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Abstract 

Species occurrence data is the fundamental unit of any species distribution analysis, 

biodiversity patterns, species extinction vulnerability, and temporal trends. This data is also a 

critical component of monitoring progress towards global biodiversity targets, such as those 

included in the Kunming-Montreal Global Biodiversity Framework (GBF) of the Convention 
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on Biological Diversity (CBD). Recent years have seen massive growth and digitisation of 

global species occurrence datasets, yet the headline indicators of the GBF’s monitoring 

framework relies on the IUCN RedList index as the species conservation indicator. This paper 

explores the largest global species distribution databases, and outlines some of the remaining 

challenges to bringing these data together for enhanced decision making. Countries such as 

Japan and South Korea have seen dramatic expansions of data coverage, whilst North Africa, 

Central Asia, and the High Seas have not witnessed comparable growth. In the oceans, 

expanding geographic coverage partially comes from tracking data from a small number of 

species. In terms of environmental space, other types of sampling effort are disproportionately 

concentrated on the temperate continental shelf and slope areas of the north Atlantic. Most of 

the world's most biodiverse areas, especially in the Tropics, both on land and in the ocean still 

lack data, and concerted efforts will be needed to improve the coverage of these regions. 

Furthermore, few long-term monitoring programs exist, and accurately inferring change from 

small numbers of unstandardised collecting events resulting in a large quantity of uncurated 

data is challenging. Among other measures, journals should request standardised data be added 

to the key repositories to address biodiversity data gaps and barriers to usability. Governments 

should also support the sharing of species occurrence data through standardised data 

infrastructure, such as GBIF and OBIS, and also ensure support for data curation and quality 

control to minimize impacts of species misidentification records. 

Introduction  

We are currently experiencing a global biodiversity crisis, marked by many species declines 

across habitats and realms (IPBES, 2019). Understanding and attempting to mitigate declines 

relies heavily on our knowledge of when and where species exist. Species occurrence records 

represent an essential source of data on species distributions, and may in some cases help 

establish relative abundances and trends. Such information can be used to guide planning and 

decision-making across ecological and socio-economic domains, including conservation and 

sustainable resource management in sectors such as forestry, agriculture, and fisheries. 

However, the ability to discover, use and re-use datasets is severely compromised by the variety 

of platforms used to deposit them, a lack of clarity on how data in one system relates to that in 

another, and the lack of standardisation of data across these platforms (Bayraktarov et al., 2019; 

Cornford et al., 2022; Marques et al., 2024). Many data sources also fail to define clearly what 

data are freely and openly available and accessible; the origins of the data, and the length of 

any time series available, can also be complicated to find on some data platforms (Stephenson 

& Stengel, 2020). However, dedicated platforms have developed standards to maximise their 

usability, vastly enhancing the capacity to use and analyse such data, which may not be applied 

to data stored on more general platforms (Guralnick et al., 2018; Ingenloff et al., 2025). 

Furthermore, comparable standards for other kinds of biodiversity data are either weakly 

developed, or absent (see Gonzalez et al., 2025). 

Trying to understand the availability of primary biodiversity data (occurrence records and 

species populations) entails two broad approaches. Firstly it requires analysis of the content of 

dedicated platforms such as the Global Biodiversity Information Facility (GBIF) and Ocean 

Biodiversity Information System (OBIS), which themselves aggregate species occurrence data 
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hosted and shared by a wide variety of institutions, projects and networks. Also, although 

mainly known for its expert-informed distribution ranges and associated data on threat status 

and extinction risk, the IUCN Red List database also contains point locality data which is used 

for some assessments. Secondly, dedicated research efforts that collate studies and programs 

that analyse biodiversity change over time or space, such as BioTIME, PREDICTS, and the 

Living Planet Database (LPI) (Dornelas et al., 2025, Hudson et al., 2017; WWF 2024). 

Understanding the strengths, and current gaps and challenges in using this data may enable the 

refinement of data and metrics to enhance our ability to monitor diversity at all scales. 

Thus, understanding how representative these species occurrence datasets are, identifying their 

various gaps, and the limitations of their sensible use is critical, not only to inform current 

analysis, but to prioritise and focus efforts to mobilise new effort to generate data on taxa, 

regions and ecosystems which are currently least represented. This is especially important 

when these datasets form the foundation for many species range analyses or modelling outputs, 

which are used in vast numbers of scientific papers, and also in national to global conservation 

planning, national to global policy, and work with the business and finance sectors. 

Recent years has seen an exponential growth of data, but if this growth overcomes previous 

biases and gaps (i.e. Hughes et al., 2021; Troudet et al., 2017), and how current data may 

contribute towards tracking progress to global biodiversity targets remains a question. As data 

availability has increased exponentially in recent years, understanding where this growth is 

taking place provides insights on those regions and taxa that are currently under-represented 

and those that might be expected to sufficiently improve in their data representation and 

availability based on their present trajectory. This enables two things, firstly the identification 

of areas where successful growth of data may have transferable lessons for other regions, and 

secondly the identification of areas, and environmental space, where further efforts are clearly 

needed to mobilise data, which is critical to provide the basis for proactive conservation 

planning (i.e see Merow et al., 2025; Feng et al., 2022; Meyer et al., 2015). Furthermore, the 

representativeness of new data is also a key factor, as single species programs (such as tracking) 

may fill spatial data gaps, without providing representative data for monitoring. 

Here we explore four species occurrence datasets (GBIF, OBIS, BIEN, IUCN), and also 

include a supplemental analysis of five population or community datasets, and assess how 

representative they are across space and taxa, and how well they track changes in biodiversity 

over time. We do not include datasets that include modelling or transformation of the data, 

species range / polygon data (GARD; Roll et al., 2017, AntMaps; Janicki et al., 2016) as the 

accuracy of such data is defined by the existence and representativeness of primary species 

distribution datasets. 

We identify some gaps within each dataset, and where those gaps are closing. Furthermore, we 

assess the relationship between the largest of these databases (GBIF) with basic metrics of 

intactness and accessibility following the example of Hughes et al. (2021) to assess how 

representative data is on a gradient of disturbance, highlighting the preponderance of data in 

highly accessible and more disturbed areas. Finally, we provide recommendations for an 

improvement of how data is collated to improve the availability of adequate data to track global 

biodiversity targets.  
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Methods 

We present the major global species occurrence databases in the world, and summarise 

coverage of data, and how coverage has changed over the last decade (largely based on GBIF 

data). In addition, we explore how changing the resolution of analysis impacts the perceived 

regional coverage based on OBIS data. Finally, we conducted additional analysis on spatial 

biases in GBIF in relation to distance to infrastructure and environmental intactness (based on 

the human modification index) (Supplementary Methods 1), and taxonomic and spatial 

representativeness and coverage of other monitoring datasets (PREDICTS, Living Planet Index 

(LPI), BioTIME and others) (Supplementary Methods 2). All spatial analysis was conducted 

using an Equal Areas Projection. 

Primary distribution datasets 

1. GBIF 

GBIF-mediated data came directly from the GBIF Secretariat, including a table with the 

number of occurrence records and species available in a snapshot of GBIF-mediated content 

for each year (between 2008 and 2025), for each country, and for selected taxa (full list of 

“taxa”, generally at Class level are provided in supplements). Global GeoTIFFS of point 

density for 2015 and 2025 at a 5km resolution were also provided (GBIF 2025). 

Based on the table, summaries of points per year for each group were aggregated for various 

groupings including by intersecting realms and UN regions (to add refinement to large and 

heterogeneous regions, such as “Asia” and better reflect both biotic variation and geological 

regions). The areas are also comparable to IPBES subregions, though some sub-regions have 

been merged (South and Central America- Latin America; East Africa, Central, Southern 

Africa, West Africa- Sub-Saharan Africa; North, North-East and Central Asia- Central-North 

Asia; IPBES 2021).  

For mammals, birds, reptiles and amphibians, we also calculated the number of species 

recorded by IUCN for each of these taxa at a national level, to compare to the number in GBIF, 

to gain some understanding of “potential completeness” in terms of the number of species 

recorded in GBIF and the number of species recorded for each country by IUCN (downloaded 

from the Red List website, selecting the appropriate taxa and downloading the shapefiles, 

similar to the approach applied by Oliver et al., 2021). Richness from IUCN was calculated 

using the “count overlapping polygon” toolbox in ArcMap. Taxonomic coverage was also 

explored using both the table, and directly via the GBIF portal to provide insights when a single 

year saw a large increase in records in certain regions, and to explore the contribution of citizen 

science vs traditional forms of data collection. 

For areas covered, we used the 5 km resolution GeoTIFFS to assess the percentages of various 

“zones” with at least one record per 5 km gridcell. This was also repeated using higher numbers 

of records per cell (10, 25, 50, 100 etc) to gauge the level of coverage for these designations. 

Designations included countries, biogeographic realms and ecoregions for terrestrial areas, and 
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for oceans was combined with OBIS data to calculate the percentage of Exclusive Economic 

Zones (EEZs - these were defined by MRGID designations, as well as ABNJ) and Longhurst 

regions (Longhurst, 1998) that had data. These designations were selected to provide a useful 

means to reflect coverage based on both biotic elements (ecoregions/realms, Longhurst 

regions) and geopolitical entities for management.  

Assessments were made based on an equal area projection, the percentage of each designation 

for 2015 and 2025 which had data (based on the dimensions above) was calculated, and the 

change between the two mapped. All calculations were conducted in ArcMap 10.8 (ESRI). 

Ecoregions, realms and biomes were downloaded from the ‘Resolve’ 2017 dataset (Dinerstein 

et al., 2017), EEZs were from Flanders Marine Institute (2024), Longhurst regions were from 

MarineRegions (2025), all spatial data used is listed in Table S1. 

