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Abstract16

The invasive Asian tiger mosquito (Aedes albopictus) has become an important public health concern in Italy,17

particularly in the Po Valley area, where its biting behaviour and nuisance have contributed to multiple outbreaks18

of mosquito-borne diseases over the last two decades. To address this growing threat, the Emilia-Romagna region19

has conducted intensive mosquito monitoring efforts since 2010, generating a rich observational database.20

Taking advantage of this rich oviptrap dataset, we implemented a stacked machine learning approach to21

predict the distribution and abundance of Ae. albopictus, based on ovitrap data and environmental covariates22

from 2010 to 2023. A spatio-temporal sensitivity analysis was carried out to determine the amount of data23

necessary to train a reliable model. Our results revealed that models trained on fewer years of data but with24

broader spatial coverage statistically outperformed those trained on longer time frames. This indicates that25

including data from diverse environmental settings improves model performance more than simply increasing26

the temporal depth of the training set. Models that incorporated a larger number of sampling locations were also27

more effective at capturing complex environmental influences on mosquito populations. Despite underestimating28

peak summer abundance in 2023, the model effectively and consistently predicted the seasonal trends and the29

spatial distribution of Ae. albopictus.30

These findings highlight the potential of such models to inform public health strategies and optimise mosquito31

control interventions to mitigate vector-borne disease risks and nuisance, besides emphasising the importance of32

long-term and spatially extensive data in improving model performance.33

34

35

Keywords: Ecological forecasting, invasive mosquito, public health, species distribution modelling, vector-36

borne diseases.37
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1 Introduction38

The Asian tiger mosquito, Aedes albopictus (Skuse, 1894), is a vector of arboviruses such as Chikungunya,39

Dengue, and Zika, and it is also one of the most rapidly spreading invasive species in the world (Benedict et40

al. 2007; Delatte et al. 2008; Boes et al. 2014; Kraemer et al. 2015). Due to its ability to establish in new envi-41

ronments and transmit pathogens (Benedict et al. 2007), its rapid spread across Italy has raised significant public42

health concerns and required robust surveillance and control strategies (Rezza et al. 2007; Venturi et al. 2017;43

Brady et al. 2019; Barzon et al. 2021; De Carli et al. 2023; Branda et al. 2024; Sacco et al. 2024). The urgency44

of this issue was exemplified by the response of the Emilia-Romagna region to the 2007 Chikungunya outbreak,45

which underscored the need for efficient and targeted monitoring systems to prevent future epidemics (Canali et al.46

2017; Angelini et al. 2008). However, implementing such systems using traditional surveillance methods requires47

substantial financial and logistic resources, increasing the demand for cost-effective and scalable approaches (Ca-48

puto et al. 2020).49

To address these challenges, statistical modelling has emerged in the past two decades as an effective tool for50

predicting the geographic distribution and phenology of the species (Lippi et al. 2023). Spatio-temporal analysis,51

in particular, plays an important role in vector-borne disease surveillance by enabling decision-makers to allocate52

resources effectively and respond to outbreaks (Desjardins et al. 2018). Among the various statistical approaches,53

ecologists often employ correlative models to infer species phenology and spatial-temporal variations. These mod-54

els establish statistical relationships between a response variable (e.g., species abundance or presence-absence) and55

predominantly abiotic covariates (Guisan et al. 2017; Edwards et al. 2021; Torina et al. 2023).56

Existing models for estimating Ae. albopictus distribution vary in scope and complexity. Some models gener-57

ate predictions without explicitly accounting for temporal and seasonal variability, not necessarily capturing popu-58

lation dynamics over time (Ding et al. 2018). Furthermore, many others focus on large-scale or global predictions59

(for example, see Kraemer et al. (2015) and Ding et al. (2018)), which, while valuable for broad epidemiological60

insights, may lack the spatial resolution necessary for practical, localised interventions. In our study, we aim to61

overcome both limitations by developing a model that incorporates temporal variability in its predictions and op-62

erates at a more localised regional scale. This approach enhances its applicability for targeted vector control and63

public health planning (Purse et al. 2015; Khatchikian et al. 2011).64

Although statistical models have extensively advanced mosquito surveillance, their predictive accuracy re-65

mains sensitive to biases, which can arise from uneven data collection, assumptions in model structure, or con-66

straints in parameter estimation, potentially leading to inaccuracies in spatial and temporal predictions (Benk-67

endorf et al. 2020; Bazzichetto et al. 2023; Da Re et al. 2023). In this context, the work by Carrieri et al. (2023)68

represents a valuable contribution to the field, as it is one of the first attempts to apply a rigorous statistical frame-69

work to model Ae. albopictus egg abundance in the Emilia-Romagna region. Their study applied a Bayesian70

multi-model linear regression to estimate seasonal densities of Ae. albopictus eggs in the Emilia-Romagna region.71

While this approach relies on predefined equations and prior knowledge, requiring careful parameter estimation72

to ensure accuracy, it may be constrained by its underlying model structure. In contrast, our study adopts a data-73

driven approach by leveraging machine learning (ML) to infer Ae. albopictus egg abundance. Unlike parametric74

models that impose predefined relationships, ML identifies patterns directly from the data, potentially reducing75

bias and improving predictive performance.76

Recent advancements in ML techniques have provided powerful alternatives to conventional statistical models,77

particularly for capturing complex, nonlinear relationships between environmental factors and mosquito popula-78

tion dynamics. Indeed, ML-based models have shown superior performance in predicting species distributions,79

identifying ecological niches, and modelling seasonal fluctuations (Chen et al. 2019; Bonannella et al. 2022; Ceia-80

Hasse et al. 2023; Oeser et al. 2024; Da Re et al. 2025). However, despite these advantages, ML models remain81

sensitive to biases in sampling locations, the complexities of hyperparameter tuning, and variability introduced82

by different algorithmic choices (Benkendorf et al. 2020; Bazzichetto et al. 2023; Da Re et al. 2024). Given that83
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different algorithms may yield different results, model selection plays a fundamental role in predictive accuracy84

