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ABSTRACT 30 

 31 

Understanding disparities between scientific priorities and public discourse is critical for 32 

improving climate change communication, fostering public engagement, and supporting 33 

evidence-based policymaking. Here we investigated thematic and spatial dynamics of climate 34 

change-related content in scientific literature and social media. We focused on the Iberian 35 

Peninsula over the 2012-2022 decade, as a test case. We compared the frequency and 36 
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geographical distribution of scientific research and Twitter posts that addressed the general 37 

topic of climate change and climate-related natural hazards (e.g., drought, wildfires, floods). 38 

We found a contrasting focus: while droughts (39%) were the most frequently mentioned 39 

hazard in scientific literature, wildfires (31%) dominated public discourse on social media. 40 

Spatially, scientific information was more concentrated in regions such as Andalusia, 41 

Catalonia, and northern Portugal, whereas Twitter activity showed broader engagement in 42 

central and northeastern Iberia. These thematic and spatial discrepancies suggest possible 43 

misalignments in the prioritization and perception of climate risks, which may undermine public 44 

understanding and engagement. Our findings underscore the need for communication 45 

strategies that are regionally adapted and aligned with public concerns and research priorities. 46 

Bridging these gaps is essential for fostering trust in climate science, enhancing collective 47 

action, and supporting the development of effective climate mitigation strategies. 48 

 49 
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 51 

1. INTRODUCTION 52 

 53 

Ever-growing internet access has made social media platforms popular spaces for public 54 

engagement and debate on a range of environmental issues (Sultana et al., 2024). By 55 

breaking down traditional barriers of geography, language, and socioeconomic status, social 56 

media has been contributing to the rapid and widespread dissemination of information on 57 

environmental topics, including climate change (Hu et al., 2023). Social media platforms play 58 

a dual role: a) they enable rapid, widespread communication of scientific findings and policy 59 

updates to a broad, diverse audience, and b) they function as forums where individuals, 60 

organizations, and advocacy groups can share their experiences, concerns, and 61 

interpretations of climate phenomena (Hart et al., 2024). This dual function underscores the 62 

role of social media as an increasingly relevant platform for understanding and shaping public 63 

understanding and engagement with complex environmental challenges (Hu et al., 2023). 64 

The real-time and interactive nature of social media offers unique opportunities to explore 65 

the dynamics between science-based environmental facts and people’s interest and 66 

engagement towards these facts (Mavrodieva et al., 2019; León et al., 2023). Previous studies 67 

have reported a notable discrepancy between narratives presented in the scientific literature 68 

and those found on social media (Al-Rawi et al., 2021; Treen et al., 2020). For instance, Treen 69 

et al. (2020) found that climate change discussions on Twitter were frequently dominated by 70 

political polarization and misinformation, often marginalizing core scientific content. Similarly, 71 

Al-Rawi et al. (2021) identified a contrast between the systemic focus of scientific literature 72 

and the tendency of social media discourse to highlight sensational or anecdotal content, such 73 
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as extreme events or celebrity activism, thereby framing environmental issues through a more 74 

emotive and less evidence-based lens. 75 

Differences between scientific evidence and social media narratives can be attributed to 76 

various social, psychological, or informational factors (Schäfer & Schlichting, 2018). Social 77 

and cultural differences significantly shape the perception and communication of 78 

environmental issues, as individuals tend to interpret information through the lens of their 79 

values, beliefs, and sociocultural context (Chwialkowska et al., 2020). Similarly, cognitive 80 

biases, such as confirmation bias, predispose individuals to preferentially accept information 81 

that aligns with their existing views (Frank et al., 2024). Emotion also plays a key role: content 82 

that evokes strong feelings, such as fear or outrage, is more likely to be widely shared and 83 

amplified on social media platforms, regardless of its scientific accuracy (Hosseini & Staab, 84 

2023). Additionally, platform algorithms frequently prioritize sensational or controversial posts, 85 

which can distort public discourse by amplifying misinformation and marginalizing nuanced, 86 

scientific perspectives (Pennycook & Rand, 2019; Friggeri et al., 2014). 87 

Identifying differences between scientific and public communication is key to mobilizing 88 

collective action, supporting public engagement, and promoting effective policy interventions 89 

(Alinejad & Van Dijck, 2023; Ivani & Dutilh Novaes, 2022). When scientific communication 90 

aligns with public concerns, it becomes easier to foster community participation, advance 91 

mitigation strategies, and develop policies that are both evidence-based and socially 92 

supported (Lopes et al., 2024). For instance, Alinejad and Van Dijck (2023) demonstrated that 93 

aligning scientific communication with public narratives can help overcome communication 94 

barriers, thereby enhancing climate change engagement, and fostering public support for 95 

policy decisions. Similarly, Ivani and Dutilh Novaes (2022) highlighted that direct public 96 

engagement in dialogues about scientific issues bridges the gap between empirical evidence 97 

and public perception, which is crucial for fostering trust, enhancing scientific literacy, and 98 

promoting collective action toward science-informed policies. 99 

Understanding disparities between scientific and social media narratives can be 100 

particularly relevant for global-level challenges with region-specific impacts, such as climate 101 

change. The decentralized structure of social media, coupled with algorithms that favor 102 

sensationalist content, often amplifies misinformation, and distorts scientifically accurate 103 

representations of weather and climate extreme events (Vosoughi et al., 2018; González 104 

Cortés, 2014; Corner & Clarke, 2016). This misalignment between scientific knowledge and 105 

public perceptions poses significant challenges for effective climate change political decision-106 

making and action.  107 

When public understanding is shaped by inaccurate or distorted narratives, it can 108 

undermine trust in science, hinder the acceptance of climate policies, and weaken societal 109 

support for mitigation and adaptation strategies (Lewandowsky et al., 2017; Corner & Clarke, 110 
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2016). For instance, Lewandowsky et al. (2017) found that misinformation surrounding climate 111 

change can persist on social media platforms and undermine public understanding of climate 112 

science. Likewise, González Cortés (2014) highlighted the gap between media portrayals and 113 

the scientific consensus on climate change, where sensationalism and misrepresentation in 114 

media coverage can amplify uncertainties or controversies, distort public understanding, and 115 

undermine the broad scientific consensus. Identifying and addressing these discrepancies is 116 

therefore essential to ensure that communication strategies, risk assessments, and climate 117 

adaptation plans are not only scientifically grounded but also publicly accepted and actionable 118 

across local and national contexts (Mata et al., 2025). 119 

In this study, we investigated the congruence between the representation of climate 120 

change-related themes in scientific literature and social media as represented on Twitter® 121 

