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Abstract 18 

Malaria remains a major public health challenge causing an annual estimated 600,000 deaths and 19 

250 million infections. While most malaria vector control efforts focus on freshwater mosquito 20 

species, saltwater-tolerant mosquitoes inhabiting coastal ecosystems like mangrove forests remain 21 

understudied. Historically, mangrove forests have been perceived as breeding grounds for malaria 22 

vectors, which is often a motivation for their destruction. However, mangroves provide crucial 23 
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ecosystem services, and their impact on malaria transmission remains unresolved. This study 24 

presents the first African multi-country analysis linking mangrove forests to malaria prevalence. We 25 

employed piecewise structural equation models (SEMs) to examine the relationships among 26 

mangrove land cover and mangrove vegetation health across coastal settlements in 27 African 27 

countries. We combined satellite-derived land cover, vegetation, and weather data alongside malaria 28 

incidence records from 1996 to 2020. We found two key associations. First, increased mangrove land 29 

cover is associated with lower malaria prevalence at coarse spatial resolution, challenging the 30 

traditional view of mangroves as disease-promoting environments. This reduction may reflect 31 

ecological factors such as limited densities of saltwater mosquitoes, reduced larval development due 32 

to shading, or the presence of natural predators. Second, at fine and coarse spatial resolutions, 33 

healthier mangrove forests (i.e. more vegetation) are correlated with increased malaria prevalence. 34 

This trend may be driven by higher mosquito abundance and biodiversity in vegetatively rich 35 

mangrove areas, aligning with other studies showing vegetation as a positive predictor of mosquito 36 

population density. Our results suggest that mangrove forests generally carry a low risk of malaria 37 

transmission. From this low baseline, transmission is higher in healthier mangrove forests. How large 38 

this difference is will likely depend on the locality and configuration of the forests. These findings 39 

highlight the importance of integrating mangrove conservation with context-specific vector 40 

management strategies. 41 
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Introduction 45 

Understanding how environmental conditions influence disease transmission is essential for effective 46 

public health and conservation strategies (Adisasmito et al., 2022; Lambin et al., 2010). Malaria kills 47 

approximately 600,000 people every year and infects 250 million (WHO, 2024). Substantial effort has 48 

been put into controlling malaria and its vectors (Duffy et al., 2024; Mbanefo & Kumar, 2020; 49 

Messenger et al., 2023), particularly mosquitoes that lay their eggs in freshwater bodies. However, 50 

several malaria vector species also inhabit brackish and saltwater environments in coastal areas 51 

(Ramasamy & Surendran, 2012). 52 

Mangrove forests are one of the most widespread ecosystems along tropical and subtropical 53 

coastlines (Dahdouh-Guebas et al., 2022). Mangrove forests, like many wetlands, have historically 54 

been considered to promote disease transmission (Dahdouh-Guebas et al., 2021; Friess, 2016). This 55 

perception originated in the now-disproved “miasma theory”, which attributed malaria to the “bad 56 

air” of wetland environments (Friess, 2016). Saltwater-tolerant mosquitoes can transmit malaria in 57 

mangrove forests (Diop et al., 2002; Pock Tsy et al., 2003; Sy et al., 2023), although their real impact 58 

on malaria prevalence remains unresolved. Their suggested role in disease transmission has led to 59 

the purposeful destruction of mangrove forests (Valiela et al., 2001). Mangrove research in past 60 

decades has spent significant efforts highlighting the ecological and social benefits of these habitats 61 

for local communities (Dahdouh-Guebas et al., 2020, 2021; Friess, 2016), including ecosystem 62 

services such as fisheries production (zu Ermgassen et al., 2021, 2025), timber (Dahdouh-Guebas et 63 

al., in press), firewood (Satyanarayana et al., 2021), coastal protection (Barbier et al., 2011; Strain et 64 

al., 2022), carbon storage (Duarte et al., 2013), cultural significance (Dahdouh-Guebas et al., 2021; 65 

Moore et al., 2022), and tourism (Spalding & Parrett, 2019). While mangrove ecosystems have been 66 

managed or restored to maximise these benefits (Dabalà et al., 2023), it remains unclear how their 67 

loss, conservation, or restoration affects the malaria burden of coastal communities. 68 
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Human malaria is a major public health issue in sub-Saharan Africa, the region with the world’s 69 

highest malaria burden (WHO, 2024). The role of African saltwater-tolerant mosquitoes (Anopheles 70 

merus Dönitz, 1902 and An. melas (Theobald, 1903)) in malaria transmission is poorly understood 71 

(Bartilol et al., 2021), although some studies indicate that these species are relevant vectors, e.g. in 72 

East Africa (Bartilol et al., 2021; Cuamba & Mendis, 2009). Over time, vector communities (Musiime 73 

et al., 2019; Mwangangi et al., 2013) and their feeding behaviour (Russell et al., 2013) can change, for 74 

instance, as a result of mosquito control programmes. Therefore, mosquitoes in mangrove forests 75 

could become an important source of malaria transmission in the future. Saltwater-tolerant 76 

mosquitoes also transmit other tropical diseases that are less well documented, such as lymphatic 77 

filariasis, another parasitic disease (Kipyab et al., 2013; Pi-Bansa et al., 2019). The problem of coastal 78 

malaria and other diseases transmitted by saltwater-tolerant mosquitoes might further be 79 

exacerbated by global warming and rising sea levels, which may lead to more flooding, increasing the 80 

impact of saltwater-tolerant vectors in coastal areas (Ramasamy & Surendran, 2012). These trends 81 

underscore the need to better understand how coastal environments such as mangrove forests 82 

shape disease risks, particularly in vulnerable tropical regions. 83 

Counter to the potential threat posed by saltwater-tolerant mosquitoes, mangrove forests might also 84 

limit malaria infections. Several factors have been hypothesised to play a role. Natural predation, e.g. 85 

by fishes, insects, crustaceans, and flatworms, on adult and larval mosquitoes can directly reduce 86 

mosquito abundance (Arthiyan et al., 2024; Griffin & Knight, 2012; Kaura et al., 2023; Kumar & 87 