(Araújo et al. 2007; Pearson et al. 2006; Marmion et al. 2009). To address these challenges, ensemble learning85

techniques have emerged as an effective strategy to enhance model robustness and accuracy. While traditional86

aggregation methods, such as simple and weighted averaging, have been widely used (Marmion et al. 2009; Hao87

et al. 2019), studies suggest that stacking, or stacked generalisation, offers superior performance (Araújo et al.88

2005; Araújo et al. 2007).89

This study aims to develop a model that could support regional mosquito control efforts. Recognising the90

challenges posed by sampling issues such as variability in data availability, spatial coverage, and temporal depth,91

we seek to explore how these factors influence the reliability of machine learning-based predictions. To address92

this, we utilise a georeferenced database of Ae. albopictus egg observations collected between 2010 and 202393

and we explored how varying data quantities and distributions impact model performance. More specifically,94

this study aims to evaluate how variations in temporal depth and spatial coverage influence the sensitivity and95

reliability of the model, ultimately improving surveillance strategies for Ae. albopictus. In this context, we pursue96

three objectives: (1) identifying the optimal temporal span and (2) spatial coverage required for reliable model97

performance, and (3) generating short- and medium-term forecasts of mosquito egg distribution and abundance to98

support public health preparedness. Our results are especially relevant for regions seeking to implement similar99

surveillance models, as they offer valuable insights into the required effort and data collection needed for reliable100

predictions. Consequently, this work advances the development of data-driven decision-making tools for vector101

surveillance and control.102
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Figure 1: Left: Location of Emilia-Romagna within Italy. Right: Grid used for aggregating ovitrap data, matching
the resolution of the climatic datasets (approximately 5×5 km). Black dots indicate the sampling locations (SLs),
representing the aggregated ovitrap data.

2 Methodology103

2.1 Ovitrap data104

This study focuses on the Emilia-Romagna region in northern Italy, situated in the Po Valley (Figure 1). Since105

2010, regional authorities have monitored Ae. albopictus populations using ovitraps, which are dark water-filled106

containers equipped with a surface for mosquito egg deposition. These traps are inspected biweekly following107

standardised local protocols. Egg counts provide a reliable measure of mosquito activity and serve as a key tool108

in the region’s surveillance efforts.109

Mosquito monitoring in Emilia-Romagna is coordinated by Local and Regional Public Health departments,110

with municipalities responsible for operational activities (Carrieri et al. 2011). The program involves ten munici-111

palities deploying a total of 755 georeferenced ovitraps annually from late May (week 21) to early October (week112

40). The locations of all the ovitraps are shown in Figure S1. During each survey, the status of each ovitrap is eval-113

uated following the Regional Surveillance Operative protocol (Di Luca 2022). If a trap is found dry or overturned,114

its deposition substrate (a masonite stick) is excluded, and the data point is recorded as missing (NA). The collected115

sticks are sent to the Regional Environmental Protection Agency laboratories, where mosquito eggs are identified116

and counted using a stereomicroscope. A quality control process is then applied to the egg count data (Carrieri et117

al. 2017). After passing the quality check, the data are published on the regional portal www.zanzaratigreonline.it.118

For data integration into the machine learning model, the egg counts of Ae. albopictus collected through ovit-119

raps were set as the target variable. Temporal resolution was standardised to a weekly period using the spreader120

function from the dynamAedes R package (Da Re et al. 2022). The spatial resolution (approximately 5x5 km)121

was set consistently with the meteorological dataset. Ovitrap data were aggregated accordingly, with a similar122

pre-processing pipeline as the one described in Da Re et al. (2025), where the median egg count is calculated for123

each grid cell, referred to as a sampling location (SL) throughout this study. Each SL is identified by a unique124

numerical ID and represents the average egg observations within the grid cell. A total of 79 SLs are distributed125

across the study area.126
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2.2 Covariates127

The study incorporates key environmental factors known to influence mosquito activity and development. Three128

primary covariates were included: air temperature, photoperiod (the number of daylight hours), and precipitation129

(Toma et al. 2003; Roiz et al. 2010; Roiz et al. 2011; Cruz Ferreira et al. 2017; Becker et al. 2020; Romiti et130

al. 2021; Carrieri et al. 2023). Daily air temperatures and precipitation data were extracted from ERG5, a me-131

teorological dataset developed by the HydroMeteoClimate Service of Emilia-Romagna Regional Environmental132

Protection Agency (ARPAE). Currently, ERG5 covers the period from 2001 to the present and provides several133

spatially interpolated climate variables at a 5×5 km resolution based on data from ARPAE’s meteorological net-134

work (Antolini et al. 2015), which is the standard adopted by the regional environmental authority for operational135

and environmental monitoring planning purposes.136

To account for the delayed and cumulative effects of environmental conditions on mosquito populations, we137

derived rolling averages of each covariate, following the methodology of Da Re et al. (2025). Specifically, co-138

variates were represented using rolling means to account for short-term temporal integration. Temperature and139

photoperiod variables were summarized as the median across the focal week (i) and the preceding one or two140

weeks (i–1, i–2), while precipitation variables were computed as the cumulative total over the same periods.141

In addition to environmental variables, we incorporated seasonality and cyclic patterns using a Fourier series.142

This approach captures annual and short-term seasonal trends through sine and cosine harmonic waves (Hyndman143

et al. 2018). Four harmonics were included: two representing interannual variability and two capturing seasonal144

fluctuations.145

To factor in the influence of urbanisation on mosquito distribution (Perrin et al. 2022) and to mitigate spatial146

sampling bias (Gutierrez-Velez et al. 2020; Whitford et al. 2024), since monitoring sites are primarily located147

in major cities (Figure S1), we included a urbanisation index derived from the ESA CCI Land Cover database148

(www.esa-landcover-cci.org, Defourny et al. (2012)). This dataset provides annual gridded maps with 22 global149

land cover classes. Urban areas are coded as value 190, based on data from the Global Human Settlement Layer150

(Pesaresi et al. 2016) and the Global Urban Footprint (Esch et al. 2017). To construct the urbanisation index,151

we first extracted all pixels labeled as urban (value 190) to create a binary map (1 = urban, 0 = non-urban). We152

then rescaled this map from its original 1 km resolution to 5 km, calculating the proportion of urban cover within153

each grid cell using the terra::zonal function. The resulting index assigns each grid tile a value between 0154