(currently X®, henceforth Twitter). Specifically, we aimed to answer two central questions: (1) 122 

how divergent are thematic emphases on climate-related natural hazards in the scientific 123 

literature, compared to public discourse on social media, and (2) are there significant 124 

geographical discrepancies between scientific focus and social media attention on climate 125 

change and related natural hazards? 126 

To answer these questions, we focused on the regional case of the Iberian Peninsula 127 

(mainland Portugal and Spain). This region has also been identified as a climate change 128 

hotspot due to its heightened vulnerability to climate change impacts, including rising 129 

temperatures, shifting precipitation patterns, and increased frequency of climate-related 130 

natural hazards such as heatwaves and wildfires (Pereira et al., 2021; Lazoglou et al., 2024; 131 

Cos et al., 2022). The Iberian Peninsula is regarded as one of the most climate-vulnerable 132 

regions in the Mediterranean region (Ribas et al., 2020; Lazoglou et al., 2024; Cos et al., 133 

2022). Consequently, exploring perceptions of climate change across platforms in the Iberian 134 

Peninsula can be both elucidating and important for improving public decision-making, 135 

communication, and engagement supported by scientific evidence (Pereira et al., 2021, 136 

Andrade et al., 2021). Our results deliver insights to help bridge the gap between public 137 

discourse and scientific knowledge on climate change, foster more informed dialogue, support 138 

evidence-based decision-making, and encourage collective action to address this pressing 139 

global challenge. 140 

 141 

2. LITERATURE REVIEW 142 

 143 

Climate change represents one of the most pressing global challenges of the 21st century, 144 

with profound ecological, social, and economic consequences. Rising temperatures, shifting 145 

precipitation patterns, and increasing frequency of extreme events such as droughts, wildfires, 146 

floods, and heatwaves are already affecting ecosystems, human health, agriculture, and urban 147 
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infrastructure (IPCC, 2022; Pereira et al., 2021). Regions such as the Iberian Peninsula are 148 

particularly vulnerable due to their Mediterranean climate, high population density in certain 149 

areas, and exposure to multiple climate-related hazards (Lazoglou et al., 2024). 150 

Understanding these risks and their potential societal impacts is therefore essential to improve 151 

mitigation strategies, adaptation measures, and sustainable environmental governance 152 

frameworks. 153 

The rise of digital platforms has significantly revolutionized the dissemination and uptake 154 

of environmental information. Social media, mobile applications, and interactive online forums 155 

have become central channels for environmental information, enabling real-time engagement 156 

and peer-to-peer knowledge sharing (Andrachuk et al., 2019; Xie et al., 2024). Empirical 157 

studies underscore this shift: for instance, Arthur et al. (2018) analyzed Twitter conversations 158 

during major flooding events in the United Kingdom and found that public discourse was 159 

strongly event-driven and influenced by media coverage. Similarly, Zorenböhmer et al. (2025) 160 

investigated social media engagement with wildfire events in California, revealing that the 161 

virality of posts depended on their emotional framing rather than scientific accuracy. The 162 

structure and functionalities of these platforms, including algorithmic curation, virality and 163 

multimedia content, directly influence how information is framed, perceived, and shared by the 164 

public (Metzler & Garcia, 2024). 165 

While these platforms offer unprecedented opportunities for raising awareness and 166 

fostering engagement, they also present a range of challenges. Misinformation can spread 167 

rapidly, selective exposure can create echo chambers, and viral content often prioritizes 168 

sensationalism over evidence-based information (Bakir & McStay, 2022; Vosoughi et al., 169 

2018). For instance, studies by Elkefi and Tounsi (2024) and García et al. (2024) 170 

demonstrated that during heatwave and wildfire events, respectively, public attention tends to 171 

concentrate on immediate impacts and anecdotal experiences, rather than on the long-term 172 

systemic risks emphasized in the scientific literature. Understanding the mechanisms that 173 

shape digital climate discourse is therefore essential for designing communication strategies 174 

that enhance scientific literacy and foster informed public engagement. 175 

Recent advances in computational and geospatial technologies have enabled more 176 

sophisticated and nuanced analyses of environmental and societal data. Advanced 177 

computational techniques such as deep learning, natural language processing, and sentiment 178 

analysis allow researchers to analyze large-scale social media data, detecting patterns in 179 

public concern, topic salience, and spatial engagement (Anderson et al., 2024; Kouloukoui et 180 

al., 2023). For instance, Gokcimen and Das (2024) used natural language processing 181 

techniques to analyze climate change discourse across multiple social media platforms and 182 

blog texts, identifying thematic clusters of concern and temporal peaks. Similarly, Yue et al. 183 

(2021) combined geotagged Twitter data with social-ecological vulnerability indicators to 184 
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assess wildfire risk across the United States. Such approaches highlight the potential of 185 

emerging technologies for informing communication strategies and supporting evidence-186 

based interventions at local and regional scales. 187 

Effective climate governance increasingly requires the integration of scientific knowledge, 188 

public perceptions, and adaptive policy frameworks (Munaretto et al., 2014; Biesbroek, 2021). 189 

Empirical studies on adaptative governance underscore the importance of multi-level 190 

coordination, stakeholder engagement, and iterative learning processes to enhance the 191 

capacity of policies to respond dynamically and flexibly to evolving environmental risks 192 

(Armitage et al., 2010; Djalante, 2012). Digital traces from social media offer valuable and 193 

actionable insights for participatory governance by revealing localized concerns, emerging 194 

risks, and public priorities in near real time (Segerberg & Bennett, 2011). Case studies, such 195 

as the use of social media analytics during Hurricane Harvey (Chen et al., 2020), demonstrate 196 

how integrating public-generated data can improve situational awareness, optimize resource 197 

allocation, and strengthen stakeholder engagement in disaster management. 198 

Our review of the literature shows that, despite notable progress in the analysis of digital 199 

climate communication, several limitations persist. Existing research often treats scientific 200 

literature and social media discourse as separate domains, with few systematic efforts to 201 

compare their thematic emphases and geographical patterns. Moreover, most studies 202 

emphasize event-driven reactions or general sentiment tends, without fully considering how 203 

public discourse aligns, or misaligns, with long-term scientific priorities and regional 204 

vulnerabilities. Methodological advances in natural language processing and spatial analysis 205 

have been increasingly applied to climate change-related communication, but rarely in 206 

combination to examine both public narratives and scientific agendas. Evidence is also scarce 207 

on how digital trace data can be integrated into adaptive governance frameworks at regional 208 

scales. Addressing these gaps, our study combines text mining, spatial analysis, and cross-209 

domain comparison of scientific and social media discourses to uncover thematic divergences 210 

and spatial misalignments in climate change communication across the Iberian Peninsula. 211 

