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Abstract 

Species occurrence data is the fundamental unit of any analysis of species distribution, 

biodiversity patterns, species extinction vulnerability, and temporal trends. This data is also a 

critical component of monitoring progress towards global biodiversity targets, such as those 

included in the Kunming-Montreal Global Biodiversity Framework (GBF) of the Convention 

on Biological Diversity. Yet despite exponential growth of primary biodiversity data (such as 

that hosted by GBIF and OBIS), the headline indicators of the GBF’s monitoring framework 

relies on the IUCN RedList index as the species conservation indicator, and have no other 
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indicator on the distributions of native species. This paper explores the contents of the largest 

global species distribution databases, and outlines some of the remaining challenges to bringing 

these data together for enhanced decision making. GBIF alone now hosts more than 3.5 billion 

records, increasing to more than five times the number of records since 2015, and a 20% growth 

since 2023. Despite this massive growth, most of the world's most biodiverse areas, especially 

in the Tropics, both on land and in the ocean still lack data, and concerted efforts will be needed 

to improve the coverage of these regions. More specifically, countries such as Japan and South 

Korea have seen dramatic expansions of data coverage, whilst North Africa, Central Asia, and 

the High-Seas have not witnessed comparable growth. In the oceans, expanding geographic 

coverage partially comes from tracking data for a small number of species and/or individuals 

using tags. Other types of marine sampling effort are disproportionately concentrated on the 

temperate continental shelf and slope areas of the north Atlantic. Furthermore, few databases 

collate long-term monitoring data, and accurately inferring change from small numbers of 

unstandardised collecting events, which produce a large quantity of uncurated data, is 

challenging. Further progress can be made if journals mandate standardised data be added to 

the key repositories, using the same approach already implemented for molecular data. 

Governments and businesses should also support the sharing of species occurrence data 

through standardised data infrastructure, such as GBIF and OBIS, and also ensure financial and 

technical support for data curation and quality control to minimize impacts of species 

misidentification. 

Introduction  

We are currently experiencing a global biodiversity crisis, marked by major declines in species 

populations across habitats and realms (IPBES, 2019). Understanding and attempting to 

mitigate declines relies heavily on our knowledge of when and where species exist. Species 

occurrence records represent an essential source of data on species distributions, and may in 

some cases help establish relative abundances and trends. Such information can be used to 

guide planning and decision-making across ecological and socio-economic domains, including 

conservation and sustainable resource management in sectors such as forestry, agriculture, and 

fisheries. However, the ability to discover, use and re-use datasets is severely compromised by 

the variety of platforms used to deposit them, a lack of clarity on how data in one system relates 

to that in another, and the lack of standardisation of data across these platforms (Bayraktarov 

et al., 2019; Cornford et al., 2022; Marques et al., 2024). Many data sources also fail to define 

clearly what data are freely and openly available and accessible. The origins of the data, and 

the length of any time series available, can also be complicated to find on some data platforms 

(Stephenson & Stengel, 2020). However, dedicated platforms have developed standards to 

maximise their usability, vastly enhancing the capacity to use and analyse such data, which 

may not be applied to data stored on more general platforms (Guralnick et al., 2018; Ingenloff 

et al., 2025).  

Analyzing the availability of primary biodiversity data (occurrence records and species 

populations) requires integrating across two separate kinds of data systems. The first key 

resources are provided by dedicated platforms; such as the Global Biodiversity Information 

Facility (GBIF), the Ocean Biodiversity Information System (OBIS), and programs such as the 
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Botanical Information and Ecology Network (BIEN); which aggregate species occurrence data 

hosted and shared by a wide variety of institutions, projects and networks. Also, although 

mainly known for its expert-informed distribution ranges and associated data on threat status 

and extinction risk, the IUCN Red List database also contains point locality data which is used 

for some assessments. The second key set of resources are dedicated efforts to collate studies 

and programs that analyse biodiversity change over time or space, such as BioTIME, 

PREDICTS, and the Living Planet Database (LPI) (Dornelas et al., 2025, Hudson et al., 2017; 

WWF 2024).  

Recent years has seen an exponential growth of data within these databases, but the extent to 

which this growth overcomes previous biases and gaps (i.e. Hughes et al., 2021; Troudet et al., 

2017) especially when multiple databases are assessed, and how current data may contribute 

towards tracking progress to global biodiversity targets (Table S1), remain unclear. As data 

availability has increased exponentially in recent years, understanding where this growth is 

taking place provides insights on those regions and taxa that are currently under-represented 

and those that might be expected to sufficiently improve in their data representation and 

availability based on their present trajectory. This enables two things: firstly the identification 

of areas where successful growth of data may have transferable lessons for other regions; and 

secondly, the identification of geographic regions, and environmental spaces, where further 

efforts are clearly needed to mobilise data, which is critical to provide the basis for proactive 

conservation planning (i.e see Merow et al., 2025; Feng et al., 2022; Meyer et al., 2015). 

Furthermore, even when new data has better spatial representativeness, the taxonomic 

representativeness is also a key factor, as single species programs (such as satellite tracking or 

continuous plankton recording) may fill spatial data gaps, without providing representative data 

for monitoring all taxa. 

Here we explore four species occurrence datasets (GBIF, OBIS, BIEN, IUCN), and also 

include a supplemental analysis of five population or community datasets, to assess how 

representative they are across space and taxa, and how well they track changes in biodiversity 

over time. We do not include datasets that include modelling or transformation of the data, 

species range / polygon data (GARD; Roll et al., 2017, AntMaps; Janicki et al., 2016) as the 

accuracy of such data is defined by the existence and representativeness of primary species 

distribution datasets. 

We also identify key gaps within each dataset, and where those gaps are closing.  

Understanding how representative these species occurrence datasets are, identifying their 

various gaps, and the limitations of their sensible use is critical, not only to inform current 

analysis, but to prioritise and focus efforts to mobilise new data generation efforts on taxa, 

regions and ecosystems which are currently least represented. This is especially important 

when these datasets form the foundation for many species range analyses or modelling outputs, 

which are used in vast numbers of scientific papers, and also in national to global conservation 

planning and policy, and work with the business and finance sectors. 

Furthermore, we assess the relationship between the largest of these databases (GBIF) with 

basic metrics of intactness and accessibility following the example of Hughes et al. (2021) to 
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assess how representative data is on a gradient of disturbance, highlighting the preponderance 

of data in highly accessible and more disturbed areas.  

Finally, we provide recommendations for an improvement of how data is collated to improve 

the availability of adequate data to track global biodiversity targets, given the crucial 

importance of data in tracking progress towards many of the targets of the GBF (Table S1).  

Methods 

We present the major global species occurrence databases in the world, and summarise 

coverage of data, and how coverage has changed over the last decade (largely based on GBIF-

mediated data). In addition, we explore how changing the resolution of analysis impacts the 

perceived regional coverage based on OBIS data. Finally, we conducted additional analysis on 

spatial biases in GBIF in relation to distance to infrastructure and environmental intactness 

(based on the human modification index) (Supplementary Methods 1), and taxonomic and 

spatial representativeness and coverage of other monitoring datasets (PREDICTS, Living 

Planet Index (LPI), BioTIME and others) (Supplementary Methods 2). All spatial analysis was 

conducted using an Equal Area Projection. 

Primary distribution datasets 

1. GBIF 

GBIF-mediated data came directly from the GBIF Secretariat, including a table with the 

number of occurrence records and species available in a snapshot of GBIF-mediated content 

for each year (between 2008 and 2025), for each country, and for each taxonomic group 

(covering the full spectrum of species included in GBIF; full list of “taxa”, generally at Class 

level are provided in supplements). Global GeoTIFFS of point density for 2015 and 2025 at a 

5km resolution were also provided (GBIF 2025). 

Based on the table, summaries of points per year for each group were aggregated for various 

groupings including by intersecting realms and UN regions (to add refinement to large and 

heterogeneous regions, such as “Asia” and better reflect both biotic variation and geological 

regions). The areas are also comparable to IPBES subregions, though some sub-regions have 

been merged (South and Central America- Latin America; East Africa, Central, Southern 

Africa, West Africa- Sub-Saharan Africa; North, North-East and Central Asia- Central-North 

Asia; IPBES 2021).  

For mammals, birds, reptiles and amphibians, we also calculated the number of species 

recorded by IUCN for each of these taxa at a national level, to compare to the number in GBIF, 

to gain some understanding of “potential completeness” in terms of the number of species 

recorded in GBIF and the number of species recorded for each country by IUCN (downloaded 

from the Red List website, selecting the appropriate taxa and downloading the shapefiles, 

similar to the approach applied by Oliver et al., 2021). Richness from IUCN was calculated 

using the “count overlapping polygon” toolbox in ArcMap. Taxonomic coverage was also 

explored using both the table, and directly via the GBIF portal to provide insights when a single 
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year saw a large increase in records in certain regions, and to explore the contribution of citizen 

science vs traditional forms of data collection. 

For areas covered, we used the 5 km resolution GeoTIFFS to assess the percentages of various 

“zones” with at least one record per 5 km gridcell. This was also repeated using higher numbers 

of records per cell (10, 25, 50, 100 etc) to gauge the level of coverage for these designations. 

Designations included countries, biogeographic realms and ecoregions for terrestrial areas, and 

for oceans the GBIF data was combined with OBIS data to calculate the percentage of 

Exclusive Economic Zones (EEZs - these were defined by MRGID designations, as well as 

including Areas Beyond National Jurisdiction- ABNJ) and Longhurst regions (Longhurst, 

1998) that had data. These designations were selected to provide a useful means to reflect 

coverage based on both biotic elements (ecoregions/realms, Longhurst regions) and 

geopolitical entities for management.  

Assessments were made based on an equal area projection, the percentage of each designation 

for 2015 and 2025 which had data (based on the dimensions above) was calculated, and the 

change between the two mapped. All calculations were conducted in ArcMap 10.8 (ESRI). 

Ecoregions, realms and biomes were downloaded from the ‘Resolve’ 2017 dataset (Dinerstein 

et al., 2017), EEZs were from Flanders Marine Institute (2024), Longhurst regions were from 

MarineRegions (2025), all spatial data used is listed in Table S2. 

2. OBIS 

The methods applied to GBIF data were repeated for OBIS data, based on data provided by 

OBIS in GeoTIFF form. This data was analysed in two ways, firstly it was aggregated to a 5km 

resolution and combined with GBIF to provide a binary map (data or no data) for the oceans. 

In addition, analysis was conducted at approximately 1 km, 2 km, 5 km, and 11 km to calculate 

how the percentage of each “zone” with data varied (based on at least one point per grid) as 

cell size increased. These resolutions were selected as they represent common resolutions for 

modelling analysis.  

