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Abstract1

How will species adapt to changing environments? To what extent does adaptation to previous2

conditions maintain the variation needed to adapt to future conditions? To answer these kinds of3

questions, we need to identify locally adaptive alleles and quantify their effects. Theory shows4

that the architecture of adaptation can depend upon the nature of mutation and on how ecology5

shapes the processes of migration and selection. Depending on this interplay, adaptation can6

be driven by few alleles of large effect or many alleles of small effect, but little is known about7

the relative prevalence of such architectures in nature. Unfortunately, our statistical methods are8

also biased: it is much easier to identify loci of large effect that contribute repeatedly across pop-9

ulations or species, while alleles of small effect are all but invisible to genomic analysis. There10

is, therefore, a gap between the total amount of locally adaptive variation and that which is ex-11

plained by genomic studies. To quantify this missing local adaptation, future studies require a12

deep integration of genomic and phenotypic analyses.13

14
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Molecular adaptation to changing environmental conditions can be achieved either through15

the spread of new mutations or through shifts in the frequency of alleles present as standing16

variation. As the former pathway depends critically on mutation supply, it tends to occur more17

slowly in all but the largest populations (Charlesworth and Charlesworth, 2010), so short-term18

adaptive change in most plants and animals will likely be driven more by response through19

standing variation (Barrett and Schluter, 2008). The question of what maintains standing vari-20

ation therefore has particular relevance to understanding the response to future changes in en-21

vironment. Whereas adaptation towards a single optimal trait value is thought to maintain22

variation mainly under a balance between mutation and selection, various forms of selection can23

substantially alter the persistence of alleles that could contribute to adaptation following a shift24

in environment (Felsenstein, 1976; Hayward and Sella, 2022; Johnson and Barton, 2005). Spatial25

variation in selection is very common, with extensive evidence from natural populations show-26

ing trade-offs between traits and fitness mediated by the different environments encountered27

across a species’ range (Hedrick et al., 1976; Hereford, 2009; Leimu and Fischer, 2008). If the28

environmental pressure in a focal population shifts in time towards the regime that was present29

in a neighbouring population, then their coupled evolutionary history can maintain alleles in the30

focal population that were received from the neighbouring population and are pre-adapted for31

this change. To what extent does this shape the capacity to respond to environmental change?32

The answer depends on the details of a species’ genetics and its ecology.33

34

Population genetics predicts that long-term maintenance of local adaptation can be achieved35

if the alleles underlying it have a strong enough local advantage to persist in the face of gene36

flow, which tends to homogenize populations (Charlesworth and Charlesworth, 2010). But local37

adaptation can also be maintained if traits have a high mutational target size or mutation rate38

such that many alleles distributed across species’ genomes contribute to local adaptation simul-39

taneously. In such cases, individual alleles are not necessarily expected to be maintained over the40

long-term and will often be replaced by new mutations (Sakamoto et al., 2024; Yeaman, 2015).41
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These two types of architecture represent extremes of a continuum and natural populations may42

commonly exist somewhere in the middle, but the relative contribution of the two patterns to43

local adaptation in natural systems is basically unknown.44

45

To understand the genomic basis of local adaptation, we need to identify the alleles that un-46

derly it, how much local adaptation they are responsible for and how such alleles are maintained47

in populations over time. An allele can be considered locally adaptive if it increases the carrier’s48

fitness in its home range. A comprehensive understanding of the locally adaptive effects of indi-49

vidual alleles would then require detailed experimentation across the range of environments in50

which they are found, and on the various genetic backgrounds in which they are found. While51

detailed quantification of the locally adaptive effects of individual loci may be overkill in cer-52

tain contexts, knowledge of effect sizes could be leveraged in conservation or breeding programs53

(Aitken et al., 2024). For example, the degree to which the additive genetic variance for fitness54

can be increased by assisted gene flow will be related to the effect sizes and allele frequencies of55

locally adaptive alleles in donor populations (Grummer et al., 2022). While genomics has given56

us the tools to identify locally adaptive alleles, we are far from a detailed understanding of this57

important aspect of biodiversity.58

59

Identifying locally adaptive alleles60

There are two main paradigms for identifying locally adaptive alleles from patterns of genetic61

variation. First, one could do a genome wide association study (GWAS) on traits that are sub-62

ject to spatially varying selection to identify the genomic regions underlying locally adaptive63

phenotypic variation. A limitation of this approach is that a phenotypic effect is not, in and64

of itself, sufficient evidence to declare an allele locally adaptive. If the selection maintaining65

local adaptation were stabilizing, mutations that increase or decrease trait values would contin-66
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ually arise, but for an allele to be locally adaptive it needs to, on average, increase its carrier’s67

fitness in its home range with trade-offs elsewhere in the range. The second paradigm is to ex-68

amine patterns of allele frequency over space. Population genomic analyses have been devised69

to identify extreme patterns of allele frequency variation or particularly strong associations with70

environmental variation, i.e. FST outlier scans and genotype-environment association (GEA) tests71