 212 

3. METHODS 213 

 214 

3.1. Methodological framework 215 

 216 

We followed a five-step methodological framework to investigate discrepancies between 217 

social media and scientific discourse on climate change. Step 1) We extracted posts related 218 

to climate change for mainland Portugal and Spain using Twitter's Application Programming 219 

Interface (API). Step 2) We identified and removed duplicates and off-topic posts. Step 3) We 220 

collected scientific literature on climate change and related phenomena for Portugal and 221 
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Spain, using the Scopus database. Step 4) We removed duplicate articles, reviewed them, 222 

and excluded those deemed irrelevant to our study, based on predefined exclusion and 223 

inclusion criteria. Step 5) Finally, we performed textual and geospatial analyses of the resulting 224 

social media and scientific literature datasets to identify overall trends and spatial patterns in 225 

the scope of climate change. 226 

 227 

3.2. Data collection  228 

 229 

Data collection was conducted for the Iberian Peninsula, defined as our test region, which 230 

includes mainland Portugal and Spain. The time span of the analyzed data was 2012-2022, 231 

coinciding with a period of severe droughts, unprecedented wildfires, and extreme heatwaves 232 

in both countries (Bevacqua et al., 2024; Rodrigues et al., 2023). Throughout this study, we 233 

adhered to privacy regulations and platform terms of use at the time of data collection (January 234 

2023), in line with best practices for ethical digital research (Di Minin et al., 2021). 235 

 236 

3.2.1. Social media data 237 

 238 

We retrieved online data related to climate change from the social media platform Twitter, 239 

using a list of more than 130 climate change-related keywords. These keywords included 240 

terms such as wildfires, greenhouse effect, droughts, and global warming (full list available in 241 

Tables S1, S2 and S3). We compiled this list with the help of a group of climate change 242 

specialists, supported by native speakers of Portuguese, Spanish, and English. Twitter was 243 

considered for its extensive user base, its accessibility1 of concise, user-generated content, 244 

and its capacity to capture real-time public reactions to climate change topics (Veltr & 245 

Atanasova, 2017). Data from posts (excluding retweets) were collected  using Twitter's API v2 246 

academic research license and the open-source Python library Tweepy 247 

(https://www.tweepy.org/), from March 2006 (i.e., when Twitter was founded) to December 248 

2022. For the subsequent analyses, only posts from 2012 to 2022 were considered. Through 249 

the Twitter API, we limited our search query to Portugal and Spain. We collected textual 250 

content of 174,674 posts in Portuguese, 1,224,504 posts in Spanish, and 372,655 posts in 251 

English. We also retrieved post metadata, including post creation dates, post locations, 252 

usernames, and user locations. Consequently, we removed duplicates, short (fewer than 6 253 

words), and irrelevant posts (i.e., exhibiting ambiguous or metaphorical meanings; see Table 254 

1).  255 

 
1 Currently the platform is designated as X and the accessibility policy has changed significantly. 

https://www.tweepy.org/
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We assessed the relevance of each post using open-source Bidirectional Encoder 256 

Representations from Transformers (BERT) models - BERTimbau for Portuguese (Souza et 257 

al., 2020), BETO for Spanish (Wu & Dredze, 2019), and BERT base for English (Devlin et al, 258 

2019). These models have been recognized for their ease of transfer learning and strong 259 

performance in related natural language processing tasks (Varini et al., 2020; Effrosynidis et 260 

al., 2022). We manually annotated a random subsample of posts to train the models, 261 

comprising approximately 1,200 posts for Portuguese and English (42% relevant and 58% not 262 

relevant) and 3,200 posts for Spanish (47% relevant and 53% not relevant). We classified 263 

posts as ‘Relevant’ if their content was directly related to climate change phenomena and 264 

impacts, and ‘Irrelevant’ if deemed unclear or unrelated to climate change (see Table 1). As 265 

the two classes in each random subset were imbalanced, we applied an empirical balancing 266 

technique - under sampling - to mitigate bias in the models’ performance. This approach 267 

involved retaining all posts in the minority class ('Relevant') and reducing the size of the 268 

majority class ('Irrelevant') to match the same number. Subsequently, 75% of the data was 269 

allocated for training, while 25% was reserved for testing. Regarding the configuration of the 270 

models (hyperparameters), we used the Adam optimizer algorithm (Kingma & Ba, 2015) and 271 

a batch size of 16 for BERTimbau, and 4 for BETO and BERT base (see supplementary 272 

material for details of all configurations). We determined the optimal number of epochs and 273 

learning rates through empirical testing. We found that the values of 20 and 2e-6 for epochs 274 

and learning rates, respectively, achieving the best performance across the three models. 275 

Lastly, we retained 10% of the training posts for validation to monitor the models’ performance 276 

and adjust hyperparameters. We estimated the performance of the models (BERTimbau, 277 

BETO, and BERT base) with standard classification metrics: accuracy (ACC), precision 278 

(positive predictive value, PPV), recall (sensitivity or true positive rate, TPR), and F1-score 279 

(F1; see Tables S6 and S7 for more details and results). 280 

We excluded posts deemed as ‘Irrelevant’, yielding a final dataset of 669,730 posts: 281 

38,419 Portuguese, 569,610 Spanish, and 61,701 English. From the set of 669,730 posts, we 282 

considered only those posts that explicitly mentioned climate change terms for subsequent 283 

analyses (55,703 posts), to enable reliable and comparable results with the scientific literature. 284 

This filtering ensured that the selected posts aligned with the scientific literature, as our search 285 

strategy for academic publications specifically targeted studies that explicitly linked climate 286 

change to each phenomenon. 287 

 288 
Table 1. Examples of posts considered ‘Relevant’ and ‘Irrelevant' by the models in Portuguese, Spanish 289 
and English. The posts originally in Portuguese and Spanish have been translated into English for ease 290 
of interpretation. 291 

 Relevant Irrelevant 
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Portuguese "Guys from Lisbon, there are 

floods at Campo 

Grande/Sete Rios and 

Lumiar, be careful." 

