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Abstract 

Life-history trade-offs are a central concept in evolutionary biology, yet their underlying 
molecular mechanisms are not yet fully understood.  Whilst much research has focused on 
genetic variation, epigenetic mechanisms, which regulate gene regulation, may be equally 
important.  To investigate this, we collected blood samples from 50 male black grouse (Lyrurus 
tetrix) before and after the breeding (lekking) period and quantified genome-wide DNA 
methylation changes using reduced representation bisulphite sequencing. We identified 1,026 
CpG sites that changed significantly in methylation across the breeding period, many residing 
within genes involved in the regulation of RNA biosynthesis. We tested whether these DNA 
methylation changes were associated with reproductive investment and future fitness-relevant 
traits: survival and the expression of post-breeding sexual ornaments, which reflect body 
condition after the strenuous lekking period. Dozens of CpG sites showed significant 
associations, often clustering within the same genes, suggesting that epigenetic changes 
associated with reproduction and survival are localized rather than widespread. Moreover, 
changes at three CpG sites exhibited opposite relationships between current reproductive 
investment and future fitness-relevant traits, suggesting that epigenetic mechanisms might 
contribute to shaping life-history trade-offs. Our study demonstrates that DNA methylation 
changes are associated with the expression of costly reproductive traits, highlighting the 
importance of epigenetic mechanisms in shaping life-history traits and fitness. 
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Introduction 

Reproductive investment entails a life-history trade-off, balancing current reproduction against 
future long-term fitness, a concept central to sexual selection theory (Roff, 1993; Stearns, 
1998; Williams, 1966). Reproductive investment is physiologically and energetically costly 
(Speakman, 2008), and when resources are limited, individuals must trade this investment off 
against survival or future reproduction to maximize their fitness (Jennions et al., 2001). Beyond 
resource limitation, trade-offs can also emerge because life-history traits are not expressed in 
isolation across an individual’s lifetime but as parts of integrated systems that generate 
organismal complexity (Mauro & Ghalambor, 2020), where multiple traits can share underlying 
biological pathways, such as the melano-corticosterone system (Roulin & Ducrest, 2011). 
However, the molecular mechanisms underlying life-history trade-offs remain poorly 
understood. Changes in gene regulatory processes, such as epigenetic mechanisms 
(Jaenisch & Bird, 2003; Richards, 2006), play a key role in shaping life-history traits (Lindner, 
Laine, et al., 2021; Lindner, Verhagen, Viitaniemi, Laine, Visser, Husby, & Van Oers, 2021) 
and might therefore provide a molecular mechanism underlying life-history trade-offs (McCaw 
et al., 2024; Zhou & Liu, 2025). 

Epigenetic mechanisms affect gene expression without changing the primary nucleotide 
sequence (Richards, 2006) and include DNA methylation and histone modifications. The 
epigenome integrates genetic and environmental information, including the early-life 
environment and stress (Berbel-Filho et al., 2019; Feil & Fraga, 2012; Sepers et al., 2021) to 
modulate gene expression (Jaenisch & Bird, 2003). DNA methylation is one of the most 
studied epigenetic mechanisms (Laine et al., 2022) and involves the attachment of a methyl 
group to DNA. In vertebrates, DNA methylation at CpG sites – dinucleotides composing a 
cytosine base pair followed by a guanine – in promoter regions (Jones, 2012) prevents 
transcription factors from binding to the DNA and is therefore typically associated with reduced 
gene expression (Jones, 2012). The functional effects of CpG methylation in other genomic 
regions are less well known, although intragenic methylation may be associated with 
alternative-splicing (Maunakea et al., 2013; Shayevitch et al., 2018). 

Temporal changes in promoter DNA methylation can alter gene expression (Lindner, et al., 
2021) and result in phenotypic changes in wild animals, such as the timing of the expression 
of phenological traits (Fishman & Tauber, 2024). In wild birds, seasonal variation in DNA 
methylation and gene expression has been linked to the initiation of reproduction (Lindner, 
Laine, et al., 2021; Viitaniemi et al., 2019), thermoregulation (Swanson et al., 2009) and song 
control (Thompson et al., 2012), highlighting the role of epigenetic changes in regulating key 
fitness traits. However, it is unknown whether individuals who invest more in reproduction 
show the largest or smallest temporal epigenetic changes. Moreover, if temporal epigenetic 
changes influence trait expression later in life, they may represent a molecular mechanism 
underlying trade-offs between current and future reproduction. 

The black grouse (Lyrurus tetrix) provides a unique opportunity to investigate how temporal 
epigenetic changes are related to reproductive investment, the expression of future traits and 
life-history trade-offs. Black grouse males undergo a short but intense 4–6 week lekking period 
in spring, where they compete for non-resource holding territories to secure copulations 
(Alatalo et al., 1991). This risky, time- and energy-consuming period (Boyko et al., 2004) is 
characterized by significant body mass losses and increased parasite loads (Lebigre et al., 
2013), which involve immune system and metabolic changes that have been linked to DNA 
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methylation and gene regulation changes in other species (Bollepalli et al., 2018; He et al., 
2018; Morales-Nebreda et al., 2019). 
 
Male quality in black grouse is signaled through lekking performance as well as the expression 
of multiple sexual ornaments (Kervinen et al., 2016; Rintamäki et al., 2001). The most 
successful males fight most intensively and defend the most central territories on the lek 
(Hämäläinen et al., 2012). Whereas lek attendance is a measure of current investment, lek 
centrality also captures variation in both short- and long-term reproductive investment (Alatalo 
et al., 1991; Kokko et al., 1998, 1999), and mating success is the outcome of the investment 
in all behavioral and ornamental traits integrated over multiple time scales (Kervinen et al., 
2016). If epigenetic changes that occur during the lekking season reflect the costs of increased 
reproductive investment, this may have functional consequences beyond the current 
reproductive season. Epigenetic changes may reflect reproductive costs if they are indicative 
of the resources allocated to reproduction at the expense of another trait, or if these changes 
trigger molecular responses, such as transcriptional or hormonal fluctuations, that negatively 
affect another trait (now or in the future). These consequences may include reduced survival 
or the diminished expression of sexual traits in the following season, which potentially 
constrain future reproductive potential. Black grouse molt immediately after the lekking period 
(de Vos, 1983; Siitari et al., 2007; Soulsbury et al., 2016), and therefore their post-reproductive 
body condition becomes imprinted in their sexual ornaments, such as lyre length and blue 
chroma, which are displayed during the subsequent reproductive period, around 10–11 
months later (Siitari et al., 2007).  
 
Here, we quantified erythrocyte DNA methylation changes in male black grouse sampled 
before and after the lekking season. To test whether CpG site methylation changes are 
associated with individual investment in reproduction, we linked three indicators of 
reproductive investment – lek attendance, centrality and mating success –to temporal 
methylation changes. To test whether CpG site methylation changes during the lekking season 
are costly for the expression of future traits, we linked methylation changes to survival until 
the next autumn season and plumage traits displayed in the subsequent lekking season. We 
found dozens of CpG sites associated with reproductive investment and the future expression 
of fitness-relevant traits, which were localized to a few genes rather than widespread. To test 
whether methylation changes can underly life-history trade-offs, we evaluated whether 
methylation changes at single genes can have effects on different traits in opposite directions 
by searching for CpG sites significantly associated with reproductive investment and future 
traits. Methylation at three CpG sites were positively associated with reproductive investment 
and negatively with future traits, consistent with this pattern. Our results indicate that 
epigenetic mechanisms are involved in the molecular mechanisms underlying life-history 
trade-offs.  
 
Materials and Methods 
 
Data and sample collection 
Black grouse males were captured using baited walk-in traps across five lekking sites in 
Central Finland between 2005 and 2007 inclusive. A total of 50 birds were captured both 
before (January – March) and after the lekking season (April – May) as described in Lebigre 
et al. (Lebigre et al., 2013) (mean sampling interval = 100 days, range = 55 – 133 days) from 
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five different leks (Table S1). During capture, blood samples were taken from the branchial 
vein (1–2 ml) with a heparinized syringe and the birds were weighed to the nearest 10 g using 
a Pesola Spring balance. Blood was centrifuged for 5 minutes at 12,000 rpm to separate red 
blood cells and plasma. Red blood cells were stored in 70% ethanol at 4ºC and blood plasma 
at -80 °C until further analysis. During pre-lekking capture, the birds were aged according to 
plumage characteristics (Helminen, 1963) and if not present already, birds were ringed with 
both an aluminum tarsus ring containing a unique serial number as well as three color rings 
allowing identification from a distance for recording behavior. Five individuals were captured 
before and after the lekking season in two consecutive years, and one individual was caught 
at both time points in three consecutive years, totaling 116 captures that allow the comparison 
between pre- and post-lekking periods (Table S1). 
 
Fitness measures 
During the lekking season (March–April), males were observed using scan-sampling with a 
5–20-minute interval. Lek attendance was quantified as the percentage of scans in which the 
individual was observed performing this behavior in that year. Lek centrality was measured as 
the average distance of a male to the lek center in that year, calculated using a 10 x 10-metre 
grid system per lek. During each scan, the position of a male was mapped to the closest 1 m 
on the grid and the median of all points was taken as its distance to the lek center. The center 
of individual male territories was determined as the median of all coordinates recorded per 
male during a given mating season, and the overall lek center was determined as the median 
of all the coordinates recorded during that mating season. Thus, lower lek centrality values 
are indicative of more centrally-displaying males (Höglund et al., 1997).  
 