Designations (EEZs plus ABNJ, Longhurst regions) were used to assess the percent of each 

region covered with data (at least one point per cell). In addition, the coverage of coral-reefs 

with data based on high resolution data (0.01o) was assessed by downloading coral-reef data 

from UNEP-WCMC (2022), and assessing the coverage of observation data within reefs (only 

the highest resolution (1km) of observation data was used for this due to the size and 

dimensions of reefs, as coarser resolutions would reduce the cells per reef and include 

increasing amounts of non-reef). All assessments were made in ArcMap 10.8, based on an 

equal areas projection. In each case, data was classified to binary (data or no data) and the 

“tabulate area” tool used to calculate the area covered within each designated zone (EEZs, 

Longhurst regions etc). In addition, the distributional patterns of various representative taxa 

(sharks and rays, tunicates, sea cucumbers) were individually mapped based on OBIS, GBIF 

and IUCN data to assess how species observation records compare to known diversity patterns 

in these groups. These maps were based on spreadsheets of point-based diversity per taxa from 

OBIS, as well as directly downloading distribution data from GBIF. Based on these, sampling 
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density and richness of each taxa was mapped to compare to estimated patterns of diversity 

based on IUCN Red List of Threatened Species assessments for those groups. For the 

comparisons we downloaded shapefiles of species distributions from the IUCN for each taxa, 

then used the count overlapping polygon tool in ArcMap 10.8) to map presumed richness 

according to the IUCN. These patterns of “known richness” were then compared to sampling 

intensity based on the OBIS and GBIF data. 

3. BIEN  

BIEN focuses solely on plant data and has 269,434,901 samples after cleaning and 

standardisation, which has been used to map ranges of 289,743 species (though 112,953 are in 

the Americas) of 350,000 extant plant species. Whilst BIEN does draw on GBIF data (among 

other sources) it applies its own taxonomic backbone, and does not share data with GBIF (Feng 

et al., 2022; Enquist et al., in review; Maitner et al., 2018; Feng et al., 2022). The Botanical 

Information and Ecology Network (BIEN) database integrates over 284 million records for 

land plants from herbarium specimens, ecological plots, citizen science, and trait databases into 

a centralized integrated geospatial database, enabling large-scale biodiversity research. The 

BIEN workflow has used the primary distribution data to map the distributions of ~290,000 

plant species (out of approximately 350,368 species known globally; Antonelli et al., 2023). 

Like OBIS and BIEN coverage of countries and ecoregions was calculated based on a 5km cell 

using the tabulate areas tool in ArcMap in an equal areas projection (Data S7).  

 

In addition, given the availability of “checklists” we assessed the taxonomic completeness for 

different regions (detailed later), which first required standardising taxonomy within BIEN 

observation data. The core BIEN tools for data cleaning include the Taxonomic Name 

Resolution Service (TNRS) to standardize synonyms and correct spellings (Boyle et al., 2013); 

Geographic Name Resolution Service (GNRS) to standardize political names and check 

whether coordinates fall within the finest political unit specified; Geocoordinate Validation 

Service (GVS) for removing erroneous coordinates including political centroids and herbaria 

locations (Boyle et al., 2022); and Native Species Resolver (NSR) to filter records out 

associated with introduced species, typically based on regional checklists or floras (Boyle et 

al., 2024). Taken together, this suite of corrections and filters leaves 56% of the entire database, 

or 159,189,390 unique species occurrence records, available for downstream analyses (Enquist 

et al., in revision). 

  

To analyse the BIEN data we used the Checklist-based distribution datasets, compiled from 

floras and national/regional checklists, determine species’ geographic presence at coarse 

resolution and provide a complementary source of information to point locality databases for 

plants. Among these, the World Checklist of Vascular Plants (WCVP) (Govaerts et al 2021), 

curated by the Royal Botanic Gardens, Kew, records accepted taxonomy and distribution 

across the 369 ‘botanical countries’ of the World Geographical Scheme for Recording Plant 

Distributions (WGSRPD) (Brummitt 2001). The resource is disseminated via the Plants of the 

World Online (POWO) portal (https://powo.science.kew.org/) and as versioned GBIF checklist 

snapshots (Govaerts et al. 2025). The latest versions available on GBIF indicate ~98% 
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taxonomic alignment between the GBIF and WCVP backbones, suggesting good prospects for 

reconciling GBIF records with WGSRPD-based ranges. Additional global resources with 

country/region-level coverage include the Global Inventory of Floras and Traits (GIFT) 

database (5) (≈5,169 checklists across ≈3,400 regions), which also uses WCVP and can provide 

less spatially biased regional species lists than GBIF (Weigelt et al. 2020), and the Botanic 

Gardens Conservation International’s (BGCI) GlobalTreeSearch database 

(https://tools.bgci.org/global_tree_search.php) (≈60,000 tree species with country 

distributions). Together these sources provide complementary, curated range information 

where WCVP/WGSRPD might be too coarse or point data are absent. 

 

We have used the point data from BIEN in conjunction with the WCVP botanical country 

checklists to evaluate the sampling completeness of BIEN occurrence data by assessing the 

degree to which it aligns with the floristic diversity expected from WCVP, and to help guide 

collection and digitisation priorities to fill in gaps in plant diversity knowledge. We have not 

undertaken a comparable analysis between IUCN red list, BIEN and WCVP databases. 

 

We compared species occurrence records compiled and curated by BIEN with species richness 

estimates derived from the WCVP database. BIEN occurrence records described previously 

were consolidated into a parquet file containing species identity (binomial), latitude, and 

longitude coordinates. To enable spatial aggregation, we employed the WGSRPD, level 3, 

hereafter referred to as “botanical countries”, provided through the rWCVP R package (Brown 

et al. 2023). These geographic distribution units were rasterized at a resolution of 

approximately one kilometre at the equator to facilitate spatial overlay with occurrence records. 

All BIEN records were then spatially assigned to botanical countries by intersecting geographic 

coordinates with the rasterized WGSRPD layer of botanical countries. For each botanical 

country, we calculated the number of occurrence records and the number of unique species 

represented in BIEN. 

To derive reference estimates of species richness, we used WCVP data as implemented in 

rWCVP and its companion package rWCVPdata. Species names were filtered to retain only 

accepted taxa at the species rank, and distributions were extracted, excluding extinct or 

doubtful records. Botanical countries were assigned both total species richness and native 

species richness values, thereby providing reference baselines against which BIEN data could 

be evaluated. 

Comparisons between BIEN and WCVP were conducted at the botanical country level, to 

assess potential under-sampling by the percentage of species per botanical country in WCVP 

which have been recorded in BIEN. Differences in richness were quantified both as absolute 

discrepancies in species counts (expected species richness from WCVP minus species richness 

obtained from BIEN occurrence records) and as relative deviations from WCVP, with 

percentage WCVP species with records in BIEN: 

%𝛥𝑖 =
𝐵𝐼𝐸𝑁𝑐𝑜𝑢𝑛𝑡, 𝑖 −  𝑊𝐶𝑉𝑃𝑐𝑜𝑢𝑛𝑡, 𝑖

𝑊𝐶𝑉𝑃𝑐𝑜𝑢𝑛𝑡, 𝑖
× 100  
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5. IUCN red list of threatened species  

The IUCN Red List assessment process requires a map of species distribution as part of the 

species extinction vulnerability assessment, but data sources used may vary. To analyse this, 

we downloaded the IUCN Red List data from the online data portal (IUCN 2025). We then 

assessed the sources of data used to map species ranges, focusing on the availability of point 

locality data (see Hughes et al., 2024). Summaries were made for each major kingdom where 

IUCN Red List assessments have been made, in addition to an additional analysis of the phylum 

Chordata given their extensive coverage within the Red List.  

Results 

In this paper, we focus our analysis on species occurrence and species diversity and population 

trends in databases. Additional descriptions of taxonomic biases in GBIF data are provided in 

Supplementary Results S1, spatial biases in Supplementary Results S2, and detailed 

descriptions of other monitoring datasets in Supplementary Results S3. 

Species occurrence data 

GBIF and OBIS 

GBIF is the largest global repository of species occurrence data, with 3,133,420,793 records as 

of July 2025. Of these, 2,013,645,678 are birds (64.3% of all records, due largely to the 

contribution to GBIF from eBird, which makes up 48.3% of all records, and 75% of all bird 

records in GBIF). In terms of coverage, the global spatial coverage has increased dramatically 

in recent years going from 6.19% of the planet covered in 2015 to 15.52% in 2025 at a 5km 

resolution (Figure 1, Figure S1A-B). Overall, 78 countries have under 50% of their area 

represented according to GBIF, and 34 of these have under 25% covered, with only one of 

these showing a substantial increase (>20% growth) between 2015 and 2025 (North Korea). 

However, unsurprisingly terrestrial areas were better covered (11.84% to 25.28%) than marine 

(3.42% to 10.72%) based on GBIF data, though it should be noted that at higher resolutions 

percentage coverage will decrease (Hughes et al., 2021). 
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Figure 1. A. GBIF data density based on data available in 2025, for each year see Figure S1A-B. B. 

Growth of data over a decade in GBIF, Red shows data from 2015, yellow shows the additional data 

growth within GBIF between 2015-2025. For growth of data over time in different regions see Figure 

S2. C. Density of OBIS data at 0.1 degree. 

In terms of the national land area covered within GBIF, 62 countries/administrative areas have 

areas of under one degree (111 km2) thus assessing the coverage as a percentage may not be 

indicative. Some parts of Europe and other high-income regions (for example, Scandinavian 

countries and the UK) had very good coverage (Figure S1C-D), with many reaching 100% by 

2025. In addition to looking at absolute coverage, understanding where increases in coverage 

have occurred in recent years, especially for areas with low coverage, provides an indication 

of where we may expect to see improvements in the coming years. Some higher-income 

countries saw dramatic improvement in coverage over the decade: for example, New Zealand 

increased from 60% to 99%, Japan increased from 44% to 95% coverage, and South Korea 

increased from only 26% to almost 100% coverage. Conversely, Antarctica has the lowest 

coverage on the land at 0.11% in 2015, and only expanded to 0.28% by 2025; likewise, 

Greenland and Libya also have under 5% of their area covered in 2025, with a further eight 

countries (all in Africa and Central Asia) currently below 10% covered. It is also important to 

note that even though the percentage of area covered for many countries is increasing, 28% of 

all cells with data (at a 5 km resolution) have only one point, 51% of cells with data have five 

or fewer points, and 75% have fewer than 50 points per 5 km cell. At a regional level high-

income regions such as North America and Europe (in the Neartic, Palaeartic regions) have 

shown exponential increases in the data included in recent years (Figure S2, Figure S1E-F). 

