

1 **Structural barriers drive gender inequality across academic careers in**
2 **Brazilian ecology**

3 Ana Paula Lula Costa^{1,2*}, Juliana Rosa Matias Ciccheto^{1,3}, Myrna Elis Ferreira Santos^{1,4},
4 Laryssa Negri Peres¹, Luisa Diele-Viegas^{5,6}, Elvira D'Bastiani^{1,7}

5
6 ¹Women in Ecology Project, Brazil.

7 ²Laboratory of Biology and Parasitology of Wild Mammals Reservoirs, Oswaldo Cruz Institute, Fiocruz, Rio de
8 Janeiro, RJ, Brazil.

9 ³Biological Interactions Laboratory, Graduate Program in Ecology and Conservation, Federal University of
10 Paraná (UFPR), Curitiba, Paraná, Brazil.

11 ⁴Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, Brazil.

12 ⁵Laboratory of (Bio)Diversity in the Anthropocene, Federal University of Bahia, Salvador, Bahia, Brazil.

13 ⁶Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA.

14 ⁷Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles,
15 California, USA.

16
17 ***Corresponding author:**

18 Ana Paula Lula Costa e-mail: ana.costa@ioc.fiocruz.br

19 Elvira D'Bastiani e-mail: elviradbastiani@gmail.com

20
21 **ABSTRACT**

22 Although women often outnumber men in the early stages of academic careers in ecology, they
23 remain significantly underrepresented in senior positions. In Brazil, women comprise the
24 majority of graduate students in ecological sciences but hold fewer senior academic roles,
25 receive less research funding, and face greater obstacles to visibility and recognition. To
26 understand the factors contributing to this disparity, we conducted a nationwide survey with
27 283 Brazilian ecologists, analysing gender-based differences across career stages. Using
28 descriptive statistics, chi-squared tests, and correspondence analysis (ANACOR), we examined
29 experiences related to gender identity, parenthood, workplace dynamics, and scientific
30 productivity. Our findings reveal persistent structural inequalities: women, particularly in
31 early-career stages, reported more frequent experiences of gender discrimination and sexual
32 harassment, limited access to leadership roles, lower publication rates, and heightened concerns
33 about personal safety during fieldwork. Women more commonly cited personal and
34 professional constraints as factors influencing their academic permanence. Overall, both men
35 and women identified a lack of funding as the primary barrier to scientific productivity. These
36 results underscore the intersectional barriers to gender equity in ecology and emphasise the
37 urgency of structural, evidence-based reforms to build more inclusive academic environments.

38
39
40 **Keywords:** Brazilian ecology science; Ecology careers; Gender inequality; Lack of funding;
41 and Structural barriers.

42 **INTRODUCTION**

43 In the ecological sciences, although women are overrepresented at the undergraduate
44 level, their representation decreases as they progress in their careers, with only one-third of
45 women holding university professor positions in the field ^{1,2}. Recent data on ecology
46 researchers in Brazil indicate that women represent the majority at the master's and PhD levels,
47 with an average of 55.7% ³. However, their representation drops significantly at the whole
48 professor level, where men hold twice as many positions ³. Furthermore, only 20% of female
49 faculty have been awarded grants to conduct their research ³. This gender gap extends beyond
50 academic positions: women in faculty positions have lower publication rates, receive less
51 funding, and are less frequently invited to speak at conferences ^{4,5}. Although several countries
52 have implemented initiatives to reduce gender inequality in academia, progress has been slow
53 ^{6,7}.

54 Many are the challenges that lead to this gender inequality. For instance, the lack of
55 role models in early education contributes to the drop in female students during undergraduate
56 studies ^{8,9}. At the graduate level, factors such as motherhood and implicit bias hinder women's
57 advancement toward full professor positions ¹²⁻¹⁴. Those factors are compounded by gender
58 discrimination and sexual harassment throughout the professional and academic trajectory ^{10,11}.
59 In Brazil, the discussion of gender is still in its early stages, and data-driven studies exploring
60 the specific challenges and realities faced by women in developing countries remain scarce. A
61 critical question remaining is: what factors contribute to women's underrepresentation between
62 the PhD stage and full professorship, and what challenges they face in securing funding and
63 grants for their research?

64 Beyond quantitative data on the current inequality scenario in academia, understanding
65 the challenges and barriers faced at each career stage can inform strategies tailored to different
66 minority groups, as well as contribute to the development of data-driven policies that increase

67 diversity in ecological sciences. In this study, we developed an extensive questionnaire to
68 gather the personal and professional experiences, and perceptions of Brazilian researchers,
69 aiming to better understand the key factors contributing to the low gender diversity among
70 faculty members at universities and research institutions. Our focus is primarily on gender-
71 related barriers that may hinder career progression in academia at two stages: early and senior,
72 with the aim of fostering a more inclusive and representative ecological science in the Global
73 South.

74 **METHODS**

75 *Data collection*

76 To identify barriers at different career stages in Brazilian ecology, we collected both
77 qualitative and quantitative data through an online survey disseminated over a four-month
78 period. This survey was made available via the Instagram account of the ‘Women in Ecology’
79 project <https://www.instagram.com/mulheres_na_ecologia/>, which promotes the work of
80 women ecologists in Brazil, and through an email list compiled from postgraduate programs
81 and faculty contacts in ecology and conservation across the country. Additionally, we also
82 shared the survey with Brazilian institutes and organisations focused on ecological research.

83 The survey comprised 48 questions organised into seven sections: (1) personal
84 information and demographics, (2) education and income, (3) work environment, (4)
85 mentorship, (5) productivity, (6) parenthood, and (7) academic career satisfaction (see the
86 complete questionnaire in Supplementary Information, SI). Our study was approved by the
87 Human Research Ethics Committee of the Federal University of Bahia (CEpEE/UFBA) under
88 the Certificate of Presentation for Ethical Assessment (CAAE) 69100023.3.0000.5531.

89 We received 399 responses, which were filtered based on gender self-identification -
90 respondents who self-identified as “women” (W) and those who self-identified as “men” (M).
91 We adopted a binary classification due to the low participation of respondents from other

92 gender identities. We also filtered responses by country, retaining only those from ecologists
93 with professional experience in Brazil and working in an academic career. Our final dataset
94 included 69 responses from men and 215 from women, totalling 283. We considered two career
95 stages: early-career (junior) and senior-career (senior) ecologists. We defined early-career
96 ecologists as those currently pursuing a master's or PhD degree and/or having between one and
97 five years of experience in their current position, and senior-career ecologists as those with
98 over six years of experience in their current position and/or aged 40 years or older. These
99 categories were established to account for differences in career stage experiences, which may
100 influence perceptions of the challenges faced.

101

102 *Statistical analysis*

103 To assess the significance of differences between groups, we computed frequencies and
104 means, along with their standard deviations, for discrete and continuous variables, respectively.
105 When appropriate, we used chi-squared (χ^2) tests, employing Monte Carlo p-value simulation¹⁵,
106 to compare categorical data. Statistical significance was set at $p\text{-value} < 0.05$.

107 To explore associations between gender identity, supervisor's gender, gender
108 discrimination, sexual harassment, and career stages, we performed a correspondence analysis
109 (ANACOR), a method particularly suitable for analysing categorical data¹⁶. The statistical
110 analysis was based on respondents' answers to a set of binary variables representing the
111 presence or absence of specific gender-based discriminatory experiences (e.g., gender
112 discrimination, leadership bias, and gender-based jokes), mentorship, as well as metadata on
113 gender identity and career stage. The first two dimensions, which accounted for the greatest
114 significant proportion of variance, were retained for interpretation.