2. OBIS 

The methods applied to GBIF data were repeated for OBIS data, based on data provided by 

OBIS in GeoTIFF form. This data was analysed in two ways, firstly it was aggregated to a 5km 

resolution and combined with GBIF to provide a binary map (data or no data) for the oceans. 

In addition, analysis was conducted at approximately 1 km, 2 km, 5 km, and 11 km to calculate 

how the percentage of each “zone” with data varied (based on at least one point per grid) as 

cell size increased.  

Designations (EEZs plus ABNJ, Longhurst regions) were used to assess the percent of each 

region covered with data (at least one point per cell). In addition, the coverage of coral-reefs 

with data based on high resolution data (0.01o) was assessed by downloading coral-reef data 

from UNEP-WCMC (2022), and assessing the coverage of points within reefs (only the highest 

resolution of data was used for this due to the size and dimensions of reefs). All assessments 

were made in ArcMap 10.8, based on an equal areas projection. In each case, data was classified 

to binary (data or no data) and the “tabulate area” tool used to calculate the area covered within 

each designated zone (EEZs, Longhurst regions etc). In addition, the distributional patterns of 

various representative taxa (sharks and rays, tunicates, sea cucumbers) were mapped to 

compare to assumed patterns of diversity based on IUCN Red List of Threatened Species 

assessments) for those groups. For the comparisons we downloaded shapefiles from each taxa, 

then used the count overlapping polygon tool in ArcMap 10.8) to map presumed richness vs 

sampling intensity. 

3. BIEN  

BIEN focuses solely on plant data and has 269,434,901 samples after cleaning and 

standardisation, which has been used to map ranges of 289,743 species (though 112,953 are in 

the Americas) of 350,000 extant plant species. Whilst BIEN does draw on GBIF data (among 

other sources) it applies its own taxonomic backbone, and does not share data with GBIF (Feng 

et al., 2022; Enquist et al., in review; Maitner et al., 2018; Feng et al., 2022). The Botanical 

Information and Ecology Network (BIEN) database integrates over 284 million records for 

land plants from herbarium specimens, ecological plots, citizen science, and trait databases into 
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a centralized integrated geospatial database, enabling  large-scale biodiversity research. The 

BIEN workflow has used the primary distribution data to map the distributions of ~290,000 

plant species (out of approximately 350,368 species known globally; Antonelli et al., 2023).  

The core BIEN tools for data cleaning include the Taxonomic Name Resolution Service 

(TNRS) to standardize synonyms and correct spellings (Boyle et al., 2013); Geographic Name 

Resolution Service (GNRS) to standardize political names and check whether coordinates fall 

within the finest political unit specified; Geocoordinate Validation Service (GVS) for removing 

erroneous coordinates including political centroids and herbaria locations (Boyle et al., 2022); 

and  Native Species Resolver (NSR) to filter records out associated with introduced species, 

typically based on regional checklists or floras (Boyle et al., 2024). Taken together, this suite 

of corrections and filters leaves 56% of the entire database, or 159,189,390 unique species 

occurrence records, available for downstream analyses (Enquist et al., in revision).   

  

4. World Checklist of Vascular Plants  

 

Checklist-based distribution datasets, compiled from floras and national/regional checklists, 

determine species’ geographic presence at coarse resolution and provide a complementary 

source of information to point locality databases for plants. Among these, the World Checklist 

of Vascular Plants (WCVP) (Govaerts et al 2021), curated by the Royal Botanic Gardens, Kew, 

records accepted taxonomy and distribution across the 369 ‘botanical countries’ of the World 

Geographical Scheme for Recording Plant Distributions (WGSRPD) (Brummitt 2001). The 

resource is disseminated via the Plants of the World Online (POWO) portal  

(https://powo.science.kew.org/) and as versioned GBIF checklist snapshots (Govaerts et al. 

2025). The latest versions available on GBIF indicate ~98% taxonomic 

alignment between the GBIF and WCVP backbones, suggesting good 

prospects for reconciling GBIF records with WGSRPD-based ranges. 

Additional global resources with country/region-level coverage 

include the Global Inventory of Floras and Traits (GIFT) database  (5) 

(≈5,169 checklists across ≈3,400 regions), which also uses WCVP and 

can provide less spatially biased regional species lists than GBIF  

(Weigelt et al. 2020), and the Botanic Gardens Conservation International’s (BGCI) 

GlobalTreeSearch database  (https://tools.bgci.org/global_tree_search.php) (≈60,000 tree 

species with country distributions). Together these sources provide 

complementary, curated range information where WCVP/WGSRPD 

might be too coarse or point data are absent. 

 

We have used the point data from BIEN in conjunction with the WCVP botanical country 

checklists  to evaluate the sampling completeness of BIEN occurrence data by assessing the 

degree to which it aligns with the floristic diversity expected from WCVP, and to help guide 

collection and digitisation priorities to fill in gaps in plant diversity knowledge.  We have not 

undertaken a comparable analysis between IUCN red list, BIEN and WCVP databases. 
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We compared species occurrence records compiled and curated by BIEN with species richness 

estimates derived from the WCVP database. BIEN occurrence records described previously 

were consolidated into a parquet file containing species identity (binomial), latitude, and 

longitude coordinates. To enable spatial aggregation, we employed the World Geographic 

Scheme for Recording Plant Distributions (WGSRPD, level 3, hereafter referred to as 

“botanical countries”), provided through the rWCVP R package (Brown et al. 2023). These 

geographic distribution units were rasterized at a resolution of approximately one kilometre at 

the equator to facilitate spatial overlay with occurrence records. 

All BIEN records were then spatially assigned to botanical countries by intersecting geographic 

coordinates with the rasterized WGSRPD layer of botanical countries. For each botanical 

country, we calculated the number of occurrence records and the number of unique species 

represented in BIEN. 

To derive reference estimates of species richness, we used WCVP data as implemented in 

rWCVP and its companion package rWCVPdata. Species names were filtered to retain only 

accepted taxa at the species rank, and distributions were extracted while excluding extinct or 

doubtful records. Botanical countries were assigned both total species richness and native 

species richness values, thereby providing reference baselines against which BIEN data could 

be evaluated. 

Comparisons between BIEN and WCVP were conducted at the botanical country level. 

Differences in richness were quantified both as absolute discrepancies in species counts 

(expected species richness from WCVP minus species richness obtained from BIEN 

occurrence records) and as relative deviations from WCVP counts, with relative change 

expressed as the proportion of BIEN species counts relative to WCVP estimates as follows for 

botanical country i: 

%𝛥𝑖 =
𝐵𝐼𝐸𝑁𝑐𝑜𝑢𝑛𝑡, 𝑖 −  𝑊𝐶𝑉𝑃𝑐𝑜𝑢𝑛𝑡, 𝑖

𝑊𝐶𝑉𝑃𝑐𝑜𝑢𝑛𝑡, 𝑖
× 100  

 

 

5.  IUCN red list of threatened species  

The IUCN Red List assessment process requires a map of species distribution as part of the 

species extinction vulnerability assessment, but data sources used may vary. To analyse this, 

we downloaded the IUCN Red List data from the online data portal (IUCN 2025). We then 

assessed the sources of data used to map species ranges, focusing on the availability of  point 

locality data (see Hughes et al., 2024). Summaries were made for each major kingdom where 

IUCN Red List assessments have been made, in addition to a further analysis of the phylum 

Chordata given their extensive coverage within the Red List.  

Results 
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In this paper, we focus our analysis on species occurrence and species diversity and population 

trends in databases. Additional descriptions of taxonomic biases in GBIF data are provided in 

Supplementary results S1, spatial biases in Supplementary results S2, and detailed descriptions 

of other monitoring datasets in Supplementary results S3. 

Species occurrence data 

GBIF and OBIS 

GBIF is the largest global repository of species occurrence data, with 3,133,420,793 records as 

of July 2025. Of these, 2,013,645,678 are birds (64.3% of all records, due largely to the 

contribution to GBIF from eBird, which makes up 48.3% of all records, and 75% of all bird 

records). In terms of coverage, the global spatial coverage has increased dramatically in recent 

years going from 6.19% of the planet covered in 2015 to 15.52% in 2025 at a 5km resolution 

(Figure 1, Figure S1A-B). Overall, 78 countries have under 50% of their area represented 

according to GBIF, and 34 of these have under 25% covered, with only one of these showing 

a substantial increase (>20% growth) between 2015 and 2025. However, unsurprisingly 

terrestrial areas were better covered (11.84% to 25.28%) than marine (3.42% to 10.72%) based 

on GBIF data, though it should be noted that at higher resolutions percentage coverage will 

decrease (Hughes et al., 2021). 
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Figure 1. A. GBIF data density based on data available in 2025, for each year see Figure S1A-B. B. 

Growth of data over a decade in GBIF, Turquoise shows data from 2015, blue shows the additional data 

growth within GBIF between 2015-2025. For growth of data over time in different regions see Figure 

S2. C. Density of OBIS data at 0.1 degree. 
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In terms of the national land area covered within GBIF, 62 countries/administrative areas have 

areas of under one degree (111 km2) thus assessing the coverage as a percentage may not be 

indicative. Some parts of Europe and other high-income regions (for example, Scandinavian 

countries and the UK) had very good coverage (Figure S1C-D), with many reaching 100% by 

2025. In addition to looking at absolute coverage, understanding where increases in coverage 

have occurred in recent years, especially for areas with low coverage, provides an indication 

of where we may expect to see improvements in the coming years. Some higher-income 

countries saw dramatic improvement in coverage over the decade: for example, New Zealand 

increased from 60 to 99%, Japan increased from 44% to 95% coverage, and South Korea 

increased from only 26% to almost 100% coverage. Conversely, Antarctica has the lowest 

coverage on the land at 0.11% in 2015, and only expanded to 0.28% by 2025; likewise, 

Greenland and Libya also have under 5% of their area covered in 2025, with a further eight 

countries (all in Africa and Central Asia) currently having below 10% covered. It is also 

important to note that even though the percentage of the area covered for many countries is 

increasing, 28% of all cells with data (at a 5 km resolution) have only one point, 51% of cells 

with data have five or fewer points, and 75% have fewer than 50 points per 5 km cell. At a 

regional level high-income regions such as North America and Europe (in the Neartic, 

Palaeartic regions) have shown exponential increases in the data included in recent years 

(Figure S2, Figure S1E-F). The Nearctic has slightly more points overall (but this is primarily 

driven by birds having the most records), but the Palaearctic has more data for many other taxa. 