(reviewed in Lasky et al., 2023). Estimating phenotypic or locally adaptive effect sizes from allele72

frequency patterns is complicated by genetic drift that may vary from place to place. Addition-73

ally, strong selection may generate linkage disequilibrium (LD) among alleles. For example, if74

all Northern populations had X, Y, Z alleles and all Southern populations had x, y, z alleles, it75

would be impossible to tell whether X had a bigger or smaller effect than Z if their frequencies76

covaried. Experiments that break up this LD would be needed to estimate individual effect sizes77

in such cases. Nevertheless, genome scans have been widely adopted, at least in part, because78

they do not rely on assumptions of which traits are the basis of adaptation.79

80

Many studies have used GWAS and/or genome scans to identify locally adaptive alleles.81

There is evidence that the locally adaptive variation identified via GEA analysis tends to have82

large phenotypic effects, consistent with the predictions that selection on such alleles needs to be83

strong to withstand gene flow (Whiting et al., 2024). Furthermore, numerous genome scan stud-84

ies have found strong evidence for polymorphic inversions or other structural variation involved85

in local adaptation (Le Moan et al., 2024; Todesco et al., 2020). Polymorphic inversions reduce86

recombination in heterozygotes that can lead to the evolution of supergenes with large fitness87

effects (Kirkpatrick and Barton, 2006; Wellenreuther and Bernatchez, 2018). These are compelling88

cases, but unambiguous results are the exception in genome scans – often, smoking guns are not89

found.90

91

Statistical issues at the heart of genome scans prevent us from using them to identify the92

total genetic basis of local adaptation. It has long been recognised that correcting for population93
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structure when attempting to study the genetic basis of local adaptation is vital (Meirmans, 2012).94

Correlations between ancestry and environmental variation tend to arise in spatially distributed95

species because both factors tend to be spatially autocorrelated. Unless controlled statistically,96

this can generate signals that resemble adaptation. This problem is particularly important be-97

cause such conditions are also most conducive to the evolution and maintenance of local adapta-98

tion, which will tend to be strongest when closely related individuals tend to experience similar99

environments (Booker, 2024; Slatkin, 1973). On the other hand, methods that control for popu-100

lation structure may reduce the power to detect true positives in locally adapted species where101

the environment covaries with ancestry (Meirmans, 2012). Indeed, in red spruce Capblancq et al.102

(2023) found that alleles identified via population structure corrected GEA explained less local103

adaptation (as measured in common gardens) than did alleles identified using an uncorrected104

approach. Of course, in such cases it would be difficult to disentangle the true and false positives105

from uncorrected GEAs. At an even more fundamental level though, identification of locally106

adaptive alleles based on allele frequency patterns requires that the alleles are at sufficiently high107

frequencies in the sample in the first place. If local adaptation were maintained by alleles at low108

frequencies, genome scan approaches may simply have no power.109

110

Complex trait variation probably underlies a lot of local adaptation111

Phenotypic variation underlying local adaptation may be morphological, phenological, behavioural112

or physiological. While there are clear cases where local adaptation involves discrete character-113

istics (e.g. industrial melanism in peppered moths, presence/absence of armour plates in the114

three-spine stickleback), there are many cases where locally adaptive traits are complex. Species115

have been shown to exhibit locally adaptive quantitative trait variation in bud burst, flowering116

time, and cold tolerance among many others (Table S1).117

118
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Complex traits are likely composites, representing the integration of numerous developmen-119

tal pathways, processes and aspects of physiology. Indeed, genome-wide association studies120