Hwang, 2006; Louca et al., 2009; Tranchida et al., 2009). Shading could slow down larval emergence 88 

by reducing water temperatures (Burkett-Cadena & Vittor, 2018). More broadly, biodiversity may 89 

yield dividends for public health. In some ecosystems, greater biodiversity is linked to reduced 90 

disease transmission. For instance, Lyme disease infection risk in North America can be diluted by the 91 

addition of less-competent hosts to forest communities (Wood & Lafferty, 2013). While this ‘dilution 92 

effect’ provides a strong motivation to conserve ecosystems (Wood & Lafferty, 2013), the generality 93 
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of these negative biodiversity–disease relationships has been questioned, as many examples exist of 94 

systems in which biodiversity destruction has reduced disease transmission—including malaria, 95 

which can be eradicated through wetland draining (Hudson et al., 2006; Rohr et al., 2019; Wood, 96 

2025; Wood et al., 2014; Wood & Johnson, 2015). Whether mangrove biodiversity contributes to 97 

such a dilution effect remains an open question. 98 

How mangrove forests affect malaria infections likely depends on the spatial resolution at which this 99 

relationship is studied. Previous studies showed that the relationship between mosquito-borne 100 

diseases and landscape characteristics changed depending on the spatial resolution. For example, 101 

Brock et al. (2019) found that changes in forest canopy cover influenced zoonotic malaria burden 102 

(Plasmodium knowlesi Sinton and Mulligan, 1932) at resolutions of 0.5 km. In contrast, habitat 103 

fragmentation was an important predictor at a resolution of 4–5 km (Brock et al., 2019). This 104 

example illustrates a broader trend regarding the relationships between ecological factors and 105 

disease distributions. Disease burdens correlate most strongly with biotic factors at fine spatial 106 

resolution (‘local scales’), whereas abiotic factors correlate at coarse spatial resolution (‘regional 107 

scales’) (Cohen et al., 2016; Rohr et al., 2019) [but see also evidence to the contrary in Magnusson et 108 

al. (2020)]. The rationale is that species interactions occur at fine spatial resolution, whereas the 109 

influence of abiotic conditions, such as weather or topography, generally becomes detectable at 110 

regional and not local level. For instance, mosquitoes rarely travel beyond 5 km from their breeding 111 

sites (Jansson et al., 2021; Thomas et al., 2013). Therefore, if malaria transmission in mangrove 112 

forests is influenced by biotic interactions like predation, these effects are likely the strongest when 113 

measured at fine spatial resolution. In contrast, the effects of abiotic factors including weather, 114 

seasonality, salinity, and population density on the mangrove-malaria relationship may only become 115 

detectable at coarse spatial resolution. 116 

The present study examines how (i) mangrove land cover and (ii) mangrove health affect malaria 117 

prevalence directly or indirectly, and (iii) at which spatial resolution these relationships are the 118 
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strongest. To achieve these goals, we conducted a multi-country analysis of satellite-derived land 119 

cover, vegetation, and weather data alongside malaria incidence records from 1996 to 2020. Using 120 

piecewise structural equation models (SEMs), we disentangled the direct and indirect effects that 121 

influence the mangrove-malaria relationships. This study is the first continent-wide analysis of the 122 

relationship between mangrove forests and malaria burden. 123 

Methods 124 

Overview 125 

Classical statistical methods in ecology such as linear and mixed models test for direct effects 126 

between variables. The mangrove–malaria relationship might, however, be shaped by many indirect 127 

relationships, which these models cannot fully capture. Therefore, we opted to use structural 128 

equation models (SEMs), an approach specifically designed to test for direct and indirect effects. We 129 

would like to point out that SEMs are a confirmatory analysis, meaning that we built the model 130 

structure based on postulations about causal relationships between the variables of interest. This 131 

model structure is then tested against the data. Importantly, we do not aim to model all possible 132 

variables influencing malaria prevalence, but rather to test whether the postulated mangrove–133 

malaria relationship is confirmed or rejected by our data. To account for potentially missing or 134 

superfluous causal connections, the model building was followed by an optimisation procedure. The 135 

final optimised models were used for interpreting the support for the individual causal relationships 136 

of the SEM structure. 137 

To contextualise the performance of our SEM approach, we also benchmarked the results by running 138 

a series of supervised machine learning algorithms (Supplementary File S1) on the same input data 139 

(Bailly et al., 2022; Chen & Guestrin, 2016; Chollet, 2015; Pedregosa et al., 2011; Python Software 140 

Foundation, 2023; Richardson et al., 2024). The comparison aims to highlight how well the SEM 141 

approach is at fitting models compared with the predictive performance of the machine learning 142 

approach that does not explicitly test for indirect effects. 143 
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Malaria prevalence data were obtained through the MalariaAtlas project, which is the most extensive 144 

malaria database currently available (Guerra et al., 2007). The project is a curated collection of 145 

georeferenced malaria surveys from various peer-reviewed sources and the Demographic and Health 146 

Surveys (DHS) Programme (ICF, 2007). The observations listed in the MalariaAtlas project include 147 

information on the number of tested individuals, number of infected individuals, survey 148 

methodology (microscopy or rapid diagnostic testing – RDT), and start and end date (month and 149 

year) of the survey period. We focused on infections of Plasmodium falciparum (Welch, 1897) 150 

because it is the deadliest human malaria agent and most prevalent on the African continent (WHO, 151 

2024). For the other variables, we adopted a hypothesis-driven approach. This meant only including 152 

those variables that could plausibly modulate the relationship between malaria and mangrove 153 

forests based on hypotheses posited in previous publications. Four sets of variables were collected: 154 

mangrove-related, human impact, weather, and geographical variables. We then extracted and 155 

assembled data from vector and square-shaped raster layers for each georeferenced malaria survey 156 

site (see Data collection, extraction, and assembly), limiting this selection to years with 157 

corresponding mangrove-related data. 158 

Variable selection 159 

The mangrove-related variables included mangrove land cover and vegetation health, measured by 160 

NDVI (normalised difference vegetation index). Mangrove land cover captures the potential effect of 161 

mangrove forests increasing malaria prevalence, as has been suggested in historical documents 162 

(Friess, 2016). Mangrove NDVI was selected as a proxy for mangrove health (Ruan et al., 2022; T. V. 163 

Tran et al., 2022). We employed NDVI to reflect the concept of the dilution effect: Healthier 164 

mangroves should support greater biodiversity as suggested for fishes (L. X. Tran & Fischer, 2017), 165 

birds (Mohd-Azlan et al., 2015), and macrobenthic organisms (Leung & Cheung, 2017). This higher 166 

biodiversity might buffer the transmission of malaria to humans through, e.g. natural predation of 167 
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mosquito larvae and adults. Furthermore, we selected NDVI over similar indices as a trade-off 168 

between availability of long-term and spatially resolved data layers (Didan, 2021). 169 

