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Abstract 158 

Ongoing global change is leading to the widespread redistribution of species1,2. Assessments 159 

of shifts in species geographic ranges, however, remain taxonomically biased and 160 

geographically limited2, especially for insects. We conducted a global synthesis on butterfly 161 

range shifts using a combination of multi-lingual review in 15 languages and expert 162 

assessments, compiling data on range shifts for 1758 species (10% of described butterfly 163 

species) from 109 countries over the last three decades. In 5 of these countries, over 50% of 164 

butterfly species shifted their ranges. Overall, most species showed horizontal range 165 

expansion (81%), while 27% contracted their range and 22% shifted in elevation. Expansions 166 

were primarily reported in tropical species-rich regions, while 19% of species displayed 167 

multiple, concurrent range shifts in different countries, highlighting the complexity of these 168 

responses. In addition, there was also variation across families - while one-third of the 169 

documented species are nymphalids, pierids and papilionids had the highest proportion of 170 

species, experiencing range shift. We pinpoint nine drivers of species redistribution, with 171 

climate change and severe weather as most prominent. We suggest a future-focused 172 

conservation strategy that emphasises monitoring expansion in underrepresented regions 173 

and megadiverse countries, leveraging citizen science, and integrating range shifts into 174 

conservation planning. 175 

 176 

Main 177 

Anthropogenic pressures, such as land-use change, agricultural intensification, and global 178 

warming, are reshaping species distributions worldwide1,2,3,4. Species shifting their 179 

distributions to track suitable conditions is one of the key signatures of ongoing global 180 

change effects1,2,5,6,7,8, being widely documented across the tree of life and across 181 

realms2,9,10. These shifts may trigger cascading consequences across ecosystems, resulting in 182 

the reorganisation of communities, decoupling of coevolved interactions, and undermining 183 

conservation strategies2,10,11. 184 

Ranges can change either longitudinally or latitudinally, either expanding or contracting, as 185 

new habitat is gained or lost at the margins12,13,14,15. Types of range shifts are not mutually 186 

exclusive, and a single species can show multiple spatiotemporal movements in different 187 

parts of its range, resulting in complex dynamics. The colonisation or extirpation rates of 188 

range-shifting species largely depend on the interaction between their traits (diet, habitat 189 

use, mobility) and the prevailing landscape configuration, which ultimately constrain or 190 

facilitate the colonisation of newly available habitats9,16,17. If only a small amount of habitat 191 

is suitable across the landscape, the establishment of a stepping stone population might be 192 
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uncertain or slow, or the founding population may go extinct18,19,20. Accordingly, some 193 

species can track their available habitat, while others suffer from climate debts6,21. 194 

Despite the recent increase in reports of range shifts across ecosystems, current knowledge 195 

remains taxonomically and geographically biased22,23,24. Of the published literature on 196 

species redistribution in response to climate change, nearly half comes from Europe24, with 197 

limited insights from tropical regions, where most biodiversity is found23,25. A global analysis 198 

of 12,415 species confirmed this bias: flowering plants represented nearly 40% of reported 199 

range shifts, and among animals, birds and fish were the most assessed groups2. These 200 

imbalances reduce the global relevance of range shift data and cast doubt on the reliability 201 

of so-called ‘global’ summaries, which often overlook regions experiencing rapid 202 

environmental changes23. The lack of detailed species distribution data in under-sampled 203 

areas and for under-represented taxa hinders our ability to comprehensively detect and 204 

understand species redistributions and their consequences on global biodiversity15,26. 205 

Addressing these taxonomic and geographic shortfalls requires collaborative efforts to 206 

integrate existing data, improve monitoring systems, and integrate unconventional data 207 

sources, ultimately creating a more comprehensive global view of how biodiversity responds 208 

to environmental changes27,28,29. Butterflies are an excellent taxonomic group for tackling 209 

these limitations and testing diverse approaches, and even some of the first demonstrations 210 

of range shifts in response to climate warming came from butterflies (e.g.9). They are highly 211 

diverse (19,327 species)30 and widespread, are highly sensitive to environmental changes, 212 

and are among the best monitored insect groups5,31,32,33. Their reliance on host plants, 213 

limited thermal tolerance, relatively high dispersal capacity and short life cycles make them 214 

an early warning system for studying the impacts of environmental changes33,34,35,36. Yet 215 

butterfly range shift data are still surprisingly fragmented, mostly restricted to temperate 216 

regions and often on the leading rather than trailing edge2,14,37. 217 

Here, we quantify global patterns of butterfly range shifts by combining a multi-lingual 218 

systematic review including 15 languages and expert knowledge to assess patterns in range 219 

expansion, range contraction, and elevational shifts (Table 1). We document patterns across 220 

countries and butterfly families, and assess which threats underpin butterfly species 221 

modifying their natural range and range dynamics. Finally, we highlight priorities for future 222 

research and conservation. 223 

  224 

Global pattern in studying butterfly range shifts 225 

Our dataset covers range shift information for 1758 species across 109 countries (Figure 1A-226 