“I'm flooded with sleep and 

can't sleep.” 

Spanish “In that area, there are 

dozens of archipelagos and 

thousands of islands exposed 

to even more terrible 

cyclones, worsened by 

climate change.” 

“You give heat to my heart, 

you cause a cyclone in my 

soul. :) #culture 

#womensday #literature 

#living” 

English “It was absolutely freezing 

wasn't it &amp; that was after 

huge hail stones on 

Christmas day       ” 

“All hail to the King!” 

 292 

3.2.2. Scientific literature 293 

 294 

We retrieved scientific evidence on climate change from published peer-reviewed 295 

scientific literature accessed via Scopus (https://www.scopus.com/). To achieve this, we 296 

applied a structured search strategy using a predefined search string (available in the 297 

supplementary material) that specifically included climate change terms combined with each 298 

keyword selected for the social media data collection (e.g., 'climate change' AND 'wildfires'). 299 

This approach was adopted to obtain a manageable volume of publications and to minimize 300 

the effort and time required for manually filtering out irrelevant articles. We chose Scopus due 301 

to its comprehensive coverage of multidisciplinary journals, frequent updates on recent 302 

publications, advanced citation analysis features, and user-friendly interface that can facilitate 303 

a thorough and efficient literature review (Pranckutė, 2021). We considered only publications 304 

in English, Portuguese, and Spanish, resulting in a total of 8,707 articles. We excluded 305 

inaccessible publications and duplicates, resulting in a refined dataset of 8,604 articles. One 306 

reviewer (ASC) screened the title and abstract of each publication using the revtools R 307 

package (https://cran.r-project.org/package=revtools), to ensure each publication addressed 308 

climate change and/or associated phenomena in Portugal and/or Spain (see Table S5). This 309 

screening resulted in a final dataset of 4,481 relevant articles retained for analysis. During this 310 

process, whenever available, we collected information on the countries and their 311 

administrative regions at two levels - broader regions and smaller subregions - to facilitate a 312 

thorough analysis of the geographical distribution of research topics (Table S4). From each 313 

publication we retrieved the following information: publication type, authors, year of 314 

publication, journal, doi, keywords, title, and abstract. 315 

https://www.scopus.com/
https://cran.r-project.org/package=revtools
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3.3. Data analysis 316 

 317 

All computational analyses were conducted using Google Colab, a complimentary Jupyter 318 

notebook environment provided by Google Research. This cloud-based platform enables the 319 

execution of R and Python code without the need for local setup and offers free access to 320 

computational resources, including GPUs. All analyses were performed using specialized 321 

open-source platforms for natural language processing tasks. Specifically, we used Keras 322 

(https://keras.io/), TensorFlow (https://www.tensorflow.org/), spaCy (https://spacy.io/), Scikit-323 

learn (https://scikit-learn.org/stable/), libpysal (https://pysal.org/libpysal/), ESDA 324 

(https://pysal.org/esda/), SciPy (https://scipy.org/), revtools (https://cran.r-325 

project.org/web/packages/revtools/index.html), statsmodels 326 

(https://www.statsmodels.org/stable/index.html) and Plotly (https://plotly.com/). 327 

 328 

3.3.1. Frequency analysis 329 

 330 

Firstly, we addressed our main question: how divergent are thematic emphases on 331 

climate-related natural hazards in the scientific literature, compared to public discourse on 332 

social media? Our emphasis on these phenomena was driven by their growing prominence in 333 

scientific and public discourse, as immediate and visible impacts of climate change, making 334 

them particularly relevant for studying public engagement with climate change on social media 335 

platforms (Selje et al., 2024; Roxburgh et al., 2019). To do so, we started by analyzing the 336 

thematic emphasis of climate change-related discourse in each source of data (social media 337 

versus scientific literature). We selected only posts that specifically mentioned these 338 

phenomena (i.e., the terms in the ‘Keyword’ classification level in Table S8). This allowed a 339 

more targeted and detailed investigation of public discourse and scientific literature on the 340 

most immediate and disruptive climate-related threats. Then, we implemented different 341 

frequency functions to analyze the public and scientific attention given to climate-related 342 

natural hazards. Specifically, we used spaCy modules (Attributes, 343 

https://spacy.io/api/attributes) and classes (Matcher, https://spacy.io/api/matcher) for the 344 

three languages (Portuguese, Spanish and English) to implement frequency functions based 345 

on regular expression (regex) matching and lemmatization attributes. The regex matching 346 

function helped identify and manipulate patterns in text, ensuring thorough text pre-processing 347 

by filtering non-alphabetic characters and symbols. This produces a refined text input for 348 

analysis. Lemmatization is the process of reducing words to their base or root forms, 349 

standardizing them, and improving consistency in word usage (Srivastav et al., 2020). The 350 

combination of these regex and lemma functions minimizes textual noise and enhances the 351 

tokenization process. Tokenization involves breaking down sentences into individual words, 352 

https://keras.io/
https://www.tensorflow.org/
https://spacy.io/
https://scikit-learn.org/stable/
https://pysal.org/libpysal/
https://pysal.org/esda/
https://scipy.org/
https://cran.r-project.org/web/packages/revtools/index.html
https://cran.r-project.org/web/packages/revtools/index.html
https://www.statsmodels.org/stable/index.html
https://plotly.com/
https://spacy.io/api/attributes
https://spacy.io/api/matcher
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phrases, or symbols, known as “tokens”. This results in a more coherent and normalized 353 

dataset that allows for accurate word frequency computation (Srivastav et al., 2020).  354 

These frequency functions were subsequently applied to both social media posts and 355 

scientific literature title, abstract, and keywords fields (whenever available). To enhance clarity 356 

and avoid repetitive visualizations, we created the figures with the broader categorization of 357 

the search keywords (i.e., the ‘Subcategory’ classification level in Table S8). Lastly, to 358 

determine whether differences in frequency proportions between social media and scientific 359 

literature were statistically significant, we performed a Two-proportion Z-test (see 360 

supplementary material for more details) using the statsmodels library 361 

(https://www.statsmodels.org/stable/index.html).  362 

 363 

3.3.2. Spatial distribution  364 

 365 

We focused on our second main question on whether there are significant geographical 366 

discrepancies between scientific focus and social media attention on climate change and 367 

related phenomena. To do so, we mapped and compared the geographical distribution of 368 

scientific literature and social media posts across regions of the Iberian Peninsula. We 369 

conducted separate analyses for the general topic of climate change (the entire dataset), and 370 

for the five specific climate change-related phenomena most frequently addressed in both 371 

scientific publications and Twitter posts: wildfires, drought, floods, heatwaves, and storms. We 372 

normalized social media data by dividing the raw Twitter post counts by the population size of 373 

each statistical region 374 

(https://ec.europa.eu/eurostat/databrowser/product/page/demo_r_d2jan) to mitigate potential 375 

biases arising from population density variations. To assess the statistical significance of the 376 

observed spatial distributions, we performed a Chi-Square Test using the SciPy library 377 