For the human impact variables, we selected two factors to capture anthropogenic pressure. The use 170 

of population density alone as an indicator of human impact on mangrove forests (Chien et al., 2024) 171 

and malaria prevalence (Mbouna et al., 2019) has previously been questioned. Therefore, we also 172 

included agricultural land cover, which has been reported as one of the main drivers of mangrove 173 

loss (Goldberg et al., 2020) and is also associated with increased childhood malaria in Africa (Shah et 174 

al., 2022). 175 

For the weather variables, temperature and precipitation are known to affect mosquito biology and, 176 

hence, malaria infection rates. But these effects might occur with a time lag (Craig et al., 1999; 177 

Donkor et al., 2021; Ikeda et al., 2017), i.e. rainfall can initially lower temperature and reduce 178 

mosquito activity, but later increase in egg laying activity after the rain has passed. To account for 179 

this effect, we included mean temperature and precipitation values both during the malaria survey 180 

period (P, T) and the means over six-months leading up to the survey (P-6, T-6). The six-month window 181 

was chosen to capture the potential lagged effects of the weather on malaria prevalence. Some 182 

previous studies have suggested time lags of one to two months as best predictors (Donkor et al., 183 

2021). However, as many data layers, including the mangrove variables, were only available at 184 

annual resolution, we opted to use the six-month average as a proxy for seasonality to harmonise the 185 

coarser temporal resolution of the key parameters (such as mangrove land over) with the more 186 

granular weather variables. Beyond baseline weather conditions, weather anomalies have 187 

increasingly been linked to mosquito abundance (Nosrat et al., 2021; Sorenson et al., 2025) and the 188 

health of mangrove forests (Duke et al., 2017; Servino et al., 2018). Therefore, we also calculated the 189 

deviation of temperature and precipitation from the long-term average, both during (PAnomaly, TAnomaly) 190 

and prior to (PAnomaly-6, TAnomaly-6) the malaria survey period. 191 
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As an additional geographic variable, we included the distance to the coastline. This variable was 192 

added to account for the area covered by open sea, which does not host mosquito populations. This 193 

was done to incorporate the possible effect of salinity on mosquito abundance and, hence, malaria 194 

prevalence. 195 

Data collection, extraction, and assembly 196 

The resulting dataset was compiled from existing sources on malaria prevalence, mangrove, human 197 

impact, and weather variables (Table 1). Furthermore, we extracted additional variables that are 198 

traditionally used to predict malaria infection rates, but these data were only used for imputing 199 

missing values (Supplementary Table S2) (Bertozzi-Villa et al., 2021; Rathmes et al., 2020; Smits & 200 

Permanyer, 2019; Tangena et al., 2020; Weiss et al., 2018, 2020; Wiebe et al., 2017). Malaria 201 

prevalence data with associated geocoordinates were downloaded using the package MalariaAtlas 202 

v1.6.3 (Pfeffer et al., 2018) in R v4.4.0 (R Core Team, 2024). We filtered data to include only those in 203 

sites located within 50 km of the coastline and within the years, for which mangrove land cover data 204 

were available (1996, 2007–2010, 2014–2020) (Bunting et al., 2022). Egypt was not included as no 205 

malaria prevalence data were available for these specific years in proximity to mangrove forests. We 206 

also excluded small island nations (Cape Verde, São Tomé and Príncipe, and the Comoros) because of 207 

their unique geographical features (e.g. disproportionately large size of ocean surface and lack of 208 

inland data points). 209 

Mangrove variables including mangrove land cover and mangrove NDVI, were derived for each 210 

georeferenced malaria survey location. We calculated mangrove land cover both for the year of the 211 

malaria survey and the preceding year. In both cases, mangrove land cover was computed for 212 

different spatial resolutions r, from 1 to 50 km at 1-km intervals (Fig. 1A). This means that for each 213 

year and location we obtained 50 different values of mangrove land cover. Mangrove NDVI was 214 

calculated as the mean NDVI within the mangrove-covered area for each r during the year of the 215 

malaria survey (Fig.1B). In absence of mangrove forests (mangrove land cover = 0%), mangrove NDVI 216 
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could not be computed and the corresponding data points were, therefore, excluded from 217 

subsequent analyses. 218 

 219 

Figure 1. Example for calculation of mangrove variables (Senegal, Saloum Delta). A, mangrove land cover was 220 

calculated as share of land covered by mangrove forests for each spatial resolution r from 1 to 50 km in 1-km 221 

intervals (only selected values of r are shown). B, mangrove NDVI was calculated as mean value of NDVI inside 222 

the mangrove area and each r. Data sources: mangrove land cover (Bunting et al., 2022), NDVI (Didan, 2021), 223 

coastline (http:// naturalearthdata.com). 224 

 225 

All other variables were assembled using a fixed r of 10 km to manage computational constraints. For 226 

raster layers with annual values (one or more years), we took the mean (weather variables, 227 

population density) or total value (agricultural land cover) within the 10-km radius. For variables with 228 

multiple observations per year, we averaged the values over the duration of the malaria survey. The r 229 

of 10 km was selected as trade-off between accuracy and sensitivity of these estimations. Malaria 230 

transmission could have occurred anywhere near the geographic location of the survey. A smaller r 231 

might therefore result in a higher number of inaccurate estimates due to human travel (Marshall et 232 

al., 2018), while a larger r risks masking differences between nearby locations. We recognise that the 233 
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fixed r of 10 km might be an oversimplified approximation of human travel distance. However, global 234 

human mobility estimates are currently only available for a single year (Kraemer et al., 2020) and, 235 

therefore, challenging to harmonise with our multi-annual final dataset. 236 

Spatial operations were performed through R packages sf v1.0.19 (Pebesma, 2018; Pebesma & 237 

Bivand, 2023), terra v1.8.15 (Hijmans, 2025), and exactextractr v0.10.0 (Baston, 2023), with the 238 

coordinate reference system adapted to each country (Supplementary Table S3). 239 

Missing data 240 

To deal with missing values in our dataset, we applied k nearest neighbour (kNN) imputation. This 241 

approach replaces missing values with the mean of the closest matching observations (‘nearest 242 

neighbours’) across the input dataset, with k determining the number of nearest neighbours to be 243 

selected. We implemented this approach in the R package caret (Kuhn, 2008), with k set to 10. Prior 244 

to the imputation, the values were also centred and scaled to prevent large eigenvalues from 245 

hampering model convergence. Imputation was performed using the full set of variables (Table 1 and 246 

