Born this way: individuality is seeded before birth and robust to
environmental stress

Short title: Individuality is seeded before birth, robust to environmental stress

James H. Gallagher', Ammon D. Perkes', Chia-Chen Chang'?, Emma S. Chirila’, Karen
Kacevas', Kate L. Laskowski'

' Department of Evolution and Ecology, University of California Davis, Davis CA, 95616
2 Department of Biological Sciences, National University of Singapore, Singapore, 119077

Corresponding author: James H. Gallagher (jhgallagher@ucdavis.edu)

Keywords: Development, animal personality, variance partitioning, developmental plasticity,
individual variation



29

30

31

32

33

34

35

Abstract

Behavioral individuality, or consistent individual differences in behavior, are pervasive across
the animal world and have major ecological and evolutionary consequences. Nevertheless, we
still have a limited understanding of what drives individuality and how it emerges during
ontogeny. Here, we subjected clonal individuals to a ubiquitous yet critical environmental
challenge—the threat of predation—to disentangle the developmental mechanisms of
individuality. Under such a salient environmental stressor, among-individual differences may
collapse or expand depending on whether there is a single or multiple optimal strategies,
demonstrating that individuality itself is a developmentally plastic trait. If, however, individuality
is determined before birth, we may expect it to be resistant to environmental influences. We
continuously tracked the behavior of genetically identical fish (Amazon mollies, Poecilia
formosa), reared with or without predation stress, all day, every day, from birth through their first
month of life, providing unprecedented insight into the trajectories of behavioral development in
response to this key environmental cue. Predation shifted mean-level behaviors, with predator-
exposed individuals swimming more slowly and spending more time near their refuges.
However, the magnitude of individuality (as evidenced by repeatability) increased similarly over
development in both treatments, indicating that individuality crystallizes robustly over time, even
under stress and in a vacuum of genetic variation. Predator-reared fish also exhibited greater
within-individual variation in refuge use, suggesting decreased behavioral predictability or
disrupted developmental canalization in response to stress. Surprisingly, maternal identity, but
not maternal behavior, was the strongest contributor to variance in swimming velocity
(accounting for two thirds of variation), pointing to maternal effects as a key pre-birth source of
behavioral variation. Variance in refuge use however was only negligibly explained by maternal
identity, highlighting that fundamental behaviors may have very different developmental
mechanisms. Collectively, our results show that individuality persists despite environmental
stress and is likely seeded before birth through non-genetic factors. Even in the face of a shared
environmental challenge, the behavioral trajectories of individuals are unique.

Introduction

Understanding what shapes individuality has been a long-standing, fundamental
question in the field of biology that has permeated many aspects of culture, from philosophy to
science fiction. Individuality—consistent differences in behavior among individuals—is

ubiquitous across the animal kingdom '°, can have important fitness implications for individuals

611 and can shape the evolutionary trajectories of populations >, even driving speciation '>'°.

Where do individual differences in behavior come from? While this question has been
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historically posed as the “nature vs nurture” debate, this framing is now widely regarded as a
false dichotomy, as both genetic and environmental variation will almost always interact to
influence an individual's behavior. Considerable effort has been spent controlling for these two
factors in order to pinpoint the drivers of behavioral individuality. Nevertheless, there is a
growing body of work indicating that even when genetic and environmental variation is

minimized, individuals still exhibit consistent differences in their behaviors '~

, even at birth
2122 Some of this variation may be due to variation in pre-birth influences, such as maternal
effects or developmental stochasticity, which may play an underappreciated role in generating

5202328 Thijs type of non-genetic variation may help set the seed

variation among individuals
around which further behavioral individuality crystallizes. Regardless of where such initial
differences arise, the continued persistence of individuality despite our best efforts to minimize it
suggests that we still lack a full understanding of the key mechanisms underlying its emergence.
To identify these mechanisms, we must consider not only what shapes behavior, but also how
behavioral differences emerge over the course of life '22°.

Development is an iterative, path-dependent process, where early experiences may lead
to lasting behavioral differences 3!, Thus, tracking how individuals respond to environmental
challenges during development can reveal the processes that shape their behaviors. One
predominant environmental feature that individuals must contend with is that of risk, most
notably in the form of predation. Because most animals are subject to predation risk, their
behavioral responses to this risk can heavily impact their fitness. Across taxa, predation stress
during development has been shown to have profound effects on individual behavior, brain

function, and personality 32743

, making predation a salient environmental candidate for shaping
behavioral individuality. However, we still do not understand how predation shapes the
emergence of individuality from birth throughout ontogeny. This is an important knowledge gap

because exposure to predation stress may impact patterns of individual behavioral variation in

different ways. On one hand, predation stress may collapse variation attributed to among-
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individual differences, making individuals behave more similar to each other, if there is an

optimal behavioral strategy for survival in a predator-rich environment **

. Alternatively, predation
stress could instead expand among-individual differences *, as there may be many strategies
to mitigate risk in the face of predation. A final possibility is that individual differences may not
be impacted by predation stress during development, implying a predominant role for pre-birth
factors in driving behavioral individuality. Disentangling these possibilities requires closely
tracking individual behavior from birth throughout development, across different developmental
environments.