At the ecoregion level (Figure S1), North America and South-East Australia had the best 

coverage, followed by European ecoregions (Nearctic 44%-66%, Oceania 71-96%, Australasia 

53-65%). Conversely, dry and arid ecoregions in North Africa and Central Asia and ice-bound 

ecoregions had the lowest, followed by semi-arid and then tropical ecosystems (temperate 

systems were the best covered; Figure S3). However, changes in coverage are very 

dynamic,e.g. the Indomalayan region had the second lowest coverage in 2015 (13%) but this 

had increased to 47% by 2025 (improving its “global rank” relative to many other tropical 

regions). In contrast, the Afrotropical region was the fourth worst covered in 2015 (19%), but 

has become the second worst covered in 2025 (37%), whilst Antarctica remained least covered. 

For biomes, overall tundra regions had the some of the lowest coverage (7%-16%), followed 

by boreal (8%-21%), then desert and xeric (19-35%) and tropical grasslands (19%-37%), 

whereas Mediterranean forests had 84% covered by 2025. More broadly, assessment of biomes 

by region data shows considerable differences in coverage even within a single biome (Figure 

S3).  

Taxonomic coverage 

Across taxa, there have been marked increases both in species recorded and in total 

occurrences. For most regions, the last decade has seen an exponential growth in records across 

taxa. Yet both the highest total numbers and greatest increases have been in high-income 

economies; for example, the United States has 26% of all records for reptiles whilst hosting 

under 5% of described species. Assessing inventory completeness at a national level for 

different taxa without first filtering point localities to remove non-native species is challenging 

(due to alien species, captive species, incorrect georeferencing), despite this the taxonomic 
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completeness of GBIF data varies by country and taxa. However, at least 43 countries have at 

least 25% of amphibian species not represented by point data (based on comparing counts of 

species within GBIF with native species recorded according to the IUCN), as well as 34 

countries with at least 25% of mammals unrepresented, 17 with reptiles under-represented, but 

only 5 with birds under represented. In addition, major gaps exist for terrestrial mammals in 

Asia (at least 55.6% of countries lack records for 25% of species), in Oceania 86% of countries 

lack records for at least 25% of amphibian species (see Supplementary results 1 provides 

further details, Data S1). In marine taxa, hotspots for sampling in most groups were also 

inconsistent with hotspots for species richness (Data S2). 

In marine systems, using the AquaMaps 2.0 framework (Reygondeau et al., in review) and 

World Register of Marine Species (WoRMS) taxonomy, a total of 205,627 marine species were 

identified along with compiled occurrence data from OBIS, GBIF, and internal AquaMaps 

sources. Approximately 53% of these species have less than 5 occurrence records. Data gaps 

are particularly pronounced in groups (in this case phyla) such as Nemertea, Platyhelminthes, 

and Ctenophora, where about half of the species had no recorded occurrences. In contrast, 

coverage is much stronger for marine reptiles, fishes, and Porifera, with fewer than 5% of 

species missing records, and for marine mammals, where all species are represented by at least 

one occurrence. For marine species with occurrence data, AquaMaps 2.0 pipeline (Reygondeau 

et al., in prep) also provides quality flags that indicate whether an occurrence point is within 

the species’ range or erroneous. The proportion of verified occurrences is highest in mammals 

(86%), reptiles (69%), and fishes (62%), moderate in many invertebrate groups (about 25–

45%), and very low in nematodes (20%) and platyhelminths (3%). 

 

Marine data patterns 

To assess the coverage of marine systems GBIF and OBIS data were combined and coverage 

calculated overall, for EEZs and Longhurst regions (Figure 2, Figure S4). Whilst the data 

largely overlaps (the overall objective of GBIF-OBIS collaboration is for marine data to be 

published simultaneously into both networks), differences can arise for a variety of reasons, 

based on varying workflows and practices among contributing data publishers. Combining 

OBIS and GBIF data at a 5km resolution covers 19% of the world's surface and 13% of the 

world's ocean with at least one species occurrence record (Figure 1C). However, the marine 

component of this data is collected predominantly around the coasts, especially around Europe, 

North America, and some parts of Australia and New Zealand. Around the European coastline, 

the Longhurst regions have a coverage of occurrence records up to 87% at a 5km resolution, 

whilst high-sea regions only have a coverage of 2-4% (for different parts of the high-sea). 

Hotspots of data density fall within the same regions (Europe, coastal US and Australia), 

especially to the North of Europe. EEZs have an even higher percentage coverage around 

certain coasts (especially around Europe), up to 100% in some regions (Figure 2, Figure S4). 

Conversely, many small island developing states have very little data. For some of the most 

diverse marine biomes (coral reefs) only 11% of the area had data. In addition, hotspots for 
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sampling for most groups examined did not correspond to hotspots for species richness (see 

Data S2). 

The proportion of each “zone” with data varied depending on the resolution used. At a 1km 

resolution, only 1% of the marine areas have data within OBIS. This increases to 3% at a 2 km 

resolution, 9% at a 5km resolution and 25% at an 11km resolution. Most of the worlds’ oceans 

(especially around Small Island Developing States (SIDS), in tropical regions and the High 

Seas), have very little data, and EEZs around Southeast Asia had under 1% of data coverage at 

higher resolutions. Densities of data also matter, and even at 11km around 81% of cells have 

no data, whilst 6% of cells have only one record (30% of all cells with data), 11% of cells have 

1-5 records (60% of cells with data), and 16% have 1-50 points (86% of cells with data, whilst 

14% have more). At a higher resolution (1km, which is typically used for distribution 

modelling), these patterns become more extreme as not only do 99% of cells have no 

occurrence records, but 51% of cells with data only have one point, and 93% of cells with data 

have 50 or fewer points. When considering the data needs for single species, this lack of data 

presents a major challenge to accurate modelling. In the Southern Ocean, whilst areas appear 

to have high coverage, much of this is tracking data of small numbers of species (mainly 

Southern elephant seals through Scientific Committee on Antarctic Research, as well as some 

data on King penguins). Understanding the gaps and representativeness of this data is crucially 

important for monitoring, especially in the light of the entry into force of the UN Agreement 

on Marine Biological Diversity of Areas beyond National Jurisdiction (the BBNJ Agreement). 
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Figure 2. Percent coverage of OBIS point data in the ocean for EEZ (With at least one point 

per cell), all scales go to 100%. Gray areas have under 1% data coverage. Resolutions A - 

0.01O, B - 0.02O, C - 0.045O, D - 0.1O. E. Mean percentage cover per ecotype at each of the 

four resolutions. See Figure S4 for the equivalent analysis for Longhurst regions, and Figure 

S1 for terrestrial regions, whilst Figure S3 shows coverage of terrestrial biomes in GBIF. 

 

BIEN (Botanical Information and Ecology Network) 

 

Before a standardised taxonomic backbone was applied, BIEN compiled 1,323,320 unique 

Land Plant names from 284 million botanical observation records (Figure 3). However, 65-
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73% of names have issues requiring correction or cleaning, and the final cleaned set includes 

159,189,390 (55.96%) passed all accuracy checks. This includes 323,377 - 404,043 

Angiosperms, but far smaller numbers of other plant groups (i.e. 12,102 - 20,921 

polypodiophytes [Ferns], 26,808 - 31,556 bryophytes). Furthermore, of plants included, only 

36% are assumed native, and at least 26% are introduced.  

In terms of spatial representation, similar gaps exist in other data sources, and whilst some 

diversity hotspots are clear in the Amazon, little data is available from Tropical Southeast Asia, 

and almost none from Central Asia or North Africa. Interestingly, Angiosperm data and 

Bryophytes come principally from South America, whereas Fern data has a greater input from 

China, though largely from South-Eastern regions. Overlays of BIEN and Kew plants data 

provides some clues on where the greatest spatial disagreements between these data systems 

are located on land, at the scale of countries (Figure 3). Bias can go in two directions, with 

apparent underrecording of species by the Kew databases in several parts of North America, 

some South American countries, and in Spain, Australia, and New Zealand.  Conversely, the 

Kew data seems to show underrecording by the BIEN database in many parts of Africa, Central 

Europe and the Middle East, and across Asia. The analysis did not reconcile taxonomies 

between BIEN and WCVP beforehand, which may account for some of the differences 

observed in species counts across regions. However, the analysis should still effectively reflect 

broader-scale discrepancies between the two databases. Additionally, our understanding is that 

BIEN’s taxonomic backbone incorporates WCVP, which should limit such inconsistencies, 

and likely keep them below the 100 species buffer. 

 



 

16 

Figure 3: Top: Absolute species count difference between WCVP and BIEN by botanical 

country. Bottom: Relative species count difference between WCVP and BIEN by botanical 

country. Red color gradient indicates regions where BIEN’s occurrence sampling contains less 

species than expected according to WCVP. Green color gradient indicates regions where 

BIEN’s occurrence data contains more species than expected according to WCVP. 