Supplementary Table S2), which includes many variables that are frequently used in modelling 247 

malaria prevalence. Including a broad set of variables improves the selection of nearest neighbours 248 

and results in more accurate kNN estimates. The robustness of the results to the kNN imputation by 249 

producing a separate dataset, where all observations with missing values were excluded. We, then, 250 

applied the same optimisation procedure for the SEMs detailed below to this ‘reduced’ dataset. 251 

The weather variables accounted for more than half of all variables included in our analysis (8 of 15). 252 

To avoid overfitting models with collinear variables, we assessed pairwise relationships in the dataset 253 

resulting from kNN imputation using Pearson’s pairwise correlation coefficient ρ through the R 254 

package GGally v2.2.1 (Schloerke et al., 2024). We considered ρ > 0.7 as indicative of collinearity 255 

(Dormann et al., 2013), but as no such case (see Supplementary Fig. S4) was found, we proceeded 256 

with the resulting dataset as it was. 257 

 258 
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Table 1. Information variables and respective data sources for machine learning analysis and structural 259 

equation modelling. r, spatial scale at which land cover and other variables were calculated. 260 

Variable 
group 

Variable Temporal 
resolution 

Spatial 
resolution 

Explanation Reference 

Disease 
variables 

Malaria 
prevalence 
(P. 
falciparum) 

1980s–
present 

– MalariaAtlas 
project 
through the 
associated R 
package 

Pfeffer et al. (2018)  

 Coastline 
distance 

– – Distance of 
each disease 
data point to 
coastline 

Coastline vectors (large scale: 10 
m, v4.1.0), Natural Earth 
(https://naturalearthdata.com) 

Mangrove 
variables  

(per km of 
radius r: 
1–50 km) 

Mangrove 
land cover 

1996, 
2007–
2010, 
2014–
2020 

max. 25 m Percentage of 
mangrove 
surface inside 
r between 
1995–2020 

Bunting et al. (2022) 

 Mangrove 
land cover 
(year – 1) 

see above max. 25m Percentage of 
mangrove 
surface inside 
r preceding 
the malaria 
survey period 

see above 

 Mangrove 
NDVI 

2000–
present 

250 m Mean NDVI 
inside of 
mangrove 
polygons 

AppEEARS Team, (2024); Didan 
(2021) 

Human 
impact 
variables 

(r = 10 km) 

Agricultural 
land cover 

1992-
present 

300 m Percentage of 
agricultural 
land cover 
inside r  = 10 
km 

Copernicus Climate Change 
Service (2019) 

 Population 
density 

1990–
2020 

0.08° x 
0.08° 

Mean 
population 
density inside 
r  = 10 km 

Liu et al. (2024) 

Weather 
variables 
(r = 10 km) 

Temperature 
(survey 
period) 

1979–
present 

0.25° x 
0.25° 

Weather data 
are provided 
in 16-day 
intervals 
(mean T and 
sum of P) 

Copernicus Climate Change 
Service (2019) 
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 Temperature 
(survey 
period) 

see above see above see above see above 

 Precipitation 
(survey 
period) 

see above see above see above see above 

 Temperature 
(previous 6 
months) 

see above see above see above see above 

 Precipitation 
(previous 6 
months) 

see above see above see above see above 

 Temperature 
anomaly 
(survey 
period) 

see above see above see above see above 

 Precipitation 

anomaly 
(survey 
period) 

see above see above see above see above 

 Temperature 
anomaly 

(previous 6 
months) 

see above see above see above see above 

 Precipitation 

anomaly 
(previous 6 
months) 

see above see above see above see above 

 261 

Structural equation models 262 

To investigate potential causal relationships among variables, we used structural equation models 263 

(SEMs) to test whether the final dataset fitted to the hypothesised causal relationships. SEMs have 264 

been successfully used in ecological studies to understand direct and indirect effects leading to 265 

changes in ecological communities (Ali et al., 2022; Byrnes et al., 2011; Roland et al., 2019). Several 266 

studies have also employed SEMs to understand the role of environmental change on host-pathogen 267 

interactions, including for human malaria (Duo-quan et al., 2013), bacterial infections (Ferguson et 268 
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al., 2023), and fungal diseases (Vacher et al., 2008). Two separate methodologies are widely used to 269 

estimate SEMs: global and local estimation. Global estimation uses a single variance-covariance 270 

matrix to capture relationships amongst all variables included in the SEM. It assumes normality and a 271 

sufficient sample size to produce unbiased parameter estimates (Grace et al., 2015). Local estimation 272 

(piecewise SEMs) allows relationships to be estimated separately for each response variable, which 273 

also allows for the use of non-Gaussian distributions, mixed effect models, and autocorrelation terms 274 

(Lefcheck, 2016; Shipley, 2000). 275 

Because of the binary nature of prevalence data and the need to use random effects and 276 

autocorrelation terms, we employed piecewise SEMs in the present study. All SEM operations were 277 

performed through the R package piecewiseSEM v2.3.0.1 (Lefcheck, 2016) and glmmPQL in MASS 278 

v7.3.64 (Venables & Ripley, 2002). Model fits were assessed using Shipley’s test of directed 279 

separation (d-test) (Shipley, 2000) by comparing Fisher’s C statistic. The d-test assesses whether 280 

adding further relationships to the SEM structure improves the model fit, with p ≤ 0.05 indicating 281 

that adding specified effects significantly improves the model fit. A value of p above 0.05 means that 282 

the d-test fails to reject the model. To drop relationship from the models, we assessed the 283 

significance of single causal relationships the significance tests provided by piecewiseSEM, which are 284 

based on type II analyses of variance (ANOVA) (Lefcheck, 2016). 285 

We developed an initial hypothesised SEM structure based on prior knowledge of the relationships 286 

among variables (Fig. 2). We do not claim that this structure fully reflects the true relationships 287 

among all variables; it served as an informed starting point for further model optimisation, which 288 

tested for missing or superfluous causal relationships (see next paragraph). For each value of r, we 289 

implemented this initial SEM structure using three generalised linear mixed models (Table 2) in the 290 

piecewise SEM framework. As we expected autocorrelations to be an important factor in our models, 291 

we dealt with these challenges following examples suggested by Lefcheck (2016). Time – with the 292 

year and month the malaria survey was initiated as a proxy variable – was included as random effect 293 
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to account for temporal autocorrelation. An exponential autocorrelation term across the latitude and 294 

longitude data was modelled to account for spatial autocorrelation. We also accounted for the 295 

difference in survey technique (microscopy vs RDT, see ‘Overview’) by including the survey method 296 

as another random effect. Weather extremes might decrease values of mangrove and malaria 297 

variables, which might indicate a non-linear relationship. Therefore, we also tested whether using a 298 

quadratic term for weather variables led to improved model fits. 299 

 300 

Figure 2. Path diagram of initially hypothesised structure of structural equation models with each hypothesises 301 

causal relationship of variables marked with an arrow. T: temperature variables, P: precipitation variables.302 
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Table 2. List of dependent and independent variables of initially hypothesised structure of structural equation models illustrated in Fig. 2, including specification of 303 

respective generalised linear mixed models, and relationships dropped and added in model optimisation steps. 304 