Studying the emergence of individuality over development can be very challenging due
to the presence of confounding genetic variation in animals, as well as an inability to reliably
measure the behavior of individuals from birth in standardized conditions throughout ontogeny,
either due to features of the study species (e.g., some species require parental care introducing
uncontrolled variation in experience among offspring) or technological limitations in following
individuals at such early points in their lives. To fully understand the processes that shape
behavioral variation, we must be able to solve these challenges and intimately track the details
of the timing and rate at which behaviors emerge in individuals *°.

Here, we used an ideal animal study system in conjunction with high-resolution tracking
to bypass historical experimental limitations and deeply study the emergence of behavioral
individuality over ontogeny. The Amazon molly (Poecilia formosa) is an all-female freshwater
fish that reproduces via gynogenesis, resulting in individuals that are genetically identical to

each other and their mothers 46-4°

, allowing us to minimize the effects of confounding (among-
individual) genetic variation, analogous to twin studies in humans *°. They are also live-bearing
without any parental care, so individuals can be isolated from birth with minimal consequence to
standardize life experience from day one. We combined this optimal study species with custom

tracking technology (using cameras connected to individual Raspberry Pi computers 2'*") to

record and extract behaviors from individuals (N=107) at high temporal resolution (1s resolution
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for 12 hours every day) over the first 28 days of their lives. These fish were placed in one of two
environmental conditions—with or without exposure to predator cues—to determine how stress
shapes behavior and the magnitude of individuality across development. We also standardized
the environments that these individuals’ mothers experienced in the week prior to breeding (with
none of them facing predation stress at any time) and used the same tracking approach to
measure the behavior of all mothers before they gave birth (N=13, for seven days) to test
whether maternal behavior and/or identity explain offspring behavior (Fig 1). This resulted in
over 30,000 hours of data-rich recordings (>100 million data points) that we then quantified
using a convolutional neural network-based pipeline to track the position of each individual, all
day, every day. Using these data we extracted ecologically relevant behavioral metrics, such as

swimming velocity and time spent near a refuge in the tank, that are likely to be affected by

predation threat 2~
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Fig 1. Experimental design. A) Adult Amazon mollies were each placed in identical individual
tanks in our custom tracking system and recorded using cameras attached to Raspberry Pi
computers for 12 hours each day over one week. B) Fish were then placed in individual tanks
with a male Atlantic molly to initiate reproduction. C) Offspring born from the breeding tanks
were split evenly by brood and placed into individual tanks in one of two closed-water tracking
systems—with and without water containing predator cues—and continuously recorded for four
weeks.
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In our study, we asked a series of questions to disentangle the developmental drivers of
behavioral variation. First, we asked how average behavior shifts over ontogeny in the face of a
significant environmental challenge (threat of predation). Predator-exposed fish may adjust
fitness-relevant behaviors, such as swimming velocity and time spent near their shelter, and/or
show different behavioral developmental trajectories from control fish. Second, we investigated
which factors (developmental environment, maternal effects, and remaining non-genetic among-
individual variation) best explain behavioral variance. By determining what shapes behavioral
variation, we will also learn whether different behaviors share the same developmental
mechanisms. Finally, and of prime interest here, we tested whether and how predation alters
the magnitude of individuality—quantified as the relative proportion of among-individual
variance—across developmental time compared to animals that were reared under benign
conditions. This will reveal whether individuality itself is developmentally plastic or determined
before birth through non-genetic factors. Our powerful study system, large individual sample
sizes, and high temporal resolution tracking provides a uniquely comprehensive understanding

of the fundamental yet elusive processes that generate individuality.