D; Extended Data 1) from every continent where butterflies occur30, stemming from 565 227 

unique studies and 68 expert assessments. Species belonged to the six major butterfly 228 

families (Figure 1E). There were substantial differences in geographic coverage between the 229 

three types of range shifts (Figure 1). We found horizontal range expansion for 1426 species 230 

from 106 countries (Figure 1B), horizontal range contraction for 479 species from 47 231 



 

6 
 

countries (Figure 1C), and elevational range shifts for 380 species from 29 countries (Figure 232 

1D). Furthermore, horizontal range expansions were reported across all continents, with the 233 

highest number of reports originating from the Tropics (e.g., Brazil, Benin) (Figure 1B), 234 

challenging the most recent synthesis claiming little evidence for poleward range shifts in 235 

the tropics15. One potential reason for the higher number of range expansion reports from 236 

the Tropics could be the inclusion of scientific literature published in languages other than 237 

English28.38, as well as the support from several international experts on butterflies. 238 

Records for range contractions were far less common outside of Europe and North America, 239 

with the highest number of horizontal range contraction reports in temperate countries 240 

(e.g., Belgium, United Kingdom, Sweden; Figure 1C)39,40,41. 241 

Finally, elevational range shifts were detected across tropical, temperate and boreal regions 242 

but almost exclusively from the Northern Hemisphere (Figure 1D). However, there were 243 

substantially fewer reports of elevational range shifts in the Tropics despite temperature 244 

declining faster with elevation in tropical regions and steeper adiabatic lapse rates, which 245 

would theoretically facilitate faster upslope movements in response to warming8,10,42. This 246 

imbalance is due to limited or a lack of long-term monitoring programs in tropical and 247 

subtropical mountain regions, where biodiversity is highest but infrastructure is scarce28. 248 

Similar to this geographic variation, we found substantial differences in the taxonomic 249 

coverage among the three types of range shifts. Relative to the total number of species per 250 

family, nymphalids had the highest percentage of species shifting their ranges, while 251 

riodinids had the lowest (Figure 1E). Across range change types and families, both relative to 252 

the total number of species and range shifting species, the highest percentages were always 253 

reported for horizontal range expansions and the lowest for elevational shifts (Figure 1E). 254 

There was also a clear imbalance in which species were reported to be shifting among 255 

studies and countries, whereby 65% of species in our dataset had a single record of range 256 

shift from a single study (Figure 1A). Only 102 species (6%) had more than 10 reports of 257 

different range shifts from at least 10 different studies, with 66% of these range shifts’ 258 

records being related to horizontal range expansion, while only two species (Aphantopus 259 

hyperantus and Parnassius apollo) had multiple records of elevational range shifts across 260 

multiple studies (Figure 1A). For example, Araschnia levana, Boloria selene, and Aphantopus 261 

hyperantus had the highest number of records for horizontal range expansion (n = 34), 262 

contraction (n = 25), and elevational range shift (n = 13), respectively and in many cases, 263 

these records were from different regions. Among the species reported to show elevational 264 

shift, we obtained 32% of the species showing uphill movement and 32% of species showing 265 

downhill movements (no specific movements mentioned for the other 26% species. For four 266 

species (Vanessa cardui, Nymphalis antiopa, Gonepteryx rhamni, and Anthocharis 267 

cardamines) we obtained records of both uphill and downhill shift records. 268 

  269 

Spatial patterns of butterfly range shifts 270 
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We revealed strong geographical patterns in the species showing range shifts among 271 

countries (Figures 2, 3). When considered against the total butterfly species pool of each 272 

country (as reported in Pinkert et al.30), five European nations (i.e. Sweden, the Czech 273 

Republic, Finland, Luxembourg, and Spain) dominate, with documented range shift records 274 

for more than half of their known butterfly fauna (Figure 2). Conversely, for most countries 275 

in our data - i.e. for which we have range shift data for at least one butterfly species - the 276 

documented shifts affected less than 10% of the country's species. Among the three types 277 

of range shifts studied, Sweden showed the highest taxonomic representativeness for 278 

reports on range-expanding species (61%), while Czech Republic and Estonia had the highest 279 

percentages of horizontal range contraction (63%) and elevational range shifts (35%), 280 

respectively. All these European countries have long-term systematic butterfly monitoring 281 

sites. 282 

To better address sampling gaps in countries where our dataset covers few butterfly species 283 

relative to the total known, we calculated the percentage of butterfly species per country 284 

with range shift data, relative to all species in that country that have been reported to shift 285 

their range either locally or elsewhere. In 32 countries from all continents, at least 25% of 286 

the butterfly species for which we have range shift data somewhere in the world have 287 

experienced a range shift in the focal country, and in 10 countries this was true for more 288 

than half of the species (Figure 3). Among the range shift types, the highest percentages 289 

appeared in Sweden (78% for horizontal range expansions), Czech Republic (85% for 290 

horizontal range contractions), and Estonia (44% for elevational range shifts). 291 