115 For all statistical analyses, responses categorised as '*did not answer*' and '*not*
116 *applicable*' were excluded, as they did not contribute to the intended analyses and could

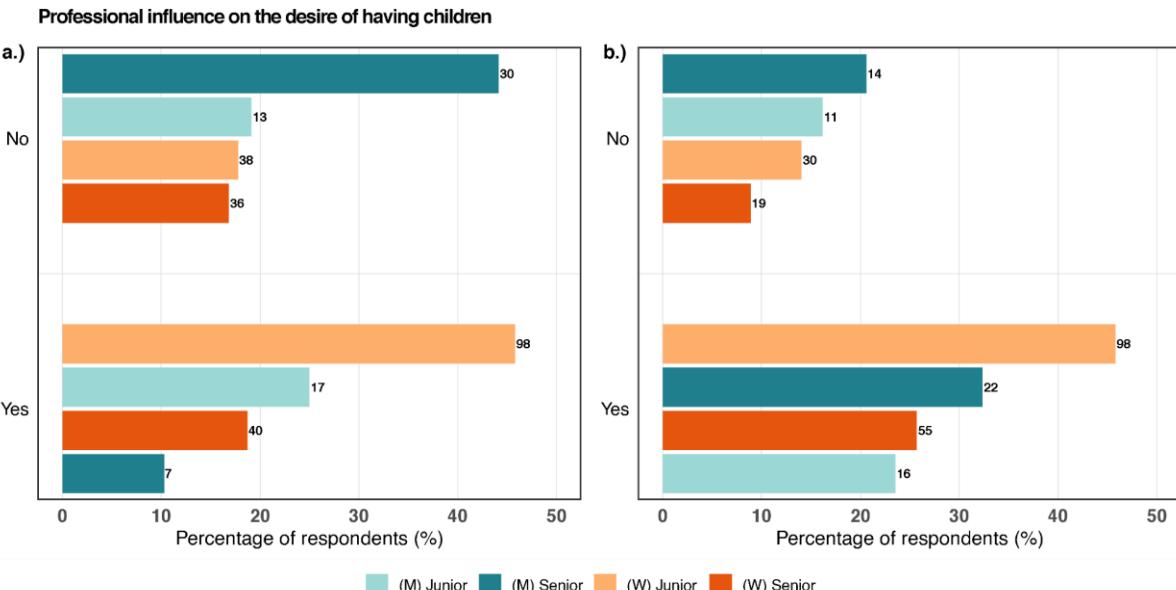
117 potentially bias the results. The raw data and code used for data processing and analysis are
118 available on Zenodo at (link will be added). All analyses were performed using R version 4.3.2
119 ¹⁷.

120 RESULTS

121 Participants ranged in age from 20 to 39 years. The majority self-identified as white,
122 with only 17.7% of men and 21% of women identifying as brown or black, and 1.5% of men
123 and 2.3% of women identifying as Asian (SI, Fig. S1). Male respondents were almost
124 evenly split between senior (54%) and early-career (46%) stages, whereas most female
125 respondents were in the early-career stage (64%). Overall, 50.7% of respondents had relocated
126 from their state of birth (SI, Fig. S2 and S3). Significant gender differences were found in the
127 reasons for relocation ($\chi^2 = 16.13$, *p-value* = 0.04) (Table 1). Among early-career researchers,
128 the most commonly cited reasons were preference for a postgraduate program (M = 25% and
129 W = 33%), research focus (M = 9% and W = 17%), and better quality of life (M = 16% and W
130 = 12%). For senior career respondents, the primary reasons included better quality of life (M =
131 25% and W = 23%) and securing temporary or permanent contracts (M = 19% and W =
132 19%) (SI, Table S1 and S2, Fig. S4). Gender-specific differences also emerged: 15% of women
133 reallocated due to their partner's move, compared to 0% of men, while 25% of men reallocated
134 for research-related reasons, compared to 12% of women (Table 1). In terms of consequences,
135 most respondents reported no significant adverse impact from relocation. However, 19% of
136 senior men reported experiencing career-related problems when moving with a partner,
137 compared to only 5% of women (SI, Table S1).

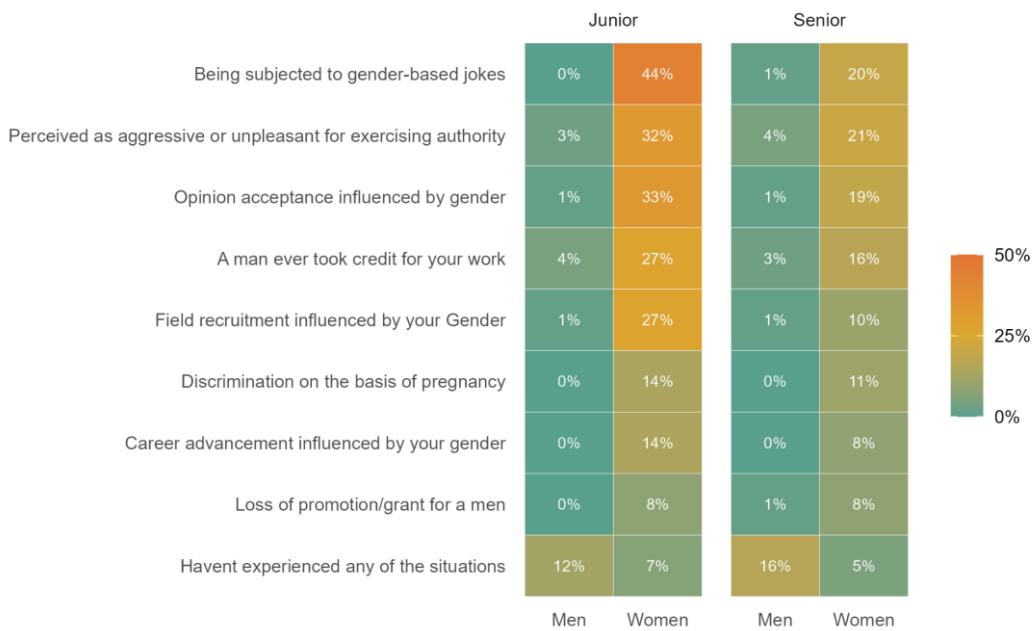
138 Career choices influenced parenthood decisions differently across genders (Fig. 1).
139 More than half of the respondents (M = 56%, W = 67%) reported not having children. However,
140 the reasons for this decision varied significantly by gender: 36% of men indicated career-
141 related concerns compared to 65% of women ($\chi^2 = 17.92$, *p-value* < 0.001) (Table 1). There

142 were also gender differences in perceptions of how maternity leave impacts women's careers
143 ($\chi^2 = 5.68$, *p-value* < 0.02) (Table 1). While most men (60%) and women (76%) acknowledged
144 a negative impact, 40% of men did not perceive maternity leave as prejudicial (Fig. 1).


145 Questions regarding the workplace environment revealed significant gender-based
146 differences in perceptions of gender representation, professional preferences, gender
147 discrimination, and harassment. Regarding team composition preferences, most men (81%)
148 and women (55%) expressed no preference, although a notable proportion of women (43%)
149 preferred mainly working with other women ($\chi^2 = 15.22$, *p-value* < 0.001). This difference
150 narrowed in perceptions of workplace support: both men and women primarily reported
151 receiving support from people of both genders (M = 62%, W = 43%). However, women were
152 more likely to report receiving support exclusively from other women (M = 3%, W = 18%) (χ^2
153 = 29.22, *p-value* < 0.001) (Table 1). When asked about gender representation in their
154 institutions, both men (32%) and women (35%) reported that men outnumbered women in their
155 departments (Table 1). However, men were more likely to believe there was no gender disparity
156 in hiring or leadership selection (M = 58% and 29%, respectively; W = 31% and 10%).
157 Conversely, most women perceived that men were more often hired or promoted (M = 18%
158 and W = 45%; $\chi^2 = 29.22$, *p-value* < 0.001) and more frequently selected for leadership roles
159 (M = 10% and W = 22%; $\chi^2 = 27.45$, *p-value* < 0.001) (Table 1).