The Nearctic has slightly more points overall (but this is primarily driven by birds having the 
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most records, and coming through citizen science programs such as iNaturalist), but the 

Palaearctic has more data for many other taxa. 

At the ecoregion level (Figure S1), North America and South-East Australia had the best 

coverage, followed by European ecoregions (Nearctic 44%-66%, Oceania 71-96%, Australasia 

53-65%). Conversely, dry and arid ecoregions in North Africa and Central Asia and ice-bound 

ecoregions had the lowest, followed by semi-arid and then tropical ecosystems (temperate 

systems were the best covered; Figure S3). However, changes in coverage are very dynamic, 

e.g. the Indomalayan region had the second lowest coverage in 2015 (13%) but this had 

increased to 47% by 2025 (improving its “global rank” relative to many other tropical regions). 

In contrast, the Afrotropical region was the fourth worst covered in 2015 (19%), but has 

become the second worst covered in 2025 (37%), whilst Antarctica remained least covered. 

For biomes, overall tundra regions had the some of the lowest coverage (7%-16%), followed 

by boreal (8%-21%), then desert and xeric (19-35%) and tropical grasslands (19%-37%), 

whereas Mediterranean forests had 84% covered by 2025. More broadly, assessment of biomes 

by region data shows considerable differences in coverage even within a single biome (Figure 

S3). Across all taxa, proximity to a major road is a significant predictor of sampling intensity, 

with many regions also showing a positive relationship between the degree of human 

modification (based on the human modification index) and the sampling intensity 

(Supplementary Results S2). 

Taxonomic coverage 

Across taxa, there have been marked increases both in species recorded and in total 

occurrences. For most regions, the last decade has seen an exponential growth in records across 

taxa. Yet both the highest total numbers and greatest increases have been in high-income 

economies; for example, the United States has 26% of all records for reptiles whilst hosting 

under 5% of described species. Assessing inventory completeness at a national level for 

different taxa without first filtering point localities to remove non-native species is challenging 

(due to alien species, captive species, incorrect georeferencing); despite this the taxonomic 

completeness of GBIF data varies by country and taxa. However, at least 43 countries have at 

least 25% of amphibian species not represented by point data (based on comparing counts of 

species within GBIF with native species recorded according to the IUCN), as well as 34 

countries with at least 25% of mammals unrepresented, 17 with reptiles under-represented, but 

only 5 with birds under represented. In addition, major gaps exist for terrestrial mammals in 

Asia (at least 55.6% of countries lack records for 25% of species), in Oceania 86% of countries 

lack records for at least 25% of amphibian species (see Supplementary Results 1 provides 

further details, Data S1). In marine taxa, hotspots for sampling in most groups were also 

inconsistent with hotspots for species richness (Data S2). 

In marine systems, using the AquaMaps 2.0 framework (Reygondeau et al., in review) and 

World Register of Marine Species (WoRMS) taxonomy, a total of 205,627 marine species were 

identified along with compiled occurrence data from OBIS, GBIF, and internal AquaMaps 

sources. Approximately 53% of these species have fewer than five occurrence records. Data 

gaps are particularly pronounced in groups (in this case phyla) such as Nemertea, 
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Platyhelminthes, and Ctenophora, where about half of the species had no recorded occurrences. 

In contrast, coverage is much stronger for marine reptiles, fishes, and Porifera, with fewer than 

5% of species missing records, and for marine mammals, where all species are represented by 

at least one occurrence. For marine species with occurrence data, AquaMaps 2.0 pipeline 

(Reygondeau et al., in review) also provides quality flags that indicate whether an occurrence 

point is within the species’ range or is erroneous. The proportion of verified occurrences is 

highest in mammals (86%), reptiles (69%), and fishes (62%), moderate in many invertebrate 

groups (about 25–45%), and very low in nematodes (20%) and platyhelminths (3%). 

 

Marine data patterns 

To assess the coverage of marine systems GBIF and OBIS data were combined and coverage 

calculated overall, for EEZs and Longhurst regions (Figure 2, Figure S4). Whilst the data 

largely overlaps (the overall objective of GBIF-OBIS collaboration is for marine data to be 

published simultaneously into both networks), differences can arise for a variety of reasons, 

based on varying workflows and practices among contributing data publishers. Combining 

OBIS and GBIF data at a 5km resolution covers 19% of the world's surface and 13% of the 

world's ocean with at least one species occurrence record (Figure 1C). However, the marine 

component of this data is collected predominantly around the coasts, especially around Europe, 

North America, and some parts of Australia and New Zealand. Around the European coastline, 

the Longhurst regions have a coverage of occurrence records up to 87% at a 5km resolution, 

whilst high-sea regions only have a coverage of 2-4% (for different parts of the high-sea). 

Hotspots of data density fall within the same regions (Europe, coastal US and Australia), 

especially to the North of Europe. EEZs have an even higher percentage coverage around 

certain coasts (especially around Europe), up to 100% in some regions (Figure 2, Figure S4). 

Conversely, many small island developing states have very little data. For some of the most 

diverse marine biomes (coral reefs) only 11% of the area had data. In addition, hotspots for 

sampling for most groups examined did not correspond to hotspots for species richness (see 

Data S2). 

The proportion of each “zone” (longhurst region/EEZ) with data varied according to the 

resolution used. At a 1km resolution, only 1% of the marine areas have data within OBIS. This 

increases to 3% at a 2 km resolution, 9% at a 5km resolution and 25% at an 11km resolution. 

Most of the worlds’ oceans (especially around Small Island Developing States (SIDS), in 

tropical regions and the High-Seas), have very little data, and EEZs around Southeast Asia had 

under 1% of data coverage at higher resolutions. Densities of data also matter, and even at 

11km around 81% of cells have no data, whilst 6% of cells have only one record (30% of all 

cells with data), 11% of cells have 1-5 records (60% of cells with data), and 16% have 1-50 

points (86% of cells with data, whilst 14% have more). At a higher resolution (1km, which is 

typically used for distribution modelling), these patterns become more extreme as not only do 

99% of cells have no occurrence records, but 51% of cells with data only have one point, and 

93% of cells with data have 50 or fewer points. When considering the data needs for single 

species, this lack of data presents a major challenge to accurate modelling. In the Southern 
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Ocean, whilst areas appear to have high coverage, much of this is tracking data of small 

numbers of species (mainly Southern elephant seals through Scientific Committee on Antarctic 

Research, as well as some data on King penguins). Understanding the gaps and 

representativeness of this data is crucially important for monitoring, especially in the light of 

the entry into force of the UN Agreement on Marine Biological Diversity of Areas beyond 

National Jurisdiction (the BBNJ Agreement). 
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Figure 2. Percent coverage of OBIS point data in the ocean for EEZ (With at least one point 

per cell), all scales go to 100%. Gray areas have under 1% data coverage. Resolutions A - 

1km, B - 2km, C - 5km, D - 11km. E. Mean percentage cover per ecotype at each of the four 

resolutions. See Figure S4 for the equivalent analysis for Longhurst regions, and Figure S1 for 

terrestrial regions, whilst Figure S3 shows coverage of terrestrial biomes in GBIF. 

 

BIEN (Botanical Information and Ecology Network) 

 

Before a standardised taxonomic backbone was applied, BIEN compiled 1,323,320 unique 

Land Plant names from 284 million botanical observation records (Figure 3). In terms of spatial 

representation, similar gaps exist in other data sources, and whilst some diversity hotspots are 

clear in the Amazon, little data is available from Tropical Southeast Asia, and almost none 

from Central Asia or North Africa (Figure 3), however Benin had very good coverage (50%) 

due to various National Census initiatives. Interestingly, Angiosperm data and Bryophytes 

come principally from South America, whereas Ferns had greater input from China, though 

largely from South-Eastern regions. At an ecoregion level these biases become more evident, 

highlighting that even within well sampled countries, only a subset of ecoregions have been 

sampled (Figure S5). 
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Figure 3. A. BIEN data at 5km resolution and B. Coverage at a National level. For ecoregion 

coverage see Figure S5A. C. Percentage species count difference between WCVP and BIEN by 

botanical country. Yellow-Red colour indicates regions where BIEN’s occurrence sampling 

contains less species than expected according to WCVP. Green colours indicate regions where 

BIEN’s occurrence data contains more species than expected according to WCVP, Blue 

indicates no difference in numbers. D. Absolute species count difference between WCVP and 

BIEN by botanical country, Green indicates more species in BIEN than expected, whereas 

yellow-red indicates under-sampling of species, Gray indicates within 100 species of each 

estimate. For native species differences see Figure S5B-C. 

However, 65-73% of names have issues requiring correction or cleaning, and the final cleaned 

set includes 159,189,390 (55.96%) occurrences that passed all accuracy checks. This includes 

323,377 - 404,043 Angiosperm species, but far smaller numbers of other plant groups (i.e. 

12,102 - 20,921 polypodiophytes [Ferns], 26,808 - 31,556 bryophytes). Furthermore, of plants 

included, only 36% of occurrences are assumed native, and at least 26% are introduced.  

Comparison of BIEN and WCVP demonstrates where the greatest spatial disagreements 

between these data systems are located on land, at the scale of countries (Figure 3). Bias can 

go in two directions, with apparent under-recording of species by the Kew databases in several 

parts of North America, some South American countries, and in Spain, Australia, and New 

Zealand. Conversely, the Kew data seems to show under-recording by the BIEN database in 

many parts of Africa, Central Europe and the Middle East, and across Asia. The analysis did 

not reconcile taxonomies between BIEN and WCVP beforehand, which may account for some 

of the differences observed in species counts across regions. However, BIEN’s taxonomic 

backbone incorporates WCVP to identify synonymy and standardise naming, which should 

limit inconsistencies. 

 

IUCN Red List  

The IUCN Red List has been analysed at the taxonomic level of Kingdoms, illustrating the use 

of point locality data. According to the 2025-1 version of the database, 144,239 species contain 

some form of map (point/polygon), and 28,713 contain no geographic assessment (Figure 4). 

Overall, 47,179 species in the Red List consist of point records only, and a further 6,966 species 
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contain point data as well as polygons, whereas 90,094 species only have polygon data (where 

expert knowledge, and possibly checklists are the main source of information used for range 

mapping). The source of the point locality data is not always specified, as many assessments 

are based on expert knowledge and any original data used may not be explicitly made clear 

(Hughes et al., 2024). 

 

 

Figure 4. Numbers of species within the IUCN Red List assessment process that use point 

locality data only, polygon data only, points and polygons data together, or have no maps 

associated with their record. 