Most species (80%) showed a single type of range shift in our dataset—typically horizontal 292 

range expansions (70%). However, 342 species (19%), especially in Europe and parts of 293 

South America, displayed multiple range shift types, such as both horizontal range 294 

expansions and contractions either within a country or across different countries. For 295 

example, Danaus plexippus experienced range contraction in the United States, but range 296 

expansion in Spain, while Aporia crataegi experienced both range expansion and 297 

contraction in Andorra. These multi-dimensional shifts highlight the complexity of biotic 298 

responses to ongoing environmental pressures, and underscore the importance of 299 

distinguishing between the different types of range shifts when assessing biodiversity 300 

redistribution22. 301 

Our results provide vital insights into where and how butterfly ranges are changing globally, 302 

while also highlighting the urgent need for more equitable and standardised monitoring 303 

programs across countries to improve the taxonomic representativeness of each country in 304 

such efforts to compile range shift observations globally. High values in Europe reflect both 305 

genuine change and the much greater probability of detecting shifts given long‑term 306 

programs; lower values in many tropical countries likely reflect data scarcity rather than 307 

biological stability. Despite representing a significant portion of the world’s butterfly 308 

diversity, regions such as Central Africa, Southeast Asia, mainland New Guinea and its 309 

surrounding islands, and the Amazon Basin remain markedly underrepresented in our 310 

compiled dataset. For example, many authors, especially from the tropics, categorised 311 
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species as range expanding or contracting when the species was new to a certain region or 312 

went extinct from that region, repetitively (Table 1). This is concerning because tropical 313 

species are especially vulnerable: they already live near thermal limits, have restricted 314 

ranges, and are isolated from cool refugia43,44. Elevational range shifts are also more 315 

commonly reported for tropical insects than poleward range shifts45, which contrasts with 316 

Colwell & Feeley15. Recent work suggests a major erosion of the geographic availability in 317 

butterflies’ temperature niches, reaching up to 64% loss in 2100, even when assuming full 318 

dispersal within biogeographical realms46. This implies major range contractions and 319 

particular vulnerability of rare tropical species at higher elevations. 320 

  321 

Drivers of butterfly range shifts 322 

We compiled threat data linked to butterfly range shifts from 70 countries. For example, 323 

Boloria aquilonaris has lost much of its original habitat in Germany due to bog drainage (i.e., 324 

habitat loss and degradation)47, while in Romania, habitat homogenisation and agricultural 325 

intensification caused severe range contraction for Colias myrmidone48. On the other hand, 326 

Godartiana byses, which prefers warmer habitats, has expanded from the states of Rio de 327 

Janeiro and Bahia to São Paulo in Brazil in response to climate warming49. In fact, global 328 

warming is leading many alpine butterflies to move uphill to track shifting isotherms and 329 

remain within suitable climatic conditions50. Biological invasions also explain shifts for some 330 

species. For instance, the introduction of Pieris rapae led to dramatic range contractions of 331 

Pieris oleracea in the United States51. 332 

We categorised these threats following the IUCN threat categories (see literature search). 333 

Overall, we identified nine primary threats that were directly or indirectly related to 334 

butterfly range shifts. Climate change and severe weather had the greatest impact, affecting 335 

277 species out of 356 for which we had a reported threat in our data, while energy 336 

production and mining had the least reported impact (3 species; Figure 4A). Though not 337 

always supported by formal analyses, climate change and severe weather was linked to 163 338 

species’ range expansions, 131 species’ range contractions, and to elevational range shifts 339 

for 61 species (Figure 4A). However, the relative importance of different threats varied 340 

across the three types of range shifts. While human intrusions and disturbance and 341 

agriculture and aquaculture were the dominant drivers associated with range contraction, 342 

both affecting 143 species, climate change and severe weather were the dominant driver 343 

linked to elevational range shifts, affecting 61 species. These elevational range shifts are 344 

particularly important as butterfly species richness, endemism, and phylogenetic diversity 345 

are highly clustered in mountain regions worldwide. Approximately two-thirds of all 346 

butterfly species are primarily mountain-dwelling species, but mountain climates are rapidly 347 