(completely non-urbanised) and 1 (fully urbanised), with annual updates reflecting changes over time.155

Given that (Phillips et al. 2009) argued that spatial sampling bias may not compromise model performance156

if sampled locations adequately represent the full range of covariate conditions, this assumption may not hold157

in highly urbanised regions like Emilia-Romagna. Ovitraps in our study were concentrated in densely populated158

cities, leading to over-representation of anthropogenic environments and potential under-representation of rural159

or peri-urban settings. Including a dynamic urbanisation index addressed this imbalance, both by improving160

ecological relevance and reducing spatial bias. This correction is particularly important given the well-established161

influence of urbanisation on Ae. albopictus distribution (Li et al. 2014; Manica et al. 2016; Westby et al. 2021;162

Torina et al. 2023), and the known risks that uncorrected spatial bias poses to model generalisability and inference163

(Reddy et al. 2003; Kadmon et al. 2004; Anderson et al. 2011; Kramer-Schadt et al. 2013; Yackulic et al. 2013).164

2.3 Modelling framework165

Stacking is an ensemble learning technique that combines predictions from multiple base models to mitigate166

overfitting and improve generalisability (Wolpert 1992; Marmion et al. 2009). Unlike bagging or boosting, which167

focus on reducing variance or bias, stacking integrates diverse models, allowing a meta-learner to determine the168

optimal way to merge their outputs (Bonannella et al. 2022; Bonannella et al. 2023; Oeser et al. 2024). Building on169

the methodology established in Da Re et al. (2025), we implemented a stacked model using four machine learning170

algorithms as base learners: XGBoost (Chen et al. 2016), Random Forest (Breiman 2001), Gradient Boosting171
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Machine (Friedman 2001), and Cubist (Kuhn et al. 2024). These models were then combined into a unified172

ensemble using a linear meta-learner, specifically a regularised linear regression model trained to optimally weight173

the base learners’ predictions. This meta-model was implemented using the mlr3 library (Bischl et al. 2016; Lang174

et al. 2019). The overall ensemble architecture is illustrated in Figure 2a.175

To ensure consistent configuration across all base models, hyperparameters were optimised once using 10-176

fold cross-validation with 10 evaluations. However, we acknowledge the potential for overfitting by using this177

approach, particularly when training models on smaller datasets. These limitations are further explored in the178

”Discussion” section.179

Once the ensemble was constructed and optimised via hyperparameter tuning, it underwent training, vali-180

dation, and testing (Figure 2b). Each base learner’s predictions were assigned varying weights, reflecting their181

relative contributions to the final model output.182

2.4 Spatio-temporal sensitivity analysis183

To assess how model performance varies with training data quantity, we applied a systematic spatio-temporal184

subsampling strategy. This involved iteratively selecting subsets of the dataset to create multiple training sets of185

varying sample sizes for each model, determined by the total years of data used for training and the fraction of186

SLs. The training process covered four periods, the longest spanning from 2011 to 2022, followed by progres-187

sively narrower timeframes (2015-2022, 2019-2022, and 2021-2022). For each period, five spatial fractions of the188

sampling locations (SLs), 0.10 (7 SLs), 0.25 (19 SLs), 0.50 (38 SLs), 0.75 (58 ± 1 SLs), and 0.90 (70 ± 1 SLs),189

were randomly sub-sampled from the full dataset. Each combination of training period and spatial fraction was190

replicated five times to ensure result robustness and consistency.191

To validate the model, an internal validation was performed using 10-fold cross-validation within the training192

dataset; then, a spatial test was conducted on a separate dataset, using SLs that were excluded from training. For193

evaluating temporal transferability, model predictions were tested on all the available data from 2023, which was194

entirely withheld from the training of all 100 models.195

2.5 Model performance evaluation196

To quantify model performance, Root Mean Squared Error (RMSE) was computed for the internal, spatial, and197

temporal validations. The model yielding the lowest RMSE was selected to generate prediction maps for Ae.198

albopictus abundance and distribution in 2023.199

To further analyse RMSE variations, we applied linear regression models, assessing main effects and inter-200

action effects separately. The response variable in the linear model was the mean RMSE, while the explanatory201

variables were the training years, the fraction of sampling locations and their interaction. An Analysis of Variance202

(ANOVA) was then conducted using a two-way model to evaluate statistical significance. Model comparisons203

were based on the Akaike Information Criterion (AIC) (Table S1), and descriptive statistics were calculated for204

RMSE across training periods and spatial fractions. Finally, Tukey’s Honestly Significant Difference (HSD) test205

was performed for post-hoc comparisons.206
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(a)

(b)

Figure 2: (a) Stacked model architecture. (b) Map illustrating the components of the observational database and
subsequent data splitting.
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3 Results207

Among the base learners, the predictions from the Random Forest model had the largest positive influence on208

average, followed by GBM, XGBoost and Cubist (Figures S2 and S3). Temperature-related variables consistently209

emerged as the most influential factors across the models (Figure S4). These were followed by photoperiod210

variables, a Fourier harmonic, urbanisation, and precipitation with a 3-week lag. Ranked lower in importance211

were, in order, another Fourier harmonic, precipitation, and two additional Fourier harmonics.212

3.1 Internal cross-validation213

For the internal 10-fold cross-validation set, which was used for hyperparameter tuning of the base models, the214

RMSE values generally decreased as the fraction of sampling locations increases, but this trend was not consistent215

across all cases (Table 1). When comparing across training year ranges, models trained on longer periods generally216

performed better, too. Furthermore, the associated standard errors were smaller at higher sampling fractions and217

longer training years.218

Cross-validation was not performed for the 0.10 sampling fraction (7 SLs) due to insufficient data. When219

executing the resampling procedure, an error was returned during model training and evaluation, which indicated220

that, for at least one fold, the resampling split produced an empty set. The issue arose because the resampling221

instance was instantiated on a task with too few rows to satisfy the requirements of the cross-validation strategy,222

leading to a failure in retrieving the necessary data from the backend.223

Table 1: RMSE values with standard errors (±) for different training years and fractions of sampling locations for
the internal cross-validation.