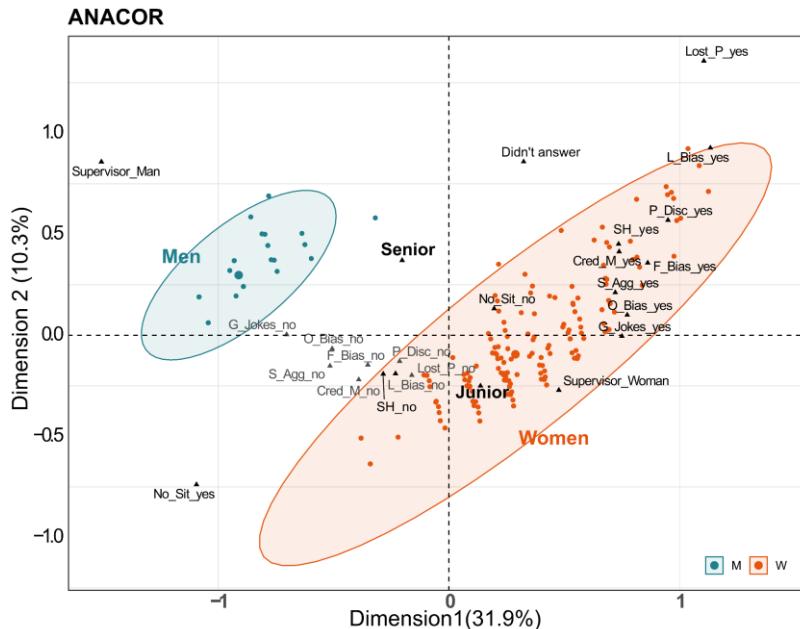
160 Reports of gender-based workplace discrimination were significantly more common
161 among women. Respondents evaluated scenarios involving common forms of discrimination,
162 such as receiving credit for work, award/promotions gaps, grant disparities, undermined
163 authority, exclusion from fieldwork, devaluing of opinions, pregnancy-related bias, and
164 gender-based jokes (Fig. 2). Women consistently reported higher frequencies of these
165 experiences compared to men ($\chi^2 = 158.97$, *p-value* < 0.001; Table 1). Most men (54%)
166 reported no experiences of gender discrimination and were excluded from this part of the

167 analysis (n = 34). Among women, the most frequently cited experiences included being
168 targeted by gender-based jokes or embarrassing situations (20%) and being perceived as
169 aggressive or unpleasant when asserting authority (16%). Other recurring experiences included
170 men receiving credit for their work, pregnancy-related discrimination, and devaluation of their
171 opinions (Fig. 2, Table 1).

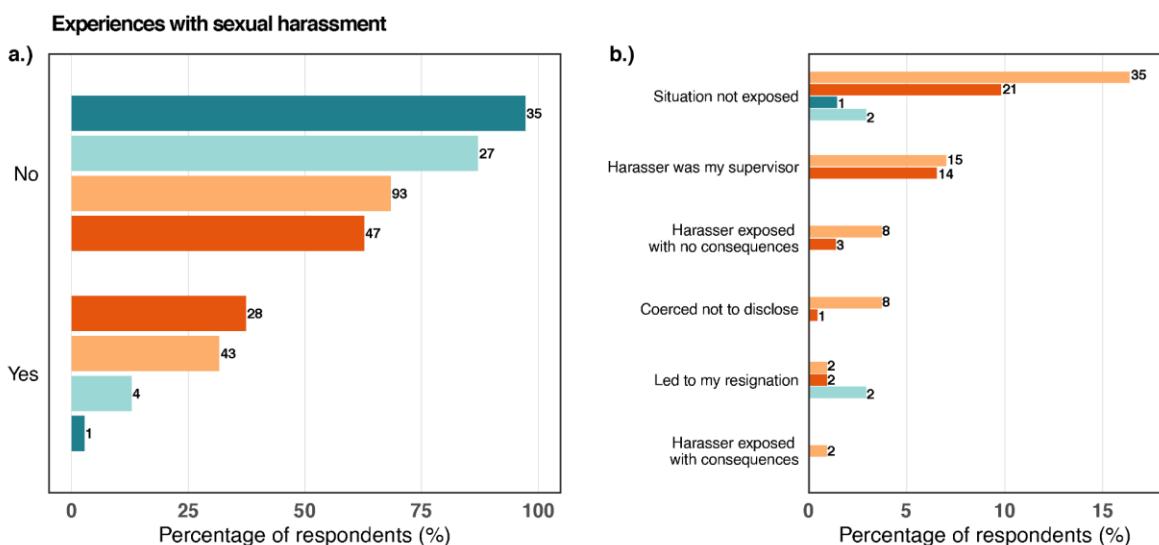

172 Sexual harassment reports also revealed substantial gender disparities. While 34% of
173 women reported having experienced sexual harassment during their careers, only 7% of male
174 respondents reported the same ($\chi^2 = 17.55$, *p-value* < 0.001; Table 1, Fig.4a). Most incidents
175 were not reported (M = 60% and W = 50%), and those that were reported rarely led to
176 consequences. Men reported cases of resigning after such incidents. Among women, 26%
177 indicated their harasser was their supervisor, and 8% reported being silenced (Fig. 4b). Other
178 outcomes included professional repercussions or witnessing impunity for the perpetrator. Some
179 women reported that harassment cases in their departments, particularly in male-dominated
180 ecology labs, were silenced, with perpetrators shielded by colleagues (Table 1).

181 Correspondence analysis (ANACOR) confirmed gender-based differences in
182 workplace experiences, showing distinct clustering patterns between men and women. The first
183 two dimensions explained 31.9% and 10.3% of the variance, respectively (Fig. 3). Women
184 were more likely to report affirmative experiences of gender bias, while men predominantly
185 reported an absence of such experiences, suggesting limited exposure. These trends were
186 especially pronounced among early-career individuals, underscoring how gender and career
187 stage intersect to shape experiences of discrimination in academic settings.

188


189 **Figure 1.** Career decisions influencing parenthood. **a.)** Question 42: 'Does your professional choice influence your
190 desire to have children?'; **b.)** Question 43: 'Do you agree with the statement that maternity leave has a negative
191 impact on women's careers?' The data for both graphs represent the distribution of responses ("Yes" and "No")
192 by gender (Men/Women) and seniority (Junior/Senior). The number at the end of the bars represents the number
193 of respondents in each category. Responses classified as "Not applicable" or "Did not answer" were excluded.
194

195

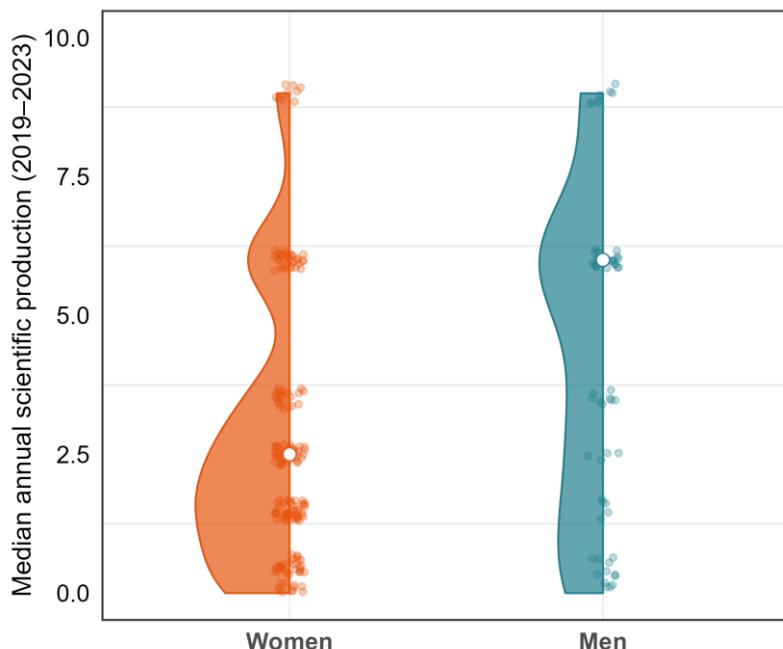

196 **Figure 2.** Relative frequency of reported experiences of moral harassment or gender-based discrimination
197 (Question 31: 'Have you experienced any of the following situations in your professional career?') by gender and
198 professional level. This heatmap represents the proportion of respondents reporting each situation described in
199 Question 31, stratified by gender (Men/Women) and seniority (Junior/ Senior). Responses classified as "Not
200 applicable" or "Did not answer" were excluded.
201