eroding in the face of climate change46. 348 

At the continental level, the distribution and intensity of threats differed across regions and 349 

among the three types of range shifts (Figure 4B). In most continents, climate change and 350 

severe weather were reported to have the highest impact, whereas residential and 351 
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commercial development, as well as invasive and other problematic species, genes and 352 

diseases were the most prevalent threats in Oceania, and human intrusions and disturbance 353 

were dominant for South America (Figure 4B). Climate change and severe weather were 354 

consistently linked to horizontal range expansions in all continents, while several other 355 

threats were linked to horizontal contractions in different continents (Figure 4B). While 356 

there were one or two major threats in most continents, in Europe, several threats 357 

concurrently impacted butterfly range expansion and contraction (Figure 4B). 358 

These findings highlight the diversity of direct and indirect human pressures shaping 359 

butterfly redistribution globally and underscore the need for region-specific conservation 360 

interventions. Species experiencing both horizontal range expansions and elevational range 361 

shifts may require increased habitat connectivity (i.e., the “direct” type of conservation 362 

management actions in the resist-accept-direct (RAD) framework)52, while species 363 

contracting their ranges may benefit more from targeted habitat protection and restoration 364 

efforts (i.e., the “resist” type of actions in the RAD framework)52,53,54. Range expansions are 365 

often facilitated by rising temperatures, enabling cold-limited species to colonise higher 366 

latitudes or elevations. Conversely, range contractions are typically linked to land-use 367 

change, especially habitat loss, with species unable to persist in increasingly modified 368 

environments. The impact of a threat could also depend on change in the extent of 369 

occurrence or area of occupancy. For example, land-use change probably had the strongest 370 

effects on species range margins, where species are nearer the limits of their thermal 371 

tolerances55. 372 

  373 

Minimising drivers of range shifts to mitigate butterfly decline 374 

Our data confirm pioneering studies on butterfly range shift, that butterflies tend to expand 375 

more than contract6,9. This is likely due to the phenotypic plasticity of butterflies, which 376 

allows them to survive in areas at the margins of supposed decline by adopting 377 

opportunistic strategies56,57. Generally, range expansion may not be problematic if species 378 

can move across the landscape and access available habitats to track environmental 379 

changes. However, range shift in butterflies can be restricted, if, for example, there is 380 

plasticity to respond within existing ranges58, or expansion is constrained by foodplant 381 

availability59. However, consequences can be severe if habitat availability decreases, or 382 

becomes too scattered, or and/or isolated populations surrounded by dispersal barriers, 383 

such as on oceanic islands, sky islands or mountain tops9,60. Habitat heterogeneity is 384 

therefore crucial to provide refugia and buffer populations against abrupt losses61,62. 385 

Climate change mitigation remains essential and should be prioritised to minimise a climatic 386 

debt which expresses as lags in the biotic responses of butterfly populations to track the 387 

shifting isotherms. Even minor temperature increases may exceed physiological limits, alter 388 

seasonal phenology, or disrupt biotic interactions with host plants and mutualists36,63,64. For 389 

example, Scandinavian butterflies have expanded northwards with rising temperatures35,65, 390 

whereas alpine butterfly species in the Alps are facing increasing “elevational squeeze” due 391 
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to warming66. Limiting global warming will be crucial for maintaining the accessibility to 392 

thermally suitable habitats and avoiding range shift gaps45. Studies from Italy, Spain, and the 393 

UK show that butterflies retreat to shady areas on hot days, stressing the need for 394 

environmental heterogeneity under climate change56,67,68 and a study in urban parks Brazil 395 

showed that fruit feeding butterflies occurrence is higher in parks with more shaded areas69. 396 

As exceeding the 2°C threshold outlined in the Paris Agreement temperature goal becomes 397 

increasingly probable70, conservation strategies should also incorporate climate adaptation 398 

measures—such as protecting microrefugia71, buffering habitat edges, and improving 399 

landscape connectivity —to strengthen resilience and help species move across the 400 

landscape or survive in their current locations where possible54,72,73. 401 

Equally important is the protection and restoration of habitat quality. Habitat modifications 402 

(e.g., agriculture and aquaculture, residential and commercial development, human 403 

intrusions and disturbance) were chiefly attributed to horizontal range contractions for 404 

butterflies (Figure 4), highlighting how vulnerable butterflies are to land-use change39,74,75. 405 

Habitat degradation decreases the availability of crucial host plants, nectar sources, and 406 

microclimates necessary for butterfly survival76,77. Strategic conservation should therefore 407 

focus on protecting intact and well-managed habitat patches, establishing habitat corridors, 408 

and restoring degraded areas to support population stability and movement34,78,79. 409 