 

IUCN Red List  

The IUCN Red List has been analysed at the taxonomic level of Kingdoms, illustrating the use 

of point locality data. According to the 2025-1 version of the database, 144,239 species contain 

some form of map (point/polygon), and 28,713 contain no geographic assessment (Figure 4). 

Overall, 47,179 species in the Red List consist of point records only, and a further 6,966 species 

contain point data as well as polygons, whereas 90,094 species only have polygon data (where 

expert knowledge, and possibly checklists are the main source of information used for range 

mapping). The source of the point locality data is not always clear, as many assessments are 

based on expert knowledge and  any original data used may not be explicitly made clear 

(Hughes et al., 2024). 
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Figure 4. Numbers of species within the IUCN Red List assessment process that use point 

locality data only, polygon data only, points and polygons data together, or have no maps 

associated with their record . 

Sources of data used within the IUCN red list changed between the four Kingdoms (Figure 4). 

For plants 59% of the species assessed had some form of point data, whereas 14% were only 

polygons and 27% had no maps. This was reversed for animals (which includes Chordata), 

where 83% of species only had only polygon maps, whereas 10% had some form of point data 

(95% and 4% respectively for the phylum Chordata). Thus point maps were largely for non-

chordate animals. Fungi and Chromista had too few species assessed to provide further insights. 

 

Discussion 

 

Whilst there has been an exponential growth of data collected and made available over the last 

decade, this has been accompanied by a fragmentation of data across databases with different 

schema, making assembling all knowledge of species distributions, even for small regions, 

potentially challenging (for review see Kemp et al., in press). Understanding trajectories of 

data growth as well as where persistent gaps remain can help identify areas where extra effort 

may be needed. Various attempts have been made to explore growth and skew of biodiversity 

representation in open access databases, typically investigating taxonomic, temporal and 

geographic bias (see e.g. Petersen et al., 2021). Data may be distributed across multiple 
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international and national data repositories with varying levels of accessibility and findability 

(from governmental databases which may not have public access, specialist databases which 

may be challenging to find and have different data standards, individual project datasets on 

platforms like Zenodo, to fully open and standardised data on GBIF and OBIS). Whilst new 

tools are being developed to help aggregate fragmented data from multiple repositories (i.e. 

Owens et al., 2021), this highlights the expertise needed to even understand aspects of the 

adequacy of data for any given region, before even considering the standardisation and cleaning 

typically needed for use (i.e. Orr et al., 2021). This poses several key questions which must be 

answered to move forwards effectively. Firstly, where (and what taxa) do we have data for? 

Secondly, how do these data compare to expected diversity patterns within these groups? 

Further, which locations and taxa show data growth, and for which can we close these gaps? 

 

Assessing patterns of data collection and consistent gaps 

Many countries still have low data coverage, for example, 78 countries have under 50% of their 

area represented in global biodiversity datasets according to GBIF (at  a 5km resolution), and 

34 of these have under 25% covered, with only one of these showing a substantial increase 

(>20% growth) between 2015 and 2025. Tropical regions, whilst diverse, are generally 

undersampled, with the majority of data originating from often higher-income, temperate 

regions. These biases persist across all databases (Supplementary  Results S3). However, 

despite low sampling, areas such as Brazil and Indonesia still had the highest number of species 

observed for various taxa (especially when using datasets such as BioTIME; Supplementary 

results S3A). In marine environments, the High-seas have major datagaps, with much data 

pertaining to tracking of small numbers of species and individuals, with most data originating 

from temperate and subpolar coastal regions. Further analysis of these regions would require 

further data for basic diversity statistics, or more sophisticated approaches (such as modelling).  

Conversely, data gaps are so large for some regions as to preclude any form of more advanced 

analysis of species distributions or population trajectories. For example, based on GBIF data, 

North Africa and parts of the Middle East (i.e. Libya and Afghanistan, Turkmenistan) show 

both low coverage and some of the lowest growth at under 4% (Figure S1). Yet the situation 

for these countries may actually be even worse, for example, much of Afghanistan's data is a 

non-georeferenced bacteria and fungal assessment from January 2018 with 169,604 samples of 

bacteria, fungi, archaea etc), meaning virtually no data would be usable for monitoring or 

modelling. Political and linguistic barriers present a challenge to data growth within these 

regions, and targeted efforts and partnerships are likely needed to overcome them (see, e.g., 

Stephenson et al., 2017). Furthermore, within some regions, such as various countries in Africa 

and Asia, government and ministerial biodiversity data repositories and individual research 

data may be less likely to be publicly shared, precluding visible data growth despite increasing 

survey efforts. This all highlights the need for further work to both enhance the findability and 

access to existing data, in addition to targeting persistent survey gaps. 

In addition to geospatial biases in country representation of data, taxonomic coverage is 

uneven. OBIS and GBIF are built from various databases (eBird, iNaturalist), researchers, 
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museum collections and other repositories (i.e. Vertnet), and thus reflect global biases in data 

collection. Thus, whilst the continuous plankton recorder in the ocean will overcome many of 

the taxonomic biases present in terrestrial regions for the ocean, these issues persist in terrestrial 

systems. For example, most insect data in GBIF comes from longstanding invertebrate 

monitoring programs in Europe such as the Swedish Malaise trap program. Similarly, 26% of 

all insect data in GBIF is from the United Kingdom, and of this 72% comes from three 

specialised programs on UK moths and butterflies. This shows how effective National Scale 

efforts can be at mobilising tremendous volumes of data, but few such efforts exist in tropical 

regions, and even when national monitoring does occur, this data is rarely stored in publicly 

available repositories (e.g., MyBIS for Malaysia, or Thailand's DNP database). Similarly, 

based on the BIEN data major gaps exist across Asia and Africa, but have been reconciled by 

targeted sampling efforts across parts of the Americas. 

Whilst most tropical regions globally have seen data-growth this is strongest for birds. For 

other taxa, the growth of data has been far more variable; Pacific islands and much of Africa 

have seen little change in the number of species represented in most clades, but the Neotropics 

and Southeast Asia have seen increases in some groups (such as reptiles, and to a degree 

amphibians), though rarely for invertebrates. In terms of diversity hotspots experiencing a 

growth in biodiversity data coverage, the Neotropics is performing well relative to other 

regions, with some Southeast Asian Nations following this, whilst more arid regions continue 

to lag. That said, some regions have seen a transformation of their data coverage over the 2015-

2025 period. In some cases, such as the case of South Korea, this is in part due to the work of 

agencies such as the National Institutes for Ecology to digitise collected data in both South 

Korea and Japan. Furthermore, across sub-Saharan Africa, the Pacific, Caribbean and Asia, the 

Biodiversity Information for Development (BID), funded by the European Union,  and 

Biodiversity Information Fund for Asia (BIFA), funded by Japan’s Ministry of Environment, 

both initiatives of GBIF, have helped mobilise data. Continued funding will be needed to 

sustain and expand such efforts into the future, and will likely need to be  complemented by 

national funding to increase inclusion of datasets across global  regions.  

In addition to geospatial biases in the ecosystems and regions covered, the majority of 

terrestrial data comes from regions adjacent to roads (over 90% within 2 km; Hughes et al., 

2021) and most marine data comes from coastal areas, with all regions but Antarctica showing 

this pattern (Supplementary results S2). Across all taxa, proximity to a major road is a 

significant predictor of sampling intensity, with many regions also showing a positive 

relationship between the degree of human modification (based on the human modification 

index) and the sampling intensity (Supplementary results S2). Furthermore, most marine data 

comes from shallow-seas, with little data from 5000-10,000m, and virtually none at greater 

depths (Bridges & Howell, 2025). Spatial representation of Benthic and Pelagic environments 

is largely focused around Europe, the West coast of the US and New Zealand, with little data 

available for other parts of the ocean (Bridges & Howell, 2025). Data showed strong biases 

towards coastal areas near developed countries, regions with intensive fishing activity, and 

species of small body size occupying shallow habitats and of commercial or cultural value 

(Pizarro et al., 2024). However, the coast is very poorly represented around most of the Arctic 
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(notably in Canada, Greenland, and Russia). In contrast, Antarctica’s coast is well represented, 

yet key habitats are missed, such as unique and globally threatened habitats, under ice shelves, 

where >70 species may occur in <1 m2 (Barnes et al., 2021), though notably it is the only area 

where most data is not immediately adjacent to the coastline. Overall, whilst marine 

biodiversity data availability has increased exponentially, particularly in the Southern Ocean, 

Japan and South Korea, clear gaps remain (including most of the high-seas and deep ocean 

(Figure 1, Figure S1)) (Bridges & Howell, 2025). Compounding these gaps and biases, a global 

analysis of over four decades of occurrence data found that only 1.14% of available records 

were suitable for detailed analyses (Pizarro et al., 2024). Notably, these gaps are amplified 

when higher resolutions of data are assessed, or when data density is considered, highlighting 

that good data coverage still only occurs for a small part of the world, and whilst data coverage 

has increased, many gaps still persist. Importantly, perceived increases in data coverage in 

some ocean regions (such as the Southern Ocean) are in part driven by GPS tracking of 

Southern Elephant seals (i.e. see Rodríguez et al., 2017), whilst dense collections of data are 

still primarily centred around Europe. In most regions, it should also be noted that much of the 

new data is bird data through citizen science initiatives. Whilst such data is invaluable for 

tracking migration and phenology, it rarely provides data for other taxa, and thus this growth 

of bird data may not have been mirrored in other taxa. An exception to this is for countries like 

the UK where multiple National programs have provided a suite of high-quality data for 

monitoring across taxa, and may have lessons which could be replicated elsewhere.  