Results

Predation stress during development impacts mean-level behavior

We used generalized linear mixed models to test for behavioral differences between
treatments by including treatment, time, and their interaction as our fixed effects of interest. We
did not find evidence for significant treatment-by-time interactions in either swimming velocity
(treatment x time: post.mean = 0.002 [95% CI: -0.01, 0.01]; Fig 2A) or refuge use (treatment x
time: post.mean = 0.01 [95% CI: -0.004, 0.02]; Fig 2B), indicating that behaviors did not change
differently over ontogeny based on environment. However, we did find significant main effects of

treatment for both swimming velocity (post.mean = -0.18 scaled pixels per second [95% CI:



133

134

135

136

137

138

139

140

141

142

143
144
145
146
147
148
149
150

-0.34, -0.02]) and refuge use (post.mean = 0.24 scaled proportion [95% CI: 0.03, 0.43]), with
predator-reared fish moving more slowly and spending more time near their refuge (Fig 2). For
velocity, these differences between the two treatments appeared small, but were present on the
first day of life (post.mean = 1.21 scaled pps [95% CI: 0.74, 1.75]). Unlike velocity, there were
no significant differences in refuge use on day one (post.mean = 0.22 scaled proportion [95%
Cl: -0.01, 0.48]). Neither velocity nor refuge use were predicted by body size (Table S1), and
body size was not predicted by rearing environment (length: post.mean = 0.06 [95% CI: -1.71,

1.67]; width: post.mean = -0.16 [95% CI: -0.45, 0.10]).
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Fig 2. Average-level behaviors (velocity (A), in scaled pixels per second, and refuge use (B), in
proportion scaled) of individuals over developmental time, reared with (orange) and without
(blue) predation threat. Thin lines represent the behaviors of individuals over time, while thick
lines represent mean behaviors of individuals in a given developmental treatment. Note that for
median velocity (A), a single individual’s day one data is not shown (but are included in
analysis) due to its unusually high value (10.12 scaled pps) that would hinder visual clarity of the
plot if included.
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Different behaviors have different sources of variance

We used a combination of forward model selection and variance partitioning to
determine how developmental environment (treatment), among-individual differences, and/or
maternal identity explained the behavioral variance. Using model selection, we found that
shared variance components across treatments were best supported for both velocity and
refuge use, indicating that there were not significant differences in the magnitude of among-
individual and among-mother variance between the treatments (see supplemental information).
For velocity, maternal identity explained the majority of the total variance across all of
development (ICC = 0.659 [0.368, 0.893]), while differences among-individuals explained a
much lower amount (ICC = 0.059 [0.020, 0.113]; Fig 3A). However, for refuge use, patterns
were reversed, with among-individual differences (ICC = 0.267 [0.214, 0.323]) explaining much
more of the variance than maternal identity (ICC = 0.021 [<0.001, 0.081]), which was minimal
(Fig 3B).

Because maternal identity strongly contributed to variation in velocity (Fig 3C; but not
refuge use, Fig 3D), we tested whether these effects could be explained by maternal behavior.
For both velocity and refuge use, maternal behavior did not predict offspring behavior (velocity:
post.mean = 0.005 [95% CI: -0.02, 0.03]; refuge use: post.mean = 0.02, [95% CI: -0.128, 1.41]),
nor did maternal identity predict body size (length: post.mean = 0.546 [95% CI: <0.001, 3.926];

width: post.mean = 0.004 [95% CI: <0.001, 0.021]; Figs 3E-F).
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Fig 3. Sources of variation across behaviors (left = velocity, right = refuge use). For velocity (A),
most of the variance was explained by maternal identity, providing strong evidence of maternal
effects. For refuge use (B), maternal identity contributed minimally to variance, with variation
among individuals explaining a much larger share, and variation within individuals (i.e., residual)
explaining the largest amount. C-D show the relationship between control and predator siblings
from each mother (units = scaled behavior). Grey dots indicate the mean behavioral values of
all offspring from a given mother. Error bars show the standard error of means for control (blue)
and predator (orange) offspring of that mother. Maternal identity is a much stronger predictor of
velocity than refuge use, as indicated by the lack of overlap between offspring behavior from
different mothers (error bars). E-F show the lack of association between maternal behavior and
offspring behavior, for both velocity (E) and refuge use (F). Boxplots represent individual
mothers, while blue and orange dots show mean behaviors over developmental time for each
individual offspring of that mother, reared with (orange) or without (blue) exposure to predator
cues.