Restoring habitat connectivity can enable butterfly recolonisation, boost biodiversity, and 410 

even recover ecosystem services80. Evidence shows that maximising the availability and 411 

accessibility of habitat patches, even small ones, enhances genetic diversity and supports 412 

metapopulation persistence when total habitat is sufficient60,81. 413 

Several other human-induced pressures can also impact butterfly range shifts, although they 414 

were less commonly reported. Urbanisation, roads, and buildings create dispersal barriers, 415 

making it challenging, even for mobile species, to move between habitat patches16,82,83. 416 

Urban forest remnants support fewer specialist butterfly species than rural forests in 417 

Tokyo84, while invasive alien species can outcompete native butterfly populations85. 418 

Similarly, minimising pesticide and herbicide use is vital to improve habitat quality and 419 

prevent indirect declines in population sizes because efficient herbicide use in crop fields 420 

restricts the availability of larval foodplants in these fields as well as in adjacent fields78,79. 421 

Incorporating biodiversity conservation goals into infrastructure and land-use planning—422 

such as through ecological corridors, design of stepping stones, and enhanced 423 

environmental impact assessments—can help sustain connectivity53,81. 424 

Finally, we must build ecological resilience to act as a long-term buffer against ecosystem or 425 

landscape instability86. Diverse, structurally complex ecosystems are better equipped to 426 

withstand environmental disturbances and maintain stable and genetically robust/healthy 427 

butterfly populations. It is important to conserve as many populations as possible to 428 

maintain or even increase genetic diversity87,88. By conserving biotic interactions, seasonal 429 

resource availability, and habitat diversity, conservationists can lower the risks of range 430 

contractions while facilitating range shifts for butterfly species facing multiple human 431 

pressures79. In the Brazilian Atlantic Forest, the spatial composition and configuration of the 432 
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landscape was as important as climate conditions in explaining local butterfly diversity, with 433 

the primary threat to butterflies being the loss of natural forest remnants due to human 434 

activities89. 435 

Taken together, reducing the drivers of range shifts requires a multi-faceted approach—436 

combining global climate efforts with local habitat protection, sustainable land 437 

management, and coordinated policy actions. Without addressing the pressures that cause 438 

biodiversity redistribution, even the best monitoring systems and conservation plans will 439 

struggle to prevent biodiversity loss in a rapidly changing world. 440 

  441 

Future monitoring and conservation prospects 442 

The combined effect of geographic and taxonomic biases likely creates a misleading picture 443 

of butterfly responses to environmental change23. Geographic and taxonomic biases 444 

significantly influence global biodiversity assessments and conservation strategies90. For 445 

example, the perceived dominance of reports on horizontal range expansions for butterfly 446 

species might be partly influenced by detection and reporting biases rather than by actual 447 

ecological trends. If horizontal range contractions and elevational range shifts are not 448 

adequately documented in tropical regions—where the impacts of climate change and land-449 

use pressures are very severe—we would greatly underestimate the vulnerability of tropical 450 

butterflies14,15,91,92. 451 

To close this gap and advance the field, we propose a three-fold framework: (i) expanding 452 

monitoring programs in underrepresented regions, (ii) integrating citizen science and local 453 

knowledge, and (iii) accounting for species range shifts in conservation planning. 454 

  455 

Step I. Expanding monitoring in underrepresented regions 456 

Existing monitoring programs for Europe and the United States help understand how 457 

butterflies respond to environmental changes (e.g.93,94,95). However, such systematic 458 

monitoring is missing from most parts of the world, especially in the Tropics, arid, and semi-459 

arid regions92,96, limiting our understanding of how tropical species may respond to global 460 

change drivers97. For one third of all species, not even a single occurrence record is currently 461 

available46. To address this gap, we urgently need to expand monitoring biodiversity 462 

programs in underrepresented regions98. This includes prioritising biodiversity hotspots and 463 

elevational gradients that are expected to be particularly sensitive to climate change and to 464 

act as sentinels of change. 465 

Due to the lack of infrastructure, many tropical countries may struggle to allocate sufficient 466 

funding for long-term monitoring, underscoring the importance of international 467 

collaboration28,33,99. Thus, investment in capacity-building is essential: we need to invest 468 

both in the human resources to coordinate such efforts, and in knowledge-generation to 469 
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generate a community of knowledge that can support a broader network of volunteers to 470 

be established. In places that are species-rich on the one hand, and lack historic efforts or 471 

investment on taxonomic knowledge, and citizen science engagement on the other hand, 472 

this remains a double-challenge. Active collaboration with regional researchers will also 473 

address the problem of parachute science by non-native researchers (i.e., inequity in 474 

research relationships between scientists from economically developed and developing 475 

countries)100,101. Historically, butterflies are one of the most iconic groups of insects studied 476 

by taxonomists and many museums and private collections preserve large numbers of 477 

vouchered specimens. Just like herbarium data, digitising butterfly museum collections (e.g. 478 

https://www.dissco.eu/) provides long-term records to improve mapping distributions over 479 

time, and few other groups besides plants offer such exceptional historical coverage61,102. 480 