(https://scipy.org/). Following this, a post-hoc analysis was conducted using the statsmodels 378 

library (https://www.statsmodels.org/stable/index.html) to explore the nature of significant 379 

differences between regions (see supplementary material for more details). 380 

Due to substantial differences in magnitude between the two datasets, we decided to 381 

standardize the frequencies. These differences arose from the prior normalization of Twitter 382 

posts. To address this issue, we implemented min-max normalization to scale both datasets. 383 

Then, we performed a spatial congruence analysis to measure alignment between the 384 

scientific literature and social media posts across regions. Specifically, we used the SciPy 385 

library (https://scipy.org/) to compute the absolute differences and Pearson correlation 386 

coefficients between the number of scientific publications and the volume of social media 387 

posts per region. To further assess spatial dependencies, we used the libpysal 388 

https://www.statsmodels.org/stable/index.html
https://ec.europa.eu/eurostat/databrowser/product/page/demo_r_d2jan
https://scipy.org/
https://www.statsmodels.org/stable/index.html
https://scipy.org/
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(https://pysal.org/libpysal/) and ESDA (https://pysal.org/esda/) libraries to calculate Moran’s I 389 

for both datasets. When significant spatial autocorrelation was detected, we implemented a 390 

Spatial Lag Model (SLM) to analyze the relationship between scientific publications and social 391 

media engagement while accounting for spatial dependencies. 392 

Finally, we applied this methodology separately to each of the five most-discussed 393 

phenomena (wildfires, drought, floods, heatwaves, and storms). This enabled us to assess 394 

whether regional interest in particular climate change impacts was similarly reflected in both 395 

scientific literature and social media discourse.  396 

 397 

4. RESULTS 398 

 399 

4.1. Climate change in scientific literature versus social media posts 400 

 401 

We found notable differences in the climate-related natural hazards between scientific 402 

and social media posts (Fig. 1; Table S9). The most frequently mentioned phenomena in both 403 

datasets were ‘drought’ (39% for scientific literature and 18% for posts) and ’wildfires’ (19% 404 

for scientific literature and 31% for posts). The frequency of drought and wildfires was 405 

significantly different between datasets (p < 0.001), with drought more frequently discussed in 406 

the scientific literature, and wildfires more prominent in social media discourse. Although less 407 

noticeable, other hazards, such as ‘floods’ (18% for scientific literature and 13% for posts) and 408 

‘storms’ (8% for scientific literature and 12% for posts), also garnered substantial attention . 409 

Floods were more frequently mentioned in scientific literature, whereas storms were more 410 

common in social media posts (p < 0.001). In contrast, ‘heatwaves’ (8% for scientific literature 411 

and 9% for posts) did not show significant differences (p = 0.335). Phenomena such as 412 

‘avalanches’, ‘dust storms’, and ‘downburst’ were rarely addressed in both realms, with 413 

avalanches showing no significant difference between the two datasets (p = 0.972). 414 

https://pysal.org/libpysal/
https://pysal.org/esda/
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 415 
 416 
Fig. 1. Relative frequency of scientific literature and Twitter posts addressing climate-related natural 417 
hazards, considering a time window from 2012 to 2022. ‘Others’ refers to climate-related natural 418 
hazards that accounted for less than 1% of the total in both data sources, including landslides, frosts, 419 
cold waves, blizzards, tornadoes, avalanches, dust storms, hail, and downburst. 420 
 421 

4.2. Spatial patterns and congruence between scientific literature and social media 422 

posts  423 

 424 

We observed pronounced spatial discrepancies in how climate change and climate-425 

related natural hazards are represented across scientific literature and social media, with 426 

varying degrees of congruence between the two sources (Tables S10 and S12; Figs. 2 and 427 

S2). Scientific publications showed statistically significant regional disparities (p < 0.001), with 428 

certain provinces, such as Andalusia and Catalonia, consistently exhibiting higher 429 

frequencies, particularly for drought (standardized residual (sr) = 2.678), floods (sr = 3.162), 430 

heatwaves and storms (sr = 2.826). Similarly, wildfire-related research was mostly 431 

concentrated in Catalonia and in the northern (sr = 4.800) and central (sr = 4.413) regions of 432 

Portugal. In contrast, social media engagement on Twitter revealed a more widespread spatial 433 

pattern, with more provinces engaging in discussions compared to scientific literature (Table 434 

S11). Peaks in public interest were observed for drought, wildfires, and heatwaves, especially 435 

in central, northern, and northeastern regions of Portugal and Spain, although these 436 

differences were not statistically significant (p = 1.000). Nevertheless, certain regions, such as 437 
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Madrid (sr = 0.001 for the general climate change topic) and the coastal areas of Catalonia (sr 438 

= 0.002 for heatwaves), Valencian Community (sr = 0.002 and sr = 0.004 for heatwaves and 439 

storms, respectively), and Murcia (sr = 0.003 for drought), showed particularly high 440 

engagement. Catalonia and Madrid consistently emerged as prominent regions in both 441 

scientific and public discourse. However, notable differences were also observed between the 442 

two sources; for instance, while storms received limited attention in the scientific literature for 443 

Spain but elicited higher engagement on Twitter, particularly in northern and coastal regions, 444 

the opposite was observed for Portugal, where scientific focus on storms was higher, but 445 

public interest was lower. 446 

This mismatch was reflected in the spatial correlations between both datasets (Fig. 2). 447 

Moderate correlations were observed for general discussions on climate change (r = 0.27, p 448 

= 0.168) and drought-related content (r = 0.41, p = 0.031), with the latter being statistically 449 

significant. This suggests a partial overlap between the regions where scientific research is 450 

concentrated and where public discourse on Twitter is most active (Fig. 2a and 2b). 451 

Heatwaves exhibited the strongest spatial congruence (r = 0.54, p = 0.003), with regions such 452 

as western and central Spain showing a statistically significant alignment between the 453 

frequency of Twitter posts and scientific publications (Fig. 2e). Conversely, floods (r = 0.16, p 454 