2021 - 2022 2019 - 2022 2015 - 2022 2011 - 2022 mean

0.25 90.48±6.51 84.28±1.29 81.70±4.59 88.06±3.72 86.13±2.18
0.50 89.49±3.38 85.58±2.64 82.24±1.00 79.41±2.70 84.18±1.47
0.75 88.24±0.75 84.38±1.91 88.63±0.47 80.64±1.66 85.47±0.97
0.90 87.29±0.91 85.06±0.72 85.32±0.94 79.41±0.90 84.27±0.78

mean 88.87±1.73 84.82±0.83 84.47±1.27 81.88±1.41

3.2 Spatial validation224

Across all training periods and fractions of SLs, the models demonstrated consistent performance on the spatial225

validation, with a comparable range and scale of the error (Table 2). When comparing the errors for models trained226

with different quantities of training years, it emerged that the model trained on only two years achieved the overall227

lowest RMSE, on average (mean RMSE: 94.15). This is considerably lower than the RMSEs for other training228

periods such as 2019-2022 (105.40), 2015-2022 (102.69), and 2011-2022 (102.25) (Table 2). Specifically, the229

model trained on 2021-2022 with a 0.75 fraction of SLs (58 ± 1 SLs) achieved the lowest median RMSE of 73.00230

± 5.15 (Table 3), outperforming models with longer training periods. However, the model trained on data from231

2011 to 2022 with a 0.90 fraction of SLs (70 ± 1 SLs) scored the lowest mean RMSE of 85.22 ± 4.94 (Table 2).232

We have also computed the Relative Root Mean Square Error (rRMSE), a dimensionless metric that expresses233

the RMSE as a percentage of the observed data range, providing a scale-independent measure of model prediction234

error. By normalising the RMSE to the variability inherent in the observations, rRMSE allows for more meaningful235

comparisons of model performance across different datasets and scales. An rRMSE below 20% is generally236

considered indicative of good predictive performance, reflecting that the model error is relatively small compared237

to the natural variation in observed abundance (Li et al. 2013; Despotovic et al. 2016; McGough et al. 2017). In our238
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Table 2: RMSE values with standard errors (±) for different training years and fractions of sampling locations for
the spatial validation.

2021 - 2022 2019 - 2022 2015 - 2022 2011 - 2022 mean

0.10 101.49±2.84 120.43±2.88 106.71±2.26 111.94±2.39 110.15±1.31
0.25 92.06±2.68 97.91±2.85 106.28±2.91 100.92±2.39 99.35±1.36
0.50 89.02±3.01 96.85±3.58 99.23±3.33 96.37±3.32 95.41±1.66
0.75 85.66±5.15 97.69±5.41 88.48±3.76 89.95±4.32 90.41±2.35
0.90 90.30±5.10 88.06±8.08 93.79±7.42 85.23±4.94 89.35±3.25

mean 94.15±1.54 105.40±1.69 102.69±1.46 102.25±1.41

case, the rRMSE values ranged approximately from 16% to 24% across different training periods and sampling239

fractions (see Table S2).240

We then employed a linear model to evaluate overall trends across various combinations of training years and241

fractions of sampling locations (Figure 3). An important observation is that all linear models exhibited a negative242

slope, indicating a clear decreasing trend in RMSE as the fraction of data increases. Notably, the model trained243

on 2 years of data had the lowest RMSE overall. However, for larger fractions of data (> 0.75), its performance244

became comparable to the model trained on 12 years of data, with overlapping RMSE values. Interestingly, for a245

fraction of 0.9, the 12-year model outperformed the 2-year model.246

Table 3: Median RMSE results and quantiles 0.25 and 0.75 (Q1, Q3) for different training years and fractions
of sampling locations used. The median values were calculated based on the mean RMSE obtained for each
combination of training years, sampling fraction, iteration, and ID.

2021 - 2022 2019 - 2022 2015 - 2022 2011 - 2022

0.10 89.34 (64.41, 125.76) 111.96 (83.52, 141.42) 99.98 (76.76, 125.90) 101.63 (83.22, 128.18)
0.25 85.30 (59.65, 116.12) 90.93 (66.47, 113.64) 96.58 (69.72, 129.58) 93.74 (71.11, 118.48)
0.50 83.53 (56.44, 113.12) 87.48 (65.72, 111.70) 89.12 (67.57, 112.24) 84.86 (63.02, 116.53)
0.75 73.00 (54.32, 107.13) 91.42 (65.15, 111.46) 77.67 (63.16, 103.67) 82.06 (59.33, 108.44)
0.90 85.58 (64.05, 110.74) 75.27 (56.55, 101.40) 88.65 (67.23, 100.08) 81.91 (56.09, 105.85)

Fractions of 0.10 and 0.25 generally show higher RMSE values, with a wider spread (i.e., larger interquartile247

range and more outliers). This indicates more variability and less accuracy when fewer SLs are used for training.248

Fractions of 0.75 and 0.90 consistently yield lower median RMSE values, with narrower boxplots (Figure S5) and249

fewer outliers, indicating better model performance and stability (Table 2).250

The effect of SLs used in the training process is highly statistically significant (p < 0.001), as confirmed by the251

analysis of variance (ANOVA) (Table 4). The mean RMSE decreased as the fraction of SLs increased. Indeed, the252

lowest RMSE occurred for the 0.90 fraction (mean RMSE: 89.35). This is better than all other fractions, with a253

clear trend of decreasing RMSE as the fraction increased (Table 2). The Tukey test for pairwise comparisons of the254

main effects on mean RMSE (Table 6) confirmed that all fractions outperform with statistical significance fraction255

0.10 (p-value is < 0.05). Additionally, the difference between 0.75 and 0.25 is also statistically significant. The256

difference between 0.90 and 0.25 is not statistically significant, with p-value = 0.085. Alternatively, the fractions257

0.50 and 0.75 compared to 0.90 show no significant difference in performance, with adjusted p-values of 0.57258

and 0.99, respectively (Table 6). The largest difference occurs between 2021-2022 and longer training years,259

particularly for lower fractions of SLs (Table 5 and Table 6).260
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Figure 3: Linear model plot showing the relationship between the fraction of sampling locations and the mean
RMSE for different training year sets (2011-2022, 2015-2022, 2019-2022, and 2021-2022). C.I. is 95%. The trend
is similar across the four training year groups: as the fraction of sampling locations increases, the mean RMSE
consistently decreases across all training year sets, indicating that higher fractions of sampling locations improve
model accuracy.
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Table 4: Analysis of variance (two-way ANOVA) for the linear model where the response variable is mean RMSE
and the explanatory variables are the years of training and fraction of SLs.