We quantified male mating success as the number of observed copulations with female black 
grouse on leks. Most black grouse matings take place on leks (Lebigre et al., 2007) and in 
general, females mate once with a single male. Previous work has validated that the observed 
copulations are highly concordant with true parentage inferred from genetic data (Alatalo, 
Burke, et al., 1996). Male survival was determined based on future observations. As black 
grouse males have high site fidelity (Caizergues & Ellison, 2002; Höglund et al., 1999; Warren 
& Baines, 2002), males were assumed to not have survived when they were never caught in 
the next winter (trapping generally started in January) or sighted in subsequent years. 
 
EpiGBS3 library preparation and sequencing 
We assessed genome-wide DNA methylation changes across the lekking period using pairs 
of blood samples that were collected in pre- (n = 58) and post-lekking (n = 58) time periods. 
We collected epigenetic data using EpiGBS3 (Barcelo-Serra et al., 2025), a cost-effective 
reduced-representation bisulphite sequencing method, adjusted from the EpiGBS2 protocol 
(Gawehns et al., 2022; Van Gurp et al., 2016) to work on Illumina Novaseq sequencing 
machines. Before conducting reduced-representation bisulphite sequencing, we first 
characterized genome-wide DNA methylation patterns in black grouse by whole-genome 
bisulphite sequencing a single sample as detailed in the Supplementary Information.  
 
As in other vertebrates (Derks et al., 2016; Laine et al., 2016), CpG methylation in black grouse 
showed a pronounced decline around transcription start sites  (TSS; Figure S1), a patterns 
typically linked to increased transcription (Keller et al., 2016). Because the genome-wide 
methylation landscape in black grouse matches that described for other vertebrate systems 
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(Jones, 2012; Siegfried & Simon, 2010), we are confident the same regulatory relationships 
apply in black grouse and therefore used EpiGBS3, which specifically targets CpG sites, for 
all further samples. (Baduel et al., 2024) 
 
We prepared EpiGBS3 libraries at the Netherlands Institute of Ecology following the EpiGBS3 
protocol (Gawehns et al., 2022). In brief, DNA was isolated from red blood cells using the 
Qiagen Blood and Tissue Extraction Kit. DNA concentrations were standardized and 
subsequently 800 ng of DNA per sample was digested with the restriction enzyme MspI. MspI 
identifies and cleaves genomic DNA at 5’-C^CGG fragments. Large fragments were removed 
using beads (0.8X AMPure XP beads) and remaining fragments were ligated to a barcoded 
adapter combination that was unique within the library. After ligation, the fragments of 22 
samples were pooled into one sequencing library and exposed to sodium bisulphite to convert 
unmethylated cytosines to uracils. We amplified the fragments using 15 PCR cycles and the 
KAPA HIFI Uracil + hotstart ready mix. All resulting libraries were paired end sequenced on an 
Illumina NovaSeq X sequencing platform by Novogene (Cambridge, UK). 
 
DNA methylation calling 
The raw reads were processed using the bioinformatic pipeline included in the EpiGBS3 
protocol (Gawehns et al., 2022). In brief, raw reads were demultiplexed, quality checked, 
filtered for adapter contamination and merged. The Illumina sequence and the custom 
adapters were trimmed, and remaining short reads were removed using cutadapt v2.10 
(Martin, 2011). The quality of raw and cleaned reads were checked using fastqc v0.11.8 
(Andrews et al., 2010) and multiqc v1.8 (Ewels et al., 2016). The cleaned reads were aligned 
to the black grouse reference genome (GCA_043882375.1) using paired-end and 
nondirectional mode using Bismark v0.22.3 (Krueger & Andrews, 2011) with Bowtie v.2.3.5.1 
(Langmead et al., 2009). The mapped reads were merged using SAMtools v1.9 (Danecek et 
al., 2021) and CpG methylation was called while ignoring the first four base pairs in both reads 
using Bismark.  
 
Principal component analysis 
We merged the two strands and filtered for a minimum of 10X coverage per CpG site per 
sample using a custom bash script. Next, we conducted a principal component analysis (PCA) 
on these partially filtered reads to assess clustering between sequencing libraries, time 
periods, sampling years, and leks. The PCA was conducted using the stats R package v4.4.0 
(Team, 2021) and included only CpG sites that were covered in all individuals (n = 215). 
Additionally, we tested for library effects on genome-wide mean CpG methylation percentage. 
We fitted two linear models with the R package lme4 v1.1.35.5 (Bates et al., 2015): the null 
model fitted to the mean CpG methylation percentage which includes male ID as a random 
effect, and the alternative model that is identical to the null model but additionally includes 
library as a fixed effect. To test for significant differences in average CpG methylation 
percentage between libraries, we conducted a one-way analysis of variance (ANOVA) on 
these two models.  
 
Filtering for high-quality variant CpG sites 
We excluded CpG sites with a coverage higher than the 99.9 percentile from further analysis 
to remove potential PCR duplicates, and united the reads using the R package methylKit 
v1.16.1 (Akalin et al., 2012), resulting in a total of 1,559,800 partially filtered CpG sites. Next, 
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we removed CpG sites that were nonvariant (either 0% or 100% methylated in all samples, 
removed 129,274 sites) and those with little variation among samples (removed 615,066 
sites). The latter filter step excluded CpG sites that are 0% or 100% methylated in more than 
70% of the samples. We additionally excluded CpG sites that were present in fewer than 29 
samples (50%) at each time point (removed 460,811 sites). The filtered data set consisted of 
354,649 CpG sites which were used for subsequent analysis.  
 
Testing for temporal changes in DNA methylation 
We identified CpG sites that significantly changed in DNA methylation across the lekking 
period using binomial generalized linear mixed effect models (GLMMs) that were constructed 
for each CpG site separately. The models predicted the number of methylated and 
unmethylated cytosines using the cbind function and included a two-level fixed effect of time 
period (pre-lekking versus post-lekking). To control for the non-independence of repeated 
samples across years, we included a random effect of male ID. The models were implemented 
using lme4 v1.1.35.5 (Bates et al., 2015) and were run in parallel for every CpG site that 
passed the filtering steps described above (n = 354,649) using the R package parallel v4.3.1 
(Team, 2021). We excluded CpG site models if they did not converge or if its overdispersion 
ratio was higher than the 95th percentile. We corrected for multiple testing using the false 
discovery rate (FDR, (Benjamini & Hochberg, 1995)). A dynamic CpG site was defined as a 
CpG with a significant effect of the time period (FDR-corrected q < 0.05, thus allowing for 5% 
false discoveries) and an absolute mean methylation difference across individuals of at least 
10%.  
 
Methylation changes associated with reproductive investment 
However, not all methylation changes that occur during the lekking season are associated with 
investment in reproduction, but could alternatively be caused by changes in the photoperiod, 
increasing temperatures, or other seasonal factors (Visser et al., 2010). Such factors could be 
involved in gearing up for the reproductive season, but are unrelated to the reproductive 
investment made in the season. To isolate those methylation changes associated with 
reproductive investment only, we next tested whether variation in reproductive investment was 
associated with variation in methylation changes at dynamic CpG sites. Reproductive 
investment was quantified using three traits associated with high energetic demands: lek 
attendance, lek centrality and mating success.  
 
We built three sets of LMMs, one per investment trait, where each set included a LMM per 
dynamic CpG site. The models were fitted to Dmethylation and included the respective z-
transformed behavioral trait as a fixed effect, as well as a two-level fixed effect of age (yearling 
versus adult) and a random effect of lek. The potential for DNA methylation changes 
intrinsically depends on the starting level of DNA methylation. For example, a CpG site with 
100% DNA methylation prior to lekking can only decrease in methylation or remain stable, 
whereas a CpG site with 50% DNA methylation prior to lekking can increase or decrease by 
50% or remain stable. We tested for this relationship by fitting a linear mixed effect model to 
Dmethylation and included pre-lekking methylation% as a fixed effect, as well as a random 
effect of CpG site and ID. We indeed observed the expected relationship, where higher pre-
lekking values are associated with methylation decreases over time (Figure S2a) and higher 
absolute changes when pre-lekking methylations are low or high (Figure S2b). We therefore 
controlled for this inherent statistical relationship between pre-lekking DNA methylation and 
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methylation change potential by including the percentage of cytosines that were methylated 
pre-lekking as a fixed effect. 
 
Similar to above, for each model set we took one random data point of the individuals with 
repeated samples to avoid issues with model convergence. Because the behavioral data are 
inherently incomplete (males that do not attend leks do not have centrality records), and 
because not every CpG site is covered in each sample, we only included CpG sites with 
sufficient data: for each set, we excluded CpG sites that contained less than 20 data points 
for the respective behavioral trait (see Table S2 for the number of CpG sites analyzed for each 
trait). CpG site models that did not converge were excluded from further analysis, 
overdispersion was evaluated by constructing Q-Q plots and p-values were corrected for 
multiple testing per model set using the FDR, allowing 5% false discoveries.  
 
Methylation changes associated with future traits 
To identify whether epigenetic changes are related to future traits and might therefore be 
indicative of physiological and energetic costs, we next tested whether Dmethylation was 
associated with survival to the next winter and the expression of ornamental traits. For each 
trait (survival, blue chroma in the next season, lyre size in the next season), we built a set of 
mixed effect models, one model per CpG site. Each model predicted the respective trait and 
included Dmethylation, %methylation pre-lekking, and age category as fixed effects and lek 
as a random effect. For survival, we used generalized mixed effects models with a binomial 
distribution, whereas LMMs were built for blue chroma and lyre size in the next season. As 
only males that survived until the next winter have records of ornamental traits, the sample 
size was smaller in these models. For each model set, we excluded CpG sites that contained 
less than 12 data points for the respective trait. Again, we took one random data point of the 
individuals with repeated samples. 
 