Sources of data used within the IUCN red list varies between the four Kingdoms (Figure 4). 

For plants 59% of the species assessed had some form of point data, whereas 14% were only 

polygons and 27% had no maps. This was reversed for animals (which includes Chordata), 

where 83% of species only had only polygon maps, whereas 10% had some form of point data 

(95% and 4% respectively for the phylum Chordata). Thus, point maps were largely for non-

chordate animals. Fungi and Chromista had too few species assessed to provide further insights. 

 

Discussion 
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Whilst there has been an exponential growth of data collected and made available over the last 

decade, this has been accompanied by a fragmentation of data across databases with different 

schema, making assembling all knowledge of species distributions, even for small regions, 

potentially challenging (for review see Kemp et al., in press). Furthermore, many countries will 

have their own systems for monitoring and depositing data, but their interaction with global 

databases is challenges to gauge even with high-income economies (i.e Turner et al., 2023) and 

likely even more varied in lower-income economies. 

 

Understanding trajectories of data growth as well as where persistent gaps remain can help 

identify areas where extra effort may be needed. Various attempts have been made to explore 

growth and skew of biodiversity representation in open access databases, typically 

investigating taxonomic, temporal and geographic bias (see e.g. Petersen et al., 2021). Data 

may be distributed across multiple international and national data repositories with varying 

levels of accessibility and findability (from governmental databases which may not have public 

access, specialist databases which may be challenging to find and have different data standards, 

individual project datasets on platforms like Zenodo, to fully open and standardised data on 

GBIF and OBIS). Whilst new tools are being developed to help aggregate fragmented data 

from multiple repositories (i.e. Owens et al., 2021), this highlights the expertise needed to even 

understand aspects of the adequacy of data for any given region, before even considering the 

standardisation and cleaning typically needed for use (i.e. Orr et al., 2021). This poses several 

key questions which must be answered to move forwards effectively. Firstly, where (and for 

which taxa) do we have data? Secondly, how do these data compare to expected diversity 

patterns within these groups? Further, which locations and taxa show data growth, and for 

which can we close these gaps? 

 

Assessing patterns of data collection and consistent gaps 

Many countries still have low data coverage, for example, 78 countries have under 50% of their 

area represented in global biodiversity datasets according to GBIF (at a 5km resolution), and 

34 of these have under 25% covered, with only one of these showing a substantial increase 

(>20% growth) between 2015 and 2025. Tropical regions, whilst diverse, are generally 

undersampled, with the majority of data originating from often higher-income, temperate 

regions. Furthermore, whilst the area sampled has increased, biases in sampling intensity have 

previously been shown to show even greater increases (Shirey et al., 2021). These biases persist 

across all databases (Supplementary Results S3). However, despite low sampling, areas such 

as Brazil and Indonesia still had the highest number of species observed for various taxa 

(especially for monitoring datasets; Supplementary Results S3A). In marine environments, the 

High-seas have major data-gaps, with much data pertaining to tracking of small numbers of 

species and individuals, with most data originating from temperate and subpolar coastal 

regions. Further analysis of these regions would require further data for basic diversity 

statistics, or more sophisticated approaches (such as modelling).  

Conversely, data gaps are so large for some regions as to preclude any form of more advanced 

analysis of species distributions or population trajectories. For example, based on GBIF data, 
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North Africa and parts of the Middle East (i.e. Libya and Afghanistan, Turkmenistan) show 

both low coverage and some of the lowest growth at under 4% (Figure S1). Yet the situation 

for these countries may actually be even worse; for example, much of Afghanistan's data is a 

non-georeferenced bacteria and fungal assessment from January 2018 with 169,604 samples of 

bacteria, fungi, archaea etc), meaning virtually no data would be usable for monitoring or 

modelling. Political and linguistic barriers present a challenge to data growth within these 

regions, and targeted efforts and partnerships are likely needed to overcome them (see, e.g., 

Stephenson et al., 2017). Furthermore, within some regions, such as various countries in Africa 

and Asia, government and ministerial biodiversity data repositories and individual research 

data may be less likely to be publicly shared, precluding visible data growth despite increasing 

survey efforts. This all highlights the need for further work to both enhance the findability and 

access to existing data, in addition to targeting persistent survey gaps. 

In addition to geospatial biases in country representation of data, taxonomic coverage is 

uneven. OBIS and GBIF are built from many existing databases, including contributions from 

citizen science networks, research groups, museum collections and other repositories, and thus 

reflect global biases in data collection and sharing. Thus, whilst the continuous plankton 

recorder in the ocean will overcome many of the taxonomic biases present in terrestrial regions 

for the ocean (Holland et al, 2024), these issues persist in terrestrial systems. For example, most 

insect data in GBIF comes from longstanding invertebrate monitoring programs in Europe such 

as the Swedish Malaise trap program. Similarly, 26% of all insect data in GBIF is from the 

United Kingdom, and of this 72% comes from three specialised programs on UK moths and 

butterflies. This shows how effective national scale efforts can be at mobilising tremendous 

volumes of data, but few such efforts exist in tropical regions, and even when national 

monitoring does occur, this data is rarely stored in publicly available repositories (e.g., MyBIS 

for Malaysia, or Thailand's DNP database). Similarly, based on the BIEN data, major gaps exist 

across Asia and Africa, but have been partially reconciled by targeted data collection efforts 

across parts of Central America. 

Whilst most tropical regions globally have seen data-growth this is strongest for birds (largely 

due to eBird and iNaturalist). For other taxa, the growth of data has been far more variable; 

Pacific islands and much of Africa have seen little change in the number of species represented 

in most clades, but the Neotropics and Southeast Asia have seen increases in some groups (such 

as reptiles, and to a degree amphibians), though rarely for invertebrates. In terms of diversity 

hotspots experiencing a growth in biodiversity data coverage, the Neotropics is performing 

well relative to other regions, with some Southeast Asian Nations following this, whilst more 

arid regions continue to lag. That said, some regions have seen a transformation of their data 

coverage over the 2015-2025 period. In some cases, such as in South Korea and Japan, this is 

in part due to the work of agencies such as the National Institutes for Ecology and Korea 

Institute of Science and Technology in South Korea, and the National Museum for Nature and 

Science and Japan Institute for Biodiversity Information in Japan, to digitise collected data. 

Furthermore, across sub-Saharan Africa, the Caribbean, the Pacific, and Asia, the Biodiversity 

Information for Development (BID), funded by the European Union, and Biodiversity 

Information Fund for Asia (BIFA), funded by Japan’s Ministry of Environment, both initiatives 
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of GBIF, have helped mobilise data. Continued funding will be needed to sustain and expand 

such efforts into the future, and will likely need to be complemented by national funding to 

increase inclusion of datasets across global regions. Another opportunity for addressing 

taxonomic bias is the increasing volume of occurrence data derived from DNA sequence 

sampling of the environment, especially through metabarcoding or eDNA monitoring. 

Incorporating data from major microbiome data resources; such as the MGnify microbiome 

network, which analyses and curates sequence data from public archives into the GBIF data 

pipeline has greatly increased the amount of information on groups such as Archaea, Bacteria, 

and Fungi within the GBIF index, and now includes 1,238 eDNA datasets. However, the full 

potential of such monitoring will only be realised if the emerging private eDNA sector has 

business models consistent with open sharing of data into repositories such as GBIF and OBIS. 

Furthermore, increased use of AI may facilitate both the digitisation of collections, and the use 

of camera trap and bioacoustic data, including the identification of species (Kitzes et al., 2025); 

though this will be challenging for regions which lack reference databases. 

In addition to geospatial biases in the ecosystems and regions covered, the majority of 

terrestrial data comes from regions adjacent to roads (over 90% within 2 km; Hughes et al., 

2021) and most marine data comes from coastal areas, with all regions but Antarctica showing 

this pattern (Supplementary Results S2). Furthermore, most marine data is from shallow-seas, 

with little data from 5000-10,000m, and virtually none at greater depths (Bridges & Howell, 

2025). Spatial representation of Benthic and Pelagic environments is largely focused around 

Europe, the West coast of the US and New Zealand, with little data available for other parts of 

the ocean (Bridges & Howell, 2025), though other data may exist outside these databases (i.e. 

Bottom trawls- Buenafe et al., 2022; Maureaud et al., 2024; Ward et al., 2025; ICES 2023). 

Data showed strong biases towards coastal areas near developed countries, regions with 

intensive fishing activity, and species of small body size occupying shallow habitats and of 

commercial or cultural value (Pizarro et al., 2024). However, the coast is very poorly 

represented around most of the Arctic (notably in Canada, Greenland, and Russia). In contrast, 

Antarctica’s coast is well represented, yet key habitats are missed, such as unique and globally 

threatened habitats, under ice shelves, where >70 species may occur in <1 m2 (Barnes et al., 

2021), though notably it is the only area where most data are not immediately adjacent to the 

coastline.  

Overall, whilst marine biodiversity data availability has increased exponentially, particularly 

in the Southern Ocean, Japan and South Korea, clear gaps remain (including most of the high-

seas and deep ocean (Figure 1, Figure S1)) (Bridges & Howell, 2025). Compounding these 

gaps and biases, a global analysis of over four decades of occurrence data found that only 

1.14% of available records were suitable for detailed analyses (Pizarro et al., 2024). Notably, 

these gaps are amplified when higher resolutions of data are assessed, or when data density is 

considered, highlighting that good data coverage still only occurs for a small part of the world, 

and whilst data coverage has increased, many gaps still persist. Importantly, perceived 

increases in data coverage in some ocean regions (such as the Southern Ocean) are in part 

driven by GPS tracking of Southern Elephant seals (i.e. see Rodríguez et al., 2017), whilst 

dense collections of data are still primarily centred around Europe. In most regions, it should 
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also be noted that much of the new data is bird data generated through citizen science 

initiatives. Whilst such data is invaluable for tracking migration and phenology, as well as 

identifying alien species, in most countries it provides little data for other taxa, and thus this 

growth of bird data has not been mirrored in other taxa. An exception to this is for countries 

like the UK where multiple National programs have provided a suite of high-quality data for 

monitoring across taxa, and may have lessons which could be replicated elsewhere (Turner et 

al., 2022; Bane et al., 2023).  