(GWAS) in many different organisms have led to the view that such complex traits tend to121

be extremely polygenic, with the variation underlying them distributed widely across species’122

genomes (Boyle et al., 2017). In a GWAS, phenotypic variation is regressed on genotypic data123

for genome-wide markers. From a marker’s estimated effect on the phenotype, one can obtain124

an estimate of its contribution to phenotypic variation. Summing up across GWAS hits, one can125

obtain an estimate of the narrow sense heritability (h2 = VA/VP) for the trait. Marker-based esti-126

mates of h2 are routinely found to be lower than estimates obtained using traditional quantitative127

genetic approaches. In humans, for example, GWAS conducted on samples of millions of indi-128

viduals are only able to explain around 40% of pedigree-based heritability for height and other129

complex traits in particular populations (Yengo et al., 2022). Many factors may contribute to this130

missing heritability, but recent studies suggest that a substantial portion is likely due to alleles131

segregating at very low frequencies in populations (Wainschtein et al., 2022). These alleles will132

be virtually invisible to GWAS due to an almost total lack of statistical power to identify their133

effects through regression.134

135

If the genetic component of complex trait variation is often due to alleles at low frequen-136

cies and such complex traits often drive local adaptation, it would hardly be surprising if a137

substantial portion of the variation that underlies local adaptation is also due to alleles at low138

population-level frequencies. With a highly polygenic basis of complex trait variation, selection139

on those traits can lead to rapid phenotypic change via allele frequency shifts at many loci across140

the genome. Evidence consistent with this can be seen in the sustained response to selection141

for agriculturally desirable traits in breeding populations (Barton and Keightley, 2002), as well142

as in many other cases of selection on complex traits. Examples include selection for increased143

limb length in mice (Castro et al., 2019), increased intensity of colouration in guppies (van der144

Bijl et al., 2025), and resistance to the fungal pathogen that causes ash dieback (Metheringham145
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et al., 2025). Spatially varying selection acting on such complex traits can lead to phenotypic146

differentiation among populations with only slight fluctuations in allele frequency from place to147

place (Le Corre and Kremer, 2003; Lotterhos, 2023).148

149

Just as there is the missing heritability for phenotypic variation in GWAS, we should also con-150

sider the missing basis of local adaptation in genome scans. If, for a particular species, there was151

locally adaptive phenotypic variation for traits that are extremely polygenic, what proportion of152

that variation would be identifiable via genome scan approaches? What proportion of locally153

adaptive phenotypic differentiation would we be missing by using genome scan methods?154

155

How can we estimate the magnitude of the unknown?156

Quantifying the “missing genetic basis of local adaptation” is difficult, but some suggestive evi-157

dence comes instead by looking for the reverse: how well can we predict local adaptation from158

genomic data without doing a genome scan? Genetic drift across a landscape will lead to spatial159

variation in allele frequencies. If locally adaptive phenotypic differentiation were maintained160

by slight fluctuations in allele frequency from place to place for many polymorphisms in the161

genome, the effects of selection on allele frequencies may be very difficult to distinguish from162

localised genetic drift. In such cases, genome scans would have very low power (Lotterhos, 2023),163

but general patterns of spatial ancestry may provide a means to predict local adaptation. The164

genealogical process shapes co-ancestry among individuals and populations, which is reflected165

in variation in allele frequencies across the genome (McVean, 2009). Kinship matrices, popu-166

lation covariance matrices or principal components analyses are all commonly used to model167

such co-ancestry or population structure. Population structure is usually treated as a statistical168

baseline against which to identify alleles involved in local adaptation (Meirmans, 2012). Indeed,169

outliers from genome scans are detectable because they have patterns that are extreme relative170
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to the overall pattern of population structure. But if local adaptation were maintained by loci171

spread widely across the genome, population structure itself could approximately characterize172

local adaptation.173

174

Several recent studies found that genomic relatedness (i.e. population structure) provides175

better predictions of local adaptation than do predictions made from alleles identified via GEA.176

Studies in Jack Pine, Douglas-fir and balsam poplar used genomic offset approaches to model177

climate adaptation across those species’ ranges and validated their predictions using common178

garden data (Fitzpatrick et al., 2021; Lind et al., 2024). For all three species in those studies,179

genomic offset models were built using either randomly chosen SNPs or SNPs identified using180

GEA. In all cases, genomic offset models fitted using random SNPs had equal or greater ability181

to predict local adaptation than did models based on GEA outliers. Using different approaches,182

recent analyses on maize (Li et al., 2025) and Black Cottonwood (Slavov et al., 2025) both found183

that population structure, as captured by principal components analysis, provided better predic-184

tions for phenotypic variation than did environmental variation or GEA outliers.185

186

That the general pattern of population structure seems to predict adaptation does not imply187

that all the SNPs that went into the analyses described contribute to phenotypic variation them-188

selves . Indeed, Lind and Lotterhos (2025) used simulations to show that offset models built189

using explicitly neutral markers for species where local adaptation is maintained by alleles at190

1,000 loci provide almost identically good predictions as models built using all the causal mark-191

ers themselves. With strong selection on a single locus, the impacts of selection on neutral sites192

can extend to distances that are proportional to the ratio of selection to recombination (Barton,193