Taxonomic representation also varies across databases (Supplementary results S3). For 

example, PREDICTS has a better taxonomic representation than many aggregated datasets, but 

data is only available for a subset of regions and ecosystems (Supplementary results S3d). The 

Living Planet database holds considerable data and has been used widely to derive different 

indicators to be used as policy tools, but there remain areas for improvement for filling 

geographic and taxonomic data gaps, using it for national monitoring, and developing 

modelling approaches that better capture uncertainty (McRe et al., 2025). Other areas to 

address include increasing the use of data that has been standardized for sampling effort before 

being used to infer population trajectories (Supplementary results S3c). Improving quality by 

reducing the number of populations through better standardisation may enhance the reliability 

of assessments (Feng et al., 2022). Monitoring programs also show major regional differences, 

highlighting both regional differences in focal taxa, and that only a subset of data enters public 

facing databases (Moussy et al., 2022; Supplemental Results S6). Freshwater systems in 

particular are some of the most challenging to monitor across scales, as they are not reflected 

in BioTIME, and RivFishtime shows major geographic biases (Supplementary results S3a-b). 

Despite their weaknesses, these datasets underpin our understanding of global diversity 

patterns. Furthermore, the physical dimensions of freshwater systems means that analysis using 

GBIF data may be challenging, as assessing sample completeness will be difficult at scale, and 

coordinate imprecision may hinder targeted management or assessments pertaining to stretches 

of waterways. Whilst these datasets are critical, their biases frequently mirror those of broader 

biodiversity databases, and the lack of standardised reporting standards can hinder accurate 

interpretation of the data. 
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Assessing and addressing sampling representativeness and biases 

 

Understanding the relationship between hotspots of data-collection and hotspots of diversity is 

critical to ensure that we have adequate sampling in diverse regions. Yet  almost all instances 

of known biodiversity hotspots (based on overlapping species maps from the IUCN) do not 

coincide with areas of peak data collection in either marine or terrestrial areas. For example, 

marine data collection intensity does not align with mapped diversity for those taxa (based on 

species assessments Data S2), especially in the Indo-Malayan region, and high diversity 

systems such as coral reefs only have species data covering around 11% of their area. For 

example for marine mammals and marine reptiles, comparisons of occurrence records with 

IUCN expert range maps reveal substantial coverage gaps (Data S2), with many species having 

few or no georeferenced records in global repositories, underscoring persistent data 

mobilisation and accessibility challenges even for well-studied taxa (Moudrý and Devillers, 

2020).  

Addressing these gaps requires systematic integration of fisheries-dependent and fisheries-

independent datasets into global repositories such as GBIF and OBIS. These repositories 

provide the backbone of marine biodiversity information, but they are still dominated by 

research surveys and opportunistic observations, which leaves major gaps for exploited taxa 

and in regions where fisheries provide the most consistent biological records. Linking catch 

statistics, observer programs, trawl survey data, and acoustic detections with the taxonomic 

backbones and spatial frameworks of GBIF and OBIS would considerably expand coverage of 

marine taxa, especially in tropical and subtropical EEZs where biodiversity and fishing 

pressures coincide. This approach would also reduce duplication between parallel monitoring 

streams and establish a comprehensive baseline from which cumulative impacts of 

exploitation, environmental change and conservation interventions could be assessed. Beyond 

filling gaps, embedding fisheries datasets into these repositories would also promote 

interoperability across sectors, enabling biodiversity monitoring, conservation planning and 

fisheries management to draw from a single, coherent evidence base. In doing so, marine 

biodiversity assessments could reflect both commercially important and non-target taxa, 

improve comparability across regions, and provide more robust information to support long-

term monitoring and reporting under the GBF. This is no small challenge as sharing fisheries 

data depends on building partnerships, consensus, and capacity across fragmented scientific 

communities  (Maureaud et al., 2025). 

Enhancing data usability 

In addition to spatial and taxonomic biases and gaps in global datasets, the usability of data is 

also determined by the accuracy of the records. How many of the records present in a database 

are robust, that is (to the latest knowledge) truly represent the correct species? While data 

curation is a key focus for some platforms, which means that  uploads are paired with 

appropriate metadata and species nomenclature is checked as valid and any identification 

verified by an appropriate taxonomist expert, there are no quality control standards for species 

records adopted by all platforms. This issue has two steps, one of which can be solved through 
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cross-referencing with standardised taxonomic backbones (for marine: ITIS, WoRMS], 

GBIF/Catalogue of Life; for terrestrial plants: World Checklist of Vascular Plants). The other 

step requires inspecting either the actual specimen or an image. From cleaning based on these 

taxonomic backbones, large numbers of records are incorrectly listed in databases before 

cleaning across taxa (i.e. 73% had some issue, which could be corrected in ~⅓ of cases, prior 

to cleaning in BIEN), with multiple applications requiring such treatment (i.e. wildlife trade 

data (Marshall et al., 2025)) and pipelines developed for various taxa (i.e. bees Dorey et al., 

2023). This is very important, as for most analytical purposes, no data is preferable to ‘bad’ 

data. Although any given species name attributed to a record can be checked, it is difficult to 

ascertain whether the record was correctly identified as this species. Curated datasets such as 

WoRMS or BOLD can solve this problem but may contain very few records, because of this 

requirement and cost, and initiatives tend to be taxonomic and regional (i.e. African bats; 

Monadjem et al., 2024), meaning that the accuracy of most data remains variable, and 

challenging to quantify. This problem, although rarely quantified, is significant, so much so 

that often some of the most common and abundant species in a given region (represented in 

open access databases) are incorrectly identified and do not even occur there (e.g. see Sands et 

al., 2025). A key unanswered question is thus what proportion of species records data is 

incorrect and how does this change with taxonomic identity, region and time? Despite such 

accuracy and other, databasing problems it remains crucial to maximise the potential of what 

can be gleaned at the moment from existing data to assess the status and change of what we 

know of global species distributions, especially for rare, endemic, or cryptic species.   

Given that global assessment requires standardised and interoperable data from across taxa, 

sustained efforts are needed to mobilise data which has been collected into a form where it can 

be accessed, and used to monitor trends in diversity. Notably, IUCN Red List assessments, 

which often feed into higher reporting, rarely use point data for animal species, whereas this is 

general practice for plants. Improving spatial data collection and analysis could be a critical 

component of National Biodiversity Strategic Action plans, as if data is collated and made 

available based on agreed standards, tools can be applied to the data to facilitate the reporting 

needed to meet mandated reporting requirements (reducing the effort needed to meet 

requirements). This requires both political will and sustained funding for monitoring. This 

would include through agencies such as the GEF (particularly as capacity for monitoring, and 

systems for data deposit are developed) and at a national level to develop long-term monitoring 

initiatives, such as those present for insects in the United Kingdom based on the GBIF data). 

Moving forwards 

The last decade has seen a considerable transformation of biodiversity knowledge accessible 

via databases for many parts of the world. Yet gaps remain, with Central Asia and Northern 

Africa on land, and the high-seas, Arctic, and coastlines around the tropics showing little data 

growth in global databases. Initiatives like BID and BIFA from GBIF have driven 

improvements in some regions (sub-Saharan Africa, the Pacific, Caribbean and Asia),  but there 

continues to be an urgent need for more capacity building for biodiversity monitoring in low-

income high-biodiversity countries (e.g. Schmeller et al., 2017; Stephenon et al., 2017). 
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Overcoming these challenges will require not only funds, but engagement, especially in areas 

where data exists but is either increasingly fragmented (e.g. polar regions) or not publicly 

accessible (e.g. China, Southeast Asia) and areas which may lack capacity or resources. 

Likewise, intact ecosystems are poorly represented, likely due to the data for these systems 

coming from Scientists (rather than members of the public) who may be less likely to share 

data, or tend to publish it within databases which are not connected to, or interoperable with, 

larger global databases. At present funding from GEF (the Global Environment Facility) cannot 

be used for monitoring, yet countries cannot plan to manage their biodiversity without either a 

baseline or a mechanism for standardised monitoring. Thus, dedicated support is clearly 

needed. Such efforts could be paired with reporting mandates and mechanisms, and by 

standardising data collection, could also be analysed by standardised tools to reduce reporting 

burdens and standardise reporting. 

There has even been considerable growth of data in some remote regions, such as both Arctic 

and Antarctic seas, but this is not evident in OBIS or GBIF because much new data is being 

uploaded to an increasing diversity of specialist and national databases, many of which have 

little connectivity with global repositories. The proliferation of open access databases for 

biodiversity records (mainly species-level) keeps increasing, resulting in inevitable problems 

of data curation, accuracy and fragmentation. Thus although data coming into main repositories 

such as GBIF and OBIS is increasing, it is also possible for this to be a decreasing proportion 

of new data. This can be true even if many such new regional or institute databases cascade 

data to GBIF and OBIS, because of the lag time taken to do this. In the Arctic for example 

much new data goes to MARBUNN/MAREANO (Institute of Marine Research Norway). 

ICES (International Council for the Exploration of the Seas), PANGAEA (and other German 

databases within this e.g. https://critterbase.awi.de/), NOAA and molecular databases 

(GENBANK, BOLD etc). One of the many problems this generates for biodiversity and 

conservation evaluation of where species occur, is that key analyses have a reticence to use 

non-specific databases (GBIF and OBIS) or bypass these completely (e.g. in connectivity 

studies, Vaughan et al., 2011, O’Hara et al., 2025). Thus it is crucial that action is taken to 

rectify such curation, accuracy and fragmentation problems to avoid these issues continuing to 

grow. This likely requires further work to build partnerships (Maureaud et al., 2025), and build 

trust with communities currently reluctant to share data through central data portals. 