Dependent 
variable 

Independent variables Model specification Independent variables after optimisation, and steps used for optimisations 

   Full dataset, missing values 
imputed (two steps) 

Full dataset, with quadratic 
terms for weather variables (two 
steps) 

‘Small’ dataset: observations 
with missing values dropped 
(four steps) 

Malaria 
prevalence 

 Mangrove NDVI 
 Mangrove cover (current 

year) 
 Population density 
 Agricultural land cover 
 Coastline distance 
 Weather variables 

Binomial distribution 
with logit link 

 Mangrove NDVI 
 Mangrove cover (current 

year) 
 Population density 
 Agricultural land cover 
 Coastline distance 
 Weather variables (TAnomaly, 

PAnomaly, T, T-6, P-6) 

 Mangrove NDVI 
 Mangrove cover (current 

year) 
 Population density 
 Agricultural land cover 
 Coastline distance 
 Weather variables: TAnomaly, 

T, P, P-6, TAnomaly-6, PAnomaly-6 
 Weather variables 

(quadratic terms): TAnomaly, T, 
TAnomaly-6, T-6, P-6 

 Mangrove NDVI 
 Mangrove cover (current 

year) 
 Population density 
 Agricultural land cover 
 Weather variables (TAnomaly, 

PAnomaly, TAnomaly-6, T-6, P-6) 

Mangrove NDVI  Mangrove cover (current 
year) 

 Population density 
 Weather variables 

Gaussian distribution  Mangrove cover (current 
year) 

 Mangrove cover (year-1) 
 Population density 
 Agricultural land cover 
 Coastline distance 
 Weather variables (TAnomaly, 

PAnomaly, T-6) 

 Population density 
 Agricultural land cover 
 Coastline distance 
 Weather variables: TAnomaly, 

PAnomaly,T, T-6, P-6, TAnomaly-6, 
PAnomaly-6 

 Weather variables 
(quadratic terms): TAnomaly, T, 
P, T-6, P-6, TAnomaly-6 

 Mangrove cover (current 
year) 

 Mangrove cover (year-1) 
 Population density 
 Coastline distance 
 Weather variables (TAnomaly, 

PAnomaly, T, TAnomaly-6, PAnomaly-

6, T-6, P-6) 

Mangrove cover 
(current year) 

 Mangrove cover (year-1) 
 Population density 
 Agricultural land cover 
 Coastline distance 
 Weather variables 

Gaussian distribution, as 
approximation1  

 Mangrove cover (year-1) 
 Population density 
 Agricultural land cover 
 Coastline distance 
 Weather variables (PAnomaly, 

T, TAnomaly-6, PAnomaly-6, T-6, P-6) 

 Mangrove cover (year-1) 
 Population density 
 Agricultural land cover 
 Coastline distance 
 Mangrove NDVI 
 Weather variables: TAnomaly, 

PAnomaly, T, P, T-6, P-6, TAnomaly-

6, PAnomaly-6 

 Mangrove cover (year-1) 
 Population density 
 Agricultural land cover 
 Coastline distance 
 Weather variables (TAnomaly, 

T, P, T-6, P-6) 
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 Weather variables: TAnomaly, 
P, T-6, P-6, TAnomaly-6 

1 Beta or gamma distribution to fit values limited by 0% and 100% are currently not implemented in piecewiseSEM. 305 

 306 



18 

 

To optimise the SEMs, relationships that were not significant (p < 0.05) across all 50 models were all 307 

removed in a single step. Simultaneously, we applied Shipley’s test of directed separation (d-test) to 308 

detect any potentially missing causal relationships. We added causal relationships if the d-test 309 

suggested their inclusion for more than 5 of the 50 models. This threshold was based on informed 310 

selection as below this value the model optimisation procedure was unstable, leading to the 311 

repeated addition and removal of the same paths. The optimisation was continued until no further 312 

effects needed to be removed or added according to these criteria. Path diagrams were visualised 313 

using the package DiagrammeR v1.0.11 (Iannone & Roy, 2024). Other graphs were plotted using the 314 

package ggplot2 v3.5.1 (Wickham, 2016). 315 

Results 316 

Data assembly 317 

In total, we assembled 79,005 individual observations from 1,898 unique malaria survey locations 318 

(Fig. 3A) across 27 African countries in the years 1996, 2007–2010, and 2015–2020. Depending on 319 

the spatial scale (Fig. 3B), this number varied ranging from 289 values at 1 km to 2,069 values at 50 320 

km. Mangrove land cover in the previous year (‘mangrove land cover (year–1)’) and mangrove NDVI 321 

had 19% and 8% of missing values, respectively. These values were non-random as for no mangrove 322 

land cover (year-1) no values could be calculated for 1996, 2007, and 2015 due to lack of mangrove 323 

land cover data. No NDVI data were available for the year 1996. All other variables had no missing 324 

values. We detected only low levels of collinearity in the weather variables, with no variable pairs 325 

exceeding a correlation coefficient of 0.7 (Supplementary Fig. S4). 326 
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 327 

Figure 3. Overview of malaria survey data used in the final dataset. A: Geographic locations indicated in red. B: 328 

Number of observations per radius r at which mangrove variables (cf. Table 1) were calculated. 329 

 330 

Structural equation modelling 331 

Two to optimisation steps were performed for the models without the quadratic terms for the 332 

weather variables. Five steps were needed for the model with the quadratic terms. However, the 333 

non-linear terms for the weather variables did not improve model fits and were, therefore, not 334 

considered further (Fig. 4). Furthermore, the ‘reduced’ dataset, for which observation with values 335 

were dropped, produced similar SEM structures, albeit with a few differences concerning some of 336 

the weather variables (Table 2). A closer look at the final models (selected for the same value of r as 337 

resulting from the final dataset, Fig. 5) revealed that fewer relationships were well-supported 338 