Gene annotation 
All filtered CpG sites were annotated using the black grouse genome annotation 
(https://github.com/rshuhuachen/ms_load_grouse/blob/main/data/genomic/annotation/PO29
79_Lyrurus_tetrix_black_grouse.annotation.gff.gz, retrieved on September 20th, 2024). We 
annotated whether each CpG site was located in the region around a transcription start site 
(TSS), promoter, intron, exon, upstream or downstream region using the R packages 
GenomicFeatures v1.42.3 (Lawrence et al. 2013) and rtracklayer v1.50.0 (Lawrence et al. 
2009). The TSS was defined as the region 300-bp upstream to 50-bp downstream of each 
gene’s annotated starting position (Laine et al., 2016). Promoters were defined as the region 
2,000-bp upstream to 200-bp downstream of the genes’ annotated starting position, which 
therefore overlap with the TSS (Lindner, Laine, et al., 2021). Upstream and downstream 
regions were limited to 10,000-bp up- and down-stream of the gene body respectively (Laine 
et al., 2016; Lindner, Verhagen, Viitaniemi, Laine, Visser, Husby, & van Oers, 2021).  
 
If a CpG site was found within a TSS, it was also inherently located within the promoter region; 
therefore, we annotated it solely as being located in the TSS in order to avoid redundancy. If 
a CpG site was found in regions of different genes (for example, downstream of gene A and 
in the promoter of gene B), we annotated it according to the gene body it was most closely 
located to calculated in base pairs. We tested whether dynamic CpG sites were over- or 
underrepresented in certain genomic regions by comparing the percentage of significant sites 

https://github.com/rshuhuachen/ms_load_grouse/blob/main/data/genomic/annotation/PO2979_Lyrurus_tetrix_black_grouse.annotation.gff.gz
https://github.com/rshuhuachen/ms_load_grouse/blob/main/data/genomic/annotation/PO2979_Lyrurus_tetrix_black_grouse.annotation.gff.gz
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in a certain region to the percentage of total filtered CpG sites in that same region using a 
binomial test. 
 
GO enrichment analyses 
We conducted three gene ontology (GO) enrichment analyses using GOrilla (Eden et al., 
2009), where a target and a background list were provided to identify significant GO terms 
using GOrilla’s default settings. The first analysis tested whether dynamic CpG sites were 
overrepresented in certain GO terms by using a target list containing genes in which we found 
a dynamic CpG site, whereas the background list contained genes that contained a CpG site 
that was included in our filtered data set, regardless of its significance. The second analysis 
tested whether CpG sites associated with reproductive effort were overrepresented in certain 
GO terms by using a target list containing genes in which we found a CpG site associated with 
one of the three reproductive investment traits before multiple testing correction. The 
background list consisted of genes that contained a dynamic CpG site. The last analysis was 
similar, where we tested whether CpG sites associated with survival or ornament expression 
were overrepresented in certain GO terms, where the target list contained genes in which we 
found a CpG site associated with survival, blue chroma expression or lyre size. An FDR-
correction was applied for each analysis separately to correct for multiple testing, allowing for 
5% false discoveries. 
 
All statistical analyses were implemented in R v4.4.0 (Team, 2021) using Rstudio v2024.09.0 
(Posit team, 2024) and the results were visualized using the R packages ggplot2 v3.5.1 
(Wickham et al., 2019) and cowplot v1.1.3 (Wilke et al., 2021) 
 
Results  
Using EpiGBS3, we sequenced 1,559,800 raw CpG sites at a general mean coverage of 24X 
to produce a dataset of 354,649 high quality, variable CpG sites in 50 individual male black 
grouse. Principle component analysis revealed that the samples did not cluster according to 
the library they were sequenced in (Figure S2a), lek (Figure S2b), time-period (Figure S2c) or 
year (Figure S2d). We also found no effect of sequencing library on genome-wide mean CpG 
methylation (ANOVA: F = 11.13, df = 9, p = 0.27). 
 
As described above, we applied FDR correction to minimize the likelihood of identifying Type 
I errors at the risk of excluding true positives. The models testing for temporal changes in DNA 
methylation per CpG site were implemented on the full dataset (n = 116), provided that the 
CpG site in question was sequenced in a given individual. By contrast, the models testing for 
associations with Dmethylation were implemented on a smaller dataset (n > 12) as not all 
individuals were observed on the leks or survived to the next year, increasing the likelihood 
that true positives were excluded after correction for multiple tests. Therefore, for the models 
testing for associations with Dmethylation, we reported both the results both without correction 
(using a significance threshold of p < 0.05), under the assumption that these may still capture 
biologically meaningful patterns, and with FDR correction (using a significance threshold of q 
< 0.05). 
 
Temporal changes in DNA methylation 
We identified 1,026 CpG sites (0.3%) that changed significantly (after false discovery rate 
correction) in methylation across the lekking period on a population level (hereafter referred 
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to as “dynamic CpG sites”; Figure 1a). The majority of dynamic CpG sites increased (n = 807) 
rather than decreased (n = 219) in methylation over time. We found an underrepresentation 
of dynamic CpG sites in promoter regions (exact binomial test p < 0.001; Figure 1b) and 
transcription start sites (exact binomial test p < 0.001; Figure 1b) and an overrepresentation 
in upstream (exact binomial test p = 0.02; Figure 1b) and intronic regions (exact binomial test 
p < 0.001; Figure 1b).  
 
GO enrichment analysis identified several GO terms associated with the regulation of 
transcription, although only the term “regulation of RNA biosynthetic process” term passed 
FDR correction (Tables S3; S4). Although dynamic CpG sites were distributed across the entire 
genome (Figure 1c), we identified three genomic regions where multiple dynamic CpG sites 
clustered together within single genes. Gene MAB21L2 on scaffold five contained six dynamic 
CpG sites in its promoter, gene BEST1 on scaffold seven contained four dynamic CpG sites in 
its promoter, and gene HES1-B on scaffold ten contained five dynamic CpG sites in its down- 
and upstream regions. The number of dynamic CpG sites in these genes exceeded 
expectations based on the total number of analyzed CpG sites in those genes (exact binomial 
test p < 0.001). While these methylation changes were identified on the population level, there 
was also notable among-individual variation in both the extent and direction of methylation 
change (Figure 1d).  
 
Epigenetic changes associated with reproductive investment 
We identified 64 CpG sites where lek attendance was significantly associated with 
Dmethylation, although only a single CpG site in the promoter region of the uncharacterized 
gene ANN00004 remained significant after FDR correction (Figure 2a). Males with higher lek 
attendance showed smaller methylation changes at this CpG site (beta estimate = -0.08, 
standard error (SE) = 0.02, degrees of freedom (df) = 26.3, FDR-corrected q = 0.01, Figure 
3a). We also identified 62 CpG sites where lek centrality was associated with Dmethylation, 
but none of these passed FDR correction (Figure 2b). Mating success was associated with 
Dmethylation at 32 CpG sites (Figure 2c), with one CpG site located in the downstream region 
of the gene FKBP8 passing FDR correction. Males with higher mating success showed 
smaller decreases in methylation at this CpG site (beta estimate = 0.20, SE = 0.02, df = 29.5, 
FDR-corrected q = 0.04, Figure 3b).  
 
We identified multiple CpG sites that showed associations between different reproductive 
investment traits and changes in methylation. Twelve CpG sites were associated with both 
attendance and lek centrality and one CpG site was associated with both lek centrality and 
mating success (Table S5). GO analysis found that CpG sites associated with reproductive 
investment are enriched in genes involved in positive regulation of transcription and RNA 
biosynthesis, although none of the GO terms passed multiple-testing correction (Table S6). 
 
Epigenetic changes associated with future fitness-relevant traits 
If methylation changes during the lekking season incur costs, or indirectly by signaling that 
costly investments were made into reproduction, these changes might be associated with the 
expression of future traits including survival, a key life-history trait, as well as with the 
expression of ornamental traits. We identified 25 CpG sites where Dmethylation was 
significantly associated with survival (Figure 2d) and 13 CpG sites where Dmethylation was 
associated with the blue chroma expressed in the subsequent year (Figure 2e), but none of 
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these passed FDR correction. 16 CpG sites were identified where Dmethylation was 
associated with lyre size in the subsequent year, two of which passed FDR correction (Figure 
2f). Males with higher Dmethylation levels had smaller lyres in the subsequent season for both 
CpG sites (beta estimate = -9.61 and -8.62, SE = 1.65 and 1.42, df = 13 and 9, FDR-corrected 
q = 0.007 and 0.01, respectively, Figure 3c,d). Because neither CpG site could be annotated, 
it is unknown in what gene region or gene these CpG sites were located in. No GO terms were 
significantly enriched for CpG sites associated with any of the future traits. 
 
Trait-associated CpG sites cluster in the same genes 
Several genes contained multiple CpG sites where methylation was associated with one or 
multiple traits before FDR correction (Table S5). For example, the BEST1 gene contains four 
significant CpG sites in its promoter associated with lek attendance and/or centrality, where 
higher Dmethylation is associated with higher reproductive investment. Moreover, the NFIC 
gene contains three CpG sites located in its upstream region associated with survival or lek 
attendance, the intronic regions of STARD3 contain three CpG sites associated with mating 
success or lek centrality, and the downstream region of gene UBTF contains two CpG sites 
associated with lek attendance, centrality and/or blue chroma coloration in the next season. 
The number of CpG sites associated with one or multiple traits was higher than expected 
based on the total number of dynamic CpG sites in these four genes (exact binomial test p < 
0.01). 
 