= 0.414) and wildfires (r = 0.08, p = 0.681) displayed weaker congruence, with sporadic 455 

regions of overlap but overall limited alignment (Fig. 2d and 2c). Storms presented a negative 456 

correlation (r = -0.17, p = 0.375), indicating an inverse relationship between public discourse 457 

and scientific activity (Fig. 2f). This suggests that regions with higher public attention, such as 458 

northeastern Spain, were underrepresented in the scientific literature. 459 
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 460 
 461 
Fig. 2. Spatial congruence between scientific literature and Twitter posts related with a) general climate 462 
change topic, b) drought, c) wildfires, d) floods, e) heatwaves and f) storms. The analyses were 463 
performed considering a time window from 2012 to 2022, as well as the administrative regions of 464 
Portugal and Spain. The shading intensity represents the absolute difference between the number of 465 
scientific publications and the volume of Twitter posts for each topic, with darker shades indicating 466 
higher differences. The Pearson correlation coefficient between both variables is displayed below each 467 
map. 468 
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Spatial congruence between scientific literature and Twitter posts varied across the 469 

climate-related phenomena (Table 2). Significant spatial autocorrelation was detected in 470 

Twitter discourse for heatwaves (Moran’s I = 0.391, p = 0.003) and general discussions on 471 

climate change (Moran’s I = 0.513, p < 0.001), while scientific literature showed no significant 472 

clustering for these topics. Conversely, droughts exhibited significant spatial autocorrelation 473 

in scientific research outputs (Moran’s I = 0.302, p = 0.019) but not in public engagement. 474 

Wildfires, floods, and storms-related content showed no significant spatial autocorrelation in 475 

either scientific literature or Twitter posts. The Spatial Lag Model indicated that for heatwaves, 476 

scientific publications had a significant positive effect on social media engagement (β = 0.361, 477 

p = 0.036). In contrast, for general climate change discussions and droughts, scientific 478 

literature had no significant influence on Twitter posts (β = 0.017, p = 0.926; β = 0.305, p = 479 

0.178, respectively), In these cases, public engagement appeared to be primarily shaped by 480 

spatial spillover effects (W = 0.320, p = 0.104; W = 0.521, p = 0.001, respectively). 481 

 482 
Table 2. Spatial autocorrelation (Moran’s I) and Spatial Lag Model (SLM) values for scientific literature 483 
and Twitter posts related to general climate change topic, drought, wildfires, floods, heatwaves, and 484 
storms. SLM (β) represents the effect of scientific literature on Twitter engagement, while SLM (W) 485 
describes the spatial dependence of public discourse in relation to scientific research. Statistically 486 
significant results are highlighted in bold. 487 

 Moran’s I SLM (β) SLM (W) 

Scientific literature    

General climate change topic 0.162, p = 0.168 - - 

Drought 0.302, p = 0.019 0.305, p = 0.178 0.320, p = 0.104 

Wildfires 0.224, p = 0.071 - - 

Floods 0.130, p = 0.249 - - 

Heatwaves -0.005, p = 0.824 - - 

Storms 0.004, p = 0.779 - - 

Twitter posts    

General climate change topic 0.513, p < 0.001 0.017, p = 0.926 0.521, p = 0.001 

Drought 0.147, p = 0.203 - - 

Wildfires 0.140, p = 0.221 - - 

Floods -0.032, p = 0.973 - - 

Heatwaves 0.391, p = 0.003 0.361, p = 0.036 0.503, p = 0.003 

Storms 0.157, p = 0.180 - - 

 488 

5. DISCUSSION 489 

 490 
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In this study, we compared climate change discourses in scientific literature and social 491 

media posts from 2012 to 2022 across the Iberian Peninsula. To provide insights that can 492 

support management response to climate change, we aimed to answer two central questions: 493 

(1) how divergent are thematic emphases on climate-related natural hazards in the scientific 494 

literature, compared to public discourse on social media, and (2) are there significant 495 

geographical discrepancies between scientific focus and social media attention on climate 496 

change and related natural hazards? 497 

 Overall, our results revealed notable differences in the prominence of climate-related 498 

natural hazards (Fig. 1), with droughts and wildfires being most frequently mentioned in both 499 

datasets, though with varying emphasis. Scientific literature showed pronounced regional 500 

differences in focus, particularly for droughts, floods, and heatwaves, while public discourse 501 

on social media exhibited a broader and more widespread interest (Fig. 2). Heatwaves 502 

demonstrated the strongest spatial congruence between scientific publications and Twitter 503 

posts (Fig. 2e). We also observed different levels of spatial autocorrelation and influence 504 

between the two realms, with significant positive spatial connections for heatwaves but weaker 505 

associations for other phenomena such as wildfires and storms (Table 2). 506 

 507 

Comparing scientific literature and social media posts on climate change 508 

 509 

Overall, our text mining and spatial analyses of scientific literature and social media posts 510 

highlight the dynamic and divergent ways in which climate change is discussed and 511 

represented across these two sources. We found differences in addressing certain 512 

phenomena, particularly drought and wildfires (Fig. 1). Drought was particularly prominent in 513 

the scientific literature. This focus is likely attributable to the region's vulnerability to prolonged 514 

dry periods, which pose significant challenges to water resource management, agricultural 515 

productivity, and ecosystem stability (Páscoa et al., 2017). However, drought received 516 

considerably less attention in Twitter posts (18%), indicating a potential gap in public 517 

perception or prioritization of this slow-onset phenomenon. The gradual progression of 518 

drought may be less noticeable or “newsworthy” for social media users, who are often drawn 519 

to immediate and visually striking events (Stieglitz et al., 2018). Conversely, wildfires had more 520 

attention on Twitter compared to scientific literature. This discrepancy is likely influenced by 521 

the immediate and visible impacts of wildfires on communities and landscapes in the Iberian 522 

Peninsula, where such hazards are recurrent (Senande-Rivera et al., 2025; Carmo et al., 523 

2021). Additionally, wildfires tend to have high visibility in media coverage, which can further 524 

amplify public attention (Paveglio et al., 2015). These differences highlight important 525 

challenges for regional environmental governance, emphasizing the potential necessity of 526 

integrating empirical scientific knowledge with public perceptions to design adaptive 527 
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management strategies that address both ecological dynamics and community priorities 528 