Taxonomic representation also varies across databases (Supplementary Results S3). For 

example, PREDICTS has a better taxonomic representation than many aggregated datasets, but 

data is only available for a subset of regions and ecosystems (Supplementary Results S3d). The 

Living Planet database holds considerable data and has been used widely to derive different 

indicators to be used as policy tools, but there remain areas for improvement for filling 

geographic and taxonomic data gaps, using it for national monitoring, and developing 

modelling approaches that better reflect uncertainty (McRe et al., 2025). Given the importance 

of detecting, or at least inferring change, being able to monitor change is critical; but this will 

require either enhancing criteria used for the collation of such data, or provisioning greater 

provisions for collection of standardised data to better reflect these trends. Other areas to 

address include increasing the use of data that has been standardized for sampling effort before 

being used to infer population trajectories (Supplementary Results S3c).  Improving quality by 

reducing the number of populations through better standardisation may enhance the reliability 

of assessments (Feng et al., 2022). Monitoring programs also show major regional differences, 

highlighting both regional differences in focal taxa, and that only a subset of data enters public 

facing databases (Moussy et al., 2022; Supplementary Results S6). The ongoing efforts of the 

GBIF and OBIS communities to adopt a more inclusive and richer data model, and in particular 

the recent introduction of the Humboldt Extension to the Darwin Core standard, enabling 

standardization of key facets such as sampling effort, survey protocols, target species and 

inferred absences, provide much improved scope for interoperability of multiple species 

inventories across space and time (Svenningsen et al., 2025; Guralnick et al., 2018).  

Freshwater systems in particular are some of the most challenging to monitor across scales, as 

they are not reflected in BioTIME, and RivFishtime shows major geographic biases 

(Supplementary Results S3a-b). Databases do exist for Freshwater systems, but are either taxa 

specific (i.e the EPTO dataset; Liu et al., 2023; Grigoropoulou et al., 2023), or based on 

collations of recent papers (Shen et al., 2024; Tedesco et al., 2017). Other databases have been 

created, but are no longer accessible, or are based on GBIF data. Furthermore, these databases 

largely reproduce the same biases as observed elsewhere, though there are some differences. 

For example, 58% of the 200,124 records from 4716 sites in FreshLanDiv are from South 

America, whilst gaps in North Africa and Central Asia remain, and very little data (3% of data) 

exists for Oceania (Shen et al., 2024). For Freshwater invertebrates at least 62.18% of basins 

were assessed to be under-sampled (and 2.2% basically unsampled), with North Africa and 

Central Asia showing the most pronounced gaps (Liu et al., 2024). Freshwater is one of the 

most pronounced gaps for global inventory, as databases associated with single papers rather 
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than institutions are unlikely to be maintained, or updated, and our ability to attain a global 

understanding of patterns is limited. 

Despite their weaknesses, these datasets underpin our understanding of global diversity 

patterns. Furthermore, the physical dimensions of freshwater systems means that analysis using 

GBIF data may be challenging, as assessing sample completeness will be difficult at scale, and 

coordinate imprecision may hinder targeted management or assessments pertaining to stretches 

of waterways. Whilst these datasets are critical, their biases frequently mirror those of broader 

biodiversity databases, and the lack of standardised reporting standards can hinder accurate 

interpretation of the data. 

 

Assessing and addressing sampling representativeness and biases 

 

Understanding the relationship between hotspots of data-collection and hotspots of diversity is 

critical to ensure that we have adequate sampling in diverse regions. However, at present data-

gaps and biases limit the ability to map species in many regions (e.g., central South Atlantic, 

central Pacific Ocean and other offshore deep-sea regions in the ocean, and central Asia and 

North Africa on land; Webb et al., 2010), leading to the use of “expert opinion” as a substitute, 

and potentially neglecting little known taxa and regions in many of the worlds’ most diverse 

regions. Furthermore, in almost all instances of known biodiversity hotspots (based on 

overlapping species maps from the IUCN) do not coincide with areas of peak data collection 

in either marine or terrestrial areas. For example, marine data collection intensity does not align 

with mapped diversity for those taxa (based on species assessments Data S2), especially in the 

Indo-Malayan region, and high diversity systems such as coral reefs only have species data 

covering around 11% of their area. For example, for marine mammals and marine reptiles, 

comparisons of occurrence records with IUCN expert range maps reveal substantial coverage 

gaps (Data S2), with many species having few or no georeferenced records in global 

repositories, underscoring persistent data mobilisation and accessibility challenges even for 

well-studied taxa (Moudrý and Devillers, 2020).  

Addressing these gaps requires systematic integration of fisheries-dependent and fisheries-

independent datasets into global repositories such as GBIF and OBIS. These repositories 

provide the backbone of marine biodiversity information, but they are still dominated by 

research surveys and opportunistic observations, which leaves major gaps for exploited taxa 

and in regions where fisheries provide the most consistent biological records. Linking catch 

statistics, observer programs, trawl survey data, and acoustic detections with the taxonomic 

backbones and spatial frameworks of GBIF and OBIS would considerably expand coverage of 

marine taxa, especially in tropical and subtropical EEZs where biodiversity and fishing 

pressures coincide. This approach would also reduce duplication between parallel monitoring 

streams and establish a comprehensive baseline from which cumulative impacts of 

exploitation, environmental change and conservation interventions could be assessed. Beyond 

filling gaps, embedding fisheries datasets into these repositories would also promote 

interoperability across sectors, enabling biodiversity monitoring, conservation planning and 

fisheries management to draw from a single, coherent evidence base. In doing so, marine 
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biodiversity assessments could reflect both commercially important and non-target taxa, 

improve comparability across regions, and provide more robust information to support long-

term monitoring and reporting under the GBF. This is no small challenge as sharing fisheries 

data depends on building partnerships, consensus, and capacity across fragmented scientific 

communities (Maureaud et al., 2025). 

Enhancing data usability 

In addition to spatial and taxonomic biases and gaps in global datasets, the usability of data is 

also determined by the accuracy of the records. How many of the records present in a database 

are robust, that is (to the latest knowledge) truly represent the correct species?  

While data curation is a key focus for some platforms, which means that uploads are paired 

with appropriate metadata and species nomenclature is checked as valid and any identification 

verified by an appropriate taxonomist expert, there are no quality control standards for species 

records adopted by all platforms. Counteracting this issue has two steps, one of which can be 

solved through cross-referencing with standardised taxonomic backbones (for marine: ITIS, 

WoRMS, GBIF/Catalogue of Life; for terrestrial plants: World Checklist of Vascular Plants; 

Sandel et al., 2023). The other step requires inspecting either the actual specimen or an image.  

For the first challenge, whilst taxonomic fluidity (i.e. changes in species names) is difficult to 

manage, having backbones at least enables reclassification of names when appropriate, and 

standardisation within an analysis (Sandel et al., 2023). From cleaning based on these 

taxonomic backbones, large numbers of records are incorrectly listed in databases before 

cleaning across taxa (i.e. 73% had some issue, which could be corrected in ~⅓ of cases, prior 

to cleaning in BIEN), with multiple applications requiring such treatment (i.e. wildlife trade 

data (Marshall et al., 2025)) and pipelines developed for various taxa (i.e. bees Dorey et al., 

2023). This is very important, as for most analytical purposes, no data is preferable to ‘bad’ 

data. Although any given species name attributed to a record can be checked, it is difficult to 

ascertain whether the record was correctly identified as this species. Curated datasets such as 

WoRMS or BOLD can solve this problem but may contain very few records, because of this 

requirement and cost, and initiatives tend to be taxonomic and regional (i.e. African bats; 

Monadjem et al., 2024), meaning that the accuracy of most data remains variable, and 

challenging to quantify.  

Notably, iNaturalist is an increasingly dominant component of global distribution data, thus 

the accuracy of this data will have major implications for global species analysis. Studies which 

have validated the data have found very variable results, with high quality in well-known taxa 

in developed economies (US and West Australian Plants; Mesaglio et al., 2025; White et al., 

2023), but poorer in tropical regions and for smaller taxa and groups such as lichens (iNat et 

al., 2023; Munzi et al., 2023). This is particularly concerning because citizen science data can 

be the main source of data in these regions, thus the accuracy of the data is crucial (Alfeus et 

al., 2025). This problem, although rarely quantified, is significant, so much so that often some 

of the most common and abundant species in a given region (represented in open access 

databases) are incorrectly identified and do not even occur there (e.g. see Sands et al., 2025). 
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A key unanswered question is thus what proportion of species records data is incorrect and how 

does this change with taxonomic identity, region and time? Despite such accuracy and other, 

databasing problems it remains crucial to maximise the potential of what can be gleaned at the 

moment from existing data to assess the status and change of what we know of global species 

distributions, especially for rare, endemic, or cryptic species.  

Given that global assessment requires standardised and interoperable data from across taxa, 

sustained efforts are needed to mobilise data which has been collected into a form where it can 

be accessed, and used to monitor trends in diversity. Notably, IUCN Red List assessments, 

which often feed into higher reporting, rarely use point data for animal species, whereas this is 

general practice for plants. Whilst citizen science is inarguably invaluable in assessing species 

distributions, monitoring phenology and detecting invasive species, it tends to emphasise more 

common species in easily accessible regions (Hughes et al., 2021); and is therefore a 

complement to, not a substitute for scientifically collected data. Improving spatial data 

collection and analysis could be a critical component of National Biodiversity Strategic Action 

plans, as data is collated and made available based on agreed standards, tools can be applied to 

the data to facilitate the reporting needed to meet mandated reporting requirements (reducing 

the effort needed to meet requirements). This requires both political will and sustained funding 

for monitoring. This would include through agencies such as the GEF (particularly as capacity 

for monitoring, and systems for data deposit are developed) and at a national level to develop 

long-term monitoring initiatives, such as those present for insects in the United Kingdom based 

on the GBIF data). 

Moving forwards 

The last decade has seen a considerable transformation of biodiversity knowledge accessible 

via databases for many parts of the world. Yet gaps remain, with Central Asia and Northern 

Africa on land, and the high-seas, Arctic, and coastlines around the tropics showing little data 

growth in global databases. Initiatives like BID and BIFA from GBIF have driven 

improvements in some regions (sub-Saharan Africa, the Pacific, Caribbean and Asia), but there 

continues to be an urgent need for more capacity building for biodiversity monitoring in low-

income high-biodiversity countries (e.g. Schmeller et al., 2017; Stephenson et al., 2017). 