Individuality persists despite predation stress during development

We used generalized linear mixed models to explore patterns of individual behavioral
variation, estimating variance components at each day (among- and within-individual) to then
calculate repeatability of behavior over developmental time, our proxy for individuality, for each
treatment separately, while controlling for among-mother variance. We found that for both
velocity and refuge use, individuality persisted, regardless of environmental treatment (Fig 4A-
B). In both treatments, individuals began life with low repeatability, which gradually increased
over the next four weeks, resulting in individuals with fairly repeatable behaviors by the time
they were one month old. Refuge use was consistently more repeatable than velocity. Notably,
repeatability and among-individual variance did not differ by developmental treatment, as
indicated by overlapping confidence intervals. However, for refuge use, within-individual
variance was greater in predator-reared individuals (Fig 4D), indicating that predator-reared fish

are less predictable in this behavior, within any given day compared to control-reared fish.
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Fig 4. Extracted variance components over developmental time, colored by treatment.
Repeatability—the proportion of variance attributed to variation between individuals (the metric
of individuality)—increased over the first month of life for velocity (A) and refuge use (B), and
this pattern did not differ between treatments, indicating the persistence of individuality in the
face of predation stress. C-D show variance components as posterior medians, separated into
among- and within-individual (i.e., residual) components. For velocity (C), both among- and
within-individual variance did not change over time or between treatments, aside from day one
of life, where within-individual variance was much higher, particularly in the control group. For
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refuge use (D), among-individual variance also did not differ by treatment. Within-individual
variance was highest during the first week of life, followed by a sharp decrease and plateau for
the rest of development. However, within-individual variance was consistently greater in
predator-reared fish over developmental time. Error bars on all plots indicate 95% confidence
intervals.

Discussion

We found that both developmental environment (Fig 2) and maternal identity (Fig 3) are
sufficient to generate behavioral variation, even in the absence of genetic differences. However,
the relative contribution of each source differed dramatically between behaviors, indicating that
distinct developmental mechanisms underlie each trait. For example, most of the variance in
velocity was explained by maternal identity, while most of the variance in refuge use was
explained by variation within individuals, with among-individual variation playing a notable role
as well. Perhaps surprisingly, environmental stress did not disrupt the emergence of behavioral
individuality (repeatable differences among individuals) across development, suggesting that
individuality is seeded before birth rather than developmentally plastic in response to an
individual’s environment (Fig 4A-B). However, individuals reared under stress did show greater
variability (within-individual variation) in their refuge use behavior, indicating that stress does
increase intraindividual variability or disrupt developmental canalization (Fig 4D). Here, we
discuss the biological implications of how developmental environment shapes behavior and
individuality, the role of other factors—notably maternal effects—in explaining this variation, and
the contrasting mechanisms underlying different behaviors. Finally, we discuss possible
limitations, place our findings in the context of other recent studies, and propose directions for
future research.

Exposure to predation during development impacted mean-level behavior, with predator-
reared individuals moving more slowly and spending more time near their refuges, showing that

our animals responded to the cues of predation stress as we expected (Fig 2). However, the
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timing of when these differences first emerged varied by behavior. For velocity, behavioral
differences between treatments were immediately apparent on day one (Fig 2A); for refuge use,
these differences were not present at the start of life, instead arising over the first week of
development (Fig 2B). Considering the clonal nature of Amazon mollies, this reflects pure
behavioral plasticity (that may be adaptive), suggesting that stress alone can alter the way in
which behaviors emerge over ontogeny. Our comprehensive approach to investigating the
effects of predation on the emergence of behavior supports previous work in various non-clonal
taxa showing that exposure to predation during development shapes behavior 32734363741,

In both environmental conditions, repeatability (the magnitude of individuality) increased
over ontogeny, suggesting that individuality crystallizes over time potentially through self-
reinforcing behavioral patterns or internal feedback loops '°”. Perhaps surprisingly, this
strengthening of individuality over time was not impacted by predation, with repeatability
increasing similarly over development in both treatments (Fig 4A-B). This indicates that the
seeds for individuality may be set before birth, and suggests that there may be many optimal
behavioral strategies to overcome environmental challenges. While our results are contrary to
other studies where exposure to predation either suppressed or expanded among-individual

variance (e.g., ¥~)

, our work measured behavior continuously over development, rather than at
set intervals which can only provide snapshots of behavior. This temporally rich approach
allowed us to estimate individual variance components daily, improving the accuracy of our
repeatability calculations and revealing additional insights into how behavioral variation emerges
throughout ontogeny “°. One example of this can be seen in our estimates of behavioral
predictability (i.e., within-individual variance or intraindividual variability °®°°). Although among-
individual variance did not differ between experimental treatments, we did uncover temporal and
treatment-level changes in within-individual variation by allowing residual variance to fluctuate

over time in our model (i.e., heterogeneous residual variance; see methods for more information

on our statistical approach). This revealed that while individuals in both treatments behaved

12
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more predictably as they aged, predator-reared fish showed lower predictability (i.e., greater
intraindividual variability) in refuge use within a given day throughout development (Fig 4D).
Lower predictability in predator-reared individuals may reflect either an adaptive increase in
flexible use of the refuge throughout the day as individuals assess immediate risk, or a
disruption of developmental canalization, in response to risk (see more on this below). We
encourage others to account for heterogeneous residual variance over time, as this not only
provides useful insights into the often underappreciated yet important within-individual variation
%8.60-63 hut also directly impacts the calculation of repeatability (which is dependent on correctly
estimating residual variance at a given time point).