(Avilés Irahola et al., 2022). 529 

Floods, heatwaves, and storms, in contrast, showed more comparable levels of attention 530 

across scientific and public domains (Fig. 1). The focus on floods likely reflects their substantial 531 

socio-economic impacts in the Iberian Peninsula, especially in highly vulnerable low-lying and 532 

coastal regions (Sánchez-García & Schulte et al., 2023). Heatwaves and storms also garnered 533 

moderate attention, with slightly higher visibility on Twitter, possibly due to their immediate 534 

effects on daily life and health (Lorenzo et al., 2021; Gonçalves et al., 2020). Phenomena such 535 

as avalanches, dust storms, and downbursts were rarely addressed in either scientific 536 

literature or social media discourse. The lower prominence of these hazards in the Iberian 537 

Peninsula may explain this limited emphasis. Nonetheless, this underrepresentation, 538 

especially on social media, may signal a need to enhance awareness in regions where these 539 

hazards have the potential to cause significant localized impacts. 540 

 541 

Spatial patterns in scientific literature vs. social media posts on climate change 542 

 543 

The spatial distribution of scientific literature and social media posts across Portugal and 544 

Spain revealed important divergences between academic focus and public engagement on 545 

climate change and related phenomena (Figs. 2 and S2). In scientific research, the 546 

prominence of regions such as Catalonia, Andalusia, and northern and central Portugal 547 

reflects a well-documented emphasis on areas historically exposed to climate risks (Calheiros 548 

et al., 2021; Páscoa et al., 2017; Lorenzo et al., 2021). This concentration is likely influenced 549 

by factors such as data availability, population density, global trends, funding opportunities, 550 

and resource allocation (Eggleton & Winfield, 2020; Ebadi & Schiffauerova, 2016). Research 551 

efforts often align with larger consortia or funding priorities, which can limit or drive the focus 552 

to certain regions and phenomena, potentially overshadowing more localized or emerging 553 

events (Petersen, 2021). Conversely, Twitter engagement shows broader and more diffuse 554 

public interest that may be shaped by immediate, event-driven responses amplified by media 555 

coverage and local impacts (Kirilenko et al., 2015). Coastal regions and urban centers, for 556 

instance, showed heightened Twitter activity in response to floods and storms, despite these 557 

areas being underrepresented in scientific research. This discrepancy underscores the 558 

reactive nature of social media, which captures public attention during or after extreme events 559 

(Silver & Andrey, 2019), while academic focus tends to prioritize persistent climate risks in 560 

well-documented areas (Ford et al., 2018).  561 

Wildfires illustrate both convergence and divergence. Spatial congruence analysis did not 562 

reveal any significant spatial autocorrelation in either scientific literature or social media posts 563 

(Fig. 2c, Table 2). These findings may reflect the contrasting temporal and spatial dynamics 564 



 19 

between long-term research outputs and real-time public engagement. While northern and 565 

central Portugal and Catalonia likely attract significant research attention due to their historical 566 

wildfire susceptibility (Oliveira et al., 2021; Alcasena et al., 2019), regions like Extremadura 567 

and Andalusia, while experiencing significant wildfire activity, show less concentrated 568 

research outputs. This suggests that factors beyond ecological vulnerability, such as resource 569 

allocation, regional priorities, and research capacity, may also influence the distribution of 570 

academic attention (de Diego et al., 2023). Public interest, however, is more geographically 571 

dispersed, with social media engagement spreading to regions like central and coastal Spain, 572 

likely driven by media coverage. Scientific efforts may focus on persistent wildfire hotspots 573 

and long-term wildfire risks. However, public concern appears to be predominantly event-574 

driven, responding to immediate threats or widely publicized events (McCaffrey, 2015; Momin 575 

et al., 2024). 576 

Moderate positive correlations for general climate change discussions and drought 577 

suggest some degree of alignment between scientific research and social media discourse 578 

(Fig. 2a and 2b). For the general climate change topic, the spatial autocorrelation analysis 579 

revealed significant clustering in social media posts (Table 2), which suggests that public 580 

interest is highly localized. Regional mismatches were observed in areas such as northern 581 

Portugal and southern Spain, where scientific research is more prominent. This may reflect a 582 

focus on systemic climate issues that are particularly acute in these regions, such as wildfires, 583 

desertification, and water scarcity (Oliveira et al., 2021; Hervás-Gámez & Delgado-Ramos, 584 

2019). Conversely, in central Spain, public discourse predominates, likely driven by locally 585 

resonant issues, high-profile events such as the Conference of the Parties (COP25) held in 586 

Madrid, or public concern over climate change and its local consequences (Polaino et al., 587 

2024). For droughts, scientific literature showed significant spatial autocorrelation but not 588 

public engagement (Table 2). The research on this phenomenon is geographically clustered 589 

in the southern and eastern parts of Spain, possibly due to their chronic exposure to drought 590 

(Hervás-Gámez & Delgado-Ramos, 2019), while Twitter discourse did not exhibit the same 591 

localized pattern. This discrepancy suggests that public attention may be event-driven, with 592 

spikes during specific drought episodes rather than consistent interest that reflects the long-593 

term severity of this issue (Matei et al., 2021). Moreover, populations living in drought-prone 594 

regions may become familiarized with such hazards, leading to reduced sensitivity to changes 595 

in drought patterns and a gradual decline in public concern over time (Panda, 2016). This gap 596 

highlights the need for more effective communication strategies to raise awareness on the 597 

long-term severity of slow-onset phenomena like droughts. 598 

Heatwaves showed the strongest spatial alignment, between scientific research and 599 

social media discourses, particularly in western and central Spain (Fig. 2e). As with the general 600 

climate change topic, we found notable clustering in social media posts (Table 2), which 601 
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indicates that public interest regarding heatwaves is concentrated in specific areas. Moreover, 602 

scientific publications seem to have a significant effect on social media engagement (Table 603 

2). This suggests that public responses are shaped not only by local research but also by the 604 

neighboring regions. Such congruence likely stems from the immediate and highly visible 605 

impacts of heatwaves, which tend to dominate both public attention and research agendas 606 

due to their direct consequences on human health, infrastructure, and ecosystems 607 

(Klingelhöfer et al., 2023; Grasso et al., 2017). 608 

In contrast, floods exhibited more pronounced regional mismatches, with a weak 609 

correlation and no significant spatial autocorrelation in both scientific literature and social 610 

media posts (Fig. 2d, Table 2). These disparities may arise from floods’ localized impacts and 611 

the nature of public attention, which often focuses on high-profile events or urban areas 612 

particularly affected by flash floods (Hale et al., 2018). On the other hand, scientific research 613 

may aim to understand broader flood risk patterns, such as floodplain dynamics and long-term 614 

adaptation strategies, which may attract less public interest (Grigg, 2024; Ceola et al., 2022). 615 