202

203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

Figure 3. Correspondence analysis (ANACOR) of the associations between gender identity (Men and Women, represented by different colours), supervisor's gender, gender discrimination, sexual harassment, and career stages (Junior and Senior, highlighted in bold). Points represent the respondent's answers. Acronyms inside the figure represents: Supervisor_Man and Supervisor_Woman = the supervisors' gender; Lost_P_yes and Lost_P_no = If they have lost a promotion/benefit (e.g., productivity grant) to a man, even though they put in equal effort; L_Bias_yes and L_Bias_no = If they have felt that their gender was decisive in not getting a leadership position; P_Disc_yes and P_Disc_no = If they have faced discrimination for being pregnant or for being a woman who could become pregnant.; F_Bias_yes and F_Bias_no = If they have felt that their gender was decisive in not being invited to participate in fieldwork; Cred_M_yes and Cred_M_no = If a man has taken credit for work they did; S_Agg_yes and S_Agg_no = If they were seen as aggressive or unpleasant for exercising authority or expressing opinion; O_Bias_yes and O_Bias_no = If they have felt that their gender was decisive in having their opinion accepted; G_Jokes_yes and G_Jokes_no = If they have experienced uncomfortable situations involving jokes related to their gender; No_Sit_yes and No_Sit_no = if they haven't experienced any of the situations described; SH_yes and SH_no = if they have experienced sexual harassment; Didn't answer = they prefer not to answer.

221
222
223
224
225
226


Figure 4. Relative frequency of reported experiences of sexual harassment by gender and professional level. **a.)** Responses to Question 32 (“Have you ever experienced sexual harassment by a colleague at work?”), stratified by gender (Men/Women) and seniority (Junior/Senior). Bars represent the proportion of respondents who answered “Yes” or “No” within each subgroup, with absolute numbers shown. **b.)** Reported consequences of sexual harassment among respondents who answered “Yes” (Question 33: “If you answered YES to the previous

227 question, please indicate which situations apply to what happened”), also stratified by gender and seniority.
228 Responses classified as “Not applicable” or “Did not answer” were excluded.
229

230 Among respondents who indicated having had a formal Master’s and/or PhD
231 supervisor, the majority ($M = 78\%$, $W = 75\%$) reported that their most recent supervisor was a
232 man (Table 1). When asked about the need for assistance during fieldwork, significant gender
233 differences emerged ($\chi^2 = 17.07$, $p\text{-value} < 0.001$) (Table 1). While most respondents cited
234 workload as the primary reason for bringing assistants ($M = 43\%$, $W = 38\%$), men more
235 frequently mentioned educational purposes ($M = 28\%$, $W = 16\%$). In contrast, women more
236 often cited concerns related to personal safety ($M = 15\%$, $W = 29\%$) (Table 1).

237 Annual average scientific productivity over the past four years also differed by gender
238 and career stage ($\chi^2 = 26.4$, $p\text{-value} < 0.001$) (Table 2 and SI, Table S1 and S2). While 35% of
239 men reported publishing 4 to 7 papers annually, 52% of women reported publishing 1 to 4
240 papers (Fig. 5). This scenario changes when considering career stages. Among early-career
241 stages, the majority of women (59.4%) reported publishing 1 to 4 papers in the past four years,
242 compared to 36.7% of men. Men at this stage were more likely to report higher productivity:
243 23.5% published 4 to 8 papers, compared to just 4.2% of women (SI, Table S1 and S2). In
244 contrast, gender gaps widened at the senior career stage. While the majority of senior men
245 (46%) published between 4 and 8 papers, most senior women (40.4%) remained in the 1-4
246 category (SI, Table S1 and S2). Moreover, 14% of senior men reported publishing more than
247 10 papers over the past four years, compared to only 5.1% of senior women. Significant gender
248 differences were also observed in the factors that hinder and accelerate scientific productivity.
249 Men most commonly cited administrative responsibilities as barriers (33%), while women
250 more frequently pointed to lack of funding and resources, as well as family responsibilities
251 (14% each) ($\chi^2 = 18.26$, $p\text{-value} = 0.05$) (SI, Table S3 and S4). Regarding factors that enhance
252 productivity, men most often cited age (27%), while women highlighted geographic origin

253 (25%) and socioeconomic background (24%) ($\chi^2 = 17.3$, *p-value* = 0.06). Overall, both genders
254 identified a lack of funding and resources as the main impediment to productivity, and
255 socioeconomic background as the most influential facilitator (SI, Table S3 and S4).

256
257 **Figure 5.** Productivity by gender and career stage (Question 39: ‘What is your average scientific production per
258 year over the last 4 years (papers, book chapters, books), i.e., from 2019 to the present?’) by gender
259 (Men/Women). This violin plot represents the distribution of respondents’ reported annual scientific production.
260 Responses classified as “Not applicable” were excluded.
261

262 DISCUSSION

263 Here, we highlight the structural challenges faced by ecologists in Brazil across various
264 aspects of their personal and professional lives. Our findings reveal that challenges vary by
265 gender and career stage. Our results suggest that the underrepresentation of women between
266 the PhD level and faculty positions results from factors such as gender inequality, the
267 disproportionate burden of domestic and caregiving work, institutional biases, and a lack of
268 support networks. At the same time, the main challenges in obtaining research funding and
269 fellowships include implicit bias in evaluation processes, limited access to influential mentors,
270 and career interruptions associated with motherhood. While economic and administrative
271 factors are the main influences on men’s careers and productivity, women face persistent
272 discrimination and experience a greater impact of personal life on their career trajectories and

273 productivity. Mostly, our survey highlighted that different perceptions related to the current
274 state of gender inequality can affect the retention of women in academia and the productivity
275 of those who persist in academic careers.

276 Personal life choices have a higher impact on women's careers and on their retention
277 in the academic field. For instance, women were shown to be the ones who often compromise
278 in relationships, as a higher proportion of senior women reported relocation because their
279 partner had to move. In contrast, a significant proportion of men reported that their partner had
280 experienced career problems after moving. Women are still the ones who often have to give up
281 on their career trajectory to accommodate their partners. Besides having to compromise, the
282 women who answered our survey were still able to continue their scientific careers; however,
283 this is not always the case ¹⁸.

284 Another personal factor concerns women's careers and maternity choices. Our survey
285 reveals that 65% of women reported that their career influences their desire to have children,
286 whereas the opposite is true for men. The reality for Brazilian women still suggests that they
287 must choose between having children and pursuing their careers. The lack of institutional
288 support, the professional impact of maternity leave, and the "publish or perish" phenomenon
289 exacerbate the tension between maternity and continuing in the research path, ¹⁹⁻²¹. Moreover,
290 the majority of respondents agreed with the statement that maternity leave has a negative
291 impact on women's careers. This perception stems from the fact that women often face various
292 challenges after returning from maternity leave. For instance, nearly half of women in Brazil
293 experience job loss or termination ²², also becoming less hireable ²¹, and are more likely to feel
294 pressured after returning from maternity leave ²³. Changing the negative view on this critical
295 social benefit (a right conceded by the Brazilian government to women in their first six months
296 of postpartum) requires a systematic shift in how parenthood is treated in public and private
297 institutions in Brazil. It stems from individual changes in how we perceive pregnancy and

298 early-stage parenthood, as well as institutional and social changes, including increased
299 infrastructure to support the work of early mothers and reduced asymmetry in paternity and
300 maternity leave, thereby perpetuating gender equality ²³.