Overcoming these challenges will require not only funds, but engagement, especially in areas 

where data exists but is either increasingly fragmented (e.g. parts of the polar regions) or not 

publicly accessible (e.g. China, Southeast Asia) and areas which may lack capacity or 

resources. Looking at the polar seas as an example; Northern Canada and Russia as well as 

much of the East Antarctic coast are sparsely populated, and the paucity of data and sampling 

reflects this. However, there is strong Arctic data around Southern Greenland, Svalbard and 

northernmost Atlantic spread across many national, regional, genetic and other more specific 

databases (e.g. Zwerschke et al. 2025), as is similarly the case around West Antarctic seas and 

outlying archipelagos (e.g. Barnes et al., 2025; Sands et al., 2025). Intact ecosystems also tend 

to be poorly represented, likely due to the data for these systems coming from Scientists (rather 

than members of the public) who may be less likely to share data, or tend to publish it within 

databases which are not connected to, or interoperable with, larger global databases. At present 
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funding from GEF (the Global Environment Facility) cannot be used for monitoring, yet 

countries cannot plan to manage their biodiversity without either a baseline or a mechanism for 

standardised monitoring. Thus, dedicated support is clearly needed. Such efforts could be 

paired with reporting mandates and mechanisms, and by standardising data collection, could 

also be analysed by shared protocols and frameworks to reduce reporting burdens and 

standardise reporting. 

There has even been considerable growth of data in some remote regions, such as both Arctic 

and Antarctic seas, but this is not evident in OBIS or GBIF because much new data is being 

uploaded to an increasing diversity of specialist and national databases, many of which have 

little connectivity with global repositories. The proliferation of open access databases for 

biodiversity records (mainly species-level) keeps increasing, resulting in inevitable problems 

of data curation, accuracy and fragmentation. One of the many problems this generates for 

biodiversity and conservation evaluation of where species occur, is that key analyses have a 

reticence to use non-specific databases (GBIF and OBIS) or bypass these completely (e.g. in 

connectivity studies, Vaughan et al., 2011, O’Hara et al., 2025). Thus, it is crucial that action 

is taken to rectify such curation, accuracy and fragmentation problems to avoid these issues 

continuing to grow. Thus, although data coming into main repositories such as GBIF and OBIS 

is increasing, it is also possible for this to be a decreasing proportion of new data. This can be 

true even if many such new regional or institutional databases cascade data to GBIF and OBIS, 

because of the lag time taken to do this. In the Arctic for example much new data goes to 

MARBUNN/MAREANO (Institute of Marine Research Norway), ICES (International Council 

for the Exploration of the Seas), PANGAEA (and other German databases within this e.g. 

https://critterbase.awi.de/), NOAA and molecular databases (GENBANK, BOLD etc), as well 

as more general databases such as Figshare and Zenodo. This likely requires further work to 

build partnerships (Maureaud et al., 2025) and trust with communities currently reluctant to 

share data through central data portals.  

In ocean regions, major gaps of easily accessible data in single portals remain, especially in 

poorly monitored regions such as the high-seas, deep ocean, Arctic (but see Greenland data in 

Zwerschke et al 2025), and many tropical coastlines. The lack of reliable species-level 

occurrence data makes it difficult to map distributions accurately and to connect biodiversity 

information with fisheries records, leaving management decisions on uncertain ground. Once 

fisheries-dependent and independent datasets are embedded within GBIF and OBIS, they can 

provide the baselines needed for decision-support tools (e.g., MARXAN and Zonation) to 

inform the design of ecologically representative MPAs, guide spatial fisheries closures, and 

assess the performance of existing conservation networks. Also, AI-based image and acoustic 

tools in fisheries along with fishers’ experiential knowledge can produce data relevant for 

enhancing biodiversity surveillance more broadly (Ahlquist et al., 2025; Kelly et al., 2022; 

Kuhn et al., 2024). Even in data-rich fisheries (e.g., in Norway or parts of the United States), 

discrepancies can remain between species distribution information derived from fisheries 

statistics and scientific surveys and the actual distribution of exploited stocks (Karp et al., 2023; 

Seljestad et al., 2024). This underscores concerns about the adequacy and representativeness 
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even of available data, even though data on fish stocks and their distribution is becoming 

increasingly accurate (Sharma et al., 2025).  

For offshore and deep-sea regions, integration with information on Vulnerable Marine 

Ecosystem (VME) indicator taxa and habitat-suitability models can further ensure that 

conservation priorities capture fragile benthic habitats and associated uncertainty (Burgos et 

al., 2020). Simultaneously, the development of biodiversity indicators that combine 

standardised survey observations with aggregated occurrence data allows consistent, policy-

relevant measures of ecological condition, making it possible to evaluate protection outcomes 

across regions; but have not yet been implemented widely (Edgar et al., 2016). Global 

syntheses show that MPA effectiveness depends not only on coverage but on features such as 

no-take status, enforcement, connectivity and others, collectively enhancing biodiversity 

(Edgar et al., 2014). Inclusion of indicator frameworks can further strengthen commitments, 

for example BBNJ and CBD’s 30×30. Linkage of occurrence, VME and fisheries records to 

planning models, could help translate observations into spatial management actions to balance 

biodiversity protection with sustainable use. When data are standardised and connected to 

global infrastructures, e.g. in harmonised bottom-trawl surveys (e.g., FISHGLOB in Europe; 

Maureaud et al., 2021), such approaches become feasible. Extending such approaches to (lower 

latitude) biodiversity-rich but data-poor EEZs could increase the efficacy of marine 

biodiversity data contributions to conservation planning and policy, as terrestrial data is already 

doing. 

However, in addition to basic distribution data, long-term monitoring is also needed, and 

without government investment and support, many datasets will remain small scale, and short-

term For example, long-term monitoring of marine biodiversity settlement and recruitment at 

an Antarctic coastal using artificial substrata has revealed declines in assemblage-level richness 

through increasing rarity of many rare species, none of which might be evident through the 

lens of presence-absence distribution data (Barnes et al., 2025). Such data also reveal 

‘background’ levels of cyclicity at various spatial and temporal scales that must be considered 

when trying to interpret potential declines and their drivers. Without repeated monitoring, it is 

very difficult to disentangle responses of assemblages and species to threats (signal) from 

normal variability and cyclicity in patterns (noise), and thus for example to assess whether and 

how implemented protection is effective. These types of stochasticity, in addition to seasonal 

change further hinders the reliability of databases such as the LPI where 20% of populations 

only have two sampling events, which without careful standardisation of survey effort 

precludes reliable inference of population trends (Supplementary Results S3c). In the absence 

of the standardized, underlying data and the heterogeneity in sampling approaches, hinders the 

accurate interpretation of indices like these which maximise data intake, possibly at the expense 

of data quality. National support, and shared common standards would enable more effective 

monitoring across regions. Emerging technologies like AI and machine learning may offer 

potential to expand marine monitoring by automating species recognition, catch reporting, and 

electronic monitoring, improving both cost-effectiveness and spatiotemporal coverage. 

Automatic catch registration systems and electronic logbooks are increasingly being trialled in 

fisheries. With advances in AI, the use of camera traps and acoustic recording devices provides 
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an opportunity to monitor activity and diversity in almost real time of more easily detectable 

organisms, and such efforts are already implemented in regions such as China based on 

bioacoustics. These new tools provide a means of scaling up monitoring efforts, and when 

paired with other methods (e.g. standardised surveys) could greatly enhance our ability to 

monitor and, therefore, manage biodiversity. 

Thus, whilst some of the challenge around obtaining the data we need to monitor and map 

global biodiversity is scientific (especially around the developing and use of standards, 

confirming of species level identities, and the sharing of data in some regions), much of it stems 

from either a lack of government support or a lack of resources. Elements of this are not trivial, 

confirming robust species identity can often require considerable molecular and micro-

morphological expert effort (e.g. see Sands et al., 2025). With various organisations in place to 

support monitoring efforts, streamlining these activities to make better use of existing data, and 

to better target data gaps could vastly improve our understanding moving forwards.  

However, the use of data from these systems can be challenging, as growing datasets are 

demanding to download, clean appropriately for the application, and analyse. Thus, the 

development of GUIs to facilitate these key processes without the need for programming 

expertise are likely needed both to maximise the impact of this data and their ability to inform 

monitoring and management, and to incentivise data sharing, by making such tools convenient 

and accessible. Additionally, given that many of these databases come from distinct research 

teams (particularly BioTIME and LPI), they are not readily interoperable with other databases. 

Furthermore, whilst many academic journals mandate the public sharing of data (when non-

sensitive) for reproducibility, they should specify the repository (such as GBIF or OBIS, rather 

than providing upload links to general repositories) along with core standards to prevent further 

fragmentation of data. This is in contrast to the situation with genetic sequence data, for which 

it is standard practice for journals to mandate deposition in one of the repositories within the 

International Nucleotide Sequence Database Collaboration (INSDC), ensuring that they meet 

the requirements of the FAIR (findable, accessible, interoperable, reusable) principles. Many 

ecological journals and molecular communities have already done this, and thus supporting 

journals to transition would enable the better use (and cleaning) of data that has already been 

collected. Providing standards for data-upload and enabling upload of data into GBIF and OBIS 

(as is already often the case for figshare and Zenodo from some journals) would help ensure 

data remains findable, usable, and interoperable. 

Over the last decade, parts of the world that previously had no data have transformed, and we 

are hopeful that with continued growth the data gaps will continue to narrow. Whilst data 

growth over the last decade has helped us to understand what we need to study, the insights 

into trends outside of the small minority of very well-sampled species are more limited. High-

resolution data is crucial for effective planning, and thus a key element of metrics for 

frameworks such as the Kunming-Montreal Global Biodiversity framework, and data gaps will 

require targeted action to counteract, particularly for High-Seas, Freshwater systems, and 

terrestrial systems in North Africa and Central Asia. Looking forward, consolidating existing 

data before the 2030 CBD and the discussion of future targets would widen the scope for 
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indicator selection, and enhance our ability to detect trends, and adequately conserve wildlife 

and the habitats it depends on. 
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Figure S1. GBIF data coverage. Maps on the left (A, C, E) show data for 2015, and maps on the right (B, D, F) provide 

data for 2025. The spatial scales are Top (A-B) data plotted at a 5 km resolution, middle (C-D) data at national coverage 

(with at least 1 point per 5km cell) and bottom (E-F) data at ecoregion scale. 
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Figure S2. Records in GBIF over time for different geographic regions. 

 



 

41 

Figure S3. Mean coverage of each biome within each realm based on ecoregional units. 
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Figure S4. Percent coverage of OBIS point data in the ocean (With at least one point per cell) 

for Longhurst Zones. Gray areas have under 1% data coverage. Longhurst regions. 

Resolutions A - 0.01O, B - 0.02O, C - 0.045O, D - 0.1O. See Figure 2 for the equivalent analysis 

for EEZs, and Figure S1 for terrestrial regions. 
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Figure S5. A. Coverage of ecoregions with data in BIEN. B. Percentage native species count 

difference between WCVP and BIEN by botanical country. Red color gradient indicates 

regions where BIEN’s occurrence sampling contains less species than expected according to 

WCVP. Green color gradient indicates regions where BIEN’s occurrence data contains more 

species than expected according to WCVP. C. Absolute native species count difference between 

WCVP and BIEN by botanical country. 