Degrees
of Freedom

Sum of
Squares

Mean
Square F-value p-value

Training years 3 67581 22527 10.23 < 0.001
Fraction of SLs 4 210176 52544 23.986 < 0.001
Residuals 3877 8538979 2202

Table 5: Tukey HSD test results for pairwise comparisons of the training years on mean RMSE, based on a
two-way ANOVA model.The comparisons were conducted with a 95% confidence level. The lower and upper
confidence intervals are reported in brackets (LCI, UCI).

Training years difference (LCI, UCI) p-value

2015-2022 - 2011-2022 0.43 (-4.99, 5.86) 1.00
2019-2022 - 2011-2022 3.15 (-2.30, 8.60) 0.45
2021-2022 - 2011-2022 -8.10 (-13.55, -2.65) < 0.001
2019-2022 - 2015-2022 2.71 (-2.77, 8.20) 0.58
2021-2022 - 2015-2022 -8.54 (-14.02, -3.05) < 0.001
2021-2022 - 2019-2022 -11.25 (-16.76, -5.74) < 0.001

3.3 Predictions on the test set261

The testing performed using the 2023 dataset showed similar error patterns across models trained with different262

periods and SL fractions (Figures 4 and 5). Overall, the models tended to underestimate Ae. albopictus egg abun-263

dance in 2023, particularly during the peak summer months. This systematic underestimation was observed in both264

short-term (2021-2022) and longer-term models, though the timing of the seasonal peak was predicted accurately.265

Predictions for off-season months (e.g., late autumn) displayed relatively low variability for egg counts, expected266

to be 0, particularly for models trained on 12 years of data (Figure 4). These longer-term models predicted fewer267

than 10 eggs per ovitrap in off-season months. The model trained on two years (2021-2022) demonstrated compa-268

rable performance to those trained on longer periods, underscoring its ability to capture general seasonal dynamics269

despite using less historical data.270

Table 6: Tukey HSD test results for pairwise comparisons of the fraction of SLs on mean RMSE, based on a
two-way ANOVA model.The comparisons were conducted with a 95% confidence level. The lower and upper
confidence intervals are reported in brackets (LCI, UCI).

Fraction of SLs difference (LCI, UCI) p-value

0.25 - 0.10 -10.81 (-15.89, -5.73) < 0.001
0.50 - 0.10 -14.75 (-20.48, -9.02) < 0.001
0.75 - 0.10 -19.76 (-27.08, -12.43) < 0.001
0.90 - 0.10 -20.79 (-31.46, -10.11) < 0.001
0.50 - 0.25 -3.94 (-9.88, 1.99) 0.37
0.75 - 0.25 -8.95 (-16.43, -1.46) < 0.05
0.90 - 0.25 -9.98 (-20.76, 0.81) 0.085
0.75 - 0.50 -5.01 (-12.95, 2.93) 0.42
0.90 - 0.50 -6.04 (-17.14, 5.07) 0.57
0.90 - 0.75 -1.03 (-13.04, 10.98) 0.99
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Figure 4: Mean predicted (coloured lines) and mean observed (dashed lines) Ae. albopictus egg abundance for the
spatial validation set across four training periods (2011-2022, 2015-2022, 2019-2022, and 2021-2022) and five
data fractions (0.10, 0.25, 0.50, 0.75, and 0.90).
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Figure 5: Mean predicted (coloured lines) and mean observed (dashed lines) Ae. albopictus egg abundance for the
temporal validation (year 2023) across four training periods (2011-2022, 2015-2022, 2019-2022, and 2021-2022)
and five data fractions (0.10, 0.25, 0.50, 0.75, and 0.90).
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3.4 Prediction maps271

Spatial predictions for 2021 and 2022 were used to check if the predictions aligned with expected seasonal trends272

(Figure S8). However, it is important to note that these years overlap with the training years, meaning the model’s273

predictions are based on data it was partially exposed to during training.274

The prediction maps for 2023 were first generated using the best-performing model based on metrics of the275

spatial validation, which is composed by the unused SLs in training (Figure 6a). The model successfully captured276

the general trend of increasing egg abundance from spring to autumn, with predictions aligning with observed277

seasonal patterns in Ae. albopictus activity. However, using the model trained with the longest period and the278

largest fraction, a notable drop in egg abundance was predicted for mid-May 2023 (Figure 6b).279

(a)

(b)

Figure 6: Prediction map showing the distribution and abundance of Ae. albopictus eggs over 10 weeks in 2023.
The model used to develop image (a) was trained using data from 2021-2022 and 0.75 of the SLs, while for (b)
training was done on years 2011-2022 and 0.90 of the SLs.
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4 Discussion280

This study investigated the development of a passive surveillance system for Ae. albopictus in Emilia-Romagna,281

aiming to define optimal temporal and spatial data requirements and to produce short- and medium-term forecasts282

of Ae. albopictus egg abundance. Accurate predictions of disease vector distribution and abundance trends are283

essential to guide decision-making and enable effective and timely control measures. Additionally, these predic-284

tions are crucial for addressing the nuisance caused by invasive mosquito species, which can significantly impact285

the quality of life in affected areas. These efforts align with the United Nations Sustainable Development Goals286