301 In the professional environment, gender discrimination and harassment remain
302 significant challenges to women's persistence in the academic field. Three in every 10
303 respondents said they had already suffered from sexual harassment from a colleague, and from
304 that situation, 2 in every 10 had the supervisor as the harasser. These are expressive numbers,
305 but sadly, they only reproduce more of the reality in Brazil, where 46.7% of women have
306 already suffered some kind of moral or sexual harassment
307 (<https://forumseguranca.org.br/painel-violencia-contra-a-mulher/>). This pattern is not
308 exclusive to global southern countries; studies have shown a similar proportion of sexual
309 harassment situations in European and North American countries ²⁴⁻²⁶, as the pattern of not
310 reporting these situations, leaving them unpunished. Institutional policies that secure a safe
311 environment for women and guarantee their right to report sexual assaults are primarily needed
312 to start changing this global scenario (e.g., ²⁷).

313 Situations leading to gender-based discrimination were even more expressive, with
314 99% of women in our survey reporting suffering from one or more of the described situations.
315 For instance, most women answered that they had already been "perceived as aggressive or
316 unpleasant for exercising authority." This microaggression underscores that women are still
317 not perceived as leaders, and when they do hold leadership positions, their legitimacy is often
318 questioned ⁷. Further, this type of comment on women's behaviour can be seen as pathologising
319 women's characters, triggering overcompensation and burnout ²⁸. While all women are more
320 likely to face a subtle form of workplace gender discrimination or microaggressions than their
321 male counterparts, this is especially pronounced for Black women²⁹. Despite our efforts to
322 widely disseminate the questionnaire, our sample included limited racial and ethnic diversity,

323 with only 6.5% of women and 7.4% of men self-identifying as Black (SM, fig. S1). In Brazil,
324 more than 50% of the population identifies as black or mixed race; however, when examining
325 racial diversity within post-graduate programs, only 3% of female researchers are black or
326 mixed³⁰. While our results highlight this critical disparity in access to postgraduate education,
327 additional data are needed to better understand the specific structural and institutional
328 challenges faced by black women in ecology. Ultimately, from a broad perspective, women
329 who rise to higher positions are those who find ways to better cope with frequent reminders of
330 non belonging¹. Dealing mechanisms can include strategies that aim to change coworkers'
331 perceptions of themselves, such as performing a male-stereotyped behaviour, employing
332 coping strategies, internalising and reframing the situation, or seeking social support³¹.

333 How people perceive their work environment may also contribute to gender inequalities
334³². Here, we showed that men failed to perceive particular gender favouritism in leadership
335 positions. This brings a critical perspective concerning gender bias in academia. Male faculty
336 members still hold the higher positions; however, they don't perceive gender bias in their work
337 environment. The underrepresentation of women in leadership positions is a global issue, with
338 extensive literature supporting this claim^{2,7,33,34}. However, perceiving the overall issue is not
339 the same as acknowledging the pattern in their workplace. A change in male perception is
340 crucial, as they still hold the majority of leadership positions, and needs to be improved by
341 increasing sensitivity to gender-based aspects⁷. Most discussions held in ecological
342 conferences and graduate programs about gender bias often lack male representatives
343 (empirical observation)³⁵. Promoting programs that gather data on gender, race, and other
344 minority groups within each university may help visualise local patterns and pressure for
345 affirmative action that promotes equity and increases diversity in the university faculty.
346 Moreover, these data-based pieces of information need to be assessed by those who design and
347 implement institutional policies (men in the majority)³².

348 Gender gaps in scientific productivity persist as a significant pattern in academia ²⁰;
349 here, we demonstrate that disparities in productivity may change across career stages. While
350 earlier-career respondents have the same average production, men who advance to higher
351 positions increase their production, whereas women mostly remain at their early-career average
352 production levels. A meta-analysis²⁰ study showed that men are more productive as a group.
353 Other evidence suggests that articles led by male supervisors have fewer than 20% female co-
354 authors ¹². As it stands, the first factor contributing to this productivity gap is an implicit bias,
355 where men perpetuate the notion that women are less productive, leading them to prefer
356 working with other men. Interestingly, when asked about their preference for teamwork, both
357 men and women stated that they would work with both genders without preference. Relatedly,
358 a significant number of men and women in our survey reported receiving help from women.
359 This answer highlights the fact that women are credited less than men. Specifically, men tend
360 to prefer publishing with other men ³⁶, but are often assisted by women, who are less likely to
361 be credited as authors ³⁷.

362 Regardless of gender, most respondents cite a lack of funds and resources as the main
363 impediment to increasing their productivity. Although there was a gender disparity in
364 impediment factors, primarily related to administrative responsibilities, it may be attributed to
365 the proportion of men and women in senior positions, with women respondents predominantly
366 enrolled in postgraduate programs, in which administrative duties are typically minimal.
367 Looking specifically at senior positions, there was no difference between men and women in
368 impediment factors to productivity (SI, Table S4). Most respondents perceive their geographic
369 origin and socioeconomic status as the leading accelerators to their productivity, highlighting
370 Brazilian social inequalities ³⁸. Although our survey has a geographic and social gap, it may
371 also have highlighted a deficit in the academic environment. Where a significant social gap

372 still exists, only individuals with middle to high socioeconomic status can succeed in their
373 professional careers and attain prominent positions.

374 Studies emphasise the disproportionate pressure faced by women, people of colour, and
375 other minorities to engage in administrative and committee activities due to institutional
376 mandates for diversity ³⁹. The underrepresentation of these groups, combined with the
377 institutional push to increase their participation in such activities, is overwhelming. This added
378 burden reduces the time available for research, thereby impacting their overall productivity.
379 Although we know that diversity provides a broader perspective on institutional matters, such
380 as hiring and educational committees ^{40,41}, policies aimed at creating more equitable and diverse
381 boards should carefully consider the additional workload placed on these individuals. The need
382 to overcome implicit bias in faculty recruitment can be addressed by increasing awareness of
383 the recruitment team's potential biases, implementing blind proof evaluations, recording
384 teaching presentations of candidates, and establishing affirmative action quotas. Achieving
385 lasting change requires moving beyond symbolic efforts and committing to meaningful
386 mentorship, advocacy, and shared responsibility ⁴².

387 Our results reaffirm the complexity underlying gender inequality, with personal and
388 professional factors hindering women's permanence and productivity in academia. However,
389 a fundamental change may alter this background: leaders in academia need to recognise the
390 issues behind the lack of institutional diversity and systematically implement policies and data-
391 driven actions to address these challenges (fig. 6, Box 1). Specifically, men must truly engage
392 in gender-based initiatives. Moreover, we need to promote inclusive research environments
393 and foster collaborations among early-career researchers, breaking the pattern of men
394 publishing primarily among themselves and increasing women's productivity and leadership
395 in ecological studies. Finally, we note that although significant progress has been made in
396 research funding in Brazil, it remains the primary factor influencing scientific productivity.

397 Funding policies in Brazil are based on conservative metrics, including journal impact factor,
398 number of graduate students and number of published papers ⁴³. This results in a
399 disproportionate distribution of funding, both geographically and by gender, where male
400 researchers from the southeastern region of Brazil tend to receive more funding than
401 researchers in the North or Northeast^{3,44}. As a middle-income country with a depreciated
402 currency, Brazilian researchers must contend with a lack of infrastructure and financial
403 resources while facing production pressures to maintain the minimal resources necessary for
404 their work. Whereas increasing international funding has been a short-term solution ⁴⁵, it
405 doesn't change the disproportionate scenario we face. Funding agencies should develop
406 inclusive metrics for evaluating research proposals and constantly encourage targeted research
407 calls to increase diversity.

408 The purpose of our survey was to highlight the challenges faced by Brazilian ecologists
409 throughout their professional careers, with a focus on identifying possible differences by
410 gender and career stage. However, we encountered difficulties in engaging men to participate
411 in our survey, as well as a lack of representation from other genders and diverse racial and
412 ethnic identities. Our survey also failed to gather a robust sample across all Brazilian states,
413 despite numerous attempts to increase participation. We acknowledge that the experiences
414 presented here may vary across various cultural and socioeconomic backgrounds, and we
415 emphasise the need for research focused on this specific social structure. Our limited sample
416 size of male respondents underscores the need to raise awareness of the importance of these
417 studies for developing data-driven solutions to address gender inequalities and to engage in
418 initiatives that promote social, racial, and gender visibility in science. Moreover, an open
419 question remains regarding which factors are most influential in the decision to leave academia,
420 particularly among respondents who have already exited the field, and this issue warrants
421 further exploration in future research.