Identifying CpG sites that may mediate life-history trade-offs 
If methylation changes are positively associated with reproductive investment and negatively 
associated with a fitness-relevant trait expressed in the future or vice versa, this might provide 
a molecular mechanism by which life-history trade-offs may arise. We identified three CpG 
sites that showed significant associations that were consistent with this pattern (Table 1), 
although they did not pass FDR correction. First, methylation changes at a CpG site in the 
downstream region of gene ANKRD40 were positively associated with lek attendance and 
negatively associated with survival. Second, methylation changes at a CpG site in the exon of 
JAM3 were positively associated with mating success and negatively associated with survival 
(Table 1). JAM3 also contains another CpG site in its promoter region where DNA methylation 
changes were associated with the lyre size in the next year (beta estimate = -4.65, p = 0.04; 
Table S5), pointing to different functions of methylation within one gene. Third, methylation 
changes at a CpG site in the upstream region of PLEKHA6 were positively associated with lek 
attendance and negatively associated with lyre size in the next year.  
 
Discussion 
 
Identifying the molecular mechanisms associated with reproductive investment is essential for 
understanding life-history trade-offs. Our results show that a small proportion of CpG sites in 
male black grouse change in methylation during the lekking season, which are related to the 
regulation of RNA biosynthesis. We further show that changes in DNA methylation that are 
associated with reproductive investment and the expression of future traits, including key life-
history traits, are targeted in specific genes. Our findings indicate that epigenetic changes and 
consequently, gene regulatory changes, link investment in reproduction to survival and the 
subsequent expression of condition-dependent sexual traits, thereby contributing to our 
understanding of the molecular mechanisms responsible for life-history trade-offs. 
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Temporal methylation changes 
Epigenetic factors are known to contribute to the regulation of circadian and seasonal cycles, 
including migration and the onset of reproduction. Here, we show that epigenetic changes 
also occur in male black grouse during the 4–6 week lekking season, a period of intense 
reproductive investment. Specifically, a small proportion of CpG sites (1,026, 0.3%) changed 
significantly in DNA methylation between the pre- and post-lekking stage, a proportion that is 
comparable to a previous study on erythrocyte methylation changes during the onset of 
reproduction in great tits (Parus major) (Lindner, Laine, et al., 2021). This indicates that 
targeted gene regulatory changes occur in black grouse during this critical reproductive period, 
with these changes predominantly occurring at genes involved in the regulation of RNA 
biosynthesis. Such changes may have widespread functional effects by altering the rate, 
frequency and extent of RNA production. Notably, the decreased expression of genes linked 
to RNA biosynthesis has been associated with processes such as oocyte maturation 
(Celichowski et al., 2018), supporting the idea that they could be important for reproduction.  
 
We identified multiple dynamic CpG sites in three genes: MAB21L2, BEST1 and HES1-B. 
MAB21L2 is important for neural (Baldessari et al., 2004), heart and liver development (Saito 
et al., 2012) and the importance of its appropriate temporal expression has previously been 
emphasized in the context of chick eye development (Sghari & Gunhaga, 2018). BEST1 is 
important for forming and regulating chloride ion channels. Genetic variants in this genes have 
been linked to variation in sperm motility and fertilization success (Milenkovic et al., 2019), as 
well as with various diseases including retinal dystrophy and other ocular abnormalities 
(Elbagoury et al., 2025; Huckfeldt & Sobrin, 2020). HES1-B is a transcriptional repressor that 
is critical for cell differentiation (Kageyama et al., 2000) and the inhibition of adipogenesis in 
birds (Wang et al., 2024).  It is part of the cyclic Notch signaling pathway, a highly conserved 
system of cell-cell communication and gene regulation that is important for cell differentiation 
across life stages (Fongang & Kudlicki, 2016). Although the precise functional consequences 
of CpG methylation in these genes for black grouse reproduction remain unknown, they 
represent promising candidates for future studies. 
 
Methylation changes associated with reproductive investment 
We identified over a hundred CpG sites that were significantly associated with variation in 
reproductive investment. A dozen of these CpG sites were associated with more than one 
indicator of reproductive investment. This overlap may reflect the inherent collinearity among 
lek attendance, centrality and mating success, as males occupying the most central territories 
secure the most matings, and males cannot defend central territories without attending leks 
(Rintamäki et al., 2001). Alternatively, this overlap could point towards shared molecular 
processes underpinning these traits, such as metabolic changes, elevated heightened 
responses in response to increased parasite loads, coping with physiological and oxidative 
stress (Lebigre et al., 2013) or hormonal changes (Alatalo, Höglund, et al., 1996).  
 
Genes containing CpG sites significantly associated with reproductive investment traits were 
predominantly involved in regulating transcription, although no GO terms passed FDR 
correction. This may indicate a possible link between DNA methylation changes and 
transcriptional activity related to lekking and sexual trait expression, or vice versa, as the 
direction of causality remains elusive. The CpG site where Dmethylation was significantly 
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associated with mating success was located in the FKBP8 gene, which belongs to a protein 
family that is important for immunoregulation (Kang et al., 2005), apoptosis (Wong et al., 
2008), starvation-induced autophagy and basic cellular processes involving protein folding 
and trafficking (Aguilera et al., 2022). We therefore tentatively conclude that decreased FKBP8 
expression might reduce mating success by compromising cellular homeostasis. 
 
Methylation changes associated with future fitness-relevant traits 
We tested whether DNA methylation changes during the reproductive season have 
consequences for the expression of future life-history traits. We identified a small number of 
CpG sites where methylation changes were indeed associated with survival and the condition-
dependent expression sexual ornaments after the lekking season. Our results indicate that 
changes in DNA methylation at certain genes might be important for somatic maintenance, 
highlighting the importance of precise gene regulation for fitness. This reinforces the idea that 
disrupted gene regulation could have detrimental effects if genes are activated or silenced at 
inappropriate times or in the wrong context (Chen et al., 2025; Morton et al., 1956).  
 
Overlapping CpG sites 
We identified several genes that contained three or more CpG sites that were significantly 
associated with one or multiple traits. All four dynamic CpG sites identified in the BEST1 gene 
were associated with reproductive investment. Additionally, NFIC, STARD3, UBTF contained 
multiple significant CpG sites. NFIC is a DNA binding protein that acts as a transcription and 
replication factor (Robinson et al., 2014), is important for growth and organ development 
(Zenker et al., 2019) and is a key epigenetic regulator during development (Fane et al., 2017). 
STARD3 (also known as MLN64) is involved in cholesterol transport and homeostasis 
(Voilquin et al., 2019), is associated with fatty acid composition (Kigoshi et al., 2019) and is a 
homolog of the carotenoid binding protein of the silkworm (Sakudoh et al., 2007).  However, it 
does not appear to be differentially expressed in carotenoid-colored tissues in either birds 
(Walsh et al., 2012) or cichlids (Judan Cruz et al., 2021). UBTF is a transcription factor that 
mediates the recruitment of RNA polymerase to promoter regions, maintains genomic stability, 
and mediates DNA accessibility (Sanij et al., 2015). Although the functional effects of these 
genes in the black grouse remain speculative, their known roles in development, transcription 
and energy metabolism are suggestive of roles in balancing reproductive investment and 
somatic maintenance.   
 
A molecular mechanism underlying life-history trade-offs 
If changes in DNA methylation are beneficial for one life-history trait but come at a cost for 
another, they could provide a molecular mechanism by which life-history trade-offs are 
mediated. We identified two genes where DNA methylation was associated in opposite 
directions with reproductive investment and survival, and an additional gene where DNA 
methylation was associated in opposite directions with both reproductive investment and lyre 
size in the next lekking season, although these CpG sites did not pass FDR correction. This 
finding suggests that epigenetic mechanisms may contribute to life-history trade-offs through 
antagonistic pleiotropic effects. To date, the genomic evidence for life-history trade-offs has 
largely focused on genetic correlations and demonstrations of antagonistic pleiotropy for 
specific genetic variants (Chang et al., 2024). For example, a transcription factor gene 
showing antagonistic pleiotropy has previously been identified in algae, indicating that such 
genes could induce up- and down-regulation of other molecular pathways (Saggere et al., 
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2022). Our results hint towards a possible role of epigenetic and hence, gene regulatory 
mechanisms that may additionally or alternatively constrain life-history evolution, highlighting 
how antagonistic pleiotropy may act on different levels of cellular organization.  
 
Expected transcriptional consequences 
The significant CpG sites that we identified, including dynamic CpG sites associated with 
reproductive investment and future traits, were distributed across different genomic regions 
with diverse functional roles. Consequently, predicting their transcriptional consequences is 
not straightforward. Methylation changes in promoter CpG sites might lead to the up- or 
downregulation of genes by affecting their transcription, methylation changes in exonic CpG 
sites might be associated with alternative splicing patterns (Lev Maor et al., 2015), and 
methylation of intronic CpG sites might play a role in the silencing of harmful repetitive regions 
such as transposable elements (Derks et al., 2016; To et al., 2015). Importantly, we found that 
single genes sometimes contained multiple significant CpG sites in different regions, for 
example both in an exon and in a promoter, making it difficult to infer the net effects on 
transcript abundance and / or splicing. Linking methylation changes to gene expression 
changes is therefore essential for understanding the functional effects of temporal epigenetic 
changes, but unfortunately this was not possible in the current study because RNA sequencing 
data are not available.  
 