If individuality remains robust throughout environmental stress during development, what
then drives it? We found that despite attempting to minimize potential maternal effects, for
activity-related behavior (i.e., velocity), maternal identity predicted offspring behavior more so
than any other component (including variance attributed to individual identity; Fig 3A). This
study was not designed to fully test for the effects of differential maternal experience on
offspring behavior because the mothers used in this experiment were all reared in similar
conditions. Nevertheless, our results suggest that maternal effects do play a notable role in
shaping behavior, and may be a key candidate for setting the seeds of individuality before birth.
Despite this strong evidence of maternal effects (i.e., the similarity of clonal siblings to each
other), we did not see any association between maternal and offspring behavior (Fig 3E-F),
indicating that the influence of mothers was not mediated by what they did, but rather by who
they were (although maternal behavior was collected when fish were adults rather than during
early development). This points to maternal effects with a non-behavioral basis, such as
maternal provisioning, physiological state, and/or inherited epigenetic variation through changes

21,23,24,64,65

in DNA methylation or maternal hormone transfer , @s mechanisms through which

behavioral variation emerges, even in the absence of genetic or environmental variation.
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Individuality may begin with cryptic differences among mothers that bias developmental
trajectories from the very start of life.

Interestingly, our two representative behaviors, velocity and refuge use, emerged
differently over ontogeny and appeared driven by different factors, suggesting contrasting
underlying mechanisms. Variation in velocity was overwhelmingly explained by maternal identity
(Fig 3A), while variation in refuge use was not explained by maternal identity at all (Fig 3B). As
for developmental environment, differences between treatments were more apparent from the
beginning of life for velocity, but not for refuge use, which emerged over the first week of life.
Additionally, predation stress increased behavioral variability (within-individual variance)
throughout development for refuge use, but not velocity. These differences in how behavioral
traits arise during ontogeny and what drives their variation suggests that major suites of
ecologically relevant behaviors can have different mechanisms of emergence. Behaviors
relating to space or refuge use may be far more context-dependent than swimming speed. For
example, while individual humans have highly consistent walking speeds ®, decisions about
where and when to move, such as crossing a street, vary much more within individuals based
on context (e.g., how much traffic is present). Even fully understanding the developmental
processes underlying one suite of behaviors may not inform others, and we should be careful to
not generalize across traits when studying the mechanisms of animal behaviors.

Although we attempted to control for as many variables as possible, there remain
potential limitations. Our study focused on isolating the effects of the environment on behavioral
development, so we minimized genetic variation and carefully controlled experimental
environments. However, it is impossible to eliminate all factors that could contribute to variation
in behavior. Small genetic differences between individuals could still arise even among
individuals within the same clonal lineage (e.g., either germ-line or somatic mutations "), and
individual experiences, particularly of the mothers, are impossible to fully standardize from the

first second of life.
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We end this discussion by placing our results in the context of other studies, proposing
future work that could address new questions that arose from our findings. First, our
repeatability estimates differed somewhat from those in other recent work in Amazon mollies.
Repeatability of both behaviors increased over ontogeny, with refuge use reaching higher levels
by the end of the first month of life (>0.5). However, for velocity, repeatability remained fairly low
(under 0.2) until week four. Such values differ from previous work in this species, where
repeatability of velocity was greater than 0.4 for the entire first month of development (measured
only in control conditions; #', and instead more closely matched levels found in other taxa (e.g.,
crickets) when using highly inbred lines 2. One likely reason for the discrepancy between
studies on Amazons is that here we had a larger number of both individuals and mothers,
allowing us to more accurately account for variance that was attributed to differences between
mothers—of which there was a tremendous amount for velocity (Fig 3A). While repeatability
remained relatively low for velocity over the first three weeks, there was a greater rate of
increase over the final week of the experiment, a pattern that mirrors results from the
aforementioned work 2'. If that trajectory were to continue, repeatability of velocity in our fish
may have reached much higher levels over time (as was the case in Laskowski et al. 2022).