422 In conclusion, our findings reveal the multifaceted and interconnected nature of gender
423 inequality in Brazilian ecology, shaped by institutional and structural factors that hinder
424 women's representation, retention, and productivity across academic career stages. Persistent
425 disparities in caregiving responsibilities, funding access, leadership positions, and exposure to
426 discrimination are compounded by limited institutional support and inequitable policies.
427 Addressing these challenges demands coordinated action that combines inclusive institutional
428 reforms, equitable parental leave, proactive mentorship, and genuine engagement from male
429 leaders (fig.6, box 1). Efforts to collect and analyse disaggregated data on gender, race, and
430 socioeconomic background are essential to guide evidence-based interventions, promote
431 diversity, and foster a research environment in which all individuals can thrive. Recognising
432 and dismantling systemic barriers is a prerequisite for strengthening scientific innovation and
433 ecological research in Brazil.

Recommendations to increase gender equity in ecology field

434

435 **Figure 6.** Summary of actions aimed at reducing gender inequalities and increasing diversity in ecological careers
436 in Brazil, based on the analysis of the questionnaire responses presented in this study. See Box 1 for further details.
437 Illustration credit: Juliana Ciccheto.

BOX 1: How do we overcome these challenges?

- 1. Initiatives that increase gender representation and visibility without increasing the workload of minority representatives:** Most initiatives aimed at improving the representation of minority groups often result in additional responsibilities for their members. For instance, an institutional evaluation process that enforces gender parity within a faculty council where representation is already unequal tends to place a disproportionate burden on the minority gender. Efforts to foster gender parity in academic environments must therefore account for the invisible and often uncompensated labour disproportionately carried out by minority groups.
- 2. Equitable maternity and paternity leave policies:** Women in Brazil are entitled to a maternity leave of four to six months, as mandated by the country's constitutional law. In comparison, men are entitled to a 5-day leave. This discrepancy is stated by a conservative view that it is not the man's responsibility to care for the newborn baby. Caring for a newborn baby is not an individual job, as the African proverb says: it takes a village to raise a child. Equal maternity and paternity leave represents a balance not only in the workload of raising a family, but also in the professional consequences of choosing to have one.
- 3. Actively promote gender and racial inclusion in departments with higher levels of inequality:** Opening targeted positions to ensure equitable representation of underrepresented groups in public and private institutions.
- 4. Men need to engage more in gender-based discussions:** While we have people in leadership positions coping with or ignoring the fact of gender under-representation

and lack of diversity in research institutions, we will not be able to change the inequality pattern currently stated.

5. **Setting up a committee focused on fostering diversity, equity, and inclusion, particularly in matters of gender and race, across university policies and practices:** gather data, build workshops, discuss policies, and implement institutional guidelines to address multiple forms of discrimination and sexual harassment.
6. **Establish rigorous institutional policies for addressing moral and sexual harassment in research institutions and universities:** The job security that Brazilian Professors often have is one of the challenges in reporting and pursuing institutional punitive actions for moral and sexual discrimination, such as the dismissal of the professor or supervisor. Because of that, it is important and urgent that we include federal policies that consider sexual, moral, and gender-based harassment and abuse of power as grounds for dismissal from public academic office.

438

439 **Acknowledgments**

440 We gratefully acknowledge all the individuals who participated in our survey - your time and
441 perspectives were essential to this work. We are especially thankful to the members of the
442 '*Women in Ecology*' Project for their valuable insights and ongoing support throughout the
443 development of this study. We want to extend our particular thanks to Amanda Leão for her
444 work on constructing the questionnaire. We also extend our acknowledgements to those who
445 provided thoughtful feedback during our conference presentations; their engagement and
446 contributions greatly enriched our research.

447

448 **Data sharing statement**

449 Data and R code are available in
450 [https://github.com/MulheresEcologas/quest_pesquisa_barreiras.git].
451 The database for this study is published in Zenodo:
452 <https://doi.org/10.5281/zenodo.18244507>

453

454 **Ethics statement**

455 This study was conducted in accordance with ethical standards. It was approved by the Human Research
456 Ethics Committee of the Federal University of Bahia (CEpEE/UFBA), under the Certificate of
457 Presentation for Ethical Assessment (CAAE) 69100023.3.0000.5531. We state that we obtained
458 informed consent from all subjects. The term is provided in the supplementary information.

459

460 **Funding**

461 APLC was supported by a postdoctoral grant from VPCCB/FIOCRUZ. JRMC and MEFS were
462 supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).
463 This research did not receive any specific grant from funding agencies in the public,
464 commercial, or not-for-profit sectors.

465 **Author contributions statement**

466 APLC; JRMC; MEFS; LNP; LDV; and EDB.

468
469 Conceptualisation: Initial idea; formulation or evolution of overarching research goals and
470 aims.

- 471 • E.D.B., L.N.P, A.P.L.C., and J.R.M.C.

472 Data curation: Management activities to annotate (produce metadata), scrub data and maintain
473 research data (including software code, where it is necessary for interpreting the data itself) for
474 initial use and later re-use.

- 475 • A.P.L.C., M.E.F.S., and E.D.B.

476 Formal analysis: Application of statistical or other formal techniques to analyse or synthesise
477 study data.

- 478 • A.P.L.C.; J.R.M.C, and E.D.B.

479 Investigation: Conducting a research and investigation process or data/evidence collection.

- 480 • A.P.L.C. and E.D.B.

481 Methodology: Development or design of methods; data collection.

- 482 • A.P.L.C.; E.D.B.; J.R.M.C.; M.E.F.S.; L.N.P.; and L.D.V.

483 Project administration: Management and coordination responsibility for the research activity
484 planning and execution.

- 485 • A.P.L.C. and E.D.B.

486 Supervision: Oversight and leadership responsibility for the research activity planning and
487 execution, including mentorship external to the core team.

- 488 • E.D.B.; L.D.V. and A.P.L.C.

489 Validation: Verification, whether as a part of the activity or separate, of the overall
490 replication/reproducibility of results/experiments and other research outputs.

- 491 • A.P.L.C.; J.R.M.C.; M.E.F.S., and E.D.B.

492 Visualisation: Preparation, creation and/or presentation of the published work, specifically
493 visualisation/data presentation.

- 494 • E.D.B.; A.P.L.C., and J.R.M.C.

495 Writing – original draft: Preparation, creation and/or presentation of the published work,
496 specifically writing the initial draft (including substantive translation).

- 497 • A.P.L.C.

498 Writing – review & editing: Preparation, creation and/or presentation of the published work by
499 those from the original research group, specifically critical review, commentary or revision –
500 including pre- or post-publication stages.

- 501 • E.D.B.; A.P.L.C.; J.R.M.C.; M.E.F.S.; and L.D.V.

502

503 **REFERENCES**

504 1. Grogan, K. E. How the entire scientific community can confront gender bias in the workplace.
505 Nat. Ecol. Evol. 3, 3–6 (2018).

506 2. Ryan, M. To advance equality for women, use the evidence. Nature 604, 403–403 (2022).

507 3. Zandonà, E. Female ecologists are falling from the academic ladder: A call for action.
508 Perspect. Ecol. Conserv. 20, 294–299 (2022).

509 4. Lupon, A. et al. Towards women-inclusive ecology: Representation, behavior, and perception
510 of women at an international conference. PLOS ONE 16, e0260163 (2021).

511 5. Barreto, J. R. et al. Is the audience gender-blind? Smaller attendance in female talks
512 highlights an imbalanced visibility in academia. Npj Biodivers. 4, 28 (2025).

513 6. Lagisz, M. et al. Little transparency and equity in scientific awards for early- and mid-career
514 researchers in ecology and evolution. Nat. Ecol. Evol. 7, 655–665 (2023).