Caveats 
Although we identified many CpG sites associated with reproductive investment and/or future 
fitness-relevant traits, most did not pass FDR correction. Correcting for multiple testing is a 
conservative approach that minimizes Type I errors but also increases the risk of discarding 
true positives (i.e. Type II errors), particularly when sample sizes are limited. In such cases, 
only very strong effects can be reliably detected. Although we cannot say whether the 
identified CpG sites that did not pass FDR correction were false or true positives, the overlap 
of CpG sites across traits suggests that at least some of them are biologically meaningful. 
Further studies could address this limitation by increasing sample sizes to improve statistical 
power, and by sampling more timepoints in order to produce a more detailed picture of 
temporal changes in DNA methylation and their role in the expression of current and future 
fitness-relevant traits in the short- and long-term.  
 
Another possible caveat is that the identified genes and/or CpG sites are not necessarily 
independent from each other; they may be inherited together due to linkage disequilibrium,  
which, which cannot be resolved using our current dataset of mainly unrelated males (Chen 
et al., 2025). Moreover, we analyzed the effects of single CpG sites in isolation, while it is also 
possible that epigenetic changes could interact across loci and biological pathways. While our 
data set did not allow to test for interacting and cumulative effects due to statistical limitations 
caused by sample size, future studies could take a more integrative approach to test this idea. 
 
Conclusions 
Understanding how organisms balance competing demands such as growth, reproduction and 
survival remains a central question in evolutionary biology.  Life-history trade-offs emerge 
because finite energetic resources must be allocated among different traits, and additionally 
or alternatively, because traits often share underlying biological pathways. Our results suggest 
that epigenetic regulation provides a dynamic mechanism through which resource allocation 
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decisions can be implemented at the molecular level. More specifically, we show that changes 
in DNA methylation are associated with reproductive investment and future fitness-relevant 
traits at a handful of genes. We further show that temporal methylation changes at a few 
specific CpG sites are positively associated with reproduction and negatively associated with 
future fitness-relevant traits, which provides empirical support for the notion that epigenetic 
mechanisms may mediate fundamental life-history trade-offs. Methylation changes at key 
regulatory loci, such as those located in epigenetic regulator and transcription genes, may 
also have pleiotropic effects: while they can facilitate short-term reproductive investment, they 
may simultaneously compromise longevity and future reproductive potential. Thus, epigenetic 
regulation emerges as a plausible integrative mechanism linking gene expression to 
physiological, metabolic and hormonal processes that underpin the cost of reproduction.  
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Figure 1. DNA methylation changes across the lekking season. (a) Volcano plot showing 
per filtered CpG site the relationship between mean Dmethylation percentage across 
individuals and their p-values, indicating whether the CpG significantly changed in DNA 
methylation across the lekking period after correction for the genome-wide false discovery rate 
(FDR). Dynamic CpG sites were defined as having an FDR-corrected q < 0.05 and an absolute 
mean Dmethylation > 10% (see the Methods for details) and are highlighted in red. The vertical 
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red dotted lines indicate Dmethylation values of -10% and 10%, respectively, and the horizontal 
line shows the significance threshold (q < 0.05); (b) Bar plot showing the percentage of all CpG 
sites and the percentage of dynamic CpG sites located in each of the six genomic regions. 
Asterisks indicate a significant over- or underrepresentation of CpG sites in the respective 
genomic region that significantly changed compared to all CpG sites (binomial test p < 0.05); 
(c) Manhattan plot showing the distribution of CpG sites across the ten largest scaffolds. 
Dynamic CpG sites, which passed the FDR-corrected significance threshold and had a 
minimum absolute mean Dmethylation > 10%, are highlighted in red, whereas non-dynamic 
CpG sites are shown in grey. Individual scaffolds are indicated by alternating shades of grey 
and red. The dotted horizontal line indicates the FDR-corrected significance threshold; (d) Raw 
data showing DNA methylation pre- and post-lekking for the two CpG sites that most 
significantly increased in DNA methylation (top) and the two CpG sites that most significantly 
decreased in DNA methylation (bottom). Grey lines connect pre- with post-lekking sample pairs 
(i.e. the same individual consecutively sampled during the same season). Thick horizontal lines 
indicate mean methylation %, while the lower and upper hinges correspond to the first and 
third quartiles, respectively, and the whiskers represent 1.5 times the interquartile range. 
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Figure 2. Output of the models liking methylation changes to the investment and cost 
traits. Volcano plots showing, per dynamic CpG site, the relationship between the beta 
estimate and p-value. For the investment traits (a), the effects of lek attendance, centrality 
and mating success on Dmethylation are shown. For the cost traits (b), the effects of 
Dmethylation on survival, blue chroma in the next year and lyre size in the next year are 
shown. The vertical dotted line indicates a beta estimate of 0 and the horizontal dotted line 
indicates the significance threshold prior to multiple testing correction. The blue points 
indicate CpG sites showing a significant association and the purple points indicate those that 
remain significant after applying FDR correction. 
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Figure 3. Scatterplots of Dmethylation at four CpG sites and the phenotypic traits 
Dmethylation was significantly associated with. a) The relationship between lek 
attendance and Dmethylation at the significant CpG site in the promoter of uncharacterised 
gene ANN00004; b) the relationship between mating success and Dmethylation at the 
significant CpG site in the downstream region of gene FKBP8; c) the relationship between 
Dmethylation and the lyre size expressed in the next year at the first unannotated significant 
CpG sites; and d) the relationship between Dmethylation and the lyre size expressed in the 
next year at the second unannotated significant CpG sites. The raw data are depicted as 
purple points and the grey lines show the predicted regression based on the linear mixed 
effects model described in the Methods. The shaded areas indicate the 95% confidence 
limits of the estimated marginal means for each data point. 
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Table 1. The three CpG sites where a pattern consistent with antagonistic pleiotropy 
was identified. We modelled how reproductive investment (attendance, mating success) 
was associated with Dmethylation and how Dmethylation was associated with cost traits 
(survival, lyre size next year; see Methods for details). Accordingly, attendance and mating 
success were predictors in their respective models, and Dmethylation was the response 
variable. Survival and lyre size in the next year were response variables in their respective 
models, where Dmethylation was the predictor. Beta estimates of the relevant fixed effects 
are shown together with their associated p-values prior to FDR correction.  

 

  

Scaffold Position Associated 
trait 

Beta 
estimate p Gene 

region Gene 

19 9,737,771 Attendance 0.05 0.02 downstream ANKRD40 Survival -8.03 0.04 

25 2,512,626 
Mating 
success 0.06 0.02 exon JAM3 
Survival -6.78 0.03 

22 3,652,515 
Attendance 0.05 0.05 

upstream PLEKHA6 Lyre size 
next year -7.96 0.01 
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Supplementary Materials and Methods 
 

Prior to our reduced-representation epigenetic analysis, we explored genome-wide patterns 
of DNA methylation in black grouse by bisulphite sequencing the whole genome of a single 
individual. CpG sites cluster in CpG islands, which are overrepresented in promoter regions 
(Vinson & Chatterjee, 2012). CpG methylation in vertebrates is typically reduced in promoter 
regions, allowing the binding of transcription factors which can consequently increase gene 
expression (Siegfried & Simon, 2010). However, DNA methylation patterns and features vary 
across taxa and within lineages (Schmitz et al., 2019). Because this is the first genome-wide 
epigenetic study on black grouse to our knowledge, we characterized CpG site methylation 
patterns across the genome and assessed whether the patterns are comparable to avian 
model species (e.g. the great tit).  

WGBS library preparation and sequencing 
First, we extracted DNA from red blood cells with the Qiagen Blood and Tissue Extraction kit 
of a single sample. The library preparation and sequencing were performed by BMK Gene. 
BMK Gene used 1 µg of genomic DNA to prepare the WGBS library using the EZ DNA 
Methylation-GoldTM Kit DNA methylation reagent kit method and protocol. In brief, DNA was 
fragmented, the ends were repaired, and adapters were ligated, an adenosine base pair was 
added to the 3’ end of the strands and fragments were size-selected. The bisulphite treatment 
was applied, and the sequences were duplicated in a polymerase chain reaction. The library 
was sequenced on one lane from both ends of the PE150 bp fragments using an Illumina 
NovaSeq 6000 sequencing platform which generated 45.14 G of raw reads with a target 
coverage of 45X.  

DNA methylation calling 
Raw sequencing reads were trimmed to ensure high quality (³ 20) and to remove adaptor 
sequences with a stringency of 2 overlapping bp using Trim Galore v0.6.10 (Krueger et al., 
2023). Next, we prepared the black grouse reference genome (NCBI assembly 
GCA_043882375.1) using the bismark-genome-preparation command to bisulphite-convert 
and index the genome using bismark v0.24 (Krueger & Andrews, 2011), allowing the alignment 
of bisulphite-treated reads. We aligned the cleaned sequences to the bismark-prepared 
reference genome using bismark and extracted methylation calls using the 
bismark_methylation_extractor command from bismark. Only CpG site methylation was 
analyzed.  