In ocean regions, major gaps of easily accessible data in single portals remain, especially in 

poorly monitored regions such as the high seas, deep ocean, Arctic (but see Greenland data in 

Zwerschke et al 2025), and many tropical coastlines. The lack of reliable species-level 

occurrence data makes it difficult to map distributions accurately and to connect biodiversity 

information with fisheries records, leaving management decisions on uncertain ground. Once 

fisheries-dependent and independent datasets are embedded within GBIF and OBIS, they can 

provide the baselines needed for decision-support tools (e.g., MARXAN and Zonation) to 

inform the design of ecologically representative MPAs, guide spatial fisheries closures, and 

assess the performance of existing conservation networks. Also, AI-based image and acoustic 

tools in fisheries along with fishers’ experiential knowledge can produce data relevant for 

enhancing biodiversity surveillance more broadly (Ahlquist et al., 2025; Kelly et al., 2022; 
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Kuhn et al., 2024). Even in data-rich fisheries (e.g., in Norway or parts of the United States), 

discrepancies can remain between species distribution information derived from fisheries 

statistics and scientific surveys and the actual distribution of exploited stocks (Karp et al., 2023; 

Seljestad et al., 2024). This underscores concerns about the adequacy and representativeness 

even of available data, even though data on fish stocks and their distribution is becoming 

increasingly accurate (Sharma et al., 2025).  

For offshore and deep-sea regions, integration with information on Vulnerable Marine 

Ecosystem (VME) indicator taxa and habitat-suitability models can further ensure that 

conservation priorities capture fragile benthic habitats and associated uncertainty (Burgos et 

al., 2020). Simultaneously, the development of biodiversity indicators that combine 

standardised survey observations with aggregated occurrence data allows consistent, policy-

relevant measures of ecological condition, making it possible to evaluate protection outcomes 

across regions (Edgar et al., 2016). Global syntheses show that MPA effectiveness depends not 

only on coverage but on features such as no-take status, enforcement, connectivity and others, 

collectively enhancing biodiversity (Edgar et al., 2014). Inclusion of indicator frameworks can 

further strengthen commitments, for example BBNJ and CBD’s 30×30. Linkage of occurrence, 

VME and fisheries records to planning models, could help translate observations into spatial 

management actions to balance biodiversity protection with sustainable use. When data are 

standardised and connected to global infrastructures, e.g. in harmonised bottom-trawl surveys 

(e.g., FISHGLOB in Europe; Maureaud et al., 2021), such approaches become feasible. 

Extending such approaches to (lower latitude) biodiversity-rich but data-poor EEZs could 

increase the efficacy of marine biodiversity data contributions to conservation planning and 

policy, as terrestrial data is already doing. 

However, in addition to basic distribution data, long-term monitoring is also needed, and 

without government investment and support, many datasets will remain small scale, and short-

term For example, long-term monitoring of marine biodiversity settlement and recruitment at 

an Antarctic coastal using artificial substrata has revealed declines in assemblage-level richness 

through increasing rarity of many rare species, none of which might be evident through the 

lens of presence-absence distribution data (Barnes et al., 2025). Such data also reveal 

‘background’ levels of cyclicity at various spatial and temporal scales that must be considered 

when trying to interpret potential declines and their drivers. Without repeated monitoring, it is 

very difficult to disentangle responses of assemblages and species to threats (signal) from 

normal variability and cyclicity in patterns (noise), and thus for example to assess whether and 

how implemented protection is effective. These types of stochasticity, in addition to seasonal 

change further hinders the reliability of databases such as the LPI where 20% of populations 

only have two sampling events, which without careful standardisation of survey effort 

precludes reliable inference of population trends (supplementary results S3c). In the absence 

of the standardized, underlying data and the heterogeneity in sampling approaches, hinders the 

accurate interpretation of indices like these which maximise data intake, possibly at the expense 

of data quality. National support, and shared common standards would enable more effective 

monitoring across regions. Emerging technologies like AI and machine learning may offer 

potential to expand marine monitoring by automating species recognition, catch reporting, and 
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electronic monitoring, improving both cost-effectiveness and spatiotemporal coverage. 

Automatic catch registration systems and electronic logbooks are increasingly being trialled in 

fisheries. With advances in AI, the use of camera traps and acoustic recording devices provides 

an opportunity to monitor activity and diversity in almost real time of more easily detectable 

organisms, and such efforts are already implemented in regions such as China based on 

bioacoustics. These new tools provide a means of scaling up monitoring efforts, and when 

paired with other methods (e.g. standardised surveys) could greatly enhance our ability to 

monitor and, therefore, manage biodiversity. 

Thus, whilst some of the challenge is scientific (especially around the developing and use of 

standards, confirming of species level identities, and the sharing of data in some regions), much 

of the challenge stems from either a lack of government support or a lack of resources. 

Elements of this are not trivial, confirming robust species identity can often require 

considerable molecular and micro-morphological expert effort (e.g. see Sands et al., 2025). 

With various organisations in place to support monitoring efforts, streamlining these activities 

to make better use of existing data, and to better target data gaps could vastly improve our 

understanding moving forwards.  

However, the use of data from these systems can be challenging, as growing datasets are 

demanding to download, clean appropriately for the application,  and analyse. Thus, the 

development of GUIs to facilitate these key processes without the need for programming 

expertise are likely needed both to maximise the impact of this data and their ability to inform 

monitoring and management, and to incentivise data sharing, by making such tools convenient 

and accessible. Additionally, given that many of these databases come from distinct research 

teams (particularly BioTIME and LPI), they are not readily interoperable with other databases. 

Furthermore, academic journals should not only mandate the public sharing of data (when non-

sensitive) for reproducibility, but must specify the repository (such as GBIF or OBIS) to 

prevent further fragmentation of data. This is in contrast to the situation with genetic sequence 

data, for which it is standard practice for journals to mandate deposition in one of the 

repositories within the International Nucleotide Sequence Database Collaboration (INSDC), 

ensuring that they meet the requirements of the FAIR (findable, accessible, interoperable, 

reusable) principles. Many ecological journals and molecular communities have already done 

this, and thus supporting journals to transition would enable the better use (and cleaning) of 

data that has already been collected. Providing standards for data-upload and enabling upload 

of data into GBIF and OBIS (as is already often  the case for figshare and Zenodo from some 

journals) would help ensure data remains findable, usable, and interoperable. 

Over the last decade, parts of the world that previously had no data have transformed, and we 

are hopeful that with continued growth the data gaps will continue to narrow. Whilst data 

growth over the last decade has helped us to understand what we need to study, the insights 

into trends outside of the small minority of very well-sampled species are more limited. High-

resolution data is crucial for effective planning, and thus a key element of metrics for 

frameworks such as the Kunming-Montreal Global Biodiversity framework. However, at 

present data-gaps and biases limit the ability to map species in many regions (e.g., central South 
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Atlantic, central Pacific Ocean and other offshore deep-sea regions in the ocean, and central 

Asia and North Africa on land; Webb et al., 2010), leading to the use of “expert opinion” as a 

substitute, and potentially neglecting little known taxa and regions. Looking forward, 

consolidating existing data before the 2030 CBD and the discussion of future targets would 

widen the scope for indicator selection, and enhance our ability to detect trends, and adequately 

conserve wildlife and the habitats it depends on. 
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Figure S1. GBIF data coverage. Maps on the left (A, C, E) show data for 2015, and maps on the right (B, D, F) provide data 

for 2025. The spatial scales are Top (A-B) data plotted at a 5 km resolution, middle (C-D) data at national coverage (with at 

least 1 point per 5km cell) and bottom (E-F) data at ecoregion scale. 
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Figure S2. Records in GBIF over time for different geographic regions. 
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Figure S3. Mean coverage of each biome within each realm based on ecoregional units. 
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Figure S4. Percent coverage of OBIS point data in the ocean (With at least one point per cell) 

for Longhurst Zones. Gray areas have under 1% data coverage. Longhurst regions. 

Resolutions A - 0.01O, B - 0.02O, C - 0.045O, D - 0.1O. See Figure 2 for the equivalent analysis 

for EEZs, and Figure S1 for terrestrial regions. 

Supplemental text 

Supplementary Methods 

Supplementary Methods 1: Spatial biases in GBIF data 

Analysing other biases in primary observation data 
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Given that GBIF was the largest dataset examined, and largely draws data from, or provides 

data to the other databases, bias analysis here was focused on GBIF data. Based on the Hughes 

et al 2021 analysis we also assessed the relationship between sampling intensity and distance 

from road, elevation, human modification (Theobold et al., 2024) and conversion pressure, as 

well as distance from the coast in marine systems. Firstly all road datasets were downloaded 

from OSM (Open Street Map), for those where downloadable data was unavailable Hotosim 

(humanitarian data) was used, and the UK was obtained from Ordnance Survey. To remove 

tracks and local roads we only selected major roads (road numbers starting with 511 or 513 

categories within the OSM system). Obviously, many observations may be from smaller roads, 

but this should be reflected by the modification indices, and we wanted to not include too 

generous a classification of roads due to the variation in smaller roads and their classification 

in different regions. Roads were converted to rasters with a 1km resolution then reclassified to 

remove smaller road categories. We then used the Euclidean distance tool to measure the 

distance to the nearest road at a 1km resolution for each country. Maximum distance was set 

to the equivalent of 18 degrees. The Mosaic to new raster tool was then used to assemble maps 

for each region with the categorisation set to “minimum” to ensure the minimum distance was 

selected in areas adjacent to several countries. All datasets used are listed in Table S1. 

In addition we calculated the percentage of the area covered (based on a 5km resolution of 

GBIF data with at least one record per 5km cell) at different distances from the roads, including 

1km, 5km, 10 km, 50km, 100km, 250km, 500km, and >750km. This was calculated for each 

region for both marine and terrestrial areas, as well as overall in marine systems, and then the 

relationship between distances and coverage analysed using regressions. 