The persistence of variation among individual Amazon mollies, despite their lack of
genetic differences, raises additional questions about the role that genetic variation actually
plays in generating individuality. One hallmark of sexual reproduction is its ability to generate
variation among individuals. Yet here (and in other recent work 2"??) we found a striking degree
of among-individual variation even when genetic differences were minimized. Future work could
reintroduce genetic variation in a fully standardized environment to better understand the
contribution of allelic variation (or lack thereof) to the onset of individuality (e.g., comparing
clonal Amazon mollies to their parental species, which naturally contain more genetic variation
via sexual reproduction). For example, a recent study compared repeatability of behavior

between inbred and outbred lines of field crickets, and found reduced repeatability in inbred
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lines ®8. Whether this pattern holds true in other taxa—and in truly clonal (i.e., parthenogenetic,
gynogenetic) species, including the Amazon molly—would make for interesting and important

future work. Other ecologically important environmental factors, such as temperature %"

or
resource availability %, could also be systematically manipulated to further assess their impact
on individuality. Given our evidence for maternal effects without behavioral transmission, a key
next step is to explore how maternal environment shapes offspring behavior using a
multigenerational design that investigates the impacts of maternal experience on mechanisms
that canalize individual behavioral trajectories.

In this study, we disentangled the developmental drivers of individuality to understand
the mechanisms that make individuals unique. Despite facing a strong environmental stressor
that affected mean-level behaviors, individuality persisted, suggesting that development does
not result in a single dominant phenotype, but rather an acceptable range. Even though mean

values may be shifted up or down, the magnitude of variation among individuals does not

change—behavioral individuality appears to be a robust and intrinsic feature of animal life.

Methods

Maternal behavior and breeding

To track the behavior of potential mothers of experimental fish, we placed adult Amazon
mollies in individual observation tanks and monitored them for one week (Fig 1A). All adult fish
were of similar age, from the same clonal lineage, and were reared in the same conditions
(social housing with similar densities, food and environmental regimes, etc.). Observation tanks
were made of white acrylic (Perspex) and had identical environments (dimensions = 15x19x15
cm), each containing white gravel along two of the four sides of the tank, as well as a standpipe
covered in a sponge filter that fish also use as a refuge. All fish experienced the same feeding

schedule (fed a standard amount of Tetra-Min flake fish food and brine shrimp twice per day),
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daily light cycle (12:12 light:dark), water temperature (2612 °C), and water depth (10 cm). The
observation tank area was also surrounded by white curtains to reduce potential disturbance
from external stimuli. Above each set of four tanks was a mounted camera attached to a
Raspberry Pi 4B computer that recorded individual behaviors (see “Tracking behavior” below).
After one week, we transferred each adult fish to an individual 5-gallon glass breeding
tank containing an artificial plant for shelter and a male Atlantic molly (Poecilia mexicana) to
initiate breeding (Fig 1B). Amazon mollies are gynogenetic, meaning that while all individuals
are genetically identical to their mother, they still require mating with a male from a closely
related species to trigger embryogenesis (his genetic material is unused in the offspring #48).
One week later, we removed males from the tanks. Throughout the breeding period, all fish

experienced the same conditions (including temperature, light cycle, and food access). This

resulted in 13 mothers that gave birth to offspring used in the rest of the study.

Offspring experimental setup

When fish were born in the breeding tanks, we transferred them that day (the first day of
their lives) to their observation | tanks in the tracking system (Fig 1C). We transferred all
newborn fish in a standardized way, by first herding them by net to a small container of water,
then moving them to their respective individual tanks, thus limiting air exposure. We took
individuals from each brood and distributed them evenly between observation tanks that were
part of two closed circulating water systems: one containing a live electric yellow lab cichlid
(Labidochromis caeruleus), and one without (control). Each closed water system was connected
to a sump tank below the observation tanks; in the predator system, this sump tank contained
the cichlid, which was fed whole Tetra-Min flake food, blood worms, and brine shrimp daily. All
tanks in a given filtration system shared water, so fish in the predator system were consistently

receiving chemical (but not visual) cues from the cichlid (cues from this cichlid elicit anti-
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predator behavior in adult Amazon mollies ™). To deliver alarm cues to experimental fish, which

7478 \ve fed the cichlid an

are released from the skin following mechanical damage
anesthetized small black molly (Poecilia sphenops) twice per week—once between Monday and
Wednesday, and once between Thursday and Friday—on random days during those two
windows and at random times of day to reduce habituation. Experimental conditions for
offspring were identical to those used for tracking the behavior of the adults (mothers), except
fish were fed powdered instead of whole Tetra-Min flake fish food. Tanks contained aquarium
gravel along the walls to help promote natural foraging behaviors, and each group of tanks was
surrounded by curtains to reduce outside disturbance. There were always multiple individuals in

2122 which can

a given shared water system, so fish did not perceive complete social isolation
lead to altered behaviors in some fish ’°. We allowed fish to develop in their observation tanks

undisturbed for four weeks, resulting in data from 107 individuals.