Methylation patterns across genomic regions 
We filtered for reads with a minimum coverage of 10X. To characterize methylation levels 
across different genomic regions, we calculated the mean methylation level across genes for 
four regions: the transcription start site (TSS; 300 bp upstream to 50 bp downstream of the 
annotated starting position of each gene (Laine et al., 2016)), the gene body, upstream regions 
(10 kb upstream from the gene body) and downstream regions (10 kb downstream from the 
gene body). The mean methylation of TSS regions was calculated across the entire 350 bp 
window. We used a sliding window approach to calculate mean methylation of gene bodies 
following (Laine et al., 2016) with slight adaptations. First, we subdivided the gene body into 
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40 bins (where the bin length therefore differs depending on the gene size), and then 
calculated the mean methylation for each bin, with an overlap between neighboring bins of 
50% of the bin size. A similar sliding window approach was used to calculate mean methylation 
of up- and downstream regions. Here, the regions were divided into 40 bins of 250 bp each, 
and the mean methylation was calculated for each bin with an overlap between neighboring 
bins of 125 bp. For this analysis, custom R scripts were generated using the R packages 
genomation v1.32.0 (Akalin et al., 2015), GenomicFeatures v1.52.2 (M. Carlson, 2017), 
rtracklayer 1.60.1 (Lawrence et al., 2009), windowscanr v0.1 (Tavares, 2024), and parallel 
v4.3.1 (Team, 2021). 

Supplementary Results 
 

We characterized genome-wide CpG methylation patterns in black grouse using whole 
genome bisulphite sequencing of a single sample. The filtered dataset consisted of 9,290,585 
CpG sites, of which 4,941,240 were annotated. CpG sites in regions nearby the TSS had lower 
levels of DNA methylation compared to those in gene bodies and up- and downstream regions 
of the genome (Fig. S1a). We found large variation in TSS methylation, where the mode of 
CpG methylation was 0% but a second peak was identified around 70% (Fig. S1b). In general, 
these DNA methylation patterns are consistent with other avian study systems (Derks et al., 
2016; Laine et al., 2016).



 

 

 
 

33 

Supplementary Figures 
 

 

 

Figure S1. CpG site methylation across genomic regions quantified with whole 
genome bisulphite sequencing of one sample. (a) The mean CpG methylation % across 
genes for each window, separated by genomic region. Points represent the mean and 
shaded areas the standard error; (b) histogram of the mean CpG methylation % of 
transcription start sites (TSS) across genes. 
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Figure S2. Scatterplots showing the relationship between pre-lekking methylation and 
Dmethylation. Each point represents a single CpG site in a single individual, and the color 
indicates the density of neighboring points to better visualize overlapping datapoints. In a), 
pre-lekking methylation % is plotted against Dmethylation and the red diagonal shows the 
regression that accounts for the non-independence of CpG sites among individuals and 
individual variation at the same CpG site. In b), pre-lekking methylation % is plotted against 
the absolute value of Dmethylation.  
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Figure S3. Principal component analysis of EpiGBS3 data. Scatterplots of the two first 
principal components (PC1 and PC2, respectively) quantified with a principal component 
analysis conducted on unfiltered CpG sites with complete data, colored by (a) EpiGBS 
library; (b) lek; (c) time period; and (d) sampling year. PC1 explained 97.5% of variance 
explained and PC2 0.86%.
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Supplementary Tables 
 

Supplementary Table S1. Structure of the data, including the exact dates when 
morphological measures and blood samples were taken at pre- and post-lekking time points. 
Lek abbreviations stand for the following: NYR = Nyrölä, KUM = Kummunsuo, LEH = 
Lehtosuo, SAA = Saarisuo, TEE = Teerrisuo. In the survival column, 1 stands for survived to 
the next autumn season, 0 stands for no survival. 

 

ID Lek Age Time 
period Sampling date Survived 

D154259 
 

TEE adult 
pre 25/02/2005 

0 
post 24/05/2005 

D154299 TEE adult 
pre 13/01/2005 

0 
post 26/05/2005 

D211312 NYR adult 
pre 31/01/2005 

0 
post 14/05/2005 

D211334 LEH adult 
pre 18/02/2005 

1 
post 19/05/2005 

D211334 LEH adult 
pre 17/01/2006 

0 
post 12/05/2006 

D211431 NYR adult 
pre 07/03/2005 

0 
post 21/05/2005 

D211445 TEE adult 
pre 25/02/2005 

1 
post 21/05/2005 

D217821 NYR adult 
pre 20/01/2006 

0 
post 15/05/2006 
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D217896 KUM adult 
pre 30/01/2006 

1 
post 10/05/2006 

D217910 NYR adult 
pre 15/02/2005 

1 
post 23/05/2005 

D217910 NYR adult 
pre 13/01/2006 

0 
post 10/05/2006 

D217911 NYR adult 
pre 21/01/2005 

1 
post 17/05/2005 

D217949 NYR adult 
pre 04/02/2006 

1 
post 17/05/2006 

D217949 NYR adult 
pre 24/01/2007 

0 
post 09/05/2007 

D217961 NYR adult 
pre 20/01/2006 

1 
post 13/05/2006 

D217964 NYR adult 
pre 04/02/2006 

0 
post 15/05/2006 

D217965 NYR adult 
pre 20/01/2006 

1 
post 10/05/2006 

D217977 KUM adult 
pre 30/01/2006 

0 
post 13/05/2006 

D229025 KUM adult 
pre 24/01/2007 

0 
post 07/05/2007 

D229082 NYR adult pre 20/01/2006 1 
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post 12/05/2006 

D229093 NYR adult 
pre 13/01/2006 

1 
post 15/05/2006 

D229096 NYR adult 
pre 02/02/2007 

1 
post 08/05/2007 

D229097 SAA adult 
pre 24/01/2006 

0 
post 07/05/2006 

D229103 SAA adult 
pre 10/01/2006 

0 
post 06/05/2006 

D229160 SAA adult 
pre 10/02/2005 

1 
post 13/05/2005 

D229160 SAA adult 
pre 13/02/2006 

1 
post 11/05/2006 

D229160 SAA adult 
pre 30/01/2007 

0 
post 05/05/2007 

D229161 SAA adult 
pre 10/02/2005 

0 
post 13/05/2005 

D229162 SAA adult 
pre 23/01/2007 

0 
post 15/05/2007 

D229165 KUM adult 
pre 12/03/2007 

1 
post 06/05/2007 

D229167 KUM adult 
pre 16/02/2006 

1 
post 10/05/2006 
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D229167 KUM adult 
pre 16/01/2007 

1 
post 04/05/2007 

D229170 SAA adult 
pre 13/02/2006 

1 
post 10/05/2006 

D229170 SAA adult 
pre 23/01/2007 

0 
post 05/05/2007 

D229171 SAA adult 
pre 28/02/2006 

0 
post 11/05/2006 

D229186 SAA adult 
pre 10/01/2006 

1 
post 11/05/2006 

D229192 KUM adult 
pre 23/01/2006 

0 
post 11/05/2006 

D229193 KUM adult 
pre 09/02/2007 

1 
post 04/05/2007 

D229509 KUM adult 
pre 30/01/2006 

1 
post 16/05/2006 

D229516 LEH yearling 
pre 31/01/2006 

1 
post 13/05/2006 

D229633 SAA adult 
pre 06/02/2006 

1 
post 11/05/2006 

D229658 KUM adult 
pre 09/02/2007 

1 
post 07/05/2007 

D229679 KUM adult pre 27/02/2006 1 
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post 12/05/2006 

D229679 KUM adult 
pre 16/01/2007 

1 
post 06/05/2007 

D229714 NYR yearling 
pre 13/01/2006 

0 
post 15/05/2006 

D229718 NYR yearling 
pre 13/01/2006 

1 
post 16/05/2006 

D229734 KUM adult 
pre 23/01/2006 

1 
post 11/05/2006 

D229735 KUM adult 
pre 09/02/2007 

0 
post 06/05/2007 

D229771 NYR adult 
pre 20/01/2006 

1 
post 11/05/2006 

D229772 NYR adult 
pre 24/01/2007 

1 
post 09/05/2007 

D229775 SAA adult 
pre 30/01/2007 

0 
post 10/05/2007 

D229776 LEH adult 
pre 23/01/2007 

1 
post 09/05/2007 

D229783 NYR adult 
pre 26/01/2006 

1 
post 17/05/2006 

D237277 NYR adult 
pre 23/02/2007 

0 
post 08/05/2007 
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D237278 NYR adult 
pre 23/02/2007 

0 
post 15/05/2007 

D237361 NYR yearling 
pre 24/01/2007 

1 
post 15/05/2007 

D237378 NYR yearling 
pre 02/02/2007 

0 
post 15/05/2007 

D237389 KUM yearling 
pre 20/02/2007 

1 
post 09/05/2007 

D237394 NYR yearling 
pre 15/02/2007 

1 
post 09/05/2007 
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Supplementary Table S2. The number of CpG sites remaining after each filtering step 
for each statistical model. There are four filtering steps: CpG sites were only included if 
there was enough data for analysis (see Methods for details), if the CpG site model 
converged, if the CpG site did not show signs of dispersion issues, and if the CpG site 
showed statistical significance (FDR-corrected q < 0.05). 

 

Model Enough 
data Converged Dispersion Significant Significant 

after FDR 
Changing CpG 
sites 354,649 345,937 328,640 1,482 1,026 

Lek attendance 607 607 607 64 1 

Lek centrality 534 534 534 62 0 
Mating success 564 564 564 32 1 

Survival 607 597 597 25 0 

Blue chroma 
next year 125 125 125 13 0 

Lyre size next 
year 125 125 125 16 2 
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Supplementary Table S3. Biological functions identified using gene ontology (GO) 
enrichment analysis of dynamic CpG sites. E is the enrichment score, B is the number of 
genes in the input list associated with the GO term and b is the number of genes in the input 
list associated with the term.  