(Supplementary Fig. 5). Some weaker relationships also changed from positive to negative and vice 339 

versa. However, these differences did not substantially our main conclusions, unless referred to in 340 

the discussion. The resulting path diagrams are supplied in Supplementary Fig. S5,  341 

A total of ten causal relationships were dropped from the initially hypothesised SEM structure and 342 

three paths following optimisation (Table 2). Notably, benchmarking with supervised machine 343 
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learning detected no links between malaria prevalence and the other variables (Supplementary File 344 

S1), highlighting the importance of accounting for indirect effects. 345 

 346 

Figure 4. Distribution of Fisher’s C for piecewise structural equation models (SEMs) with mangrove variables 347 

(land cover and NDVI) calculated at spatial resolutions of 1–50 km and model optimisation steps (m1–m6). 348 

Models without (A) and with (B) quadratic term for weather variables. 349 

 350 

The final optimised models contained 28 causal relationships and the majority of the models (48 of 351 

50) were supported, meaning that the d-test was rejected (p > 0.05). The standardised effect sizes of 352 

the estimated relationships varied across the spatial resolution r that was used to calculate mangrove 353 

variables. To best represent the impact of r, we show the path diagrams of the best supported model 354 

overall (40 km), as well as a well-supported model (28 km) in the middle range (between 10 and 30 355 

km) and another model (3 km) the lower range (< 10 km) in Figure 5. In addition, a Shiny application 356 

is provided on GitHub (https://github.com/HU-AquaticBiodiversity/MangroveMalaria-357 

SpatialAnalysis/src/Mangrove-Malaria_ShinyApp) to explore changes of the causal relationships for 358 

each r (1–50 km). Furthermore, we visualised changes in the standardised effects sizes of key 359 
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relationships across r (Fig. 6A). We also plotted the malaria prevalence data against mangrove NDVI 360 

at 3-km resolution (Fig. 6B) and against mangrove land cover at 40-km resolution (Fig. 6C).361 
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Figure 5. Selected structural equation models with different spatial resolution r explaining the causal relationship (arrows) between mangrove ecosystems and malaria 363 

prevalence. A: r = 40 km, the best supported model, B: r = 28 km, a well-supported model at intermediate spatial resolution, and C: r = 3 km, a well-supported model at fine 364 

spatial resolution. Statistical support of models: result of Shipley’s test of directed separation (d-test) including Fisher’s C statistic and p values; with p > 0.05 the d-test is 365 

rejected and, therefore, model is considered a good fit. Arrow colour: blue – significant positive effect, red –  significant negative effect, grey & dashed – non-significant 366 

effect. Arrows thickness: number of models (r between 1 and 50 km) that supported each causal relationship. Values on arrows: effect sizes of the causal relationship, 367 

indicating the directionality of the causal relationships. The effect sizes serve to compare the relative influence of the relationships on the dependent 368 

variable, but should not be interpreted as absolute values due to standardisation and centring of the input dataset. Other abbreviations: see Fig. 2.369 
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 370 

Figure 6. Relationships of different variables in the optimised structural equation models. (A) Sum of absolute 371 

standardised effect sizes of causal relationships as function of spatial resolutions (1–50 km) at which mangrove 372 

variables (mangrove land cover, mangrove NDVI) were calculated, grouped by independent variables in 373 

optimised SEMs. Only significant causal relationships were included. The trends detected through the SEM 374 

analysis are visible within the raw data: (B) Malaria prevalence as function of mangrove NDVI showing an 375 

increasing trend at fine spatial resolution (r = 3 km) and (C) a decreasing trend at coarse spatial resolution (r = 376 

40 km). 377 

 378 



25 

 

Within our models, the weather variables accounted for the largest share of total absolute effect 379 

sizes across all spatial resolution (Fig. 6A). However, their direct influence on malaria prevalence and 380 

mangrove NDVI was much smaller at fine spatial resolution (Fig. 5C). Mangrove land cover also 381 

contributed substantially, albeit only at coarse and intermediate spatial resolution (Fig. 6A, B). 382 

Specifically, it showed no significant effect on malaria prevalence at fine spatial resolutions (3 km: 383 

0.005, p = 0.849) (Fig. 5C), whereas at coarse resolution, it decreased prevalence (40 km: -0.082, p < 384 

0.05) (Fig. 5A). All other variables contributed relatively little to the total effect sizes (Fig. 6). 385 

Mangrove NDVI had a significant positive effect on malaria prevalence at fine (3 km: 0.124, p < 0.001) 386 

and coarse (40 km: 0.046, p < 0.05) spatial resolution (Fig. 5A, C; 6B, C), but showed no effect at 387 

intermediate spatial resolution (28 km: -0.008 , p = 0.711) (Fig. 5B). At coarse spatial resolution, 388 

mangrove land cover indirectly decreased malaria prevalence by reducing mangrove NDVI (40 km: -389 

0.757, p < 0.001) (Fig. 5A). However, ‘mangrove land cover (year-1)’ increased mangrove NDVI (40 390 

km: 0.663, p < 0.001) and, therefore, indirectly increased malaria prevalence. 391 

Coastline distance had a significant positive direct effect on malaria prevalence at coarse spatial 392 

resolution (Fig. 5A, Fig. 6A), but indirectly decreased malaria prevalence via mangrove NDVI and 393 

increased it via mangrove land cover. Among the human impact variables, population density had a 394 

significant negative effects on the mangrove variables, decreasing malaria prevalence as a result at 395 

fine spatial resolution (Fig. 5C), but increasing it at intermediate spatial resolution (Fig. 5B). At coarse 396 

spatial resolution, both these indirect effects were present. The effect size of population density on 397 

malaria prevalence remained relatively constant across all spatial resolutions (Fig. 6A). Agricultural 398 

land cover reduced mangrove land cover at fine and intermediate spatial resolutions (Fig. 5A, B; Fig. 399 

6A), but its indirect effects on malaria prevalence (via mangrove land cover) was not well-supported. 400 