Tracking behavior

For efficiency and reproducibility, all videos were processed within one of two automated
pipelines (see supplemental code; #°), specialized either for adults or for juveniles. All videos
were first cropped to exclude adjacent tanks using ffmpeg (version 6.1.1, FFmpeg Developers),
based on manually labeled points. We also used labeled center-points to assign the (up to) four
tracks in each video to specific individuals. For tracking adults, we used a neural network
(efficientNet b3 ®'), trained and implemented using SLEAP 8. For tracking babies, we similarly
began with a neural network (LEAP #) using SLEAP #, which was generally accurate, but
struggled when small fish were above gravel. To address this, we also used a custom tracker
based on a mixture of gaussians background subtractor ®, implemented using openCV # in
python. Because this takes advantage of frame-to-frame differences, it was successful tracking

fish over gravel. Both sets of tracks were filtered to remove extremely high-density pixels (which
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likely represent false detections of stationary objects). To combine these two streams, we used
a custom implementation of the Viterbi algorithm ®, which seeks to estimate the most likely path
of some unknown and hidden value (in this case, the location of fish) based on probabilistic
observed values (the two parallel detections of fish). From these post-processed tracks we
calculated the median velocity, proportion of frames “active” (defined as moving > 5
pixels/second), median velocity when “active,” and proportion of frames detected in the corner
with the standpipe (which acts as a refuge). Videos were manually inspected by an expert
observer (JHG) for major issues that would result in inaccurate tracking (i.e., missing or moved
fish, camera movement). We manually scored 1-minute segments from a randomly selected day
within the first and last week for 6 groups (a total of 18,000 frames). The mean false detection
rate was only 6.2% (+/- .03% SEM), suggesting for >90% of frames, the fish was either

accurately detected or not visible (e.g., under the refuge).

Measuring body size

To estimate individual body size of offspring at the end of the experiment, we used a
custom python script to extract crops of each individual (based on their detected position) on
day 27 and manually labeled the head, tail-peduncle, and body width (at its widest point) using
Supervisely, a web-based computer vision platform 8. The identity and treatment of fish in these

crops were blinded during labeling.

Statistical analysis

All statistical analysis was conducted using R accessed through R Studio (R Studio
version 2023.12.1, R version 4.3.3). We selected which behaviors we would investigate by
eliminating highly correlated behaviors. This resulted in two behaviors, median velocity

(swimming speed) and proportion of time spent near the standpipe (refuge use), that we used
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for analysis. In order to understand which factors shape mean-level behaviors and behavioral
variance, we first ran Bayesian bivariate mixed models using the MCMCglmm package %,
separately for each behavior (velocity and refuge use) where our bivariate response was the
same behavior in each treatment. We used a bivariate model first to determine whether our
random effects should be estimated independently by treatment. All models included treatment
(with or without predator exposure), day of life, hour, and the interaction between treatment and
day as fixed effects, and individual and maternal ID as random effects because these were both
of primary interest to our research question. We first conducted model selection to determine
any additional random effects structure of our models (i.e. inclusion of random intercepts and
slopes for individual and/or mother), choosing the least complex model within 2 of the lowest
DIC value. To account for differences in behavior due to time of year (given the unpredictability
of births, fish were placed into the tanks as they were born which staggered throughout the
year), we next compared our models with and without a time of year variable as a fixed effect.
We performed hierarchical clustering using the stats package to translate the time of year
variable into batches; this revealed four primary clusters, which we used for our time of year
batch variable. The best supported models for both behaviors included random effects
(individual and maternal IDs) pooled between treatments, as opposed to independent random
effects that were estimated uniquely for each treatment. This suggested that variance
components did not differ by treatment, and therefore a univariate model was most appropriate
to answer our questions moving forward.

We used the same model selection process above to determine the best structure for
the univariate model. We also compared our models to one that allowed for heterogeneous
residual variance over time, as this could impact repeatability calculations and reveal cryptic yet
relevant information about the effects of the developmental environment on behavioral
variability. For both behaviors, heterogeneous residual variance improved the models’ fit. Thus,

the final model for velocity included treatment, day, their interaction, hour, and time of year as
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fixed effects, random intercepts for individual and maternal ID (family = gaussian), and daily
heterogeneous residual variation. For refuge use, the final model included treatment, day, their
interaction, and hour as fixed effects (time of year did not improve the model fit), random
intercepts for individual and maternal ID (family = gaussian), and daily heterogeneous residual
variation. All models were validated by ensuring variables of interest had low autocorrelation
values (<0.1) and high effective sample sizes (>1500), and by visually inspecting trace and
density plots. To aid with statistical interpretation of differences between treatment groups
(shown in Supplemental Information), we calculated probability of direction (pd) using the
package bayestestR (a pd value > 0.975 is equivalent to a frequentist p-value of < 0.05 8889),