The GBIF 2025 record density dataset was then converted into points of each geographic region 

and the extract values to points tool used to extract the distance to the road. The same procedure 

was then applied to extract out elevation, Human modification index and conversion pressure. 

For coastlines the “distance to coast” was calculated using a world country border map. The 

EEZs for each region were then dissolved based on the geographic region and used to clip the 

GBIF points for areas within each regional EEZ as well as the HighSeas. These points were 

then used to assess the relationship between the density of points and the distance to the coast. 

An exploratory regression was then applied to explore the relationship with sampling intensity 

and all of the factors, and the best model as well as the significance of all factors calculated.  

Supplementary Methods 2:  

Species population trends monitoring datasets 

 

BioTIME, PREDICTS, FishRivTime and the Living Planet index (LPI) are all composite 

datasets aiming to measure species abundance changes over time or due to land or water use 

changes, which include both direct distribution data (OBIS and GBIF), published studies, and 

other sources of data. Thus whilst this data does overlap with the above sources of data, only 

data that satisfies certain criteria are included to attempt to assess changes in populations, 

diversity, or community structure over space or time. 
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A. BioTIME 

For BioTIME data, spreadsheets were obtained of the number of species and occurrence 

records per country for the same taxonomic groups as used in the GBIF analysis, as well as the 

area with data (using a 5km resolution) for EEZs, Longhurst regions and ecoregions. 

Summaries of the number of species, and samples, as well as the percentage of each zone 

(Longhurst, EEZ, ecoregions) by calculating the total area of each of these and then cross-

referencing the area covered by BioTIME data to provide the percentage covered. These 

spreadsheets were then connected to shapefiles of each region using “joins and connects” then 

mapped out to show patterns of coverage. Further complementary material was drawn from the 

recent paper (Dornelas et al., 2025). Complementary metrics were also recorded from 

RivFishTime using the same approach. 

B. Living Planet Index and other monitoring databases 

Different approaches were applied due to different availability of data and different modes of 

reporting and recording for each database. The Living Planet database makes the data available 

when a new report is released. Using the latest Living Planet data (WWF 2025) we downloaded 

all data, then calculated the number of species and populations monitored for each country. 

Data was then attached to shapefiles of each region using “joins and relates” in ArcMap to 

visualise patterns of survey effort. Additionally the number of times each population was 

observed was calculated, and the average timing between surveys calculated for different taxa 

to assess the effectiveness of data for monitoring. PREDICTS was summarised in the same 

way (numbers of samples and species per biome and country), whilst the monitoring data 

(Moussey et al., 2022) was analysed to show the number of monitoring programs per country 

for each taxa separately in marine, freshwater and coastal ecosystems. 

Supplementary Results 

Supplementary Results S1.  

Taxonomic biases and patterns in GBIF data 

Understanding the distribution of records can also facilitate understanding of how 

representative data is. For mammals the United States, followed by Australia in leading records 

until 2022 when France took over, representing 18% of all records by 2025 (whereas the US 

represented 12% of records). Whilst Brazil has records on the largest number of amphibian 

species since surpassing Colombia in 2015, the United States has had the largest number of 

total occurrence records for amphibians since 2010 (currently 22%), followed by Australia 

(16%). Birds show similar patterns with the US representing 47% of total occurrence records, 

and at least 39 countries with incomplete records, largely in Africa, Central Asia and various 

Pacific islands. The same pattern is true of  ray-finned fishes (Actinopterygii) with 29% of all 

occurrence records in the United States, followed by France and Canada. Invertebrate taxa, 

however, show quite different patterns, for example Indonesia has records on the largest 

number of dragonfly and damselfly (Odonata) species, whilst the Netherlands, France and the 

UK have the largest number of Odonata occurrence records. The UK also leads for insects 
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overall with 28% of all records. However, for molluscs and arachnids the United States leads, 

with 20% and 16% of records respectively. For plants, European countries have the best 

coverage of data, with the UK leading for mosses (21% of records), followed by Sweden, Spain 

leading for Gymnosperms (13%) followed by the UK, and France leading for Angiosperms 

(18%). In all these instances, consistent increases are present globally, but in all instances the 

US has the greatest number of recorded species (though for Angiosperms Brazil did until 

recently). For Ferns however, whilst France leads for records (12%) China and Indonesia have 

the greatest number of recorded species. For Fungi the UK also led for both Sac Fungi (17% 

records) followed by Sweden, and Sweden led for Basidiomycota with 16% of records. Data 

is provided in Data S1). 

Supplementary Results S2 

Geospatial biases in GBIF data 

In most regions distance to road had a significant relationship with sampling density 100% of 

the time (in Africa, Latin America and Oceania it was only 75%). However, what that 

relationship looked like varied. In many regions there was an equal split between positive and 

negative relationships, but for Canada and Alaska, the US, Northern Asia, Latin America 75% 

of instances were negative, and in Southeast and Southern Asia there was a significant negative 

relationship for 100% of instances. Only the Middle East always showed a positive relationship 

with sample density and road distance (likely associated with off-road and desert driving). 

Elevation was also generally negatively associated with sampling intensity, however, this was 

only significant for 100% of cases in Europe, Africa, Central Asia, the Middle East, the US 

and Northern Asia. Furthermore, of these, Africa and Latin America have a positive 

relationship, as does South Asia (though this is not always significant). Human modification 

was also a significant influence in most cases (only 75% in Africa, and not significant in Latin 

America). However, in all other incidences it has a 100% significant positive relationship, 

showing that the most modified areas are the best sampled. Conversion pressure (Oakleaf et 

al., 2024) shows significant relationships for most regions, however the outcomes are more 

varied, predominantly negative in Europe, the US, North Asia, and Southeast Asia; and 

predominantly positive in South Asia, and Africa. However only looking at occurrences per 

sampled cell will inevitably not reflect unsampled cells well, and area covered also needs to be 

considered.  

For most regions the percentage of the area covered rapidly declined with distance from the 

road; though this was not universally the case, and it should be noted that as only major roads 

were included this necessarily omits smaller roads (as well as tracks) where observations may 

frequently take place. Significant negative relationships (based on an logarithmic regression) 

occurred in the case of Central Asia (R2: -0.932; Oceania -0.9677; SEA -0.82; SOA -0.7; LAM 

-0.971; EU-0.972;  Can -0.978).  

In terms of area from the coast there is both a strong overall negative trend (-0.909), and strong 

trends in all regions except Antarctica (US: -0.9955; EU -0.958; Af -0.92; L America -0.956; 

Middle East -0.877; N Asia -0.86; South Asia -0.83; Southeast Asia -0.79; Oceania -0.94). This 
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highlights how well coastlines are studied relative to all other regions, with an exponential 

decrease in the coverage of samples. 

Supplementary Results S3. Biases in monitoring databases 

BioTIME 

BioTIME includes 56,400 taxa based 1,989,233 records extracted from 1,603,067 sample 

events, from 553,253 sampling locations, taken from 708 studies, all of which have a minimum 

of two sampling events taken at least two years apart (Dornelas et al., 2025). Taxonomic 

coverage has improved considerably between versions, most notably now including over 12% 

of Chordate species and 11% of described Annelid species, though remaining lower for other 

taxa (Data S3). For terrestrial regions, again the United States dominated the number of 

samples for most taxa, though for some (i.e Reptiles- Australia (27.8% species), Cyclostomata 

– France (34.6%), Fungi- UK (61.4%), Echinodermata- Canada (just more than the US at 

39.7% species)) other regions had a larger share; these biases showing similarities to those 

shown within GBIF. For species, however, the US only dominated for Molluscs (39.7% 

species), Annelids (48.7% species) and Echinoderms (28.7% species). For reptiles, Australia 

again dominated 25.4% of species. Brazil had 41.1% of Amphibian species data, despite only 

having 2.1% of records, Germany had 50.5% of fungi species despite only hosting 13.4% of 

records, but for other taxa no single region held more than 25% of species or records. In total 

51 terrestrial ecoregions had data within BioTIME, with only seven (largely small island) 

regions showing over 60% data coverage, with African and South American ecoregions having 

particularly low coverage, and few Asian regions with any data.  

Spatial biases on land mirror those of GBIF, though taxonomic biases are less pronounced, 

with a better relative reflection of invertebrates. In Ocean regions sampling patterns also mirror 

those of GBIF with the best coverage on the Eastern US, around Europe, and to the South of 

Australia. Atlantic ocean coasts and continental shelf had much stronger data coverage than in 

the Indian or South Pacific oceans, and particularly deep sea (slope, abyssal and hadal) were 

poorly represented. Southern Ocean data is very sparse, with the entire West Antarctic 

(Weddell, Scotia, Bellingshausen, Amundsen and Ross seas) represented by a single location, 

except for plankton sampling. Arctic coverage is extremely patchy, even around the same 

island, such as Greenland. Surprisingly, some well known marine biodiversity hotspots, such 

as SE Asia and moderate richness of East Africa and the west coast of South America are 

poorly represented. Amongst the marine realms, nowhere had over 50% of their area covered, 

with the best coverage (46%) in the NW Atlantic Shelves, followed by New Zealand Coastal 

province at 13%. For EEZs, five had an over 50% data coverage, though three of these were 

around the Eastern US and Canada, with the other two around Belgium and Israel, conversely 

all tropical, and most oceanic island EEZs had little or no data. 