 401 
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Discussion 402 

We present the first multi-country African study on the role of mangrove forests in mosquito-borne 403 

diseases. Our goal was to answer whether the historical perception of mangrove forests as a source 404 

of disease is empirically supported. This notion has long been criticised as negative views of 405 

mangrove forests led to their large-scale destruction in the 20th century (Dahdouh-Guebas et al., 406 

2020; Friess, 2016) and subsequent loss of valuable ecosystem services. Specifically, we tested how 407 

mangrove land cover (the percentage of land covered by mangrove forests) and mangrove NDVI (a 408 

vegetation index to characterise the greenness/health of the mangrove forests) influence malaria 409 

prevalence using satellite and health data. We also tested the role of spatial resolution by altering 410 

the radius at which the two mangrove variables were calculated. With this study, we assembled the 411 

most expansive dataset on malaria near mangrove forests to date. 412 

Lesson 1: At coarse spatial resolutions, higher mangrove land cover means less malaria transmission 413 

Our results show that mangrove land cover has a negative indirect (Fig. 5A) or direct (Fig 5A, B; 414 

Supplementary Fig. S5A) effect on malaria prevalence at coarse spatial resolution . This finding is 415 

consequential as it not only counters long-held beliefs of mangrove forests as sources of infectious 416 

disease (Friess, 2016), but also has practical implications for ecosystem managers. Malaria 417 

transmission is still listed as a potential ecosystem disservice of mangrove landscapes in the recent 418 

literature (Awuku-Sowah et al., 2022). But our results indicate that, at least in Africa, the presence of 419 

mangroves alone decreases malaria transmission. 420 

Previous studies reported that increased mangrove cover led to higher abundance of mosquitoes 421 

locally, but these findings were based on much smaller spatial resolutions to calculate mangrove land 422 

cover (500 m, Claflin & Webb, 2017) or raster data (30-m resolution, Pope et al., 1994). As such, 423 

these observations may not be directly comparable to the negative mangrove land cover–malaria 424 

relationship at coarse spatial scale found in our study. However, they might align with the positive 425 

relationship we observed between mangrove NDVI and malaria prevalence (see below). While our 426 
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models do not account for all non-mangrove landscape types, they certainly suggest that the 427 

presence of mangrove forests is better for malaria control than their absence. Therefore, we 428 

hypothesise that malaria may be less frequently transmitted in mangrove forests than other 429 

landscape types. For example, agricultural landscape cover increased malaria prevalence in our 430 

models (directly: Fig. 5A; indirectly: Supplementary Fig. 5A), a positive relationship that has been 431 

reported before (Shah et al., 2022). Further studies are needed to compare the impact of different 432 

coastal landscape types on malaria prevalence in detail, but here we show that mangrove forests are 433 

among those landscapes that may reduce malaria transmission. 434 

The low levels of malaria in mangrove forests raise the question of what makes mangrove forests less 435 

suitable habitats for malaria vectors than other landscapes. One reason might be the limited number 436 

of mosquito species that lay eggs in brackish or saltwater (Ramasamy & Surendran, 2012). Some 437 

species have adapted to these conditions and are competent malaria vectors (Ramasamy & 438 

Surendran, 2012), but these species are generally few compared to those in freshwater, which might 439 

limit malaria transmission. Saltwater-tolerant mosquito species might also have a lower ability to 440 

carry malaria parasites (vectorial capacity) than their freshwater relatives. For instance, two coastal 441 

African malaria mosquitoes, An. merus and An. melas, appear to have a lower proportion of infective 442 

female mosquitoes than freshwater species (Bryan, 1983; Cuamba & Mendis, 2009), although similar 443 

rates have been observed in some cases (Temu et al., 1998). 444 

Importantly, saltwater alone does not explain reduced malaria levels near mangrove forests in our 445 

models. In fact, coastline distance as a factor did not eliminate the mangrove land cover–malaria 446 

relationship, but rather showed an indirect effect whereby malaria prevalence decreased with 447 

increasing distance from the coast due to reduced mangrove land cover. Low malaria transmission in 448 

mangrove forests might, therefore, be more than just a phenomenon of closeness to the coast. 449 

An alternative explanation is that coastal wetlands, like mangrove forests, provide refuge for a range 450 

of natural predators including fishes, crustaceans, and insects that might control mosquito 451 
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populations (Arthiyan et al., 2024; Griffin & Knight, 2012; Louca et al., 2009; Roberts, 1995). 452 

Unfortunately, the role of vector predation in mosquito control remains poorly studied in mangrove 453 

ecosystems, particularly in Africa, because measuring these effects is difficult due to the 454 

heterogeneity of mangrove ecosystems and complexity of predator–prey relationships [see detailed 455 

discussion by Griffin & Knight (2012)]. In addition, shading of mangrove trees may slow down larval 456 

development by reducing water temperatures (Wamae et al., 2010). This effect has been suggested 457 

as an ecosystem service of forested landscapes, especially in the Amazon basin (Burkett-Cadena & 458 

Vittor, 2018), although a more recent analysis of malaria prevalence and deforestation across Africa 459 

found no correlation (Bauhoff & Busch, 2020). In the present study, we found no support for such an 460 

effect of mangrove vegetation as all direct causal relationships between temperature variables and 461 

malaria prevalence were negative. 462 

Lesson 2: ‘Healthier’ mangrove forests increase malaria transmission 463 

We found that healthier mangrove forests (i.e., ‘greener’, ones with higher NDVI) tended to increase 464 

malaria prevalence at fine and coarse spatial resolutions. At first glance, this observation appears to 465 

contradict our earlier finding (Lesson 1). If more mangrove land cover decreases malaria prevalence, 466 

why would healthier mangrove ecosystems increase it? 467 

The answer lies in what the two variables measure. Mangrove land cover measures the availability of 468 

mangrove habitats. It is, therefore, a physical parameter that distinguishes mangrove forests from 469 

other landscape types. Mangrove NDVI is a vegetation index and, therefore, a biological parameter 470 

that measures the health of mangrove forests (T. V. Tran et al., 2022). Previous studies also reported 471 

positive correlations between NDVI and malaria across sub-Saharan Africa (summarised in Ebhuoma 472 

& Gebreslasie, 2016), often attributing this relationship to precipitation (Amadi et al., 2018; Fastring 473 