2000). With many loci under selection across the genome, each locus could exert a forcing effect194

on allele frequencies at neighbouring neutral loci via linkage. Therefore, the observation that195

general patterns of population structure predict local adaptation suggests that a substantial frac-196

tion of the phenotypic variation underlying local adaptation is maintained via selection on sites197
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distributed widely across the genome. Note, this same line of reasoning is the basis of genomic198

prediction, where relatedness computed from genome-wide markers is used to estimate breeding199

values.200

201

In some of the cases described above, local adaptation was better predicted by randomly202

chosen SNPs compared to GEA outliers. This seems to imply that local adaptation is highly203

polygenic in those cases, with causal loci widely distributed across the genome. However, those204

studies were not designed to determine the genomic architecture of local adaptation per se. Fu-205

ture studies, perhaps combining theory and simulation, specifically aimed at understanding how206

different architectures of local adaptation can be characterised from genomic data are needed.207

208

Inferring what is missing by quantifying what is known209

Despite a sophisticated body of theory and advanced techniques for sequencing and analyzing210

genomes, we are still faced with two central problems in our understanding of local adaptation.211

First, genomic approaches to catalog locally adaptive variation are likely only capturing a subset212

of the variation that underlies local adaptation. Second, while genomic approaches can identify213

locally adaptive alleles, they cannot measure locally adaptive effects on their own. To understand214

the genetic basis of local adaptation, genomic studies need to be integrated with phenotypic stud-215

ies that measure local adaptation.216

217

Accurate measures of local adaptation are difficult to obtain because quantifying local adapta-218

tion requires measures of fitness. It is notoriously tricky and time-consuming to measure fitness,219

especially for wild populations and long-lived organisms for whom selection may operate on220

different life stages (McGraw and Caswell, 1996). Experiments to quantify fitness are unlikely to221

fully reflect the conditions individuals face in their native habitats. For example, biotic interac-222
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tions are difficult to control and are thus usually excluded and rare climatic events that shape223

long-term adaptation they may not occur within the timeframe of a common garden experiment.224

Despite such limitations, local adaptation can be measured in a variety of ways, from provenance225

trials to reciprocal transplant experiments to FST/QST comparisons (Wadgymar et al., 2022).226

227

Linking genomic and quantitative genetic methods with phenotypic data can give us more228

detailed understanding of what fraction of the architecture of local adaptation is explained by229

our observations. For example, Wang et al. (2018) made a detailed study of locally adaptive phe-230

nological variation in Poplulus tremula. With a combination of quantitative genetics, GWAS and231

GEA approaches, Examining individuals distributed from Northern to Southern Sweden, Wang232

et al. (2018) found that variation in PfFT2 explained about 65% of the variation in the timing of233

bud set. Wang et al. (2018) used an RNAi approach to validate the allele they found at the PfFT2234

gene and demonstrated that it had extremely large phenotypic effects, altering the timing of bud235

set by about a month. Other studies have taken a quantitative-trait mapping approach to study-236

ing local adaptation (for example Fournier-Level et al., 2011; Lowry et al., 2019), and we predict237

that developing on such studies is a promising direction for understanding genetic architectures238

of local adaptation.239

240

If local adaptation is often due to differentiation in quantitative traits (Table S1), limitations241

inherent to the study of quantitative traits also apply to the study of local adaptation (e.g. iden-242

tifying alleles with small effect sizes or low at frequencies). Our understanding of the genomic243

architecture of local adaptation will remain limited to an unknown extent unless there is a deep244

integration of phenotypic and genomic analysis. Devising creative ways to integrate phenotypic245

and genomic data with the environmental variation causing local adaptation represents the key246

challenge for the future. For example, an ideal experiment might see crosses of multiple families247

derived from locally adapted populations planted in common gardens where local adaptation248

can be quantified. Experimental designs such as multi-parental advanced generation intercrosses249
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(Scott et al., 2020) or X-QTL mapping (Macdonald et al., 2022) could break up LD among locally250

adapted alleles and/or narrow down effect size estimates to precise genomic regions. By quan-251

tifying the proportion of overall fitness variation attributable to loci discovered through genome252

scans, we can estimate how much lies beyond the reach of our methods. Because of the cor-253

relation between statistical detectability and effect size, quantifying the proportion of unknown254

unknowns actually tells us something about their genetic architecture (i.e. what proportion of lo-255

cal adaptation is driven by alleles of small effect). While such approaches may be difficult to scale256

and apply in some organisms (e.g. long-lived species or those with large complex genomes), in-257

tegrating phenotypic, environmental and genomic data is the most promising way to more fully258

understand how local adaptation evolves and is maintained.259
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