515 7. Casad, B. J. et al. Gender inequality in academia: Problems and solutions for women faculty
516 in STEM. J. Neurosci. Res. 99, 13–23 (2021).

517 8. Drury, B. J., Siy, J. O. & Cheryan, S. When Do Female Role Models Benefit Women? The
518 Importance of Differentiating Recruitment From Retention in STEM. Psychol. Inq. 22, 265–269
519 (2011).

520 9. Haines, C. D., Rose, E. M., Odom, K. J. & Omland, K. E. The role of diversity in science: a
521 case study of women advancing female birdsong research. Anim. Behav. 168, 19–24 (2020).

522 10. Eaton, A. A., Saunders, J. F., Jacobson, R. K. & West, K. How Gender and Race Stereotypes
523 Impact the Advancement of Scholars in STEM: Professors' Biased Evaluations of Physics and
524 Biology Post-Doctoral Candidates. Sex Roles 82, 127–141 (2020).

525 11. Salerno, P. E., Páez-Vacas, M., Guayasamin, J. M. & Stynoski, J. L. Male principal
526 investigators (almost) don't publish with women in ecology and zoology. PLOS ONE 14, e0218598
527 (2019).

528 12. Morgan, A. C. et al. The unequal impact of parenthood in academia. Sci. Adv. 7, eabd1996
529 (2021).

530 13. Leaper, C. & Starr, C. R. Helping and Hindering Undergraduate Women's STEM Motivation:
531 Experiences With STEM Encouragement, STEM-Related Gender Bias, and Sexual Harassment.
532 Psychol. Women Q. 43, 165–183 (2019).

533 14. Litzellachner, L. F., Barnett, J., Yeomans, L. & Blackwood, L. How harassment is depriving
534 universities of talent: a national survey of STEM academics in the UK. Front. Psychol. 14, 1212545
535 (2024).

536 15. Buckland, S. T. Monte Carlo Confidence Intervals. Biometrics 40, 811 (1984).

537 16. Leeuw, J. D. & Mair, P. Simple and Canonical Correspondence Analysis Using the R
538 Package anacor. J. Stat. Softw. 31, (2009).

539 17. R Core Team. R: A Language and Environment for Statistical Computing. <https://www.R-project.org/> (2023).

540 18. Miriti, M. N., Bailey, K., Halsey, S. J. & Harris, N. C. Hidden figures in ecology and
541 evolution. Nat. Ecol. Evol. 4, 1282–1282 (2020).

542 19. Maas, B. et al. Women and Global South strikingly underrepresented among top-publishing
543 ecologists. Conserv. Lett. 14, e12797 (2021).

544 20. Astegiano, J., Sebastián-González, E. & Castanho, C. D. T. Unravelling the gender
545 productivity gap in science: a meta-analytical review. R. Soc. Open Sci. 6, 181566 (2019).

546 21. Arena, D. F., Volpone, S. D. & Jones, K. P. (Overcoming) Maternity Bias in the Workplace:
547 A Systematic Review. J. Manag. 49, 52–84 (2023).

548 22. Machado, C. & Neto, V. P. The Labor Market Consequences of Maternity Leave Policies:
549 Evidence from Brazil. <https://hdl.handle.net/10438/17859> (2016)
550 doi:<https://hdl.handle.net/10438/17859>.

551 23. Staniscuaski, F. et al. Bias against parents in science hits women harder. Humanit. Soc. Sci.
552 Commun. 10, 201 (2023).

554 24. Greider, C. W. et al. Increasing gender diversity in the STEM research workforce. *Science*
555 366, 692–695 (2019).

556 25. O’Connell, C. & McKinnon, M. Perceptions of Barriers to Career Progression for Academic
557 Women in STEM. *Societies* 11, 27 (2021).

558 26. Corbett, E., Barnett, J., Yeomans, L. & Blackwood, L. “That’s just the way it is”: bullying
559 and harassment in STEM academia. *Int. J. STEM Educ.* 11, 27 (2024).

560 27. Chaudhury, A. & Colla, S. Next steps in dismantling discrimination: Lessons from ecology
561 and conservation science. *Conserv. Lett.* 14, e12774 (2021).

562 28. Kim, J. Y. & Meister, A. Microaggressions, Interrupted: The Experience and Effects of
563 Gender Microaggressions for Women in STEM. *J. Bus. Ethics* 185, 513–531 (2023).

564 29. Moody, A. T. & Lewis, J. A. Gendered Racial Microaggressions and Traumatic Stress
565 Symptoms Among Black Women. *Psychol. Women Q.* 43, 201–214 (2019).

566 30. Sousa, A. L. N. D. et al. Professoras negras na pós-graduação em saúde: entre o racismo
567 estrutural e a feminização do cuidado. *Saúde Em Debate* 45, 13–26 (2021).

568 31. Meister, A., Sinclair, A. & Jehn, K. A. Identities under scrutiny: How women leaders
569 navigate feeling misidentified at work. *Leadersh. Q.* 28, 672–690 (2017).

570 32. García-González, J., Forcén, P. & Jimenez-Sánchez, M. Men and women differ in their
571 perception of gender bias in research institutions. *PLOS ONE* 14, e0225763 (2019).

572 33. Llorens, A. et al. Gender bias in academia: A lifetime problem that needs solutions. *Neuron*
573 109, 2047–2074 (2021).

574 34. Giakoumi, S. et al. Persistent gender bias in marine science and conservation calls for action
575 to achieve equity. *Biol. Conserv.* 257, 109134 (2021).

576 35. Flood, M. Gender equality: engaging men in change. *The Lancet* 393, 2386–2387 (2019).

577 36. Kwiek, M. & Roszka, W. Gender-based homophily in research: A large-scale study of man-
578 woman collaboration. *J. Informetr.* 15, 101171 (2021).

579 37. Ross, M. B. et al. Women are credited less in science than men. *Nature* 608, 135–145 (2022).

580 38. Guilherme, P. D. A. A., De Araujo, P. D. J. M., Silva, P. L. & Brito, P. D. R. D. O. Two
581 ‘Brazils’: Socioeconomic status and education performance in Brazil. *Int. J. Educ. Res.* 123, 102287
582 (2024).

583 39. Kachchaf, R., Ko, L., Hodari, A. & Ong, M. Career–life balance for women of color:
584 Experiences in science and engineering academia. *J. Divers. High. Educ.* 8, 175–191 (2015).

585 40. Nielsen, M. W. et al. Gender diversity leads to better science. *Proc. Natl. Acad. Sci.* 114,
586 1740–1742 (2017).

587 41. Hofstra, B. et al. The Diversity–Innovation Paradox in Science. *Proc. Natl. Acad. Sci.* 117,
588 9284–9291 (2020).

589 42. Traylor-Knowles, N. et al. Experiences of and support for black women in ecology, evolution,
590 and marine science. *Front. Mar. Sci.* 10, 1295931 (2023).

591 43. Quintans-Júnior, L. J. & Guedes Gomes, F. The abyss of research funding in Brazil. EXCLI J.
592 23Doc1491 ISSN 1611-2156 <https://doi.org/10.17179/EXCLI2024-8037> (2024)
593 doi:10.17179/EXCLI2024-8037.

594 44. De Oliveira Andrade, R. Brazil budget cuts could leave science labs without power and water.
595 *Nature* d41586-024-01035-2 (2024) doi:10.1038/d41586-024-01035-2.

596 45. Stegmann, L. F. et al. Brazilian public funding for biodiversity research in the Amazon.
597 *Perspect. Ecol. Conserv.* 22, 1–7 (2024).

598

599 **TABLES**

600 **Table 1:** Key results from the questionnaire applied to Brazilian researchers, with responses
 601 classified by gender. The table includes the answer options for each survey question
 602 (Category), the number of responses in each category (Answers), and the proportion of
 603 responses in each category as a percentage of the total responses for each gender (Percentage).
 604 It also presents the chi-squared test statistic used to assess differences in responses between
 605 genders (chi-squared test) and the corresponding p-value indicating the statistical significance
 606 of these differences (P-value).