& Griffith, 2009). Our results suggest that weather variables alone were not enough to account for 474 

the mangrove NDVI–malaria relationship. The strongest associations were observed at fine spatial 475 
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resolution (Fig. 5C; Supplementary Fig. 5C), indicating that this trend may reflect processes other 476 

than precipitation. 477 

We hypothesise that the NDVI–malaria relationship is rooted in biotic interactions. Higher NDVI is 478 

associated with greater plant biomass (Ruan et al., 2022), structural complexity (LaRue et al., 2018), 479 

and species richness of macrobenthos, fishes, and plants (Arfan et al., 2024; Ram et al., 2025; Wang 480 

et al., 2016). Therefore, the relationship between mangrove NDVI and malaria at fine spatial 481 

resolution may indicate a role for biodiversity on malaria transmission, but not in the direction that is 482 

typically presumed; this relationship contradicts the dilution effect hypothesis, instead suggesting a 483 

potentially positive relationship between biodiversity in mangrove forests and disease risk. Our 484 

finding is consistent with studies in North America showing that canopy height in mangrove forests 485 

coincided with higher mosquito abundance (Pope et al., 1994), possibly linked to decreasing water 486 

flow and increasing water retention rates through dense mangrove vegetation after floods and 487 

rainfalls (Knight, 2011; Partani et al., 2024). Furthermore, the positive correlation between NDVI and 488 

mosquito numbers and diversity has been well documented in the literature (Ferraguti et al., 2024), 489 

although this relationship varies among mosquito species (Roiz et al., 2015). African mosquitoes in 490 

mangrove forests may, therefore, follow the broad pattern where a biodiverse ecosystem is also one 491 

that is richer in pathogens and their vectors (Hudson et al., 2006; Wood, 2025; Wood & Johnson, 492 

2015). 493 

Why, then, is the NDVI–malaria relationship significant only at fine and coarse but not intermediate 494 

spatial resolution? At fine resolution, this association can perhaps be explained by the spatial scale of 495 

biotic interactions (Dáttilo et al., 2023). Mosquitoes are known to rarely travel more than 5 km 496 

(Jansson et al., 2021; Thomas et al., 2013), making local habitat conditions particularly relevant. At 497 

coarse resolution, the effect of NDVI appears to be linked to several indirect effects. For instance, the 498 

positive relationship of mangrove NDVI with lagged mangrove land cover (year-1) suggests that 499 

older, more established, and, therefore, healthier mangrove forests (with higher NDVI) are linked to 500 
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a higher malaria burden (Fig. 5A, B). Therefore, the direct effect of mangrove-associated mosquitoes 501 

on malaria prevalence is probably strongest at fine spatial resolution whereas the indirect effects of 502 

mangrove land cover, weather variables, and coastline distance become detectable at coarse spatial 503 

resolution (Fig. 6C). At intermediate spatial resolution, the NDVI signal may be diluted by the noise 504 

introduced by adding more distant datapoints, in which case local biotic effects become less distinct, 505 

while broader indirect effects are not yet strong enough to be detectable. 506 

Does this result mean that mangrove forests pose a health hazard? Not necessarily. Rather our 507 

findings should be interpreted in the context of Lesson 1. Mangrove forests carry a lower risk of 508 

malaria compared to alternative coastal or inland landscape types. From this relatively low baseline, 509 

malaria transmission may be higher in healthier mangrove forests than in degraded ones. How large 510 

this difference is will depend on locality and mangrove forest type. 511 

Our pan-African approach aimed at identifying broader trends across a wide geographical range, 512 

rather than site-specific risks of malaria. However, the study highlights the need for more surveys of 513 

malaria and its vectors in mangrove ecosystems. Further attention should be given to regions outside 514 

of Africa, where saltwater-tolerant mosquitoes are already important malaria vectors. For instance, 515 

the East Asian mosquito An. aquasalis Curry, 1932 transmits malaria in coastal regions of Central and 516 

South America (Póvoa et al., 2003). Anopheles sundaicus (Rodenwaldt, 1948) has been confirmed as 517 

a competent malaria vector in Asia (Sugiarto et al., 2016). These cases are especially relevant as 518 

parasites and vectorial capacities can shift over time because of human intervention. For instance, 519 

vector control measures have led to shifts in vector composition in East Africa (Musiime et al., 2019; 520 

Mwangangi et al., 2013) and the southwest Pacific (Russell et al., 2013). Therefore, regions outside of 521 

Africa may hold valuable information about which specific factors might influence malaria burden in 522 

mangrove forests. Such information could help understand the specific mechanisms in African 523 

mangrove forest, maintaining the low levels of malaria transmission today. 524 
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Concluding remarks: managing malaria in mangrove forests 525 

What do our results imply for managing mangrove ecosystems in the context of malaria? Malaria 526 

control as a potential ecosystem service is certain to further improve the public image of mangrove 527 

forests. This insight also strengthens the case for mangrove reforestation of coastal areas. In recent 528 

years, mangrove restoration programmes have been expanded (Friess et al., 2022) and can be 529 

successful if neighbouring communities are allowed to participate and benefit (Del Cid-Alvarado et 530 

al., 2024; Lhosupasirirat et al., 2023). Our findings could further boost mangrove conservation by 531 

offering a counterargument to long-held beliefs that associate mangroves with infectious diseases. 532 

However, we would also caution against an overly optimistic interpretation of our findings. As our 533 

models show in areas immediately adjacent to mangrove forests, malaria transmission may increase 534 

with the amount of mangrove vegetation, although it would still remain lower than without any 535 

mangrove forests in the area. 536 

We suggest that studies examining the links between mangrove forests and malaria at local level 537 

could provide a better understanding of effective management strategies for mangrove-associated 538 

malaria in the future. These strategies might include reducing human exposure to mangrove-539 

associated mosquitoes (Ismail et al., 2018; Kipyab et al., 2013; Tuno et al., 2010), managing coastal 540 

ecosystems to reduce mosquito breeding (Breitfuss et al., 2003; Brockmeyer et al., 2022; Dale & 541 

Knight, 2012; Jones et al., 2004), or promoting natural predation on mosquitoes (Griffin & Knight, 542 

2012). Given the importance of mangroves to coastal communities in Africa and worldwide, any 543 

malaria-related management strategies should carefully consider their impact on other ecosystem 544 

services. Lastly, as malaria control programmes become more successful in human settlements, 545 

mangrove forests and other less disturbed ecosystems may increasingly act as reservoirs of malaria 546 

transmission (Mwangangi et al., 2013). Understanding the mechanisms of malaria transmission in 547 

coastal Africa and developing appropriate management strategies for these regions remains vital, 548 

even when transmission levels are currently low compared to other landscapes. 549 
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