3 and 13, which focus on ending vector-borne disease epidemics and enhancing early warning systems for global287

health risks (UN General Assembly 2015). Although earlier studies have explored the distribution and abundance288

of Ae. albopictus using environmental variables and various modelling techniques, both mechanistic and correl-289

ative, they have typically focused on a global or continental scale. Moreover, they did not explicitly address the290

feasibility of producing forecasts within an operational surveillance context, but rather they sought to understand291

general trends and species-environment relationships. This study aims to bridge that gap by integrating spatial292

and temporal scaling analyses with predictive modelling into a coherent passive surveillance system, tailored to293

inform vector control efforts in a timely and regionally specific manner.294

The findings presented here have both economic and public health implications. From an economic perspec-295

tive, the study evaluates the trade-offs between spatial sampling density and model accuracy, potentially informing296

cost-effective surveillance strategies. From a public health standpoint, the model provides practical insights for297

vector surveillance and control, offering an alternative to species distribution models (SDMs) by predicting ac-298

tual mosquito abundance rather than habitat suitability. Unlike suitability models, abundance forecasts can better299

reflect the expected mosquito pressure in specific locations and time windows. Therefore, while previous studies300

have predominantly employed SDMs to study the population dynamics of Ae. albopictus, our findings suggest that301

modelling abundance directly, despite its higher data demands and sensitivity to environmental noise, provides a302

more concrete and actionable metric for vector control planning. For instance, global-scale studies by Kraemer303

et al. (2015) and Kraemer et al. (2019) adopted a data-driven approach using Boosted Regression Trees (BRTs)304

to model habitat suitability for Aedes mosquitoes. These studies emphasised mapping global distributions and305

predicting long-term trends under future climate and urbanisation scenarios. While powerful for assessing global306

risk and guiding international public health responses, these models focus on presence–absence and suitability,307

rather than abundance, and are not designed for local or short-term forecasting.308

Compared to these earlier works, our model departed from both physiologically explicit and habitat suitability309

paradigms by directly predicting species abundance at a regional spatial scale and a dynamic temporal scale.310

Moreover, our approach was largely data-driven and does not require parametrisation of species physiology. A311

study by Carrieri et al. (2023) applied a Bayesian framework to assess the weather-dependent seasonal trends312

of Ae. albopictus populations, emphasising the role of meteorological variables in shaping egg density patterns.313

Their work provided valuable insights into the influence of weather and highlights seasonal drivers, however, their314

outputs focused on relative trends (for instance, expected increase or decrease in egg density) rather than producing315

direct numerical forecasts. Our study advanced this by offering quantitative abundance predictions, expressed as316

estimated egg counts per ovitrap per pixel per week, thus enabling more operationally relevant interpretations317

for mosquito control planning. Finally, our study went beyond correlational modelling by conducting systematic318

sensitivity analyses on both the temporal and spatial dimensions of input data. This helped assess the robustness of319

predictions under various data availability scenarios, a consideration largely absent from previous works. In doing320

so, we provided a more adaptable and scalable framework for regional surveillance systems, capable of balancing321

forecasting accuracy with practical constraints such as limited data or computational resources.322

Our ML model showed improved accuracy with more sampling locations, peaking at 90% coverage (70 ± 1 out323

of 79 SLs). However, models trained on 50–75% of SLs (38 - ∼58 out of 79 SLs) performed comparably, making324

them viable options when computational or logistical constraints limit data availability. ANOVA confirmed that325
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model performance improved with greater spatial coverage, though intermediate sampling levels performed with326

comparable accuracy, suggesting a plateau effect beyond a certain threshold.327

Maintaining adequate spatial coverage remained critical, as models trained on only 10% of SLs (7 out of 79328

SLs) exhibited statistically significant performance degradation compared to those trained on 90% (p = 0.0041).329

Thus, while reducing SLs can be feasible within a certain range, overly limited spatial distribution compromises330

accuracy. A balance between efficiency and performance was achieved with SL fractions between 50% and 75%,331

offering flexibility for future applications under resource constraints.332

The observed performance degradation could be due to two primary factors: (1) the overfitting of complex333

models when trained on datasets with limited data, where the model may learn spurious patterns that do not334

generalise well to unseen data, and (2) a reduction in spatial variability within the dataset. When the spatial335

coverage is constrained, the model is exposed to a narrower range of environmental conditions, potentially failing336

to capture the full spectrum of spatial heterogeneity that is critical for making accurate predictions (Randin et337

al. 2006; Ramampiandra et al. 2023). As a result, the model may have struggled to generalise to regions with338

unobserved or under-represented conditions, leading to decreased predictive accuracy.339

We also expected that models trained with longer historical data periods would show increasingly better pre-340

diction accuracy (Goodfellow 2016). However, our results suggested that the model trained on the least number341

of years exhibited the highest performance metrics during the testing and validation phases. This outcome may342

be explained by the variance-bias trade-off, where models trained on smaller datasets had lower variability in the343

data, which reduced variance and overfitting but may have limited the model’s ability to capture extreme events or344

outliers (Bishop et al. 2006; Hastie 2009; Boehmke et al. 2019). Essentially, with fewer years of data, the model345

was exposed to a narrower range of variability in environmental conditions, making it easier for the model to gen-346

eralise with a low statistical error for the temporally adjacent data. This could have resulted in a lower prediction347

error also because the model was less likely to overfit to outlier conditions present in a more extensive temporal348

dataset (Boehmke et al. 2019; Ramampiandra et al. 2023). Nevertheless, the trade-off depends on environmental349

stability. In dynamic systems, a longer training period may be necessary to capture relevant patterns and ensure350

robustness across different scenarios. The balance between bias reduction and generalisation should therefore be351

assessed in context, particularly for species affected by fluctuating environmental conditions. At the same time,352

the reduced variability of a limited dataset also means that the model has less information during the training353

phase and therefore could be less generalised, making it less capable of capturing extreme or rare events outside354

its training distribution (Boehmke et al. 2019; Ramampiandra et al. 2023), which could explain why the model355

trained on two years of data failed to predict the decline in abundance in May 2023.356