These results underscore the need for more effective science communication strategies to 616 

improve public understanding of flood risks. 617 

Lastly, storms exhibited a negative correlation between scientific and social media 618 

attention across regions (Fig. 2f). Moreover, there was no significant clustering in either 619 

scientific literature or social media posts (Table 2), with northern Spain showing moderate 620 

Twitter activity while remaining underrepresented in scientific research. This mismatch may 621 

arise from the scientific focus on broader systemic storm analysis, while public discourse tends 622 

to be driven by large-scale and more frequent storm events that resonate locally (Torricelli et 623 

al., 2023). Additionally, limited research funding or infrastructure in certain areas may 624 

constrain scientific efforts, which may further contribute to the discrepancies observed 625 

(Aagaard et al., 2021). 626 

 627 

Limitations, opportunities, and the way forward 628 

 629 

We focused exclusively on articles that directly address climate change. Consequently, 630 

our review may have overlooked several potentially relevant studies. For instance, research 631 

on biodiversity impacts, renewable energy, pollution, extreme weather events (such as 632 

droughts, hurricanes, and wildfires), or ocean acidification may not explicitly include the term 633 

‘climate change’ but is still crucial to understand broader climate dynamics (Mahecha et al., 634 

2022; Cho, 2021). This could lead to the underrepresentation of important contributions. 635 

Additionally, restricting our search to specific phrases focused directly on climate change as 636 

a phenomenon, rather than including studies that address its impacts, consequences, or 637 

mitigation strategies under alternative terminologies, may have led to the omission of relevant 638 
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works (Schuldt et al., 2011; Pathak et al., 2024). For instance, articles that explore 639 

sustainability, adaptation, resilience, or environmental policy may discuss climate change 640 

indirectly but use alternative frameworks (Selje et al., 2024). Consequently, such articles may 641 

have been excluded, reducing the diversity of perspectives and disciplines in our dataset.  642 

Our analyses assume equal access to social media across regions. However, there are 643 

regional differences in internet penetration, with rural and less populated areas sometimes 644 

experiencing lower connectivity compared to urban centers (Feurich et al., 2024). This is the 645 

case for Spain, where the overall internet penetration rate is 94.0% (DataReportal, 2022a), 646 

and for Portugal, where it is 85.0% (DataReportal, 2022b). In both countries, rural areas tend 647 

to have lower connectivity levels than urban centers. This may lead to lower levels of online 648 

engagement in these areas, despite potentially experiencing frequent or severe climate-649 

related natural hazards like wildfires and heatwaves. Social media use is also skewed by age 650 

and socioeconomic status (Yates et al., 2015). Younger populations and urban dwellers are 651 

more active on online platforms, while older generations and lower-income groups may rely 652 

more on traditional media. This demographic disparity can lead to biases in social media-653 

based analysis, where certain voices and concerns are overrepresented or underrepresented. 654 

Additionally, our analysis did not explicitly account for the role of traditional media. Traditional 655 

media can exert an indirect influence on social media patterns and lead to a misrepresentation 656 

of public concern in certain regions. It should also be noted that geographic data associated 657 

with Twitter posts may not always be precise or available. Many users choose not to share 658 

their exact locations, and geotagging is limited to those who explicitly enable it. Consequently, 659 

the geographic distribution of social media posts may not reliably represent the areas most 660 

affected by these phenomena, which can lead to possible gaps or inaccuracies in social media 661 

data. Moreover, hotspots in public engagement, as measured by post frequency, may coincide 662 

with high-profile events (e.g., major wildfires, extreme heatwaves), but might not sustain 663 

throughout the entire period (Noviello et al., 2023). Future research could incorporate survey 664 

data, media content analysis, and participatory mapping to support a more holistic 665 

understanding of public engagement across platforms and scales, thereby providing a more 666 

robust and multidimensional understanding of societal responses to environmental challenges 667 

(Revez et al., 2022). 668 

Nonetheless, our study revealed key insights on the divergence between scientific 669 

research and social media discourse on climate change and climate-related natural hazards 670 

in the Iberian Peninsula. We adopted an interdisciplinary approach that integrates insights 671 

from environmental science, communication studies, and spatial analysis to enable a more 672 

holistic understanding of climate change dynamics. This allowed us to evaluate not only the 673 

informational content of public and scientific narratives but also how they intersect with 674 

context-specific vulnerabilities, institutional responses, and governance mechanisms (Donald 675 
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et al., 2022). Our comparative analysis underscores the importance of improving public 676 

communication about the urgency of long-term environmental risks, whose far-reaching 677 

consequences are often less immediately apparent. A key insight potentially emerging from 678 

our results is the critical need for improved public engagement, particularly regarding issues 679 

that may not receive immediate media attention, such as drought and floods. Scientific 680 

literature often focuses on long-term trends and systemic vulnerabilities, while public 681 

discourse may be more influenced by acute, event-driven content that captures immediate 682 

attention (Torricelli et al., 2023; Weber, 2010). Specifically, targeted social media campaigns 683 

and educational outreach initiatives can raise awareness regarding the long-term risks of 684 

climate change-related phenomena, especially in regions that recurrently experience these 685 

events (Segerberg, 2017). Furthermore, the spatial and thematic disparities between public 686 

and scientific focus suggest an opportunity to foster greater interaction between research, 687 

policy, and social media. By aligning research agendas with local public concerns and 688 

leveraging both traditional media and social media platforms to communicate key findings, the 689 

scientific community can help bridge the gap between academic research and public 690 

awareness. Such an approach would not only enhance the effectiveness of climate change 691 

adaptation strategies but also foster a more informed and engaged public capable of 692 

responding to climate risks more effectively (Hügel & Davies, 2020; Segerberg, 2017). In 693 

particular, the alignment observed in discussions around heatwaves may serve as a useful 694 

model for other climate-related hazards. The strong spatial congruence and shared focus 695 

between scientific research and public discourse suggest that immediate and visible impacts 696 

can act as focal points for synchronized climate communication and action (Chang et al., 697 

2022). Expanding this alignment to other climate-related phenomena can foster more coherent 698 

regional climate governance (Attanasio, 2018). 699 
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