Valuable biodiversity data also exists in local-language publications and museum or private 481 

collections, which are often isolated from global databases. Many key records—particularly 482 

from the Tropics—are published in non-English, non-indexed sources or remain 483 

unpublished, stored in natural history museums or university archives. These resources can 484 

aid in reconstructing historical range boundaries and bridging spatial and temporal gaps in 485 

species occurrence data. Adding such sources into biodiversity workflows would further 486 

improve the completeness of range change assessments. 487 

We recommend: (I) identifying national or regional butterfly monitoring shortfalls using 488 

existing monitoring datasets to guide cost-effective investment; (II) establishing 489 

standardised protocols to harmonise data collection on butterfly distribution across 490 

countries and digitize museum and private collections; (III) integrating new technologies 491 

(e.g., camera traps, eDNA, AI-based image recognition) for cost-effective data collection in 492 

remote or logistically challenging landscapes; and (IV) ensuring long-term funding continuity 493 

through multi-agency partnerships, including UN biodiversity programmes, NGOs, and 494 

national governments. 495 

  496 

Step II. Integrating citizen science data and local knowledge 497 

With the increasing popularity of citizen science applications online (e.g., iNaturalist, Flora 498 

Incognita, eBird), we are witnessing a rapid surge in biodiversity data in recent years103. Yet, 499 

most citizen science records are taxonomically and geographically biased104. Despite 500 

increasing efforts and emerging methods to mitigate this problem, insect representation has 501 

not been improved, especially in the Tropics28,105. 502 

To improve this situation, community-led efforts are essential28,106. Opportunistic 503 

observations submitted by the public can greatly improve species range estimates107,108, and 504 

semi-structured citizen science surveys provide important biodiversity monitoring 505 

information109. In Brazil, for instance, over 70% of threatened butterfly ranges improved 506 

through citizen science efforts110,111. In Bangladesh, 93% of butterfly occurrence records 507 

originated from Facebook photographs112, revealing that one-third of Bangladeshi 508 
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butterflies could go extinct under future climatic scenarios14, while in the Philippines, citizen 509 

scientists documented many rare and elusive butterfly species113. Additionally, the growth 510 

of online citizen science platforms such as iNaturalist, Observation, Biodiversity Atlas India, 511 

and social media, has made it easier to collect, verify, and combine butterfly records at both 512 

the national and global extent103. Using these sources in biodiversity databases will be 513 

crucial for bridging ongoing monitoring gaps, especially in the Tropics28. These examples 514 

demonstrate a huge untapped potential, but also the need to explore alternative and 515 

complementary approaches for monitoring, such that would suit differing habitats, engage 516 

different public types, cultures and knowledge levels, and most importantly, lead to the 517 

desired outcomes of generating longer-term monitoring data. This could possibly be 518 

achieved through a combination of structured transect walks, time-bound counts (e.g. 15 519 

min) and fruit baits for forest areas - but other approaches may need to be explored. 520 

While citizen science tools can substantially improve data coverage, using these records to 521 

guide conservation planning requires both good design of citizen science programmes and 522 

robust data validation processes, where taxonomic expertise is essential114,115. To boost 523 

engagement, incentivising participation, especially for coordinators in developing countries, 524 

through recognition programmes or small grants, can be effective. Embedding citizen 525 

science in national biodiversity strategies can assist countries in tracking progress toward 526 

post-2020 Global Biodiversity Framework targets, including spatial planning, ecosystem 527 

monitoring, and biodiversity data mobilisation116. Finally, engaging communities in 528 

biodiversity monitoring—both at entry and specialised expert levels—can contribute to 529 

enhancing species knowledge and fostering nature experience, building scientific and 530 

conservation literacy through Learning-by-Doing117. Importantly, engaging in citizen science 531 

can promote environmental awareness, skills and social licence for both biodiversity science 532 

and conservation118. 533 

  534 

Step III. Accounting for species range shifts in conservation planning 535 

Despite mounting evidence for species shifting their ranges in recent decades, current 536 

conservation frameworks, both regional and global, rarely include range dynamics, which 537 

limits their ability to protect biodiversity under changing climatic conditions. While 538 

protected areas have been established to insulate species from various direct threats119, 539 

their effectiveness varies over time because the habitat suitability of a given species is 540 

constantly changing due to global change drivers, like climate change and biological 541 

invasions, which do not stop at the border of protected areas119,120. For example, 76% of 542 

insect species are inadequately represented within the current protected area system121, 543 

while the situation is worse for the migratory butterfly species, with 85% being inadequately 544 

protected122. To address these limitations, conservation planning should incorporate real-545 

time species range shift data40,123. Aligning national efforts with the Kunming-Montreal 546 