In contrast, the model trained on the most extensive dataset, which included 12 years of data and a more357

comprehensive spatial distribution of data (a 0.90 fraction of SLs, 70±1 SLs), successfully predicted the lower358

abundance of mosquitoes in May 2023, which coincided with severe flooding in the eastern part of the region that359

could have affected reproductive and mortality rates (Harrington 1995; Alto et al. 2001; Medici et al. 2011; Dieng360

et al. 2012; Carrieri et al. 2023) of Ae. albopictus. Indeed, the floods possibly disrupted the tiger mosquito’s larval361

habitats (Carrieri et al. 2011). Specifically, the heavy rains inundated the area, flushing out immature mosquitoes,362

while subsequent mud accumulation clogged breeding sites, such as manholes (Arrighi et al. 2023; Koenraadt et363

al. 2008; Roiz et al. 2015; Tran et al. 2013). This population reduction was observed exclusively in municipalities364

within the southeastern part of the region (Arrighi et al. 2023).365

Overall, our model successfully predicted the seasonal timing of mosquito egg abundance, even though they366

underestimated the peak magnitudes during the summer months (Figure 5). Accurate prediction of seasonal timing367

remains the core objective of our modeling framework, given its critical importance for anticipating vector activity368

and guiding public health interventions. Nevertheless, the underestimation of peak abundance may reflect limita-369

tions in the model’s ability to fully capture population dynamics during periods of high mosquito activity. A factor370

contributing to this behaviour of the model could be a bias toward the observed mean of the training dataset, which371

could have lead to the smoothing of extreme values, which is a well-documented tendency in machine learning372
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literature (Zhang et al. 2012; Nguyen et al. 2015; Song 2015; Hooker et al. 2018; Ghosal et al. 2020). This bias373

can be evident in ensemble methods, particularly those that rely on averaging across multiple models, such as374

bagging approaches (e.g. Random Forests). This averaging effect tends to shrink the prediction range, resulting in375

a narrower spread of values compared to the actual variability in the response variable (Meinshausen et al. 2006;376

Zhang et al. 2012; Frame et al. 2022). Consequently, lower values are often overestimated, whereas higher values,377

such as peaks in abundance, are underestimated. In the case of stacking, this effect can be primarily observed378

if the meta-learner assigns a dominant weight to models prone to smoothing extreme values, such as tree-based379

ensembles like Random Forests - exactly what happened in this study. However, if the highest-weighted model380

within the ensemble is one that better captures extreme values, such as quantile regression models (Meinshausen381

et al. 2006), simple neural networks or deep learning-based models - this effect may be less pronounced or absent.382

While such alternative base models might potentially mitigate this bias by better capturing extreme values, their383

influence in this specific context remains unexplored due to computational constraints. Future research could sys-384

tematically evaluate the role of different base learners in stacking, testing whether models optimised for capturing385

extreme values improve predictions of peak abundance. Additionally, hybrid modelling approaches that integrate386

process-based models with machine learning could provide an alternative way to better represent population dy-387

namics, particularly under conditions of high variability (Reichstein et al. 2019; Madzokere et al. 2020; Kraft et al.388

2021; Steele et al. 2024; Acuña Espinoza et al. 2025).389

While this study provides valuable insights into the application of machine learning models for predicting390

the spread and abundance of Ae. albopictus in Emilia-Romagna, some limitations indicate that further research391

and computational advancements could enhance the accuracy of the results. We observed that generally model392

predictions align well with observed seasonal patterns in egg abundance, with peaks occurring in the mid-summer393

weeks. However, 2023 exhibits some differences: observed egg counts fluctuated in ways not fully captured by394

predictions, which may be attributed to atypical environmental responses. Specifically, the observed mosquito egg395

abundance in 2023 seems less correlated with temperature and precipitation (Figure S6) compared to previous396

years (Figure S6), suggesting that possibly external factors beyond the selected covariates or unusual climatic397

events could have influenced mosquito dynamics.398

Another possible source of variability is the impact of vector control measures on the abundance of collected399

eggs. Pest control agencies are working to reduce the population of the species and minimise the nuisance caused400

by bites to the public (Ravasi et al. 2021). Unfortunately, this is an uncontrollable factor, as we lack access401

to detailed information about the timing and location of pest control treatments conducted in the area and pe-402

riod of interest. Although regional authorities adhere to standard guidelines available in technical documents on403

www.zanzaratigreonline.it, the number of anti-larval treatment cycles varies across municipalities. Furthermore,404

the products used for vector control were changed in 2017 due to the emergence of resistance in Culex pipiens405

(Grigoraki et al. 2017), which may have influenced the effectiveness of the treatments and, consequently, the406

variability in egg abundance observed in the dataset.407

One of the main practical challenges of this study was determining the appropriate methodology to prevent408

data leakage between the training and validation sets during the hyperparameter tuning process with 10-fold cross-409

validation. This issue has been highlighted as potentially problematic in several machine learning studies in the410

ecological field, particularly when working with highly structured spatial and temporal data (Roberts et al. 2017;411

Schratz et al. 2019; Kapoor et al. 2023). In this study, we opted to use consistent hyperparameters across all412

models, which were tuned using 10-fold cross-validation on the training set. This approach was chosen to maintain413

uniformity in model configuration while maximising generalisation across different data subsets. However, we414

acknowledge that using complex models on datasets with low volume, limited temporal coverage, and small415

fractions of data might have increased the risk of overfitting. While tuning each model separately for different416

partitions could theoretically improve local performance, it would also introduce a higher risk of overfitting due417

to reduced sample sizes in individual subsets. Future work could explore alternative tuning strategies, particularly418

for cases where larger datasets or more extensive temporal coverage allow for partition-specific hyperparameter419
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optimisation.420

Regarding the spatial distribution of predicted egg counts, the models occasionally estimated high values in ar-421

eas predominantly characterised by humid rural environments and even in higher mountainous regions. However,422

we cannot verify the accuracy of these predictions, as ovitraps are typically placed in urban areas at relatively low423

elevations. For this reason, we chose to mask mountainous areas above 600 m, where no observations are available424

to validate the predictions. We are also exploring the use proxy variables that capture aspects of microclimatic425

conditions that benefit Ae. albopictus, which thrive in shaded and humid environments. For instance, the leaf area426

index (LAI) is widely recognised as a reliable proxy for microclimate (Hardwick et al. 2015; De Frenne et al.427

2019; Zellweger et al. 2019). LAI measures the amount of leaf surface area relative to the ground area, providing428

an indicator of canopy cover. Studies have consistently shown a strong correlation between dense canopy cover429

and moderated microclimatic conditions, such as reduced temperature variability (Scheffers et al. 2014; John et430

al. 2024), increased humidity (Chen et al. 1999), and decreased solar radiation reaching the substrate (Lieffers431

et al. 1999; Drever et al. 2003). Additionally, since data collection occurs only between late May and early Octo-432

ber, incorporating data from winter monitoring could significantly enhance model performance. Future research433

could explore adding seasonal adjustments or variables to better capture seasonal abundance peaks, potentially434

incorporating mechanistic models to address mosquito life cycle shifts (for example, see Madzokere et al. (2020)).435