RivFishTIME 

As BioTIME has little inclusion of freshwater systems, RivFishTIME was created to monitor 

freshwater fish. The RivFishTIME database has 11,072 locations from 402 basins in 19 

countries, and 944 fish species (Comte et al., 2021). The times between samples, methods, and 
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completeness of RivFishTIME is high enough to infer changes over time, however almost all 

analysis is from high income economies, with only one South American, 2 African countries 

within tropical ecosystems. Further time series have been conducted for over 6200 taxa in 

Europe have shown population changes over time (Pilotto et al., 2020), but is limited to Europe. 

Living Planet Index 

The LPI database shows that 20% of counts include only two population counts, whereas larger 

and more representative censuses were limited to few taxa (particularly birds and fish) (Data 

S4). Many counts also indicate activity rather than abundance, and may not be comparable due 

to short sampling periods. In total 2031 of the species in the LPR are Actinopterygii fish (39%) 

mainly due to fishing for food, and 24.3% of samples are from Canada alone (despite the 

highest diversity the highest diversity being in Brazil (15.42%), 1625 are birds (31.4%, but 

52.3% are from Australia and Canada, representing only 10.7% of species), and 796 (15.4%) 

are mammals, with 329 amphibians (6%) monitored and all other groups populations measured 

even less. At a country level, Australia and Canada frequently have the highest number of 

samples, whilst by region Latin America had the greatest number (1758 species monitored), 

followed by North America (1367), whereas all other regions had fewer. Notably species 

counted the most often were almost all migratory wading birds, for example the 

Charadriiformes had 9273 populations of 211 species monitored (with 1083 populations of 

Calidris ruficollis alone), this was followed by Perciformes (3200 populations of 707 species, 

due to monitoring for food). For mammals artiodactyls (1280 populations, 125 species) and 

carnivores (1009 populations, 122 species) were the best monitored. The biases here replicate 

those of other datasets, though a larger proportion of fish are monitored than in other databases. 

PREDICTS 

PREDICTS assesses change on a gradient of disturbance. Like other datasets PREDICTS data 

demonstrates considerable biases (especially geographic), but has a greater inclusion of 

invertebrates than many other databases (Data S5). The greatest number of species was for 

arthropods (41724 including duplicates between countries) followed by plants at 28798, which 

also had the greatest number of samples, though plants had only marginally more samples than 

birds (11354 vs 11331) despite considerably more plant species (8212). Like other datasets 

PREDICTS is also dominated by high income economies, for example the UK has the most 

annelid samples and species (59.4% and 50.2%), (followed by New Zealand - 23% and 34%), 

and the highest number of mollusc samples (32.3%) despite low diversity (3.4%). Likewise, 

Japan has the highest number of Amphibian samples (41.8%) despite very low diversity 

(0.6%), whilst Madagascar had only 0.5% of amphibian samples, but these included 15.7% of 

species. Reptiles had relatively more balance in sampling with Australia having 35.3% of 

samples to 29% of species and Mexico having 23.9% of samples and 18.4% of species. For 

mammals the greatest number of samples also came from Australia (20%), but only 8.8% of 

species, whereas Brazil had 5.7% of samples, but 17% of species. For Arthropods, Brazil has 

20.5% of samples and 11.47% of species, whereas Asia in particular shows smaller proportions 

of samples and high proportions of species (Data S3). For Fungi Italy had the most samples 

and species (29.8%, 30%) with the UK having the second most samples (21.9%) but few 

species, whereas Australia has 5% of samples, but has 24.7% of species. For biomes, 
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Temperate Broadleaf & Mixed Forests was by far the best sampled for Annelids, Arthropods, 

Molluscs, Amphibians, Plants and fungi (though for fungi Mediterranean Forests were almost 

as well sampled), but for most of these Tropical & Subtropical Moist Broadleaf Forests had 

more species, and many biomes were unsampled for the majority of taxa. 

Species monitoring programs 

The Monitoring programs dataset assembled national monitoring programs across taxa for 

terrestrial, freshwater, marine and coastal regions, and have demonstrably different patterns to 

other databases (Moussy et al., 2022; Data S6). Terrestrial monitoring was the most common 

with 820 monitoring programs from 94 countries. China had the most monitoring programs (62 

programs) followed by France (53), primarily driven by birds (388 overall, 34 in China, 25 in 

France), followed by mammals (264 overall, with 26 in China and 22 in South Africa). This 

was followed by Plants (105 overall, 11 in South Africa) and reptiles (70 overall). Regional 

patterns were similar, with 402 overall, led by Europe at 323, programs 131 focused on birds, 

followed by Africa with 48 on birds and mammals. The next most monitored was Freshwater 

systems, which included 66 countries and 328 programs, with China leading at 39 programs 

(though 35 of these are birds). This was followed by mammals (51 programs) and fish (45 

programs) with few countries showing large numbers of programs. At a regional level, birds 

also led with 178 programs, whilst geographically Europe led with 151 programs (65 on birds). 

Coastal programs also focused almost entirely on birds (with most in Europe), whilst mammals 

and birds were the main focus of marine programs (principally European mammals; 5 of the 

10 European programs). 

 

 

Data type Source/citation Link 

Longhurst 

regions 

MarineRegions (2025)

 Longhurst Provinces

 Ecological geography of 

the Sea (Longhurst, 1998) 

https://www.marineregions.org

/gazetteer.php?p=details&id=2

2538 

https://hub.arcgis.com/datasets/schools-

BE::longhurst-biogeographical-

provinces/explore 

Exclusive 

Economic 

Zones 

Flanders Marine Institute 

(2024). The intersect of the 

Exclusive Economic Zones and 

IHO sea areas, version 5. 

Available online at 

https://www.marineregions.org 

https://www.marineregions.org/gazetteer.php?p=details&id=22538
https://www.marineregions.org/gazetteer.php?p=details&id=22538
https://www.marineregions.org/gazetteer.php?p=details&id=22538
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https://www.marineregions.org

/. https://doi.org/10.14284/699 

Ecoregions Dinerstein, E., Olson, D., Joshi, 

A., Vynne, C., Burgess, N. D., 

Wikramanayake, E., ... & 

Saleem, M. (2017). An 

ecoregion-based approach to 

protecting half the terrestrial 

realm. BioScience, 67(6), 534-

545. 

https://data-gis.unep-

wcmc.org/portal/home/item.html?id=012

7920779a64e3f98925f2d3da3b847 

Administrativ

e areas 

World Bank Official 

Boundaries 

 

https://datacatalog.worldbank.org/search

/dataset/0038272/world-bank-official-

boundaries 

UN regions Unicef Regional Classifications https://data.unicef.org/regionalclassificat

ions/ 

Coral reefs UNEP-WCMC  (2022) Global 

Distribution of Coral Reefs 

https://data-gis.unep-

wcmc.org/portal/home/item.ht

ml?id=0613604367334836863f

5c0c10e452bf 

https://data-gis.unep-wcmc.org 

Road data Geofabrik https://download.geofabrik.de/north-

america.html 

Road data European Environment Agency https://www.eea.europa.eu/data-and-

maps/data/eea-reference-grids-2/gis-

files/germany-shapefile 

Road data Humanitarian data https://data.humdata.org/dataset/?q=Net

herlands+roads&sort=score+desc%2C

+last_modified+desc&ext_page_size=25 

https://doi.org/10.14284/699
https://data-gis.unep-wcmc.org/portal/home/item.html?id=0613604367334836863f5c0c10e452bf
https://data-gis.unep-wcmc.org/portal/home/item.html?id=0613604367334836863f5c0c10e452bf
https://data-gis.unep-wcmc.org/portal/home/item.html?id=0613604367334836863f5c0c10e452bf
https://data-gis.unep-wcmc.org/portal/home/item.html?id=0613604367334836863f5c0c10e452bf
https://data.humdata.org/dataset/?q=Netherlands+roads&sort=score+desc%2C+last_modified+desc&ext_page_size=25
https://data.humdata.org/dataset/?q=Netherlands+roads&sort=score+desc%2C+last_modified+desc&ext_page_size=25
https://data.humdata.org/dataset/?q=Netherlands+roads&sort=score+desc%2C+last_modified+desc&ext_page_size=25
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Road data Ordnance Survey UK https://osdatahub.os.uk/downloads/open/

OpenRoads 

Global 

Human 

Modification 

Index 

Theobald, D. M., Oakleaf, J. R., 

Moncrieff, G., Voigt, M., 

Kiesecker, J., & Kennedy, C. 

M. (2025). Global extent and 

change in human modification 

of terrestrial ecosystems from 

1990 to 2022. Scientific Data, 

12(1), 606. 

https://figshare.com/articles/dataset/Glo

bal_Human_Modification/7283087 

Global 

Human 

Modification 

Index 

Theobald, D.M., Oakleaf, J.R., 

Moncrieff, G., Voigt, M., 

Kiesecker, J., and Kennedy, 

C.M. <in review>. Global 

extent and change in human 

modification of terrestrial 

ecosystems from 1990 to 2022. 

Scientific Data. 

https://zenodo.org/records/16907328 

Digital 

Elevation 

Model 

Ince, E. S., Abrykosov, O., & 

Förste, C. (2024). 

GDEMM2024: Global Digital 

Elevation Merged Model 2024 

for surface, bedrock, ice 

thickness, and land-type masks. 

Scientific Data, 11(1), 1087. 

https://datapub.gfz-

potsdam.de/download/10.5880.GFZ.1.2.2

024.002-

Veebui/GDEMM2024_SUR.30s.tif 

Conversion 

pressure 

Oakleaf, J., Kennedy, C., Wolff, 

N. H., Terasaki Hart, D. E., 

Ellis, P., Theobald, D. M., ... & 

Kiesecker, J. (2024). Mapping 

global land conversion pressure 

to support conservation 

planning. Scientific Data, 11(1), 

830. 

https://www.nature.com/articles/s41597-

024-03639-9 

Table S1. Data types used for analysis 

 