 

GO Term Description p FDR q E B b 

GO:0000987 

proximal promoter 
sequence-specific DNA 
binding 5.48 e-5 1.98 e-1 1.88 438 41 

GO:0000981 

DNA-binding transcription 
factor activity, RNA 
polymerase II-specific 5.54 e-5 1.00 e-1 1.85 468 43 

GO:0003700 
DNA-binding transcription 
factor activity 5.82 e-5 7.03 e-2 1.83 484 44 

GO:0001012 

RNA polymerase II 
regulatory region DNA 
binding 1.04 e-4 9.39 e-2 1.78 496 44 

GO:0000977 

RNA polymerase II 
regulatory region sequence-
specific DNA binding 1.04 e-6 7.51 e-2 1.78 496 44 

GO:1990837 
sequence-specific double-
stranded DNA binding 1.58 e-4 9.52 e-2 1.69 583 49 

GO:0000978 

RNA polymerase II proximal 
promoter sequence-specific 
DNA binding 1.82 e-4 9.43 e-2 1.82 432 39 

GO:0000976 

transcription regulatory 
region sequence-specific 
DNA binding 1.95 e-4 8.84 e-2 1.71 541 46 

GO:0001067 
regulatory region nucleic 
acid binding 2.13 e-4 8.55 e-2 1.70 543 46 

GO:0044212 
transcription regulatory 
region DNA binding 2.13 e-4 7.70 e-2 1.70 543 46 

GO:0043565 
sequence-specific DNA 
binding 2.79 e-4 9.19 e-2 1.63 629 51 

GO:0003690 
double-stranded DNA 
binding 3.39 e-4 1.02 e-1 1.63 618 50 

GO:0140110 
transcription regulator 
activity 4.01 e-4 1.12 e-1 1.55 753 58 
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Supplementary Table S4. Biological processes identified using gene ontology (GO) 
enrichment analysis of dynamic CpG sites. E is the enrichment score, B is the number of 
genes in the input list associated with the GO term and b is the number of genes in the input 
list associated with the term. The q that passed multiple testing correction (allowing for 5% 
false discoveries) is highlighted with an asterisk. 

  

GO Term Description p FDR q E B b 

GO:1903506 
regulation of nucleic acid-
templated transcription 9.99 e-6 0.13 1.47 1439 105 

GO:0006355 
regulation of transcription, 
DNA-templated 9.99 e-6 0.07 1.47 1439 105 

GO:2001141 
regulation of RNA 
biosynthetic process 1.10 e-5 0.05* 1.47 1442 105 

GO:0051252 
regulation of RNA metabolic 
process 4.84 e-5 0.16 1.40 1580 110 

GO:2000026 
regulation of multicellular 
organismal development 7.55 e-5 0.20 1.55 937 72 

GO:0006357 
regulation of transcription by 
RNA polymerase II 8.39 e-5 0.18 1.49 1092 81 

GO:0001708 cell fate specification 1.43 e-4 0.27 4.42 41 9 

GO:0050793 
regulation of developmental 
process 1.68 e-4 0.28 1.45 1166 84 

GO:1903508 
positive regulation of nucleic 
acid-templated transcription 2.38 e-4 0.35 1.57 771 60 

GO:0045893 
positive regulation of 
transcription, DNA-templated 2.38 e-4 0.31 1.57 771 60 

GO:1902680 
positive regulation of RNA 
biosynthetic process 2.46 e-4 0.29 1.56 772 60 

GO:0007399 nervous system development 2.48 e-4 0.27 2.45 156 19 

GO:0051094 
positive regulation of 
developmental process 4.42 e-4 0.45 1.61 625 50 

GO:0022603 
regulation of atomical 
structure morphogenesis 4.53 e-4 0.43 1.68 514 43 
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GO:0019219 

regulation of nucleobase-
containing compound 
metabolic process 4.67 e-4 0.41 1.32 1741 114 

GO:0045664 
regulation of neuron 
differentiation 5.60 e-4 0.46 1.86 335 31 

GO:0009953 
dorsal/ventral pattern 
formation 6.60 e-4 0.51 4.54 31 7 

GO:0045944 

positive regulation of 
transcription by RNA 
polymerase II 6.80 e-4 0.50 1.62 572 46 

GO:0030154 cell differentiation 7.72 e-4 0.53 1.47 891 65 

GO:0051241 

negative regulation of 
multicellular organismal 
process 8.23 e-4 0.54 1.65 513 42 

GO:0016477 cell migration 9.06 e-4 0.57 1.77 375 33 
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Supplementary Table S5. All annotated CpG sites significantly associated with an 
investment or cost trait before applying a multiple-testing correction. For the 
investment traits (attendance, centrality and mating success), the respective trait was the 
predictor and Dmethylation was the response. For the cost traits (survival, lyre size in the 
next year, and blue chroma in the next year), Dmethylation was the predictor, and the 
respective trait was the response. Beta estimates of the relevant fixed effect are shown as 
well as their associated p and FDR-corrected q. 

 

 

Scaffold 
number Position Trait Beta p FDR q Region Gene  

9 36,006,955 Centrality -0.05 0.006 0.24 upstream ACVR1 

6 25,173,106 Mating 
success -0.07 0.046 0.70 downstream ADAMTSL2 

6 56,292,083 Mating 
success -0.16 0.002 0.20 exon ADRB1 

27 3,851,345 Centrality -0.07 0.003 0.24 exon ANK1 

13 18,332,312 Attendance 0.08 0.002 0.13 intron ANKRD11 

13 18,316,851 Survival -6.31 0.048 0.79 upstream ANKRD11 

19 9,737,771 Attendance 0.05 0.017 0.30 downstream ANKRD40 

19 9,737,771 Survival -8.03 0.039 0.79 downstream ANKRD40 

7 49,082,068 Mating 
success -0.07 0.001 0.17 exon ANKRD9 

7 49,082,068 Survival -7.43 0.05 0.79 exon ANKRD9 

25 5,152,922 Attendance 0.08 0.001 0.13 promoter APOA1 

7 16,104,769 Attendance 0.04 0.019 0.30 promoter BEST1 

7 16,104,769 Centrality -0.05 0.007 0.24 promoter BEST1 

7 16,104,759 Centrality -0.04 0.021 0.29 promoter BEST1 

7 16,104,775 Centrality -0.05 0.004 0.24 promoter BEST1 
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19 9,844,172 Mating 
success 0.05 0.028 0.70 intron CAC1G 

23 358,619 Survival -11.24 0.010 0.79 promoter CAMTA1 

19 4,947,243 
Blue 
chroma 
(next year) 

0.01 0.009 0.26 promoter CANT1 

13 18,429,542 Centrality -0.05 0.044 0.40 promoter CBFA2T3 

24 2,545,576 Centrality 0.04 0.045 0.40 TSS CILP2 

3 46,046,806 Centrality -0.07 0.008 0.24 upstream COLEC12 

7 190,378 Survival -4.83 0.047 0.79 downstream CPSF7 

28 355,968 Centrality -0.07 0.005 0.24 upstream CRABP2 

13 18,012,675 Attendance -0.06 0.046 0.46 intron CYB5B 

13 18,012,675 Centrality 0.08 0.010 0.24 intron CYB5B 

6 6,229,580 Mating 
success -0.07 0.005 0.30 downstream DMRTA2 

4 56,198,050 
Blue 
chroma 
(next year) 

0.01 0.026 0.43 upstream DJB5 

23 506,065 Mating 
success 0.03 0.047 0.70 promoter DJC11 

26 3,774,540 Centrality -0.10 0.034 0.35 exon DLI1 

24 462,215 Centrality 0.07 0.010 0.24 promoter DOT1L 

2 3,176,115 Centrality -0.07 0.010 0.24 downstream ELP3 

19 9,920,788 Centrality -0.11 0.001 0.11 promoter EPN3 

15 9,512,366 Mating 
success 0.05 0.01 0.46 downstream FAF2 

24 2,986,739 Mating 
success 0.10 < 0.001 0.04 downstream FKBP8 
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11 111,251 Attendance -0.06 0.017 0.30 intron FURIN 

7 15,878,140 Centrality -0.06 0.013 0.26 promoter GAL 

12 8,736,017 Centrality -0.05 0.036 0.36 upstream GATA2 

12 8,736,370 Survival -9.99 0.021 0.79 upstream GATA2 

24 6,241,473 Mating 
success 0.06 0.001 0.17 exon GLI1 

24 1,324,651 Attendance -0.06 0.02 0.30 intron GRAMD2B 

13 19,314,324 Attendance -0.07 0.007 0.19 intron GSE1 

10 15,663,765 Centrality 0.04 0.05 0.42 downstream HES1-B 

10 15,663,816 Lyre size 
(next year) 5.47 0.035 0.37 downstream HES1-B 

1 85,356,738 Attendance -0.10 0.002 0.13 promoter HMG14 

26 5,691,986 Centrality -0.13 0.007 0.24 exon HMGCL 

22 6,616,045 Attendance -0.08 0.004 0.14 promoter HOXB2 

24 1,105,654 Attendance -0.09 0.005 0.16 intron HSD11B1L 

24 1,105,654 Centrality 0.08 0.028 0.32 intron HSD11B1L 

17 3,956,821 Attendance 0.06 0.033 0.40 downstream ID1 

25 2,512,503 Lyre size 
(next year) -4.66 0.036 0.37 promoter JAM3 

25 2,512,626 Mating 
success 0.07 0.016 0.53 exon JAM3 

25 2,512,626 Survival -6.78 0.029 0.79 exon JAM3 

22 5,532,734 Attendance -0.09 0.005 0.16 intron JUP 

14 16,305,631 Centrality -0.06 0.026 0.30 downstream LAMP2 

16 3,179,120 Centrality -0.11 0.001 0.07 upstream LFNG 
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6 10,440,648 Attendance -0.16 0.009 0.21 upstream LRRC19 