To test for the effects of body size on behavior, we ran the full models described above
with and without the inclusion of individual length and width as fixed effects. Because body size
data was collected at the end of the experiment (day 27), any individuals that were not recorded
through the end of the experiment could not have their body size measured, so we ran the
models on a subset of the data that only included individuals with body size measurements (N =
90 individuals).

To test for differences in mean behaviors between treatments on day one of life, we ran
the same models on a subset of the data (day one) but excluded day as a fixed effect. We again
conducted model selection to determine which other fixed effects should be included for the day
one comparison (time of year and hour). Our final model for velocity included treatment and
hour as fixed effects, and random intercepts for individual and maternal ID (family = gaussian),
and for refuge use included treatment as a fixed effect, and random intercepts for individual and
maternal ID (family = gaussian).

To estimate the proportion of variance explained overall (i.e. over the entire observation
period and across both treatments) by different sources, we calculated marginalized
repeatability (i.e., intraclass correlation) by dividing the variance attributed to each variable

(individual ID, maternal ID, and residual) by the total variance °*°'. For example, to calculate
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maternal ICC, we used the following equation: maternal ID variance / (maternal ID variance +
individual ID variance + residual variance; see supplementary information for further details). To
determine whether maternal behavior predicted offspring behavior, we ran our full mixed model
(as above), this time with the inclusion of maternal behavior (separately for velocity and refuge
use) on a subset of individuals that had data for their own and their mother’s behavior (N = 86
individuals).

To more deeply investigate how exposure to predation may alter patterns of individual
behavior specifically, we ran separate univariate mixed models for each treatment (control,
predator) and each behavior, which allowed us to partition variance components (among-
versus within-individual variance) and estimate behavioral repeatability, our proxy for
individuality, within each treatment. We ran models separately by treatment because even
though variance averaged over development did not differ by treatment, our aim here was to
understand how multiple variance components, including within-individual variation, changed
throughout development, which our pooled treatment model above cannot estimate. As for the
previous models, we also conducted model selection to determine the random and fixed effects
structure. Because our goal was to compare control and predator models directly, we chose the
most complex model structure that was the best fit for either treatment group, then used this
structure for both models to ensure that important sources of variation were not excluded. The
best supported model structure for velocity included developmental day, hour, and time of year
as fixed effects, random intercepts and slopes for individual ID (across days), random intercepts
and slopes for maternal ID (across days), and daily heterogeneous residual variances. For
refuge use, the best supported models included developmental day and hour as fixed effects,
random intercepts and slopes for individual ID, random intercepts for maternal ID, and daily
heterogeneous residual variances. Models were again validated by ensuring variables of

interest had low autocorrelation and high effective sample sizes.
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Estimating variance components and repeatability across time series data is challenging.
When random slopes are present, meaning individuals are changing rank-order over time,
conditional repeatability can be used to estimate the magnitude of among-individual variance at
any given time point °°'; however, in these models, residual (i.e., within-individual) variance is
typically described by a single component regardless of time. However, with growing evidence

of the importance of within-individual behavioral variance %6392

, we chose to use
heterogeneous residual models that can estimate within-individual variance at a given time
point. Indeed, in our study, the best supported models (as described above) included both
random intercepts, slopes and heterogeneous residual variance. Therefore, we expanded the
calculations of conditional repeatability proposed by Schielzeth and Nakagawa *° and
Nakagawa et al. °' to also account for heterogeneous residual variance, estimated separately
for each day. Our final repeatability equation included the variance attributable to individual

intercepts (c2,), slopes (a2, (x;)?), their covariance (2p0,0,1x;), and time-specific

heterogeneous residual variance (Uezx*):

2 2 *1 2 *
O-aO + Jal(xl) + 2p0'a00'a1X1

RC * —
X 2

2 2 * * 2
0%0 T 051(x])" +2p0,00,1x1 + o

For all the models above, we used parameter-expanded priors from similar studies 2'¢";
we also verified that these expanded priors were not biasing our interpretation (using
MCMCglmm default priors did not change results). To investigate the effects of treatment and
maternal identity on offspring body size, we used mixed models (separately for length and

width) with body size as our dependent variable, treatment and time of year as fixed effects, and

maternal ID as a random effect (family = gaussian).
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