Global Biodiversity Framework will require systematically incorporating range shift data to 547 

inform spatial planning, monitoring, and progress reporting124. 548 
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Existing assessments, such as the IUCN Red List, often depend on static species distribution 549 

maps, which may no longer represent the current or future distribution of suitable habitat. 550 

Most IUCN threatened insects are listed under criteria B or D2 (restricted range) rather than 551 

criterion A (population reduction), which can also account for declines in area or 552 

occupancy125. Developing and using dynamic range mapping solutions, based on observed 553 

data belonging to any available source (literature, museum and private collections, 554 

monitoring, citizen science platforms) and projected shifts, will help conservation efforts 555 

better identify at-risk populations and emerging threats. 556 

Species undergoing range contractions and elevational range shifts require special 557 

attention, as they are often at elevated risk of extinction from habitat loss and thermal 558 

stress. In the temperate grassy woodlands of Australia, extensive agriculture and 559 

urbanisation have contributed to range contractions of several specialist species126, 560 

emphasising the importance of maintaining environmental heterogeneity and sustainable 561 

thermal connectivity through the availability of elevational gradients. These species might 562 

need targeted measures, such as conserving climate refugia, restoring appropriate habitats, 563 

or, in some cases, assisted migration to suitable areas. Lastly, scenario-based forecasting 564 

using species distribution models can be a powerful tool for proactive conservation 565 

planning, especially so for data-poor species or for tracking species niche or assessing 566 

species vulnerability to global change123,127. Predicting where species are likely to move 567 

under future climate and land-use scenarios allows for early interventions, such as 568 

prioritising future conservation areas, restoring stepping-stone habitats, or establishing 569 

transboundary agreements for migratory or shifting species. Such models can also be used 570 

to identify potential reintroduction sites128. 571 

In summary, tackling the conservation implications of range shifts requires a move from 572 

reactive to adaptive strategies—ones that acknowledge uncertainty, incorporate predictive 573 

modelling, and embed species range dynamics into policy and practice. 574 

  575 

Conclusion 576 

Butterflies are a highly diverse and widely distributed group, contributing to many 577 

ecosystem services and serving as bioindicators and sentinels of change. We report that 578 

globally, the current detection rate for butterfly species range shifts affects one in ten 579 

species, often involving climate change and extreme weather, along with agriculture and 580 

aquaculture and human intrusions and disturbance as the most likely drivers of change. 581 

Despite our efforts building the largest dataset compiling reports of range shifts in 582 

butterflies, our understanding of how butterflies respond to global changes remains biased 583 

towards temperate species, with many species, especially in the Tropics, lacking data on 584 

range shifts. Expanding biodiversity monitoring, including citizen science approaches and 585 

accounting for range dynamics in conservation, will improve our understanding of butterfly 586 

responses to environmental change and help develop more adaptive, forward-looking 587 

conservation approaches. Without such global, coordinated efforts, including insects, we 588 
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risk missing early warning signals of biodiversity collapse—especially in regions and taxa that 589 

are underrepresented in existing data repositories. Considering that many other taxa are 590 

experiencing similar shifts in their geographic range, our methods and recommendations 591 

are transferable to other taxonomic groups and scalable across terrestrial and marine 592 

realms to understand how biodiversity responds to global change drivers and thus work 593 

jointly towards effective conservation and restoration. 594 

  595 

Methods 596 

We followed two primary steps to extract data on butterfly range shifts. First, we reviewed 597 

published literature. Recognising the bias in published literature, we invited 68 butterfly 598 

experts (co-authors) from 49 countries. 599 

As many authors publish their research in non-English languages38,129, we searched for 600 

published literature in 15 languages. For English-language studies, we used Web of Science 601 

and Google Scholar, and for non-English-language studies we used Google Scholar and local 602 

search systems (see supplementary methods). 603 

We used a common template to extract information from both steps. We contacted IUCN 604 

SSC Butterfly and Moth Specialist group and Butterfly Conservation to compile a list of 605 

butterfly experts who have been doing field work for many years. When emailing the 606 

experts, we also requested them to share our study with their network so that we can reach 607 

the maximum number of people. Once each expert agreed, we asked them to share the 608 

same range-shift information, which we obtained from published studies, but based on their 609 

field surveys. 610 

Once the data collection was done, we aggregated both the datasets from published studies 611 

and expert assessments to understand the global patterns of range shifts in butterflies. 612 