Supplemental text 
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Supplementary Methods 

Supplementary Methods 1: Spatial biases in GBIF data 

Analysing other biases in primary observation data 

Given that GBIF was the largest dataset examined, and largely draws data from, or provides 

data to the other databases, bias analysis here was focused on GBIF data. Based on the Hughes 

et al 2021 analysis we also assessed the relationship between sampling intensity and distance 

from road, elevation, human modification (Theobold et al., 2024) and conversion pressure, as 

well as distance from the coast in marine systems. Firstly, all road datasets were downloaded 

from OSM (Open Street Map), for those where downloadable data was unavailable Hotosim 

(humanitarian data) was used, and the UK was obtained from Ordnance Survey. To remove 

tracks and local roads we only selected major roads (road numbers starting with 511 or 513 

categories within the OSM system). Obviously, many observations may be from smaller roads, 

but this should be reflected by the modification indices, and we wanted to not include too 

generous a classification of roads due to the variation in smaller roads and their classification 

in different regions. Roads were converted to rasters with a 1km resolution then reclassified to 

remove smaller road categories. We then used the Euclidean distance tool to measure the 

distance to the nearest road at a 1km resolution for each country. Maximum distance was set 

to the equivalent of 18 degrees. The Mosaic to new raster tool was then used to assemble maps 

for each region with the categorisation set to “minimum” to ensure the minimum distance was 

selected in areas adjacent to several countries. All datasets used are listed in Table S2. 

In addition we calculated the percentage of the area covered (based on a 5km resolution of 

GBIF data with at least one record per 5km cell) at different distances from the roads, including 

1km, 5km, 10 km, 50km, 100km, 250km, 500km, and >750km. This was calculated for each 

region for both marine and terrestrial areas, as well as overall in marine systems, and then the 

relationship between distances and coverage analysed using regressions. 

The GBIF 2025 record density dataset was then converted into points of each geographic region 

and the extract values to points tool used to extract the distance to the road. The same procedure 

was then applied to extract out elevation, Human modification index and conversion pressure. 

For coastlines the “distance to coast” was calculated using a world country border map. The 

EEZs for each region were then dissolved based on the geographic region and used to clip the 

GBIF points for areas within each regional EEZ as well as the HighSeas. These points were 

then used to assess the relationship between the density of points and the distance to the coast. 

An exploratory regression was then applied to explore the relationship with sampling intensity 

and all of the factors, and the best model as well as the significance of all factors calculated.  

Supplementary Methods 2:  

Species population trends monitoring datasets 

 

BioTIME, PREDICTS, FishRivTime and the Living Planet index (LPI) are all composite 

datasets aiming to measure species abundance changes over time or due to land or water use 
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changes, which include both direct distribution data (OBIS and GBIF), published studies, and 

other sources of data. Thus whilst this data does overlap with the above sources of data, only 

data that satisfies certain criteria are included to attempt to assess changes in populations, 

diversity, or community structure over space or time. 

A. BioTIME 

For BioTIME data, spreadsheets were obtained of the number of species and occurrence 

records per country for the same taxonomic groups as used in the GBIF analysis, as well as the 

area with data (using a 5km resolution) for EEZs, Longhurst regions and ecoregions. 

Summaries of the number of species, and samples, as well as the percentage of each zone 

(Longhurst, EEZ, ecoregions) by calculating the total area of each of these and then cross-

referencing the area covered by BioTIME data to provide the percentage covered. These 

spreadsheets were then connected to shapefiles of each region using “joins and connects” then 

mapped out to show patterns of coverage. Further complementary material was drawn from the 

recent paper (Dornelas et al., 2025). Complementary metrics were also recorded from 

RivFishTime using the same approach. 

B. Living Planet Index and other monitoring databases 

Different approaches were applied due to different availability of data and different modes of 

reporting and recording for each database. The Living Planet database makes the data available 

when a new report is released. Using the latest Living Planet data (WWF 2025) we downloaded 

all data, then calculated the number of species and populations monitored for each country. 

Data was then attached to shapefiles of each region using “joins and relates” in ArcMap to 

visualise patterns of survey effort. Additionally the number of times each population was 

observed was calculated, and the average timing between surveys calculated for different taxa 

to assess the effectiveness of data for monitoring. PREDICTS was summarised in the same 

way (numbers of samples and species per biome and country), whilst the monitoring data 

(Moussey et al., 2022) was analysed to show the number of monitoring programs per country 

for each taxa separately in marine, freshwater and coastal ecosystems. 

Supplementary Results 

Supplementary Results S1.  

Taxonomic biases and patterns in GBIF data 

Understanding the distribution of records can also facilitate understanding of how 

representative data is. For mammals the United States, followed by Australia in leading records 

until 2022 when France took over, representing 18% of all records by 2025 (whereas the US 

represented 12% of records). Whilst Brazil has records on the largest number of amphibian 

species since surpassing Colombia in 2015, the United States has had the largest number of 

total occurrence records for amphibians since 2010 (currently 22%), followed by Australia 

(16%). Birds show similar patterns with the US representing 47% of total occurrence records, 

and at least 39 countries with incomplete records, largely in Africa, Central Asia and various 
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Pacific islands. The same pattern is true of ray-finned fishes (Actinopterygii) with 29% of all 

occurrence records in the United States, followed by France and Canada. Invertebrate taxa, 

however, show quite different patterns, for example Indonesia has records on the largest 

number of dragonfly and damselfly (Odonata) species, whilst the Netherlands, France and the 

UK have the largest number of Odonata occurrence records. The UK also leads for insects 

overall with 28% of all records. However, for molluscs and arachnids the United States leads, 

with 20% and 16% of records respectively. For plants, European countries have the best 

coverage of data, with the UK leading for mosses (21% of records), followed by Sweden, Spain 

leading for Gymnosperms (13%) followed by the UK, and France leading for Angiosperms 

(18%). In all these instances, consistent increases are present globally, but in all instances the 

US has the greatest number of recorded species (though for Angiosperms Brazil did until 

recently). For Ferns however, whilst France leads for records (12%) China and Indonesia have 

the greatest number of recorded species. For Fungi the UK also led for both Sac Fungi (17% 

records) followed by Sweden, and Sweden led for Basidiomycota with 16% of records. Data 

is provided in Data S1). 

Supplementary Results S2 

Geospatial biases in GBIF data 

In most regions distance to road had a significant relationship with sampling density 100% of 

the time (in Africa, Latin America and Oceania it was only 75%). However, what that 

relationship looked like varied. In many regions there was an equal split between positive and 

negative relationships, but for Canada and Alaska, the US, Northern Asia, Latin America 75% 

of instances were negative, and in Southeast and Southern Asia there was a significant negative 

relationship for 100% of instances. Only the Middle East always showed a positive relationship 

with sample density and road distance (likely associated with off-road and desert driving). 

Elevation was also generally negatively associated with sampling intensity, however, this was 

only significant for 100% of cases in Europe, Africa, Central Asia, the Middle East, the US 

and Northern Asia. Furthermore, of these, Africa and Latin America have a positive 

relationship, as does South Asia (though this is not always significant). Human modification 

was also a significant influence in most cases (only 75% in Africa, and not significant in Latin 

America). However, in all other incidences it has a 100% significant positive relationship, 

showing that the most modified areas are the best sampled. Conversion pressure (Oakleaf et 

al., 2024) shows significant relationships for most regions, however the outcomes are more 

varied, predominantly negative in Europe, the US, North Asia, and Southeast Asia; and 

predominantly positive in South Asia, and Africa. However only looking at occurrences per 

sampled cell will inevitably not reflect unsampled cells well, and area covered also needs to be 

considered.  

For most regions the percentage of the area covered rapidly declined with distance from the 

road; though this was not universally the case, and it should be noted that as only major roads 

were included this necessarily omits smaller roads (as well as tracks) where observations may 

frequently take place. Significant negative relationships (based on an logarithmic regression) 
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occurred in the case of Central Asia (R2: -0.932; Oceania -0.9677; SEA -0.82; SOA -0.7; LAM 

-0.971; EU-0.972; Can -0.978).  

In terms of area from the coast there is both a strong overall negative trend (-0.909), and strong 

trends in all regions except Antarctica (US: -0.9955; EU -0.958; Af -0.92; L America -0.956; 

Middle East -0.877; N Asia -0.86; South Asia -0.83; Southeast Asia -0.79; Oceania -0.94). This 

highlights how well coastlines are studied relative to all other regions, with an exponential 

decrease in the coverage of samples. 

Supplementary Results S3. Biases in monitoring databases 

BioTIME 

BioTIME includes 56,400 taxa based 1,989,233 records extracted from 1,603,067 sample 

events, from 553,253 sampling locations, taken from 708 studies, all of which have a minimum 

of two sampling events taken at least two years apart (Dornelas et al., 2025). Taxonomic 

coverage has improved considerably between versions, most notably now including over 12% 

of Chordate species and 11% of described Annelid species, though remaining lower for other 

taxa (Data S3). For terrestrial regions, again the United States dominated the number of 

samples for most taxa, though for some (i.e Reptiles- Australia (27.8% species), Cyclostomata 

– France (34.6%), Fungi- UK (61.4%), Echinodermata- Canada (just more than the US at 

39.7% species)) other regions had a larger share; these biases showing similarities to those 

shown within GBIF. For species, however, the US only dominated for Molluscs (39.7% 

species), Annelids (48.7% species) and Echinoderms (28.7% species). For reptiles, Australia 

again dominated 25.4% of species. Brazil had 41.1% of Amphibian species data, despite only 

having 2.1% of records, Germany had 50.5% of fungi species despite only hosting 13.4% of 

records, but for other taxa no single region held more than 25% of species or records. In total 

51 terrestrial ecoregions had data within BioTIME, with only seven (largely small island) 

regions showing over 60% data coverage, with African and South American ecoregions having 

particularly low coverage, and few Asian regions with any data.  