26 5,443,524 Attendance 0.09 0.012 0.26 upstream MACF1 

26 5,443,524 Centrality -0.08 0.046 0.40 upstream MACF1 

26 5,467,315 Centrality -0.05 0.029 0.32 exon MACF1 

24 2,702,734 Attendance -0.05 0.036 0.40 downstream MEF2B 

5 28,610,764 Attendance 0.09 0.016 0.29 exon MFHAS1 

5 28,610,764 Centrality -0.09 0.022 0.29 exon MFHAS1 

6 2,881,316 Attendance -0.03 0.047 0.46 downstream NFIA 

6 2,881,497 Attendance 0.04 0.029 0.38 downstream NFIA 

24 1,284,876 Survival -10.5 0.037 0.79 upstream NFIC 

24 1,284,881 Survival -9.14 0.018 0.79 upstream NFIC 

24 1,284,955 Attendance -0.06 0.007 0.19 upstream NFIC 

13 14,932,523 Centrality 0.08 0.025 0.30 exon NLRC5 

19 5,502,407 
Blue 
chroma 
(next year) 

-0.01 0.031 0.43 exon NPLOC4 

23 1,421,756 Attendance -0.06 0.002 0.13 promoter PANK4 

23 1,421,880 Attendance -0.06 0.001 0.09 promoter PANK4 

22 3,652,515 Attendance 0.05 0.05 0.46 upstream PLEKHA6 

22 3,652,515 Lyre size 
(next year) -7.96 0.014 0.26 upstream PLEKHA6 

1 146,148,448 Mating 
success 0.04 0.015 0.53 intron PLXNC1 

12 19,141,977 Centrality -0.06 0.011 0.25 promoter PLXND1 

6 51,134,063 Mating 
success -0.08 0.004 0.26 upstream PROM1A 
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22 9,519,053 Survival -4.26 0.04 0.79 exon PSMD11 

22 9,519,121 Centrality -0.06 0.011 0.25 exon PSMD11 

6 9,950,458 Centrality 0.11 < 0.001 0.05 exon PTPRF 

9 21,606,343 Attendance 0.05 0.029 0.38 promoter RACGAP1 

9 21,606,328 
Blue 
chroma 
(next year) 

0.01 0.003 0.16 promoter RACGAP1 

18 6,910,579 Centrality -0.06 0.041 0.40 promoter RCJMB04_21
H11 

7 25,450,447 Mating 
success -0.09 0.003 0.26 exon RIOX1 

12 2,799,757 Centrality 0.07 0.043 0.40 promoter SEMA3B 

20 5,712,463 Survival -6.91 0.01 0.79 intron SLC25A25 

20 5,712,468 
Blue 
chroma 
(next year) 

0.01 0.048 0.46 intron SLC25A25 

22 7,658,401 Attendance 0.09 0.005 0.16 upstream SLC25A39 

18 9,922,763 
Blue 
chroma 
(next year) 

0.01 0.039 0.43 promoter SMTN 

18 9,922,763 Centrality -0.06 0.004 0.24 promoter SMTN 

19 4,859,312 Attendance -0.11 0.003 0.13 downstream SOCS3 

19 5,590,706 Mating 
success 0.05 0.05 0.70 downstream SOX9 

22 994,621 Centrality -0.07 0.018 0.28 exon SPDEF 

21 8,792,897 Lyre size 
(next year) -5.42 0.007 0.23 downstream SRSF1 

21 8,793,064 Mating 
success -0.13 0.004 0.26 downstream SRSF1 
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8 50,726,315 Mating 
success 0.06 0.021 0.59 intron SSPO 

2 106,053,468 Lyre size 
(next year) -4.19 0.049 0.38 upstream SSTR4 

6 9,779,970 Attendance -0.04 0.047 0.46 downstream ST3GAL3 

22 6,261,487 Mating 
success 0.05 0.017 0.53 intron STARD3 

22 6,261,490 Centrality -0.05 0.01 0.24 intron STARD3 

22 6,261,517 Centrality -0.07 0.046 0.40 intron STARD3 

6 8,114,650 Mating 
success 0.04 0.038 0.70 intron TAL1 

6 8,114,811 Survival -5.75 0.029 0.79 exon TAL1 

9 20,852,739 Attendance 0.21 < 0.001 0.06 intron TBR1 

9 20,852,739 Centrality -0.12 0.019 0.28 intron TBR1 

11 13,037,331 Centrality -0.11 0.035 0.36 promoter TCF12 

24 161,329 Attendance 0.05 0.035 0.40 exon TCF3 

24 161,513 Mating 
success 0.04 0.043 0.70 intron TCF3 

16 4,916,072 Attendance 0.04 0.045 0.46 intron TOM1L2 

17 3,936,611 
Blue 
chroma 
(next year) 

-0.01 0.038 0.43 promoter TPX2-B 

6 29,617,149 Attendance 0.09 0.003 0.13 promoter TUBGCP2 

6 29,617,149 Centrality -0.08 0.025 0.30 promoter TUBGCP2 

22 7,638,774 Attendance 0.03 0.044 0.46 downstream UBTF 

22 7,638,774 Centrality -0.05 0.009 0.24 downstream UBTF 
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22 7,638,786 
Blue 
chroma 
(next year) 

-0.01 0.010 0.26 downstream UBTF 

22 5,929,242 Attendance 0.04 0.025 0.38 intron WNK4 

22 5,929,242 Centrality -0.05 0.021 0.29 intron WNK4 

27 3,240,038 Attendance -0.05 0.043 0.46 intron XPO7 

27 3,239,941 
Blue 
chroma 
(next year) 

-0.01 0.039 0.43 intron XPO7 

27 3,239,995 Lyre size 
(next year) -5.78 0.015 0.26 intron XPO7 

24 1,067,454 Attendance 0.08 0.014 0.28 intron ZBTB7A 

24 1,067,454 Centrality -0.09 0.005 0.24 intron ZBTB7A 

26 3,802,592 Attendance -0.09 0.001 0.09 exon ZC3H12A 

13 10,836,664 Attendance 0.05 0.044 0.46 downstream ZNF423 

13 10,836,664 Centrality -0.06 0.013 0.26 downstream ZNF423 

13 18,640,882 Centrality -0.07 0.010 0.24 promoter ZNF469 

4 37,107,500 Attendance 0.10 0.016 0.29 downstream Unnotated 

5 12,092,564 Attendance 0.06 0.003 0.13 promoter Unnotated 

5 12,092,564 Centrality -0.04 0.030 0.33 promoter Unnotated 

5 50,969,477 Attendance -0.06 0.026 0.38 TSS Unnotated 

11 18,733,797 Mating 
success 0.05 0.022 0.60 intron Unnotated 

11 18,733,819 Mating 
success 0.07 0.020 0.59 intron Unnotated 

8 2,890,848 Mating 
success 0.07 0.050 0.70 exon Unnotated 
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9 4,520,683 Survival -7.47 0.043 0.79 exon Unnotated 

10 9,236,234 Mating 
success -0.07 0.011 0.46 exon Unnotated 

5 34,123,180 Centrality 0.09 0.036 0.36 downstream Unnotated 

24 1,606,325 Mating 
success -0.06 0.031 0.70 promoter Unnotated 

24 1,606,325 Centrality 0.07 0.012 0.26 promoter Unnotated 

24 1,606,364 Attendance 0.07 0.047 0.46 promoter Unnotated 

16 5,045,219 Attendance -0.07 0.035 0.40 TSS Unnotated 
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Supplementary Table S6. Biological processes identified using gene ontology (GO) 
enrichment analysis of CpG sites associated with reproductive investment. E is the 
enrichment score, B is the number of genes in the input list associated with the GO term and 
b is the number of genes in the input list associated with the term.  

 

GO term Description p FDR q E B b 

GO:0048522 positive regulation of cellular 
process 2.18 e-4 1.00 1.47 145 43 

GO:0048518 positive regulation of biological 
process 2.38 e-4 0.56 1.44 155 45 

GO:0045944 positive regulation of 
transcription by R polymerase II 3.36 e-4 0.53 2.05 46 19 

GO:0031328 positive regulation of cellular 
biosynthetic process 4.70 e-4 0.55 1.84 62 23 

GO:0009891 positive regulation of 
biosynthetic process 4.70 e-4 0.44 1.84 62 23 

GO:0051239 regulation of multicellular 
organismal process 5.51 e-4 0.43 1.64 91 30 

GO:0051254 positive regulation of R 
metabolic process 8.02 e-4 0.54 1.82 60 22 

GO:1903508 positive regulation of nucleic 
acid-templated transcription 8.02 e-4 0.47 1.82 60 22 

GO:0045893 positive regulation of 
transcription, D-templated 8.02 e-4 0.42 1.82 60 22 

GO:1902680 positive regulation of R 
biosynthetic process 8.02 e-4 0.38 1.82 60 22 
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