each reserve – demonstrates robustness in model predictions, particularly391

considering that an entirely different set of imagery was used for each time period. The assessment of post-392

fire change and stasis revealed changes that align well with existing understanding of post-fire vegetation393

dynamics in woodland and chaparral systems, but it also reveals the limitations in assessing post-fire vege-394

tation recovery without pre-fire vegetation data. The methods we apply in this study may help to form the395

basis of broader vegetation monitoring efforts.396
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