Spatial biases on land mirror those of GBIF, though taxonomic biases are less pronounced, 

with a better relative reflection of invertebrates. In Ocean regions sampling patterns also mirror 

those of GBIF with the best coverage on the Eastern US, around Europe, and to the South of 

Australia. Atlantic ocean coasts and continental shelf had much stronger data coverage than in 

the Indian or South Pacific oceans, and particularly deep sea (slope, abyssal and hadal) were 

poorly represented. Southern Ocean data is very sparse, with the entire West Antarctic 

(Weddell, Scotia, Bellingshausen, Amundsen and Ross seas) represented by a single location, 

except for plankton sampling. Arctic coverage is extremely patchy, even around the same 

island, such as Greenland. Surprisingly, some well known marine biodiversity hotspots, such 

as SE Asia and moderate richness of East Africa and the west coast of South America are 

poorly represented. Amongst the marine realms, nowhere had over 50% of their area covered, 

with the best coverage (46%) in the NW Atlantic Shelves, followed by New Zealand Coastal 

province at 13%. For EEZs, five had an over 50% data coverage, though three of these were 
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around the Eastern US and Canada, with the other two around Belgium and Israel, conversely 

all tropical, and most oceanic island EEZs had little or no data. 

RivFishTIME 

As BioTIME has little inclusion of freshwater systems, RivFishTIME was created to monitor 

freshwater fish. The RivFishTIME database has 11,072 locations from 402 basins in 19 

countries, and 944 fish species (Comte et al., 2021). The times between samples, methods, and 

completeness of RivFishTIME is high enough to infer changes over time, however almost all 

analysis is from high income economies, with only one South American, 2 African countries 

within tropical ecosystems. Further time series have been conducted for over 6200 taxa in 

Europe have shown population changes over time (Pilotto et al., 2020), but is limited to Europe. 

Living Planet Index 

The LPI database shows that 20% of counts include only two population counts, whereas larger 

and more representative censuses were limited to few taxa (particularly birds and fish) (Data 

S4). Many counts also indicate activity rather than abundance, and may not be comparable due 

to short sampling periods. In total 2031 of the species in the LPR are Actinopterygii fish (39%) 

mainly due to fishing for food, and 24.3% of samples are from Canada alone (despite the 

highest diversity the highest diversity being in Brazil (15.42%), 1625 are birds (31.4%, but 

52.3% are from Australia and Canada, representing only 10.7% of species), and 796 (15.4%) 

are mammals, with 329 amphibians (6%) monitored and all other groups populations measured 

even less. At a country level, Australia and Canada frequently have the highest number of 

samples, whilst by region Latin America had the greatest number (1758 species monitored), 

followed by North America (1367), whereas all other regions had fewer. Notably species 

counted the most often were almost all migratory wading birds, for example the 

Charadriiformes had 9273 populations of 211 species monitored (with 1083 populations of 

Calidris ruficollis alone), this was followed by Perciformes (3200 populations of 707 species, 

due to monitoring for food). For mammals artiodactyls (1280 populations, 125 species) and 

carnivores (1009 populations, 122 species) were the best monitored. The biases here replicate 

those of other datasets, though a larger proportion of fish are monitored than in other databases. 

PREDICTS 

PREDICTS assesses change on a gradient of disturbance. Like other datasets PREDICTS data 

demonstrates considerable biases (especially geographic), but has a greater inclusion of 

invertebrates than many other databases (Data S5). The greatest number of species was for 

arthropods (41724 including duplicates between countries) followed by plants at 28798, which 

also had the greatest number of samples, though plants had only marginally more samples than 

birds (11354 vs 11331) despite considerably more plant species (8212). Like other datasets 

PREDICTS is also dominated by high income economies, for example the UK has the most 

annelid samples and species (59.4% and 50.2%), (followed by New Zealand - 23% and 34%), 

and the highest number of mollusc samples (32.3%) despite low diversity (3.4%). Likewise, 

Japan has the highest number of Amphibian samples (41.8%) despite very low diversity 

(0.6%), whilst Madagascar had only 0.5% of amphibian samples, but these included 15.7% of 

species. Reptiles had relatively more balance in sampling with Australia having 35.3% of 
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samples to 29% of species and Mexico having 23.9% of samples and 18.4% of species. For 

mammals the greatest number of samples also came from Australia (20%), but only 8.8% of 

species, whereas Brazil had 5.7% of samples, but 17% of species. For Arthropods, Brazil has 

20.5% of samples and 11.47% of species, whereas Asia in particular shows smaller proportions 

of samples and high proportions of species (Data S3). For Fungi Italy had the most samples 

and species (29.8%, 30%) with the UK having the second most samples (21.9%) but few 

species, whereas Australia has 5% of samples, but has 24.7% of species. For biomes, 

Temperate Broadleaf & Mixed Forests was by far the best sampled for Annelids, Arthropods, 

Molluscs, Amphibians, Plants and fungi (though for fungi Mediterranean Forests were almost 

as well sampled), but for most of these Tropical & Subtropical Moist Broadleaf Forests had 

more species, and many biomes were unsampled for the majority of taxa. 

Species monitoring programs 

The Monitoring programs dataset assembled national monitoring programs across taxa for 

terrestrial, freshwater, marine and coastal regions, and have demonstrably different patterns to 

other databases (Moussy et al., 2022; Data S6). Terrestrial monitoring was the most common 

with 820 monitoring programs from 94 countries. China had the most monitoring programs (62 

programs) followed by France (53), primarily driven by birds (388 overall, 34 in China, 25 in 

France), followed by mammals (264 overall, with 26 in China and 22 in South Africa). This 

was followed by Plants (105 overall, 11 in South Africa) and reptiles (70 overall). Regional 

patterns were similar, with 402 overall, led by Europe at 323, programs 131 focused on birds, 

followed by Africa with 48 on birds and mammals. The next most monitored was Freshwater 

systems, which included 66 countries and 328 programs, with China leading at 39 programs 

(though 35 of these are birds). This was followed by mammals (51 programs) and fish (45 

programs) with few countries showing large numbers of programs. At a regional level, birds 

also led with 178 programs, whilst geographically Europe led with 151 programs (65 on birds). 

Coastal programs also focused almost entirely on birds (with most in Europe), whilst mammals 

and birds were the main focus of marine programs (principally European mammals; 5 of the 

10 European programs). 

 

 

Data type Source/citation Link 

Longhurst 

regions 

MarineRegions (2025)

 Longhurst Provinces

 Ecological geography of 

the Sea (Longhurst, 1998) 

https://www.marineregions.org

/gazetteer.php?p=details&id=2

2538 

https://hub.arcgis.com/datasets/schools-

BE::longhurst-biogeographical-

provinces/explore 

https://www.marineregions.org/gazetteer.php?p=details&id=22538
https://www.marineregions.org/gazetteer.php?p=details&id=22538
https://www.marineregions.org/gazetteer.php?p=details&id=22538
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Exclusive 

Economic 

Zones 

Flanders Marine Institute 

(2024). The intersect of the 

Exclusive Economic Zones and 

IHO sea areas, version 5. 

Available online at 

https://www.marineregions.org

/. https://doi.org/10.14284/699 

https://www.marineregions.org 

Ecoregions Dinerstein, E., Olson, D., Joshi, 

A., Vynne, C., Burgess, N. D., 

Wikramanayake, E., ... & 

Saleem, M. (2017). An 

ecoregion-based approach to 

protecting half the terrestrial 

realm. BioScience, 67(6), 534-

545. 

https://data-gis.unep-

wcmc.org/portal/home/item.html?id=012

7920779a64e3f98925f2d3da3b847 

Administrativ

e areas 

World Bank Official 

Boundaries 

 

https://datacatalog.worldbank.org/search

/dataset/0038272/world-bank-official-

boundaries 

UN regions Unicef Regional Classifications https://data.unicef.org/regionalclassificat

ions/ 

Coral reefs UNEP-WCMC (2022) Global 

Distribution of Coral Reefs 

https://data-gis.unep-

wcmc.org/portal/home/item.ht

ml?id=0613604367334836863f

5c0c10e452bf 

https://data-gis.unep-wcmc.org 

Road data Geofabrik https://download.geofabrik.de/north-

america.html 

Road data European Environment Agency https://www.eea.europa.eu/data-and-

maps/data/eea-reference-grids-2/gis-

files/germany-shapefile 

https://doi.org/10.14284/699
https://data-gis.unep-wcmc.org/portal/home/item.html?id=0613604367334836863f5c0c10e452bf
https://data-gis.unep-wcmc.org/portal/home/item.html?id=0613604367334836863f5c0c10e452bf
https://data-gis.unep-wcmc.org/portal/home/item.html?id=0613604367334836863f5c0c10e452bf
https://data-gis.unep-wcmc.org/portal/home/item.html?id=0613604367334836863f5c0c10e452bf
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Road data Humanitarian data https://data.humdata.org/dataset/?q=Net

herlands+roads&sort=score+desc%2C

+last_modified+desc&ext_page_size=25 

Road data Ordnance Survey UK https://osdatahub.os.uk/downloads/open/

OpenRoads 

Global 

Human 

Modification 

Index 

Theobald, D. M., Oakleaf, J. R., 

Moncrieff, G., Voigt, M., 

Kiesecker, J., & Kennedy, C. 

M. (2025). Global extent and 

change in human modification 

of terrestrial ecosystems from 

1990 to 2022. Scientific Data, 

12(1), 606. 

https://figshare.com/articles/dataset/Glo

bal_Human_Modification/7283087 

Global 

Human 

Modification 

Index 

Theobald, D.M., Oakleaf, J.R., 

Moncrieff, G., Voigt, M., 

Kiesecker, J., and Kennedy, 

C.M. <in review>. Global 

extent and change in human 

modification of terrestrial 

ecosystems from 1990 to 2022. 

Scientific Data. 

https://zenodo.org/records/16907328 

Digital 

Elevation 

Model 

Ince, E. S., Abrykosov, O., & 

Förste, C. (2024). 

GDEMM2024: Global Digital 

Elevation Merged Model 2024 

for surface, bedrock, ice 

thickness, and land-type masks. 

Scientific Data, 11(1), 1087. 

https://datapub.gfz-

potsdam.de/download/10.5880.GFZ.1.2.2

024.002-

Veebui/GDEMM2024_SUR.30s.tif 

Conversion 

pressure 

Oakleaf, J., Kennedy, C., Wolff, 

N. H., Terasaki Hart, D. E., 

Ellis, P., Theobald, D. M., ... & 

Kiesecker, J. (2024). Mapping 

global land conversion pressure 

to support conservation 

https://www.nature.com/articles/s41597-

024-03639-9 

https://data.humdata.org/dataset/?q=Netherlands+roads&sort=score+desc%2C+last_modified+desc&ext_page_size=25
https://data.humdata.org/dataset/?q=Netherlands+roads&sort=score+desc%2C+last_modified+desc&ext_page_size=25
https://data.humdata.org/dataset/?q=Netherlands+roads&sort=score+desc%2C+last_modified+desc&ext_page_size=25
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planning. Scientific Data, 11(1), 

830. 

Table S2. Data types used for analysis 

 