Finally, we used the most comprehensive and recent taxonomy of butterflies30 to match 613 

range shift information and country-level distribution data. 614 
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List of table 1009 

Table 1. Types and definitions of range shifts considered in this study, including examples 1010 

from butterfly species. We define range shifts as partial changes in species distributions 1011 

across space or elevation, rather than complete shifts of entire populations from one 1012 

location to another. Here, area of occupancy is defined as the area within its ‘extent of 1013 

occurrence’ which is occupied by a taxon, excluding cases of vagrancy (IUCN, 2012). 1014 

  1015 

Range shift type Definition Example 

  

Range expansion 

The process by which a species’ range 

expands horizontally by colonising 

new locations and establishing viable 

populations beyond the margins of its 

original area of occupancy130. To be 

inclusive, we considered species new 

to a region as range-expanding 

species. 

Between 2012 and 2019, 

Acraea terpsicore, native to 

the Indian subcontinent, 

expanded its geographic range 

at 135 km/year in Australia16. 

  

Range 

contraction 

The process by which a species’ range 

contracts horizontally by going locally 

extinct (i.e., extirpation) in parts of its 

original area of occupancy130. To be 

inclusive, we considered species that 

became extirpated from a region as 

range-contracting species. 

Over the last 150 years, 

Cupido minimus has lost 40% 

of its habitat in the UK131, 

leading to severe horizontal 

range contraction along the 

latitudinal gradient of the UK. 

  

Elevational shift 

The process by which a species’ 

moves to higher or lower elevational 

areas (e.g., shifting its upper 

elevational limit, its optimum 

elevation or its lower elevational limit 

either upslope or downslope), 

compared to its original elevational 

range5. 

Between 1988 and 2011, 

Vanessa cardui experienced a 

range shift towards higher 

elevations at a rate of 83 

m/year in Mexico, while 

Danaus gilippus shifted 

towards lower elevations at a 

rate of 32 m/year91. 
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List of figures 1017 

Figure 1. Global spatial patterns of 1758 butterfly range shifts in our data: geographic 1018 

distribution and cumulative evidence (A-D) are shown, as well as family-wise distribution (E) 1019 

in reporting butterfly range shifts. The colour legend (A-D), in log scale, shows the number 1020 

of studies reporting range shifts for butterflies per country, where 0 means we did not 1021 

obtain any range data from that country (shown in white). Histograms indicate the number 1022 

of studies for which a given species had been reported to shift, with a clear bias towards 1023 

single-study reports for a majority of butterfly species and a few cases of butterfly species 1024 

being reported to shift from 2, 3 or more than 3 distinct studies. In (E), we calculated the ‘% 1025 

relative to the total number of butterfly species’ by comparing the number of range shifting 1026 

species to the total number of documented butterfly species per family and the ‘% relative 1027 

to the number of range shift species’ by comparing the number of range shift species to the 1028 

total number of range shift species in our data (n= 1758). 1029 

Figure 2. Proportion of shifting butterfly species relative to the total number of butterfly 1030 

species known to occur within each country (Pinkert et al.30, with 0% indicating we did not 1031 

obtain any range shift data from that country (shown in white). High values in Europe reflect 1032 

both genuine change and the much greater probability of detecting shifts given long‑term 1033 

programs; lower values in many tropical countries likely reflect data scarcity rather than 1034 

biological stability. 1035 

Figure 3. Proportion of shifting butterfly species relative to the total number of range shift 1036 

species, which were reported to have experienced shifts either in the focal country or 1037 

elsewhere, with 0% indicating we did not obtain any range shift data of a species of that 1038 

country (shown in white). High values in Europe reflect both genuine change and the much 1039 

greater probability of detecting it given long‑term programs; lower values in many tropical 1040 

countries likely reflect data scarcity rather than biological stability. 1041 

Figure 4. Distribution of threats attributed to butterfly species range shifts (compiled from 1042 

published literature and experts). (A) Summary of the identified threats underlying butterfly 1043 

species range shifts, where each bar shows the number of butterfly species for which range 1044 

shifts were attributed to a given threat, and their distribution per continent (B). Here, 1045 

‘threats by species’ indicates the number of times the threat was reported in a given 1046 

species-by-continent combination. Labels refer to Climate = climate change and severe 1047 

weather, Agriculture = agriculture and aquaculture, Intrusion = human intrusions and 1048 

disturbance, Development = residential and commercial development, Transportation = 1049 

transportation and service corridors, Modifications = natural system modifications, Invasive 1050 

= invasive and other problematic species, genes and diseases, Resource use = biological 1051 

resource use, and Energy = energy production and mining. 1052 
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