Under ongoing development, a passive surveillance system is being designed to operationalise these predic-436

tive models into a user-accessible platform. This system will integrate ovitrap monitoring data with environmental437

covariates to provide near real-time tracking of Ae. albopictus population dynamics and short-term forecasts with438

an approximate lead time of two weeks. The platform Open-Earth-Monitor will enable the visualisation of his-439

torical trends, spatial distributions, and weekly fluctuations in egg abundance, offering an automated and scalable440

framework for continuous vector monitoring. By streamlining data processing and forecast generation, this tool441

will enhance the capacity of public health authorities to implement timely and evidence-based mosquito control442

strategies. Once fully operational, it is expected to improve risk assessment and resource allocation in Emilia-443

Romagna, with potential applications in other regions facing similar vector-borne disease challenges. Currently,444

our model has already been implemented in collaboration with the Emilia-Romagna Region and is available as445

a user-facing tool on the official regional mosquito monitoring portal - www.zanzaratigreonline.it. This platform446

has been developed to support public health practitioners in planning and prioritising vector control efforts and447

provides maps of Ae. albopictus egg abundance based on the best model in this study.448

18

https://earthmonitor.org/
https://www.zanzaratigreonline.it/it/monitoraggio/modello-previsionale


5 Conclusion449

Extensive ovitrap data and associated environmental covariates have allowed the development of models capable450

of forecasting mosquito population dynamics with significant implications for public health management. Our451

findings indicate that models trained on extensive historical and spatial data captured broader environmental vari-452

ability, which was particularly useful under unusual conditions. Moreover, it is clear that models that were trained453

on a higher fraction of sampling locations consistently produced more accurate predictions, emphasising the value454

of comprehensive spatial coverage of the monitoring.455

The results help enhance mosquito surveillance and control strategies through the operational application of456

the developed predictive models in initiatives intending to reduce the risk of mosquito-borne diseases in both457

Emilia-Romagna and other regions facing similar challenges. Indeed, accurate, short-term forecasts of Ae. al-458

bopictus populations can guide targeted interventions, helping public health authorities allocate resources more459

efficiently, particularly in high-risk urban areas. A passive surveillance system is currently being developed to460

integrate ovitrap data with environmental factors, providing near real-time tracking and short-term forecasts of461

Ae. albopictus populations, aiming to enhance vector monitoring and support evidence-based mosquito control in462

Emilia-Romagna and beyond.463
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Supplementary Material474

Table S1: Akaike Information Criterion (AIC) for model selection, where K is the number of parameters, AICc is
the corrected Akaike Information Criterion, DeltaAICc is the difference from the best model (competitive if less
than 2), AICcWt is the probability the model is the best, CumWt is the cumulative weight of models and LL is the
log-likelihood.

Model K AICc DeltaAICc AICcWt CumWt LL

two-way 9 40939.34 0.00 0.63 0.63 -20460.65
interaction 21 40940.40 1.07 0.37 1.00 -20449.08

one-way (fraction of SLs) 6 40964.01 24.67 0.00 1.00 -20475.99
one-way (training years) 5 41025.77 86.44 0.00 1.00 -20507.88

Table S2: Relative RMSE (%) with standard errors (±) for different training years and sampling fractions in the
spatial validation. All values are interpreted as a percent of the observed range.

2021 - 2022 2019 - 2022 2015 - 2022 2011 - 2022 mean

0.10 20.25±0.66 24.34±0.79 21.51±0.57 22.91±0.66 22.25±0.34
0.25 18.43±0.64 18.84±0.56 20.51±0.64 20.46±0.58 19.56±0.30
0.50 18.58±0.74 18.32±0.69 19.02±0.74 19.85±0.72 18.95±0.36
0.75 16.72±0.93 17.69±0.95 19.18±0.92 18.23±1.05 17.97±0.48
0.90 18.75±1.54 17.22±1.60 17.52±1.35 17.49±1.26 17.75±0.72

mean 18.96±0.36 20.54±0.39 20.31±0.33 20.88±0.35
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Figure S1: Ovitrap locations for each of the 14 years of sampling.
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Figure S2: Boxplots of the weights assigned to base learners in the stacked model.
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Figure S3: Boxplots of the weights assigned to base learners in the stacked model, grouped by training years and
fractions. Each boxplot represents the distribution of weights for a specific base learner (Cubist, GBM, Random
Forest, XGBoost) across multiple models. The individual panels show the effect of different training data periods
and fraction of sampling locations on the assigned weights.

23



Figure S4: Distribution of variable importance percentages across all models for 11 predictor variables. Each
boxplot represents the variability in importance for a specific variable, aggregated over 100 stacked models.

Figure S5: Boxplots illustrating the effect of the fraction of SLs on the mean RMSE for different training year
sets (2011-2022, 2015-2022, 2019-2022, and 2021-2022) on the temporal validation set. Each colour represents a
different fraction of SLs used in the model training. As the fraction increases, RMSE tends to decrease, indicating
better model performance with more spatial coverage.
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Figure S6: Mean predicted (coloured lines) and mean observed (dashed lines) Ae. albopictus egg abundance for
weeks 20-45 compared with mean weekly temperature and precipitation (red and blue lines, respectively) for the
spatial and temporal validation set across four training periods (2011-2022, 2015-2022, 2019-2022, and 2021-
2022) and five data fractions (0.10, 0.25, 0.50, 0.75, and 0.90).
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Figure S7: Mean predicted (coloured lines) and mean observed (dashed lines) Ae. albopictus egg abundance for
weeks 20-45 compared with mean weekly temperature and precipitation (red and blue lines, respectively) for the
temporal and spatial validation set across four training periods (2011-2022, 2015-2022, 2019-2022, and 2021-
2022) and five data fractions (0.10, 0.25, 0.50, 0.75, and 0.90).
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(a)

(b)

Figure S8: Prediction map showing the distribution and abundance of Ae. albopictus eggs over 10 weeks (a) in
2021 and (b) in 2022. The model implemented was trained using data from 2011-2022 and 90% of the SLs.
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