Category	Men		Women	
	Answers	Percentage	Answers	Percentage
If you have moved to a new city, state, or country in the past five years, what were the motivating factors? Please check all categories that apply to your move:				
$\chi^2: 16.13$ p-value: 0.04				
Better life quality	11	18%	28	14%
Better salary	9	15%	16	8%
Focus on research	8	13%	34	16%
Increased status at work	3	5%	13	6%
Live close to family and friends	2	3%	13	6%
The only job offer that I had	4	7%	16	8%
Postgraduate programme preference	12	20%	61	29%
Relocating because my partner has moved	1	2%	15	7%
Starting a temporary or permanent contract	10	17%	11	5%
If you have moved residence to advance your career, please check the categories that describe the consequences of your move:				
$\chi^2: 1.11$ p-value: 0.98				
Children moved but suffered a significant adverse impact	1	2%	4	3%
Children moved with no or minimal adverse impact	7	14%	15	13%
Partner or other significant person has moved in with me, but has career problems	6	12%	11	9%
Partner or significant other has moved in with me, and the relationship has had a significant negative impact	7	14%	21	18%
Partner or significant other has moved in with me, with no significant negative impact on the relationship	19	37%	41	34%
Partner or significant other hasn't moved in with me, and the relationship has had no significant adverse impact	7	14%	16	13%
Partner or significant other hasn't moved in with me, but has had a significant negative impact on the relationship	4	8%	12	10%
Do you prefer to work in a team that is:				

$\chi^2: 15.22$ | p-value: <0.001

Indifferent	55	81%	117	55%
Primordially female	13	19%	93	43%
Primordially male	0	0%	4	2%

Colleagues who are most helpful in your current position are primarily:

$\chi^2: 12.21$ | p-value: <0.001

Both	42	62%	92	43%
Men	2	3%	39	18%
Women	24	35%	82	38%

In your current job, which of the following situations do you observe?

$\chi^2: 29.22$ | p-value: <0.001

Men are easily hired and/or promoted	13	18%	102	45%
Men are not easily hired and/or promoted	3	4%	6	3%
No gender disparity in hiring and promotion	42	58%	72	31%
Women are easily hired and/or promoted	5	7%	3	1%
Women are not easily hired and/or promoted	9	13%	46	20%

If you work in a public institution, which of the following situations do you observe?

$\chi^2: 27.45$ | p-value: <0.001

Men are easily selected for leadership positions	11	10%	63	22%
Men outnumber women in my department	36	32%	102	35%
No gender disparity	14	12%	30	10%
No gender-based leadership	33	29%	29	10%
Women are easily selected for leadership positions	5	4%	18	6%
Women outnumber men in my department	14	12%	46	16%

Have you experienced any of the following situations in your professional career? Choose all that apply:

$\chi^2: 158.97$ | p-value: <0.001

Has a man ever taken credit for your work	5	14%	93	13%
Being subjected to gender-based jokes	1	3%	136	20%
Career advancement is influenced by your gender	0	0%	48	7%
Discrimination based on pregnancy	0	0%	52	8%
Field recruitment is influenced by your gender	2	6%	80	12%
Haven't experienced any of these situations	19	54%	24	3%

Loss of promotion/grant for a man	1	3%	35	5%
Opinion acceptance is influenced by gender	2	6%	110	16%
Perceived as aggressive or unpleasant for exercising authority	5	14%	113	16%

Have you experienced sexual harassment from a colleague?

$\chi^2: 17.55$ | p-value: <0.001

No	62	93%	140	66%
Yes	5	7%	71	34%

If you answered YES to the previous question, have you experienced sexual harassment from a colleague? Indicate which situations apply:

$\chi^2: \text{NA}$ | p-value: NA

Coerced not to disclose the situation	0	0%	9	8%
The harasser has been exposed, resulting in consequences	0	0%	2	2%
The harasser has been exposed with no consequences	0	0%	11	10%
The harasser was my supervisor	0	0%	29	26%
The situation led to my resignation	2	40%	4	4%
The situation led to the harasser's resignation	0	0%	0	0%
The situation was not exposed	3	60%	56	50%

If you have completed postgraduate studies (e.g., specialisation, master's, or PhD), your last supervisor was:

$\chi^2: 0.22$ | p-value: 0.74

Men	53	78%	160	75%
Women	15	22%	53	25%

If you have conducted fieldwork and brought someone with you as a field assistant, please identify the specific reason for doing so. Choose all that apply:

$\chi^2: 17.07$ | p-value: <0.001

Amount of work	58	43%	162	38%
Company	20	15%	69	16%
Educational experience	38	28%	68	16%
Worried about personal security	20	15%	125	29%

What is your average scientific production per year over the last 8 years (papers, book chapters, books), from 2015 to the present?

$\chi^2: 26.40$ | p-value: <0.001

0	5	7%	24	11%
<1	8	12%	29	14%

>10	6	9%	7	3%
1-3.9	17	25%	110	52%
4-7.9	24	35%	33	15%
8-9.9	8	12%	10	5%

Do you have children?

$\chi^2: 2.53$ | p-value: 0.15

No	38	56%	143	67%
Yes	30	44%	72	33%

Does your professional choice influence your desire to have children?

$\chi^2: 17.92$ | p-value: <0.001

No	43	64%	74	35%
Yes	24	36%	138	65%

Do you agree with the statement that maternity leave has an adverse effect on women's careers?

$\chi^2: 5.68$ | p-value: 0.02

No	25	40%	49	24%
Yes	38	60%	153	76%

607

608

609 **Table 2:** Description of the main factors identified as impediments to achieving higher
610 scientific productivity, classified by gender. The table includes the factors that may influence
611 individual productivity rates (e.g., Race or Ethnicity, Socioeconomic Level, Geographic
612 Origin, Family Responsibilities, Teaching Responsibilities, Administrative Responsibilities,
613 Job Insecurity, Lack of Funding, Lack of Work Resources, and Gender Discrimination). It also
614 shows the number of respondents for each factor (Answers), the proportion of respondents
615 within each gender category (Percentage), the chi-squared test statistic for differences in
616 responses between genders (chi-squared test), and the corresponding p-value indicating the
617 statistical significance of these differences (P-value).

Factor	Men		Women	
	Answers	Percentage	Answers	Percentage

Big Accelerator Factors

$\chi^2: 2.68$ | p-value: 0.99

Socioeconomic level	9	23%	24	24%
Geographical origin	6	15%	19	19%
Family responsibilities	4	10%	15	15%
Teaching responsibilities	3	7%	10	9%

Ethnicity	4	10%	8	8%
Accelerator Factors				
$\chi^2: 17.30$ p-value: 0.06				
Geographical origin	13	16%	48	25%
Socioeconomic level	18	23%	47	24%
Ethnicity	11	14%	36	18%
Age	21	27%	22	11%
Teaching responsibilities	6	7%	11	5%
Big Impediment Factors				
$\chi^2: 17.08$ p-value: 0.07				
Lack of funding	31	29%	93	26%
Lack of resources	24	22%	76	22%
Family responsibilities	4	3%	37	10%
Lack of job security	8	7%	33	9%
Socioeconomic level	5	5%	28	8%
Impediment Factors				
$\chi^2: 18.26$ p-value: 0.05				
Lack of resources	30	18%	89	14%
Lack of funding	19	19%	89	14%
Family responsibilities	26	15%	88	14%
Administrative responsibilities	25	33%	67	11%
Gender discrimination	4	2%	64	10%
Teaching responsibilities	22	13%	61	10%
Neutral Factors				
$\chi^2: 17.7$ p-value: 0.07				
Age	26	12%	94	13%
Teaching responsibilities	21	9%	89	12%
Ethnicity	25	11%	81	12%
Administrative responsibilities	12	5%	79	11%
Gender discrimination	33	15%	78	11%
Lack of job security	26	12%	76	11%